Definability of maximal discrete sets

David Schrittesser

University of Copenhagen (Denmark)

Arctic Set Theory 3, Kilpisjärvi January 28, 2017

Outline

- Maximal discrete sets
- Maximal cofinitary groups
- Maximal orthogonal families of measures
- Maximal discrete sets in the iterated Sacks extension
- 6 Hamel bases
- Questions

Outline

- Maximal discrete sets
- Maximal cofinitary groups
- Maximal orthogonal families of measures
- Maximal discrete sets in the iterated Sacks extension
- 5 Hamel bases
- Questions

Let R be a binary symmetric relation on a set X.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff no two distinct elements x, y of A are R-related.

Definition

We call such a set $maximal\ discrete\ (w.r.t.\ R;\ short\ an\ R-mds)$ if it is not a proper subset of any discrete set.

Let span_R(A) = $A \cup \{x \in X \mid (\exists a \in A) \ a \ R \ x\}$.

Let R be a binary symmetric relation on a set X.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff no two distinct elements x, y of A are R-related.

Definition

We call such a set **maximal discrete** (w.r.t. *R*; short an *R*-**mds**) if it is not a proper subset of any discrete set.

Let $\operatorname{span}_R(A) = A \cup \{x \in X \mid (\exists a \in A) \ a \ R \ x\}.$

Let R be a binary symmetric relation on a set X.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff no two distinct elements x, y of A are R-related.

Definition

We call such a set **maximal discrete** (w.r.t. *R*; short an *R*-**mds**) if it is not a proper subset of any discrete set.

Let $\operatorname{span}_R(A) = A \cup \{x \in X \mid (\exists a \in A) \ a \ R \ x\}.$

Let R be a binary symmetric relation on a set X.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff no two distinct elements x, y of A are R-related.

Definition

We call such a set **maximal discrete** (w.r.t. *R*; short an *R*-**mds**) if it is not a proper subset of any discrete set.

Let span_R(A) = $A \cup \{x \in X \mid (\exists a \in A) \ a \ R \ x\}$.

Let R be a binary symmetric relation on a set X.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff no two distinct elements x, y of A are R-related.

Definition

We call such a set **maximal discrete** (w.r.t. *R*; short an *R*-**mds**) if it is not a proper subset of any discrete set.

Let span_R(A) =
$$A \cup \{x \in X \mid (\exists a \in A) \ a \ R \ x\}$$
.

Let X be a set and $R \subseteq [X]^{<\omega}$.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff $(\forall n > 1) [A]^n \cap R = \emptyset$.

The notion of *R*-**mds** is defined as before.

Maximal discrete sets exist by AC.

Let X be a set and $R \subseteq [X]^{<\omega}$.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff $(\forall n > 1) [A]^n \cap R = \emptyset$.

The notion of *R*-**mds** is defined as before.

Maximal discrete sets exist by AC.

Let X be a set and $R \subseteq [X]^{<\omega}$.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff $(\forall n > 1) [A]^n \cap R = \emptyset$.

The notion of *R*-**mds** is defined as before.

Maximal discrete sets exist by AC.

Let X be a set and $R \subseteq [X]^{<\omega}$.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff $(\forall n > 1) [A]^n \cap R = \emptyset$.

The notion of *R*-**mds** is defined as before.

Maximal discrete sets exist by AC.

Let X be a set and $R \subseteq [X]^{<\omega}$.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff $(\forall n > 1) [A]^n \cap R = \emptyset$.

The notion of *R*-**mds** is defined as before.

Maximal discrete sets exist by AC.

Let X be a set and $R \subseteq [X]^{<\omega}$.

Definition

We say a set $A \subseteq X$ is **discrete** (w.r.t. R) \iff $(\forall n > 1) [A]^n \cap R = \emptyset$.

The notion of *R*-**mds** is defined as before.

Maximal discrete sets exist by AC.

We think of maximal discrete sets as a type of *irregular set* of reals.

Some classical regularity properties:

- Lebesgue measurability
- Baire property
- being completely Ramsey (Baire property with respect to the Ellentuck-topology, in $[\omega]^{\omega}$)

- analytic sets can usually be shown to be regular
- In L, there are Δ_2^1 irregular sets
- Under large cardinals, all projective sets are regular
- between these extremes, one can obtain lots of independence results via forcing (some requiring smaller large cardinals)

We think of maximal discrete sets as a type of *irregular set* of reals.

