Games of Length ω^2

J. P. Aguilera

TU Vienna

Arctic Set Theory, January 2019

• • = • • = •

The region of the consistency strength hierarchy between the theories

 $\operatorname{ZFC} + \{ \text{``there are } n \text{ Woodin cardinals''}: n \in \mathbb{N} \}$

and

$\rm ZFC+~$ "there are infinitely many Woodin cardinals"

resembles the region of the consistency strength hierarchy between $\rm PA$ and $\rm ZFC.$

・ 何 ト ・ ヨ ト ・ ヨ ト …

① increasing the segments of L that can be proved to exist,

4 3 4 3 4

- \bigcirc increasing the segments of *L* that can be proved to exist,
- (2) increasing the collection of (Borel) games of length ω that can be proved determined,

< 3 > < 3 >

- ① increasing the segments of L that can be proved to exist,
- (a) increasing the collection of (Borel) games of length ω that can be proved determined,
- asserting the existence of weak jump operators.

- ① increasing the segments of L that can be proved to exist,
- 2) increasing the collection of (Borel) games of length ω that can be proved determined,
- I asserting the existence of weak jump operators.
- In the first region, one can add consistency strength by
 - **(**) increasing the segments of $L(\mathbb{R})$ that can be proved to be determined,

- ① increasing the segments of L that can be proved to exist,
- 2) increasing the collection of (Borel) games of length ω that can be proved determined,
- I asserting the existence of weak jump operators.
- In the first region, one can add consistency strength by
 - **()** increasing the segments of $L(\mathbb{R})$ that can be proved to be determined,
 - (2) increasing the collection of (Borel) games of length ω^2 that can be proved determined,

- ① increasing the segments of L that can be proved to exist,
- 2) increasing the collection of (Borel) games of length ω that can be proved determined,
- I asserting the existence of weak jump operators.
- In the first region, one can add consistency strength by
 - **()** increasing the segments of $L(\mathbb{R})$ that can be proved to be determined,
 - (2) increasing the collection of (Borel) games of length ω^2 that can be proved determined,
 - asserting the existence of less-weak jump operators.

Theorem (Post, Simpson, folklore)

The following are equivalent over Recursive Comprehension:

- **1** Arithmetical Comprehension, i.e., $L_{\omega+1}$ -comprehension,
- **2** For every $x \in \mathbb{R}$ and every $n \in \mathbb{N}$, $x^{(n)}$ exists,
- **§** For every n, every Σ_1^0 game of length n is determined.

Theorem (Post, Simpson, folklore)

The following are equivalent over Recursive Comprehension:

- **1** Arithmetical Comprehension, i.e., $L_{\omega+1}$ -comprehension,
- **2** For every $x \in \mathbb{R}$ and every $n \in \mathbb{N}$, $x^{(n)}$ exists,
- **§** For every n, every Σ_1^0 game of length n is determined.

Theorem (Neeman, Woodin)

The following are equivalent over ZFC:

- Projective determinacy, i.e., $L_1(\mathbb{R})$ -determinacy,
- **2** For every $x \in \mathbb{R}$ and every $n \in \mathbb{N}$, $M_n^{\sharp}(x)$ exists,
- **§** For every n, every Σ_1^1 game of length $\omega \cdot n$ is determined.

Theorem (Steel)

The following are equivalent over Recursive Comprehension:

- Clopen determinacy for games of length ω ,
- **2** Arithmetical Transfinite Recursion, i.e., L_{α} -comprehension for all countable α ,
- **§** For every $x \in \mathbb{R}$ and every countable α , $x^{(\alpha)}$ exists.

Theorem (Steel)

The following are equivalent over Recursive Comprehension:

- Clopen determinacy for games of length ω ,
- **2** Arithmetical Transfinite Recursion, i.e., L_{α} -comprehension for all countable α ,
- **§** For every $x \in \mathbb{R}$ and every countable α , $x^{(\alpha)}$ exists.

Theorem

The following are equivalent over ZFC:

- Clopen determinacy for games of length ω^2 ,
- **2** σ -projective determinacy, i.e., $L_{\omega_1}(\mathbb{R})$ -determinacy,
- So For every $x \in \mathbb{R}$ and every countable α , $N_{\alpha}^{\sharp}(x)$ exists.

