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Forcing with symmetric systems of
models as side conditions

Finite–support forcing iterations involving symmetric systems of
models as side conditions are useful in situations in which, for
example, we want to force

• consequences of classical forcing axioms at the level of
H(!2), together with

• 2@0 large.



Given a cardinal  and T ✓ H(), a finite N ✓ [H()]@0 is a
T–symmetric system if
(1) for every N 2 N ,

(N,2,T ) 4 (H(),2,T ),

(2) given N0, N1 2 N , if N0 \ !1 = N1 \ !1, then there is a
unique isomorphism

 N0,N1 : (N0,2,T ) �! (N1,2,T )

and  N0,N1 is the identity on N0 \ N1.
(3) Given N0, N1 2 N such that N0 \ !1 = N1 \ !1 and

M 2 N0 \N ,  N0,N1(M) 2 N .
(4) Given M, N0 2 N such that M \ !1 < N0 \ !1, there is

some N1 2 N such that N1 \ !1 = N0 \ !1 and M 2 N1.



The pure side condition forcing

P0 = ({N : N a T –symmetric system},◆)

(for any fixed T ✓ H()) preserves CH:

This exploits the fact that given N, N 0 2 N , N a symmetric
system, if N \ !1 = N 0 \ !1, then  N,N0 is an isomorphism

 N,N0 : (N;2,N \ N) �! (N 0;2,N \ N 0)

Proof: Suppose (ṙ⇠)⇠<!2 are names for subsets of ! and
N �P0 ṙ⇠ 6= ṙ⇠0 for all ⇠ 6= ⇠0. For each ⇠, let N⇠ be a sufficiently
correct model such that N , ṙ⇠ 2 N⇠.
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By CH we may find ⇠ 6= ⇠0 such that there is an isomorphism

 : (N⇠;2,T ⇤,N , ṙ⇠) �! (N⇠0 ;2,T ⇤,N , ṙ⇠0)

(where T ⇤ is the satisfaction predicate for (H();2,T )). Then
N ⇤ = N [ {N⇠,N⇠0} 2 P0. But N ⇤ is (N⇠,P0)–generic and
(N⇠0 ,P0)–generic.

Now, let n < ! and let N 0 be an extension of N ⇤. Suppose
N 0 �P0 n 2 ṙ⇠. Then there is N 00 2 P0 extending both N 0 and
some M 2 N⇠ \ P0 such that M �P0 n 2 ṙ⇠. By symmetry, N 00

extends also  (M). But  (M) �P0 n 2  (ṙ⇠) = ṙ⇠0 .

We have shown N ⇤ �P0 ṙ⇠ ✓ ṙ⇠0 , and similarly we can show
N ⇤ �P0 ṙ⇠0 ✓ ṙ⇠. Contradiction since N ⇤ extends N and ⇠ 6= ⇠0.
⇤
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In typical forcing iterations with symmetric systems as side
conditions, 2@0 is large in the final extension. Even if P0 can be
seen as the first stage of these iterations, the forcing is in fact
designed to add reals at (all) subsequent successor stages.

Something one may want to try at this point: Extend the
symmetry requirements also to the working parts in such a way
that the above CH–preservation argument goes trough. Hope
to be able to force something interesting this way.
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A toy example: Getting a model of the
negation of Weak Club Guessing with

CH

Weak Club Guessing (WCG): For every ladder system
(C� : � 2 Lim(!1)) (i.e., each C� is a cofinal subset of � of order
type !) there is a club C ✓ !1 such that C \ C� is finite for all �.

(Shelah, NNR revisited): ¬WCG is consistent with CH.

As with many classical results in the area this is done by
building a countable–support iteration dealing with the relevant
problem. At successor stages no new reals are added. The
bulk of the proof is by far in showing that no new reals are
added at limit stages either.
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The following is an outline of a proof of this result using side
conditions and adding reals.



We start with GCH. Fix � : !2 ! H(!2) such that ��1(x) is
unbounded in !2 for all x 2 H(!2). We build (P� : � < !2):

Given � such that P↵ has been defined for all ↵ < �, we define
P� .

q = (F ,�, ⌧) is a condition in P� iff:



(1) � is a finite collection of pairs (N, �) such that N is an
elementary submodel of H(!2), �  �, and � is in the
closure of N \ Ord.