Some classical regularity properties:

- Lebesgue measurability
- Baire property
- being completely Ramsey (Baire property with respect to the Ellentuck-topology, in $[\omega]^{\omega}$)

- analytic sets can usually be shown to be regular
- In L, there are Δ_2^1 irregular sets
- Under large cardinals, all projective sets are regular
- between these extremes, one can obtain lots of independence results via forcing (some requiring smaller large cardinals)

We think of maximal discrete sets as a type of *irregular set* of reals.

Some classical regularity properties:

- Lebesgue measurability
- Baire property
- being completely Ramsey (Baire property with respect to the Ellentuck-topology, in $[\omega]^{\omega}$)

- analytic sets can usually be shown to be regular
- In L, there are Δ_2^1 irregular sets
- Under large cardinals, all projective sets are regular
- between these extremes, one can obtain lots of independence results via forcing (some requiring smaller large cardinals)

We think of maximal discrete sets as a type of *irregular set* of reals.

Some classical regularity properties:

- Lebesgue measurability
- Baire property
- being completely Ramsey (Baire property with respect to the Ellentuck-topology, in $[\omega]^{\omega}$)

- analytic sets can usually be shown to be regular
- In L, there are Δ_2^1 irregular sets
- Under large cardinals, all projective sets are regular
- between these extremes, one can obtain lots of independence results via forcing (some requiring smaller large cardinals)

We think of maximal discrete sets as a type of *irregular set* of reals.

Some classical regularity properties:

- Lebesgue measurability
- Baire property
- being completely Ramsey (Baire property with respect to the Ellentuck-topology, in $[\omega]^{\omega}$)

- analytic sets can usually be shown to be regular
- In **L**, there are Δ_2^1 irregular sets
- Under large cardinals, all projective sets are regular
- between these extremes, one can obtain lots of independence results via forcing (some requiring smaller large cardinals)

We think of maximal discrete sets as a type of *irregular set* of reals.

Some classical regularity properties:

- Lebesgue measurability
- Baire property
- being completely Ramsey (Baire property with respect to the Ellentuck-topology, in $[\omega]^{\omega}$)

- analytic sets can usually be shown to be regular
- In **L**, there are Δ_2^1 irregular sets
- Under large cardinals, all projective sets are regular
- between these extremes, one can obtain lots of independence results via forcing (some requiring smaller large cardinals)

We think of maximal discrete sets as a type of *irregular set* of reals.

Some classical regularity properties:

- Lebesgue measurability
- Baire property
- being completely Ramsey (Baire property with respect to the Ellentuck-topology, in $[\omega]^{\omega}$)

- analytic sets can usually be shown to be regular
- In **L**, there are Δ_2^1 irregular sets
- Under large cardinals, all projective sets are regular
- between these extremes, one can obtain lots of independence results via forcing (some requiring smaller large cardinals)

Binary

- Transversals for equivalence relations
- Mad families
- Maximal eventually different families
- Maximal independent families of sets (or of functions)
- Maximal orthogonal families of measures (mofs)

Higher arity

- Hamel basis (basis of ℝ over ℚ)
- Maximal cofinitary groups (mcgs)

Binary

- Transversals for equivalence relations
- Mad families
- Maximal eventually different families
- Maximal independent families of sets (or of functions)
- Maximal orthogonal families of measures (mofs)

Higher arity

- Hamel basis (basis of ℝ over ℚ)
- Maximal cofinitary groups (mcgs)

Binary

- Transversals for equivalence relations
- Mad families
- Maximal eventually different families
- Maximal independent families of sets (or of functions)
- Maximal orthogonal families of measures (mofs)

Higher arity

- Hamel basis (basis of ℝ over ℚ)
- Maximal cofinitary groups (mcgs)

Binary

- Transversals for equivalence relations
- Mad families
- Maximal eventually different families
- Maximal independent families of sets (or of functions)
- Maximal orthogonal families of measures (mofs)

Higher arity

- Hamel basis (basis of ℝ over ℚ)
- Maximal cofinitary groups (mcgs)