We will come back to clopen games of length ω^2 later. A precursor to this theorem is:

Theorem (with S. Müller and P. Schlicht)

The following are equivalent over ZFC:

- σ -projective determinacy,
- 2 Determinacy for simple clopen games of length ω^2 ,
- 3 Determinacy for simple σ -projective games of length ω^2 .

Theorem (Solovay)

The following are equivalent over KP:

- Σ_1^0 -determinacy for games of length ω ,
- 2 there is an admissible set containing \mathbb{N} .

3 1 4

Theorem (Solovay)

The following are equivalent over KP:

• Σ_1^0 -determinacy for games of length ω ,

2 there is an admissible set containing \mathbb{N} .

Theorem

The following are equivalent over ZFC:

- Σ_1^0 -determinacy for games of length ω^2 ,
- **2** there is an admissible set containing \mathbb{R} and satisfying AD.

F_{σ} Games

Theorem (Solovay)

The following are equivalent over KP:

- Σ_2^0 -determinacy for games of length ω ,
- 2 there is a Σ_1^1 -reflecting ordinal.

3 K K 3 K

F_{σ} Games

Theorem (Solovay)

The following are equivalent over KP:

- Σ_2^0 -determinacy for games of length ω ,
- 2 there is a Σ_1^1 -reflecting ordinal.

Definition

Given a set A, let A^+ denote the intersection of all admissible sets containing A. A set is Π_1^+ -reflecting if for every Π_1 formula ψ , if $A^+ \models \psi(A)$, then there is $B \in A$ such that $B^+ \models \psi(B)$.

F_{σ} Games

Theorem (Solovay)

The following are equivalent over KP:

- Σ_2^0 -determinacy for games of length ω ,
- 2 there is a Σ_1^1 -reflecting ordinal.

Definition

Given a set A, let A^+ denote the intersection of all admissible sets containing A. A set is Π_1^+ -reflecting if for every Π_1 formula ψ , if $A^+ \models \psi(A)$, then there is $B \in A$ such that $B^+ \models \psi(B)$.

Theorem

The following are equivalent over ZFC:

- Σ_2^0 -determinacy for games of length ω^2 ,
- e there is an admissible Π₁⁺-reflecting set containing ℝ and satisfying AD.

Borel Games

Theorem (Martin)

The following are equivalent over KP + Separation:

- **1** Borel determinacy for games of length ω ,
- Of the every x ∈ ℝ and every countable α, there is a β such that L_β[x] satisfies Z + "V_α exists."

Borel Games

Theorem (Martin)

The following are equivalent over KP + Separation:

- **1** Borel determinacy for games of length ω ,
- Of for every x ∈ ℝ and every countable α, there is a β such that L_β[x] satisfies Z + "V_α exists."

Theorem

The following are equivalent over ZFC:

- Borel determinacy for games of length ω^2 ,
- Of for every countable α, there is a β such that L_β(ℝ) satisfies "V_α exists" + AD,

Solution for every countable α, there is a countably iterable extender model satisfying Z + "V_α exists" + "there are infinitely many Woodin cardinals."

Back to the beginning

Theorem (Neeman, Woodin)

The following are equivalent over ZFC:

- **1** Projective determinacy, i.e., $L_1(\mathbb{R})$ -determinacy,
- ② For every $x\in\mathbb{R}$ and every $n\in\mathbb{N},\ M_n^\sharp(x)$ exists,
- **3** For every n, every $\mathbf{\Sigma}_1^1$ game of length $\omega \cdot n$ is determined.

Theorem (Neeman, Woodin)

The following are equivalent over ZFC:

- **1** Projective determinacy, i.e., $L_1(\mathbb{R})$ -determinacy,
- **2** For every $x \in \mathbb{R}$ and every $n \in \mathbb{N}$, $M_n^{\sharp}(x)$ exists,
- **§** For every n, every Σ_1^1 game of length $\omega \cdot n$ is determined.

Theorem (with S. Müller)

The following are equiconsistent:

- Projective determinacy for games of length ω^2 ,
- **2** ZFC + { "there are ω + n Woodin cardinals": $n \in \mathbb{N}$ },
- **3** ZF + AD + { "there are n Woodin cardinals": $n \in \mathbb{N}$ }.