(2) dom(�) is a symmetric system of countable elementary
submodels of H(!2).

(3) F is a finite function with dom(F ) ✓ �.
(4) For every ↵ 2 dom(F ), if �(↵) is a P↵-name for a ladder

system ~C↵ = (C↵
� : � 2 Lim(!1)), then F (↵) is a condition

for a natural forcing Q~C↵
for adding a club of !1, via finite

collections of disjoint intervals, with finite intersection with
C↵
� for each �.

(5) For every (N, �) 2 � and ↵ 2 dom(F ), if ↵ 2 N \ �, then
�N := N \ !1 is in the club added at stage ↵.

(6) ⌧ is a collection of pairs ((N0, �0), (N1, �1)) such that N0,
N1 2 dom(�), �N0 = �N1 , and �0, �1  � are in the closure
of N0 \ Ord and N1 \ Ord, resp. Members of ⌧ are called
edges.

(7) q|↵ := (F � ↵,� � ↵, ⌧ � ↵) 2 P↵ for all ↵ < �.



Main ingredient: Revisionism (copying
information from the future into the

past).

(8) Given ((N0, �0), (N1, �1)) 2 ⌧ ,  N0,N1(⇠)  ⇠ for every
ordinal ⇠ 2 N0 (so N1 is a ‘projection of N0’).

(9) Given ((N0, �0), (N1, �1)) 2 ⌧ and ↵ 2 N0 \ �0 such that
 N0,N1(↵) < �1, all information carried by the condition

at ↵ inside N0 is copied on  N0,N1(↵).



Given P�-conditions q0 = (F0,�0, ⌧0), q1 = (F1,�1, ⌧1),
q1 � q0 iff

• �0 ✓ �1,
• ⌧0 ✓ ⌧1,
• dom(F0) ✓ dom(F1), and
• for each ↵ 2 dom(F0),

q1|↵ �P↵ F1(↵) Q~C↵
F0(↵)

Finally, P!2 =
S

�<!2
P�.



Main facts

(0) Thanks to the fact that we are only copying information
‘from the future into the past’, (P�)�!2 is a forcing iteration
(i.e., P↵ l P� for all ↵ < �): Given q 2 P� and r 2 P↵, if
r ↵ q � ↵, then

(Fr [ Fq � [↵, �),�q [�r , ⌧q [ ⌧r )

is a common extension of q and r in P�.
(1) P!2 has the @2-c.c. [thanks to CH, by standard �-system

argument].
(2) P� is proper for all �  !2 [natural proof by induction on �,

using finiteness of supports and the basic structural
properties of symmetric systems].



(3) P!2 adds @1-many new reals (in fact Cohen reals), but not
more than that; in particular, P!2 preserves CH [essentially
the same argument we saw a few slides back].

(4) P!2 forces ¬WCG [standard density argument, since P!2

is @2-c.c.]



A pretty optimal form of this
construction

Measuring is the following very strong form of ¬WCG: Let
(C� : � 2 Lim(!1)) such that for all ↵, C� is a closed subset of �
with the order topology. Then there is a club C ✓ !1 such that
for every � 2 C, a either

• a tail of C \ � is contained in C� , or
• a tail of C \ � is disjoint from C�.

Question: (J. Moore) Is Measuring compatible with CH?



In joint work with M.A. Mota, we answered this question
affirmatively using variation of above construction for
¬WCG+CH.

The following question addresses the issue whether adding
new reals is a necessary feature of any approach to forcing
Measuring.

Question: (J. Moore) Does Measuring imply the existence of a
non–constructible real?



Let’s get high.



@2-Suslin trees
Jensen (1972) proved that the existence of an @2-Suslin tree
follows from each of the hypotheses
CH+}({↵ < !2 | cf(↵) = !1}) and
⇤!1 +}({↵ < !2 | cf(↵) = !}).

Gregory (1976) proved that GCH together with the existence of
a non–reflecting stationary subset of {↵ < !2 | cf(↵) = !}
yields the existence of an @2-Suslin tree.