Binary

- Transversals for equivalence relations
- Mad families
- Maximal eventually different families
- Maximal independent families of sets (or of functions)
- Maximal orthogonal families of measures (mofs)

Higher arity

- Hamel basis (basis of ℝ over ℚ)
- Maximal cofinitary groups (mcgs)

Binary

- Transversals for equivalence relations
- Mad families
- Maximal eventually different families
- Maximal independent families of sets (or of functions)
- Maximal orthogonal families of measures (mofs)

Higher arity

- Hamel basis (basis of ℝ over ℚ)
- Maximal cofinitary groups (mcgs)

Binary

- Transversals for equivalence relations
- Mad families
- Maximal eventually different families
- Maximal independent families of sets (or of functions)
- Maximal orthogonal families of measures (mofs)

Higher arity

- Hamel basis (basis of ℝ over ℚ)
- Maximal cofinitary groups (mcgs)

Binary

- Transversals for equivalence relations
- Mad families
- Maximal eventually different families
- Maximal independent families of sets (or of functions)
- Maximal orthogonal families of measures (mofs)

Higher arity

- Hamel basis (basis of ℝ over ℚ)
- Maximal cofinitary groups (mcgs)

Existence of one type of irregular or maximal discrete set can entail the existence of another.

- If there is a projective Hamel basis, there is a projective Vitali set.
- "Every Σ_2^1 set is Lebesgue measurable" \Rightarrow "every Σ_2^1 set has the property of Baire" (Bartoszynsky 1984).

More often, one can show no such interaction occurs:

Theorem (Shelah 1984)

Theorem (S.)

"Every projective set is Lebesgue measurable" \Rightarrow "Every projective set has the property of Baire"

Existence of one type of irregular or maximal discrete set can entail the existence of another.

- If there is a projective Hamel basis, there is a projective Vitali set.
- "Every Σ_2^1 set is Lebesgue measurable" \Rightarrow "every Σ_2^1 set has the property of Baire" (Bartoszynsky 1984).

More often, one can show no such interaction occurs:

Theorem (Shelah 1984)

Theorem (S.)

"Every projective set is Lebesgue measurable" \Rightarrow "Every projective set has the property of Baire"

Existence of one type of irregular or maximal discrete set can entail the existence of another.

- If there is a projective Hamel basis, there is a projective Vitali set.
- "Every Σ_2^1 set is Lebesgue measurable" \Rightarrow "every Σ_2^1 set has the property of Baire" (Bartoszynsky 1984).

More often, one can show no such interaction occurs:

Theorem (Shelah 1984)

Theorem (S.)

"Every projective set is Lebesgue measurable"

⇒ "Every projective set has the property of Baire"

Existence of one type of irregular or maximal discrete set can entail the existence of another.

- If there is a projective Hamel basis, there is a projective Vitali set.
- "Every Σ_2^1 set is Lebesgue measurable" \Rightarrow "every Σ_2^1 set has the property of Baire" (Bartoszynsky 1984).

More often, one can show no such interaction occurs:

Theorem (Shelah 1984)

Theorem (S.)

"Every projective set is Lebesgue measurable"

⇒ "Every projective set has the property of Baire"

Existence of one type of irregular or maximal discrete set can entail the existence of another.

- If there is a projective Hamel basis, there is a projective Vitali set.
- "Every Σ_2^1 set is Lebesgue measurable" \Rightarrow "every Σ_2^1 set has the property of Baire" (Bartoszynsky 1984).

More often, one can show no such interaction occurs:

Theorem (Shelah 1984)

"Every projective set has the property of Baire" ⇒ "Every projective set is Lebesgue measurable"

Theorem (S.)

Existence of one type of irregular or maximal discrete set can entail the existence of another.

- If there is a projective Hamel basis, there is a projective Vitali set.
- "Every Σ_2^1 set is Lebesgue measurable" \Rightarrow "every Σ_2^1 set has the property of Baire" (Bartoszynsky 1984).

More often, one can show no such interaction occurs:

Theorem (Shelah 1984)

"Every projective set has the property of Baire" ⇒ "Every projective set is Lebesgue measurable"

Theorem (S.)