The direction (2) to (1) is due to Neeman.

Now that the stage has been set, let us go back to the theorem on clopen games.

Theorem

Suppose that σ -projective games of length ω are determined. Then, all clopen games of length ω^2 are determined.

Recall that the σ -projective sets are the smallest σ -algebra containing the open sets and closed under continuous images and are the sets of reals in $L_{\omega_1}(\mathbb{R})$.

Now that the stage has been set, let us go back to the theorem on clopen games.

Theorem

Suppose that σ -projective games of length ω are determined. Then, all clopen games of length ω^2 are determined.

Recall that the σ -projective sets are the smallest σ -algebra containing the open sets and closed under continuous images and are the sets of reals in $L_{\omega_1}(\mathbb{R})$.

Recall also that the converse follows from the joint theorem with S. Müller and P. Schlicht.

王

イロン イ理と イヨン ト

• Let $A \subset \mathbb{R} \times \mathbb{R}$ be clopen and write A_x for the set of all y such that $(x, y) \in A$.

문

- < E ► < E ► -

- Let $A \subset \mathbb{R} \times \mathbb{R}$ be clopen and write A_x for the set of all y such that $(x, y) \in A$.
- Let $\partial^{\mathbb{R}}A = \{x :$

Player I has a winning strategy in the game on \mathbb{R} with payoff A_x }.

(< 3) > (3)

- Let A ⊂ ℝ × ℝ be clopen and write A_x for the set of all y such that (x, y) ∈ A.
- Let $\partial^{\mathbb{R}}A = \{x :$

Player I has a winning strategy in the game on \mathbb{R} with payoff A_x }.

• Let $\partial^{\mathbb{R}} \Delta_1^0 = \{\partial^{\mathbb{R}} A : A \text{ is clopen}\}.$

★ E ► < E ►</p>

- Let A ⊂ ℝ × ℝ be clopen and write A_x for the set of all y such that (x, y) ∈ A.
- Let $\partial^{\mathbb{R}}A = \{x :$

Player I has a winning strategy in the game on \mathbb{R} with payoff A_x }.

• Let $\partial^{\mathbb{R}} \Delta_1^0 = \{\partial^{\mathbb{R}} A : A \text{ is clopen}\}.$

Lemma

 $\partial^{\mathbb{R}} \mathbf{\Delta}^0_1 \subset L_{\omega_1}(\mathbb{R}).$

★ E ► < E ► ...</p>

Suppose first that the lemma holds.

• Let A be a clopen set and consider the game of length ω^2 on \mathbb{N} with payoff A. We adapt an argument of Blass.

Lemma
$$\Im^{\mathbb{R}} \Delta_{1}^{0} \subset L_{\omega_{1}}(\mathbb{R}).$$

Suppose first that the lemma holds.

- Let A be a clopen set and consider the game of length ω^2 on \mathbb{N} with payoff A. We adapt an argument of Blass.
- Consider the following game:

Here, players I and II take turns playing reals coding strategies for Gale-Stewart games. Player I wins if

$$(\sigma_0 * \tau_0, \sigma_1 * \tau_1, \ldots) \in A,$$

where $\sigma * \tau$ denotes the result of facing off the strategies σ and τ .

 $\partial^{\mathbb{R}} \mathbf{\Delta}^{0}_{1} \subset L_{\omega_{1}}(\mathbb{R}).$

Suppose first that the lemma holds.

• This is a clopen game on reals, so it is determined by the Gale-Stewart Theorem.

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

- This is a clopen game on reals, so it is determined by the Gale-Stewart Theorem.
- Clearly, if Player I has a winning strategy in this game, then she has one in the long game with payoff *A*.

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

- This is a clopen game on reals, so it is determined by the Gale-Stewart Theorem.
- Clearly, if Player I has a winning strategy in this game, then she has one in the long game with payoff *A*.
- Suppose instead that Player II has a winning strategy; we claim she has one in the long game.

Suppose first that the lemma holds.

• This is a clopen game on reals, so it is determined by the Gale-Stewart Theorem.