Theorem
(Laver–Shelah, 1981) If there is a weakly compact cardinal ,
then there is a forcing extension in which  = @2, CH holds, and
all @2-Aronszajn trees are special (and hence there are no
@2-Suslin trees).



The proof proceeds by

• Lévy–collapsing  to become !2, and then
• running a countable–support iteration of length + in which

one specializes, with countable conditions, all -Aronszajn
trees given by some book-keeping function.

• One uses the weak compactness of  in V in a crucial way
in order to show that the iteration has the -c.c. and hence
everything goes as planned.

In the Laver–Shelah model, 2@1 = @3, and the following
remained a major open problem (s. e.g. Kanamori–Magidor
1977):

Question
Is ZFC+GCH consistent with the non–existence of @2-Suslin
trees?



At least a weakly compact cardinal is needed for a Yes answer:

(1) (Rinot) If GCH holds, � � !1 is a cardinal, and ⇤(�+)
holds, then there is a �-closed �+-Suslin tree.

(2) (Todorčević) If  � !2 is regular and ⇤() fails, then  is
weakly compact in L.



While Visiting Mohammad Golshani in Tehran in December
2017, we thought about applying the ideas for preserving CH
with side conditions (with 2@1 = @2 instead of 2@0 = @1 and
@1-sized models instead if countable models) to the
Laver–Shelah construction, in order to build a model of GCH
with no @2-Suslin trees. We eventually succeeded:



The result

Theorem (A.–Golshani) Suppose  is a weakly compact
cardinal. Then there exists a generic extension of the universe
in which
(1) GCH holds,
(2)  = @2, and
(3) all @2-Aronszajn trees are special (and hence there are no

@2-Suslin trees).

Remark
The same proof works replacing !2 with �+ for any regular
� � !1.



Proof sketch

Let  be weakly compact. W.l.o.g. we may assume 2µ = µ+ for
all µ � .
Let

� : + ! H(+)

be such that for each x 2 H(+), ��1(x) is an unbounded
subset of +. � exists by 2 = +.

Let also (�↵)↵<+ be a sequence of increasingly expressive
(satisfaction) predicates of H(+) such that �0 = �.



Let us call
h(N0, �0), (N1, �1)i

an edge below � if
(0) For all i 2 {0, 1}, Ni ✓ H(+), �Ni := N \  2 , |Ni | = |�Ni |,

and <|Ni |Ni ✓ Ni .
(1) For all i 2 {0, 1}, �i is an ordinal in the closure of

Ni \ {⇠ + 1 : ⇠ < �} and (Ni ,2,�↵) 4 (H(+),2,�↵) for all
↵ 2 Ni \ �i .

(2) N0 ⇠= N1 via an isomorphism  N0,N1 : N0 �! N1 such that
(i) (N0,2,�↵) ⇠= (N1,2,� N0,N1 (↵)

) for all ↵ < �0 such that
 N0,N1(↵) < �1,

(ii)  N0,N1 is the identity on N0 \ N1, and
(iii)  N0,N1(⇠)  ⇠ for every ordinal ⇠ 2 N0.



Given �  +, we will build Q� as a forcing with side conditions
consisting of sets of edges below �.

Given an edge h(N0, �0), (N1, �1)i in the side condition, we will
copy information in N0 attached to ↵ < �0 via  N0,N1 into N1 if
 N0,N1(↵) < �1.

We do not require that information in N1 attached to  N0,N1(↵)
be copied into N0.



Definition of the forcing

Let �  + and suppose Q↵ defined for all ↵ < �. A condition
in Q� is an ordered pair of the form q = (fq, ⌧q) with the
following properties.

(1) fq is a countable function such that dom(fq) ✓ + \ � and
such that the following holds for every ↵ 2 dom(fq).
(a) If ↵ = 0, then fq(↵) 2 Col(!1, <).
(b) If ↵ > 0, then

fq(↵) : ⇥ !1 ! !1

is a countable function.

(2) ⌧q is a countable set of edges below �.