"Every projective set is Lebesgue measurable" \Rightarrow "Every projective set has the property of Baire"

Outline

- Maximal discrete sets
- Maximal cofinitary groups
- Maximal orthogonal families of measures
- Maximal discrete sets in the iterated Sacks extension
- 5 Hamel bases
- Questions

Cofinitary groups

- Work in the space $X = S_{\infty}$, the group of bijections from $\mathbb N$ to itself (permutations).
- $id_{\mathbb{N}}$ is the identity function on \mathbb{N} , the neutral element of S_{∞} .

Definition

We say $g \in S_{\infty}$ is cofinitary \iff

$$\{n \in \mathbb{N} \mid g(n) = n\}$$
 is finite.

 $\mathcal{G} \leq S_{\infty}$ is *cofinitary* \iff every $g \in \mathcal{G} \setminus \{id_{\mathbb{N}}\}$ is cofinitary.

A maximal cofinitary group is maximal R-discrete set, where

$$\{g_0,\ldots,g_n\}\in R\iff \langle g_0,\ldots,g_n\rangle^{S_\infty}$$
 is not cofinitary.

Cofinitary groups

- Work in the space $X = S_{\infty}$, the group of bijections from $\mathbb N$ to itself (permutations).
- ullet id is the identity function on $\mathbb N$, the neutral element of S_{∞} .

Definition

We say $g \in \mathcal{S}_{\infty}$ is *cofinitary* \iff

$$\{n \in \mathbb{N} \mid g(n) = n\}$$
 is finite.

 $\mathcal{G} \leq \mathcal{S}_{\infty}$ is *cofinitary* \iff every $g \in \mathcal{G} \setminus \{id_{\mathbb{N}}\}$ is cofinitary.

A maximal cofinitary group is maximal *R*-discrete set, where

$$\{g_0,\ldots,g_n\}\in R\iff \langle g_0,\ldots,g_n\rangle^{S_\infty}$$
 is not cofinitary.

Cofinitary groups

- Work in the space $X = S_{\infty}$, the group of bijections from $\mathbb N$ to itself (permutations).
- ullet id is the identity function on $\mathbb N$, the neutral element of S_{∞} .

Definition

We say $g \in \mathcal{S}_{\infty}$ is *cofinitary* \iff

$$\{n \in \mathbb{N} \mid g(n) = n\}$$
 is finite.

 $\mathcal{G} \leq \mathcal{S}_{\infty}$ is *cofinitary* \iff every $g \in \mathcal{G} \setminus \{id_{\mathbb{N}}\}$ is cofinitary.

A maximal cofinitary group is maximal R-discrete set, where

$$\{g_0,\ldots,g_n\}\in R\iff \langle g_0,\ldots,g_n\rangle^{S_\infty}$$
 is not cofinitary.

Theorem (Kastermans)

No mcg can be K_{σ} .

Some history

- Gao-Zhang: If V = L, there is a mcg with a Π_1^1 set of generators.
- Kastermans: If V = L, there is a Π_1^1 mcg.

Theorem (Fischer-S.-Törnquist, 2015)

If V = L, there is a Π_1^1 mcg which remains maximal after adding any number of Cohen reals.

Surprisingly, and in contrast to classical irregular sets:

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal cofinitary group.

By Σ_2^1 absoluteness, a Borel mcg remains maximal in any outer model. They also claim they will show there is a closed mcg in a future, paper, ∞

Theorem (Kastermans)

No mcg can be K_{σ} .

Some history:

- Gao-Zhang: If V = L, there is a mcg with a Π_1^1 set of generators.
- Kastermans: If V = L, there is a Π_1^1 mcg.

Theorem (Fischer-S.-Törnquist, 2015)

If V = L, there is a Π_1^1 mcg which remains maximal after adding any number of Cohen reals.

Surprisingly, and in contrast to classical irregular sets:

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal cofinitary group.

By $\underline{\Sigma}_2^1$ absoluteness, a Borel mcg remains maximal in any outer model. They also claim they will show there is a closed mcg in a future paper,

Theorem (Kastermans)

No mcg can be K_{σ} .

Some history:

- Gao-Zhang: If V = L, there is a mcg with a Π_1^1 set of generators.
- Kastermans: If V = L, there is a Π_1^1 mcg.

Theorem (Fischer-S.-Törnquist, 2015)

If V = L, there is a Π_1^1 mcg which remains maximal after adding any number of Cohen reals.