- This is a clopen game on reals, so it is determined by the Gale-Stewart Theorem.
- Clearly, if Player I has a winning strategy in this game, then she has one in the long game with payoff *A*.

- This is a clopen game on reals, so it is determined by the Gale-Stewart Theorem.
- Clearly, if Player I has a winning strategy in this game, then she has one in the long game with payoff *A*.
- Suppose instead that Player II has a winning strategy.

- This is a clopen game on reals, so it is determined by the Gale-Stewart Theorem.
- Clearly, if Player I has a winning strategy in this game, then she has one in the long game with payoff *A*.
- Suppose instead that Player II has a winning strategy.
- We will construct a strategy τ for Player II in the long game with the property that every partial play by τ is not a losing play for Player II. Since the game is clopen, there can be no full play in which the winner of the game has not been decided, so τ will be a winning strategy.

- This is a clopen game on reals, so it is determined by the Gale-Stewart Theorem.
- Clearly, if Player I has a winning strategy in this game, then she has one in the long game with payoff *A*.
- Suppose instead that Player II has a winning strategy.
- We will construct a strategy τ for Player II in the long game with the property that every partial play by τ is not a losing play for Player II. Since the game is clopen, there can be no full play in which the winner of the game has not been decided, so τ will be a winning strategy.
- The strategy is constructed by blocks; first, we define it for plays of finite length.

• Given $x \in \mathbb{R}$, one may consider the following variant G_x of (1):

Here, Player I wins if, and only if,

$$(x, \sigma_1 * \tau_1, \ldots) \in A;$$

otherwise, Player II wins.

• Given $x \in \mathbb{R}$, one may consider the following variant G_x of (1):

Here, Player I wins if, and only if,

$$(x, \sigma_1 * \tau_1, \ldots) \in A;$$

otherwise, Player II wins.

This is also a clopen game, so the set

 $W = \{x \in \mathbb{R} : \text{Player I has a winning strategy in } G_x\}$

belongs to $\mathbb{C}^{\mathbb{R}} \Delta_1^0$, and thus to $L_{\omega_1}(\mathbb{R})$, by the lemma. By hypothesis,

$$L_{\omega_1}(\mathbb{R}) \models \mathrm{AD},$$

and so W is determined.

- Player I cannot have a winning strategy, for otherwise it could have been used as a first move to obtain a winning strategy in (1).
- Thus, Player II has a winning strategy in W.

- Player I cannot have a winning strategy, for otherwise it could have been used as a first move to obtain a winning strategy in (1).
- Thus, Player II has a winning strategy in W.
- This will provide the restriction of τ to the first ω -many moves.

- Player I cannot have a winning strategy, for otherwise it could have been used as a first move to obtain a winning strategy in (1).
- Thus, Player II has a winning strategy in W.
- This will provide the restriction of τ to the first ω -many moves.
- Given the first ω -many moves, say, a, one repeats the argument above to obtain the restriction of τ to moves of length $\omega \cdot 2$ extending a. Eventually, one defines the response of τ to every $b \in \mathbb{N}^{<\omega^2}$, as desired.

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

Let A ⊂ ℝ × ℝ be clopen. For each x ∈ ℝ, there is a game of length ω with moves in ℝ given by A_x. Let us identify this game with A_x. We shall show that ∂^ℝA ∈ L_{ω1}(ℝ).

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

- Let A ⊂ ℝ × ℝ be clopen. For each x ∈ ℝ, there is a game of length ω with moves in ℝ given by A_x. Let us identify this game with A_x. We shall show that ∂^ℝA ∈ L_{ω1}(ℝ).
- For every $x \in \mathbb{R}$, we define $T_x = \Big\{ t \in \mathbb{R}^{<\mathbb{N}} : \exists y \in \mathbb{R}^{\mathbb{N}} \exists z \in \mathbb{R}^{\mathbb{N}} (t \sqsubset y \land t \sqsubset z \land (x, y) \in A \land (x, z) \notin A) \Big\}.$
- Thus, T_x is the set of "contested" positions in A_x .

Lemma

 $egamma^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

• We define a binary relation on \mathbb{R}^2 by $(x, y) \prec (w, z)$ if, and only if, $y \in \mathbb{R}^{<\mathbb{N}} \land x = w \land z \in T_w \land z \sqsubset y$.