(3) For every edge h(N0, �0), (N1, �1)i 2 ⌧q, if ↵ 2 N0 \ �0 is
such that  N0,N1(↵) < �1, then every piece of information
about q at ↵ inside N0 is to be copied at  N0,N1(↵) via
 N0,N1 .

(4) For all ↵ < �, q � ↵ 2 Q↵, where

q � ↵ = (fq � ↵, ⌧q � ↵)



(5) The following holds for every nonzero ↵ < �.
(a) If ↵ 2 dom(fq), then q � ↵ forces that fq(↵) is a partial

specializing function for T⇠↵.
(b) For every edge h(N0, �0), (N1, �1)i 2 ⌧q , if ↵ 2 N0 \ �0, then

Q↵+1 \ N0 lQN0
↵+1, where QN0

↵+1 is the partial order whose
conditions are ordered pairs p = (fp, ⌧p) such that

(i) fp is a function such that dom(fp) ✓ ↵+ 1,
(ii) if ↵ 2 dom(fp), then fp(↵) : ⇥ !1 ! !1 is a countable

function,
(iii) ⌧p is a set of edges below ↵+ 1,
(iv) �0, �1  ↵ for every h(N 0

0, �0), (N 0
1, �1)i 2 ⌧p \ N0,

(v) p � ↵ 2 Q↵,
(vi) p � N0 2 Q↵+1, and
(vii) if ↵ 2 dom(fp), then p � ↵ forces that fp(↵) is a partial

specializing function for T⇠↵,
ordered by setting p1 QN0

↵+1
p0 if

• p1 � ↵ Q↵ p0 � ↵ and
• fp0(↵) ✓ fp1(↵) in case ↵ 2 dom(fp0).



The extension relation:

Given q1, q0 2 Q�, q1 � q0 (q1 is an extension of q0) if and
only if the following holds.
(A) dom(fq0) ✓ dom(fq1)

(B) for every ↵ 2 dom(fq0), fq0(↵) ✓ fq1(↵).
(C) For every h(N0, �0), (N1, �1)i 2 ⌧q0 there are �00 � �0 and

�01 � �1 such that h(N0, �
0
0), (N1, �

0
1)i 2 ⌧q1 .



Main facts
(0) For every � < +, Q� is definable over the structure

(H(+),2,��+1)

without parameters. Moreover, this definition can be taken
to be uniform in �.

(1) Q1 forces  = !2.
(2) For every �  +,

(i) Q↵ ✓ Q� for all ↵ < �, and
(ii) if cf(�) � , then Q� =

S
↵<� Q↵.

(3) Thanks to the fact that we are only copying information
‘from the future into the past’, (Q�)�+ is a forcing
iteration (i.e., Q↵ lQ� for all ↵ < �): Given q 2 Q� and
r 2 Q↵, if r ↵ q � ↵, then

(fr [ fq � [↵, �), ⌧q [ ⌧r )

is a common extension of q and r in Q�.



(4) Q� is �-closed for every �  +. In fact, every decreasing
!-sequence (fn)n<! of Q�-conditions has a greatest lower
bound q⇤ in Q�, q⇤ = (f ,

S
n ⌧qn), where

dom(f ) =
S

n dom(fqn), and

f (↵) =
[

{fqm(↵) : m � n}

for all n and ↵ 2 dom(fqn). In particular, forcing with Q�

does not add new !-sequences of ordinals, and therefore it
preserves both !1 and CH.

(5) If Q+ has the -c.c., then it adds -many new subsets of
!1, but not more than that; in particular, Q+ preserves
2@1 = @2 [essentially the same argument we saw a few
slides back].

(6) If Q+ has the -c.c., then it forces that all @2-Aronszajn
are special.

(7) For each �  +, Q� has the -c.c.



No symmetric systems are needed in the construction thanks to
the fact that the Q� ’s are, not only proper for suitable -sized
models N, but in fact have the -c.c. (so A ✓ N whenever
A 2 N is a maximal antichain).



The –chain condition: Proof sketch

We call a model Q suitable if Q is an elementary submodel of
cardinality  of some high enough H(✓), closed under
<-sequences, and such that hQ↵ | ↵ < +i 2 Q. Given a
suitable model Q, a bijection ' : ! Q, and an ordinal � < ,
we will denote '“� by M'

� .