Surprisingly, and in contrast to classical irregular sets:

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal cofinitary group.

By $\underline{\Sigma}_2^1$ absoluteness, a Borel mcg remains maximal in any outer model. They also claim they will show there is a closed mcg in a future paper,

Theorem (Kastermans)

No mcg can be K_{σ} .

Some history:

- Gao-Zhang: If V = L, there is a mcg with a Π_1^1 set of generators.
- Kastermans: If V = L, there is a Π_1^1 mcg.

Theorem (Fischer-S.-Törnquist, 2015)

If V = L, there is a Π_1^1 mcg which remains maximal after adding any number of Cohen reals.

Surprisingly, and in contrast to classical irregular sets:

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal cofinitary group.

By Σ_2^1 absoluteness, a Borel mcg remains maximal in any outer model. They also claim they will show there is a closed mcg in a future, paper, ∞

Theorem (Kastermans)

No mcg can be K_{σ} .

Some history:

- Gao-Zhang: If V = L, there is a mcg with a Π_1^1 set of generators.
- Kastermans: If V = L, there is a Π_1^1 mcg.

Theorem (Fischer-S.-Törnquist, 2015)

If V = L, there is a Π_1^1 mcg which remains maximal after adding any number of Cohen reals.

Surprisingly, and in contrast to classical irregular sets:

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal cofinitary group.

By Σ_2^1 absoluteness, a Borel mcg remains maximal in any outer model. They also claim they will show there is a closed mcg in a future, paper, ∞

Theorem (Kastermans)

No mcg can be K_{σ} .

Some history:

- Gao-Zhang: If V = L, there is a mcg with a Π_1^1 set of generators.
- Kastermans: If V = L, there is a Π_1^1 mcg.

Theorem (Fischer-S.-Törnquist, 2015)

If V = L, there is a Π_1^1 mcg which remains maximal after adding any number of Cohen reals.

Surprisingly, and in contrast to classical irregular sets:

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal cofinitary group.

By Σ_2^1 absoluteness, a Borel mcg remains maximal in any outer model.

They also claim they will show there is a closed mcg in a future, paper, a

Theorem (Kastermans)

No mcg can be K_{σ} .

Some history:

- Gao-Zhang: If V = L, there is a mcg with a Π_1^1 set of generators.
- Kastermans: If V = L, there is a Π_1^1 mcg.

Theorem (Fischer-S.-Törnquist, 2015)

If V = L, there is a Π_1^1 mcg which remains maximal after adding any number of Cohen reals.

Surprisingly, and in contrast to classical irregular sets:

Theorem (Horowitz-Shelah, 2016)

(ZF) There is a Borel maximal cofinitary group.

By Σ_2^1 absoluteness, a Borel mcg remains maximal in any outer model. They also claim they will show there is a closed mcg in a future paper,

Theorem (Zhang)

Let G be a cofinitary group. There is a forcing \mathbb{P}_{G} which adds a generic permutation σ such that

- ① $\mathcal{G}' = \langle \mathcal{G}, \sigma \rangle$ is cofinitary,
- ② \mathcal{G}' is maximal with respect to the ground model: For any $\tau \in V \setminus \mathcal{G}$, $\langle \mathcal{G}', \tau \rangle$ is not cofinitary.

We adapted this forcing so that given an arbitrary $z \in 2^{\omega}$ in addition, every new group element *codes* z:

Theorem (Fischer-Törnquist-S. 2015)

Let $\mathcal G$ be a cofinitary group and $z\in 2^\omega$. There is a forcing $\mathbb P_{\mathcal G,z}$ which adds a generic permutation σ such that in addition to \bullet and \bullet above

③ z is computable from any $x \in \mathcal{G}' \setminus \mathcal{G}$.

Theorem (Zhang)

Let $\mathcal G$ be a cofinitary group. There is a forcing $\mathbb P_{\mathcal G}$ which adds a generic permutation σ such that

- $lackbox{0} \ \mathcal{G}' = \langle \mathcal{G}, \sigma \rangle$ is cofinitary,
- ② \mathcal{G}' is maximal with respect to the ground model: For any $\tau \in V \setminus \mathcal{G}$, $\langle \mathcal{G}', \tau \rangle$ is not cofinitary.