- 第 1 - 4 三 1 - - -

Lemma

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

- We define a binary relation on \mathbb{R}^2 by $(x, y) \prec (w, z)$ if, and only if, $y \in \mathbb{R}^{\leq \mathbb{N}} \land x = w \land z \in T_w \land z \sqsubset y$.
- Since A is clopen, for every $x \in \mathbb{R}$ and every $y \in \mathbb{R}^{\mathbb{N}}$ there is some $n \in \mathbb{N}$ such that for every $z \in \mathbb{R}^{\mathbb{N}}$,

 $y \upharpoonright n = z \upharpoonright n \text{ implies } (y \in A_x \leftrightarrow z \in A_x).$

Lemma

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

- We define a binary relation on \mathbb{R}^2 by $(x, y) \prec (w, z)$ if, and only if, $y \in \mathbb{R}^{\leq \mathbb{N}} \land x = w \land z \in T_w \land z \sqsubset y$.
- Since A is clopen, for every $x \in \mathbb{R}$ and every $y \in \mathbb{R}^{\mathbb{N}}$ there is some $n \in \mathbb{N}$ such that for every $z \in \mathbb{R}^{\mathbb{N}}$,

 $y \upharpoonright n = z \upharpoonright n$ implies $(y \in A_x \leftrightarrow z \in A_x)$.

It follows that \prec is wellfounded, so it has a rank function, ρ . Since \prec is analytic, ρ is bounded below ω_1 , say, by η .

Lemma

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

- We define a binary relation on \mathbb{R}^2 by $(x, y) \prec (w, z)$ if, and only if, $y \in \mathbb{R}^{<\mathbb{N}} \land x = w \land z \in T_w \land z \sqsubset y$.
- Since A is clopen, for every $x \in \mathbb{R}$ and every $y \in \mathbb{R}^{\mathbb{N}}$ there is some $n \in \mathbb{N}$ such that for every $z \in \mathbb{R}^{\mathbb{N}}$,

 $y \upharpoonright n = z \upharpoonright n$ implies $(y \in A_x \leftrightarrow z \in A_x)$.

It follows that \prec is wellfounded, so it has a rank function, $\rho.$ Since \prec is analytic, ρ is bounded below ω_1 , say, by $\eta.$

Let us write

$$y \prec_x z$$
 if, and only if, $(x, y) \prec (x, z)$

and denote by $\rho_{\rm X}$ the associated rank function.

J. P. Aguilera (TU Vienna)

Lemma

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

• Define:

$$W_{0}(x) = \left\{ a \in \mathbb{R}^{<\mathbb{N}} : \exists y \in \mathbb{R} \, \forall z \in \mathbb{R} \, \left(a^{\frown} y^{\frown} z \notin T_{x} \wedge \\ \exists w \in \mathbb{R}^{\mathbb{N}} \, \left(a^{\frown} y^{\frown} z \sqsubset w \wedge (x, w) \in A \right) \right) \right\};$$
$$W_{\alpha}(x) = \left\{ a \in \mathbb{R}^{<\mathbb{N}} : \exists y \in \mathbb{R} \, \forall z \in \mathbb{R} \, \left(a^{\frown} y^{\frown} z \in \bigcup_{\xi < \alpha} W_{\xi}(x) \right) \right\};$$

$$W_{\infty}(x) = igcup_{lpha \in \mathsf{Ord}} W_{lpha}(x).$$

Lemma

 $\partial^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$

• Define:

For a partial play *a* of even length, Player I has a winning strategy from *a* in A_x if, and only if, $a \in W_{\infty}(x)$.

J. P. Aguilera (TU Vienna)

 $\alpha \in \mathsf{Ord}$

Lemma $\Im^{\mathbb{R}} \Delta_{1}^{0} \subset L_{\omega_{1}}(\mathbb{R}).$

Let us refer to the least ξ such that y ∈ W_ξ(x), if any, as the weight of y and denote it by w_x(y).

- A I - A I

Lemma

- $earrow^{\mathbb{R}} \Delta_1^0 \subset L_{\omega_1}(\mathbb{R}).$
 - Let us refer to the least ξ such that y ∈ W_ξ(x), if any, as the weight of y and denote it by w_x(y).
 - If a has weight ξ, then any extension of a of smaller weight has smaller rank in ≺_x.