Let F be the weak compactness filter on , i.e., the filter on 
generated by the sets

{� <  | (V�,2,B \ V�) |=  },

where B ✓ V and where  is a ⇧1
1 sentence for the structure

(V,2,B) such that
(V,2,B) |=  

F is a proper normal filter on . Let also S be the collection of
F-positive subsets of , i.e.,

S = {X ✓  | X \ C 6= ; for all C 2 F}



Given �  +, we will say that Q� has the strong -chain
condition if for every X 2 S, every suitable model Q such that
�,X 2 Q, every bijection ' : ! Q, and every two sequences

(q0
� | � 2 X ) 2 Q

and
(q1

� | � 2 X ) 2 Q

of Q�-conditions, if q0
� � M'

� = q1
� � M'

� for every � 2 X , then
there is some Y 2 S, Y ✓ X , together with sequences

(q00
� | � 2 Y )

and
(q11

� | � 2 Y )

of Q�-conditions with the following properties.

(1) q00
� Q� q0

� and q11
� Q� q1

� for every � 2 Y .
(2) For all � < �⇤ in Y , q00

� � q11
�⇤ is a common extension of q00

�
and q11

�⇤ .



Given a suitable model Q such that � 2 Q, a bijection
' : ! Q, a Q�-condition q 2 Q, and � < , let us say that q is
�-compatible with respect to ' and � if, letting Q⇤

� = Q� \ Q, we
have that

• Q⇤
� \ M'

� lQ⇤
�,

• q � M'
� 2 Q⇤

�, and
• q � M'

� forces in Q⇤
� \ M'

� that q is in the quotient forcing
Q⇤

�/ĠQ⇤
�\M'

�
; equivalently, for every r Q⇤

�\M'
�

q � M'
� , r is

compatible with q.



Given ↵ < + and given nodes x , y 2 ⇥ !1, if Q↵ is -c.c.,
then we denote by A↵

x ,y the first, in some well–order of H(+)
canonically definable from �, maximal antichain of Q↵

consisting of conditions deciding whether or not x and y are
comparable in T⇠↵.

Given q 2 Q+ , we will say that q is adequate in case:
(1) For all nonzero ↵, ↵0 in dom(fq), if x 2 dom(fq(↵)),

y 2 dom(fq(↵0)), and Q↵ is -c.c., then q � ↵ extends a
condition in A↵

x ,y .
(2) For every edge h(N0, �0), (N1, �1)i 2 ⌧q and every

↵ 2 dom(fq) \ N1 \ �1, if  N1,N0(↵) < �0, then
 N1,N0(↵) 2 dom(fq) and

fq( N1,N0(↵)) � �N1 ⇥ !1 = fq(↵) � �N1 ⇥ !1

Lemma
For every �  +, the set of adequate Q�-conditions is dense
in Q�.



Rather than proving that every Q� has the -c.c., we prove the
following more informative lemma by induction on �.

Lemma
The following holds for every �  +.
(1)� Q� has the strong -chain condition.
(2)� Suppose D 2 F , Q is a suitable model, �, D 2 Q,

' : ! Q is a bijection, and (q0
� | � 2 D) 2 Q and

(q1
� | � 2 D) 2 Q are sequences of adequate

Q�-conditions. Then there is some D0 2 F such that
D0 ✓ D and such that for every � 2 D0, if
q0
� � M'

� = q1
� � M'

� , then there are conditions q
00
� Q� q0

�

and q
01
� Q� q1

� such that
(a) q

00
� � M'

� = q
01
� � M'

� and
(b) q

00
� and q

01
� are both �-compatible with respect to ' and �.

The proof of the lemma is an adaptation of the Laver–Shelah
argument for proving -c.c. of their forcing.



An open question

Question (Shelah): Is it consistent to have GCH together with a
successor cardinal  � !1 such that all -Aronszajn and all
+-Aronszajn trees are special?

As pointed out by Rinot, by his result together with
¬⇤(!2) + ¬⇤!2 + 2@1 = @2 =) ADL(R) (Schimmerling–Steel), if
Yes then ADL(R).
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Hauskaa päivän jatkoa!
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