We adapted this forcing so that given an arbitrary $z \in 2^{\omega}$ in addition, every new group element *codes* z:

Theorem (Fischer-Törnquist-S. 2015)

Let $\mathcal G$ be a cofinitary group and $z\in 2^\omega$. There is a forcing $\mathbb P_{\mathcal G,z}$ which adds a generic permutation σ such that in addition to \odot and \odot above

③ z is computable from any $x \in \mathcal{G}' \setminus \mathcal{G}$.

Theorem (Zhang)

Let $\mathcal G$ be a cofinitary group. There is a forcing $\mathbb P_{\mathcal G}$ which adds a generic permutation σ such that

- $lackbox{0} \ \mathcal{G}' = \langle \mathcal{G}, \sigma \rangle$ is cofinitary,
- ② \mathcal{G}' is maximal with respect to the ground model: For any $\tau \in V \setminus \mathcal{G}$, $\langle \mathcal{G}', \tau \rangle$ is not cofinitary.

We adapted this forcing so that given an arbitrary $z \in 2^{\omega}$ in addition, every new group element *codes* z:

Theorem (Fischer-Törnquist-S. 2015)

Let $\mathcal G$ be a cofinitary group and $z\in 2^\omega$. There is a forcing $\mathbb P_{\mathcal G,z}$ which adds a generic permutation σ such that in addition to \odot and \odot above

③ z is computable from any $x \in \mathcal{G}' \setminus \mathcal{G}$.

Theorem (Zhang)

Let G be a cofinitary group. There is a forcing \mathbb{P}_G which adds a generic permutation σ such that

- $lacktriangledown \mathcal{G}' = \langle \mathcal{G}, \sigma \rangle$ is cofinitary,
- ② \mathcal{G}' is maximal with respect to the ground model: For any $\tau \in V \setminus \mathcal{G}$, $\langle \mathcal{G}', \tau \rangle$ is not cofinitary.

We adapted this forcing so that given an arbitrary $z \in 2^{\omega}$ in addition, every new group element *codes* z:

Theorem (Fischer-Törnquist-S. 2015)

Let $\mathcal G$ be a cofinitary group and $z\in 2^\omega$. There is a forcing $\mathbb P_{\mathcal G,z}$ which adds a generic permutation σ such that in addition to \bullet and \bullet above

3 *z* is computable from any $x \in \mathcal{G}' \setminus \mathcal{G}$.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π^1 **mds**.

- **①** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- ② Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- **1** We may demand that moreover there is a surjection from ω onto \mathbf{L}_{η} which is definable in \mathbf{L}_{η} .
- Use this to code L_{η} canonically into a real z.
- **⑤** Let σ_{ξ} be the ≤_L-least generic over L_η for $\mathbb{P}_{\mathcal{G}_{\xi}, z}$.

The "natural" formula expressing membership in $\mathcal{G}=\bigcup_{\xi<\omega_1}\mathcal{G}_\xi$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma\in\mathcal{G}$ knows via z a witness to the leading existential quantifier.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π^1 **mds**.

- **1** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- ② Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- ⁽³⁾ We may demand that moreover there is a surjection from ω onto $\mathbf{L}_η$ which is definable in $\mathbf{L}_η$.
- Use this to code L_{η} canonically into a real z.
- **⑤** Let σ_{ξ} be the ≤_L-least generic over L_η for $\mathbb{P}_{\mathcal{G}_{\xi}, z}$.

The "natural" formula expressing membership in $\mathcal{G} = \bigcup_{\xi < \omega_1} \mathcal{G}_{\xi}$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma \in \mathcal{G}$ knows via z a witness to the leading existential quantifier.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π^1 **mds**.

- **1** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- 2 Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- ⁽³⁾ We may demand that moreover there is a surjection from ω onto $\mathbf{L}_η$ which is definable in $\mathbf{L}_η$.
- ① Use this to code L_{η} canonically into a real z.
- **⑤** Let σ_{ξ} be the ≤_L-least generic over L_η for $\mathbb{P}_{\mathcal{G}_{\xi}, z}$.

The "natural" formula expressing membership in $\mathcal{G}=\bigcup_{\xi<\omega_1}\mathcal{G}_\xi$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma\in\mathcal{G}$ knows via z a witness to the leading existential quantifier.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π^1 **mds**.