< 3 > < 3 >

Lemma

- $\partial^{\mathbb{R}} \mathbf{\Delta}_{1}^{0} \subset L_{\omega_{1}}(\mathbb{R}).$
 - Let us refer to the least ξ such that y ∈ W_ξ(x), if any, as the weight of y and denote it by w_x(y).
 - If a has weight ξ, then any extension of a of smaller weight has smaller rank in ≺_x.
 - By induction on the weight, it follows that for every $a \in W_{\infty}(x)$, $w_x(a) \le \rho_x(a)$.

Lemma

- $\partial^{\mathbb{R}} \mathbf{\Delta}_{1}^{0} \subset L_{\omega_{1}}(\mathbb{R}).$
 - Let us refer to the least ξ such that y ∈ W_ξ(x), if any, as the weight of y and denote it by w_x(y).
 - If a has weight ξ, then any extension of a of smaller weight has smaller rank in ≺_x.
 - By induction on the weight, it follows that for every $a \in W_{\infty}(x)$, $w_x(a) \le \rho_x(a)$.
 - This implies

$$W_{\infty}(x) = W_{\eta}(x).$$

Since the construction of W_η(x) can be carried out within L_{ω1}(ℝ) uniformly in x, ∂^ℝA ∈ L_{ω1}(ℝ), as desired.

イロン イ理と イヨン ト

We also mentioned:

Theorem

The following are equivalent:

- **1** σ -projective determinacy,
- **2** for every α , $N^{\sharp}_{\alpha}(x)$ exists for almost every x.

We also mentioned:

Theorem

The following are equivalent:

- **1** σ -projective determinacy,
- **2** for every α , $N^{\sharp}_{\alpha}(x)$ exists for almost every x.

Models of class S_{α}

Definition

Let *M* be a countable, ω_1 -iterable extender model of some fragment of ZFC.

M is of class S₀ above δ if it has an initial segment which is active above δ;

Models of class S_{α}

Definition

Let *M* be a countable, ω_1 -iterable extender model of some fragment of ZFC.

- *M* is of class S_0 above δ if it has an initial segment which is active above δ ;
- **2** *M* is of class $S_{\alpha+1}$ above δ if it has an initial segment *N* of class S_{α} above some $\delta_0 > \delta$ which is Woodin in *N*;

Definition

Let *M* be a countable, ω_1 -iterable extender model of some fragment of ZFC.

- M is of class S₀ above δ if it has an initial segment which is active above δ;
- 2 *M* is of class $S_{\alpha+1}$ above δ if it has an initial segment *N* of class S_{α} above some $\delta_0 > \delta$ which is Woodin in *N*;
- M is of class S_λ above δ if λ < ω₁^M and it has an active initial segment in all classes S_α above δ, for all α < λ;

Definition

Let *M* be a countable, ω_1 -iterable extender model of some fragment of ZFC.

- M is of class S₀ above δ if it has an initial segment which is active above δ;
- 2 *M* is of class $S_{\alpha+1}$ above δ if it has an initial segment *N* of class S_{α} above some $\delta_0 > \delta$ which is Woodin in *N*;
- M is of class S_λ above δ if λ < ω₁^M and it has an active initial segment in all classes S_α above δ, for all α < λ;
- *M* is of class S_{α} if it is of class S_{α} above 0.

Definition

Let *M* be a countable, ω_1 -iterable extender model of some fragment of ZFC.

- M is of class S₀ above δ if it has an initial segment which is active above δ;
- 2 *M* is of class $S_{\alpha+1}$ above δ if it has an initial segment *N* of class S_{α} above some $\delta_0 > \delta$ which is Woodin in *N*;
- M is of class S_λ above δ if λ < ω₁^M and it has an active initial segment in all classes S_α above δ, for all α < λ;
- *M* is of class S_{α} if it is of class S_{α} above 0.

Definition

Let $x \in \mathbb{R}$ and $\alpha < \omega_1^x$. Then, $N_{\alpha}^{\sharp}(x)$ is the unique least ω_1 -iterable sound x-premouse of class S_{α} , if it exists.

Thank you.