- **1** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- ② Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- **3** We may demand that moreover there is a surjection from ω onto \mathbf{L}_{η} which is definable in \mathbf{L}_{η} .
- Use this to code L_{η} canonically into a real z.
- **⑤** Let $σ_ξ$ be the ≤_L-least generic over $L_η$ for $\mathbb{P}_{\mathcal{G}_ξ,Z}$.

The "natural" formula expressing membership in $\mathcal{G} = \bigcup_{\xi < \omega_1} \mathcal{G}_{\xi}$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma \in \mathcal{G}$ knows via z a witness to the leading existential quantifier.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π^1 **mds**.

- **1** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- ② Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- **③** We may demand that moreover there is a surjection from ω onto \mathbf{L}_{η} which is definable in \mathbf{L}_{η} .
- **1** Use this to code \mathbf{L}_{η} canonically into a real z.
- **⑤** Let $σ_ξ$ be the ≤_L-least generic over $L_η$ for $\mathbb{P}_{\mathcal{G}_ξ,Z}$.

The "natural" formula expressing membership in $\mathcal{G} = \bigcup_{\xi < \omega_1} \mathcal{G}_{\xi}$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma \in \mathcal{G}$ knows via z a witness to the leading existential quantifier.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π^1 **mds**.

- **1** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- ② Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- **3** We may demand that moreover there is a surjection from ω onto \mathbf{L}_{η} which is definable in \mathbf{L}_{η} .
- **1** Use this to code \mathbf{L}_{η} canonically into a real z.
- **5** Let σ_{ξ} be the $\leq_{\mathbf{L}}$ -least generic over \mathbf{L}_{η} for $\mathbb{P}_{\mathcal{G}_{\xi},\mathbf{Z}}$.

The "natural" formula expressing membership in $\mathcal{G} = \bigcup_{\xi < \omega_1} \mathcal{G}_{\xi}$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma \in \mathcal{G}$ knows via z a witness to the leading existential quantifier.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π^1 **mds**.

- **①** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- 2 Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- **③** We may demand that moreover there is a surjection from ω onto \mathbf{L}_{η} which is definable in \mathbf{L}_{η} .
- **1** Use this to code \mathbf{L}_{η} canonically into a real z.
- **6** Let σ_{ξ} be the $\leq_{\mathbf{L}}$ -least generic over \mathbf{L}_{η} for $\mathbb{P}_{\mathcal{G}_{\xi},\mathbf{Z}}$.

The "natural" formula expressing membership in $\mathcal{G} = \bigcup_{\xi < \omega_1} \mathcal{G}_{\xi}$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma \in \mathcal{G}$ knows via z a witness to the leading existential quantifier.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π^1 **mds**.

- **1** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- 2 Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- **③** We may demand that moreover there is a surjection from ω onto \mathbf{L}_{η} which is definable in \mathbf{L}_{η} .
- **1** Use this to code \mathbf{L}_{η} canonically into a real z.
- **6** Let σ_{ξ} be the $\leq_{\mathbf{L}}$ -least generic over \mathbf{L}_{η} for $\mathbb{P}_{\mathcal{G}_{\xi},\mathbf{Z}}$.

The "natural" formula expressing membership in $\mathcal{G} = \bigcup_{\xi < \omega_1} \mathcal{G}_{\xi}$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma \in \mathcal{G}$ knows via z a witness to the leading existential quantifier.

The group is constructed by recursion, reproving Kasterman's Theorem and imitating Miller's classical construction of Π_1^1 **mds**.

- **①** Assume we have $\{\sigma_{\nu} \mid \nu < \xi\} = \mathcal{G}_{\xi}$ where $\xi < \omega_1$.
- ② Let $\eta < \omega_1$ be least such that $\mathcal{G}_{\xi} \in \mathbf{L}_{\eta}$.
- **3** We may demand that moreover there is a surjection from ω onto \mathbf{L}_{η} which is definable in \mathbf{L}_{η} .
- **1** Use this to code \mathbf{L}_{η} canonically into a real z.
- **6** Let σ_{ξ} be the $\leq_{\mathbf{L}}$ -least generic over \mathbf{L}_{η} for $\mathbb{P}_{\mathcal{G}_{\xi},\mathbf{Z}}$.

The "natural" formula expressing membership in $\mathcal{G} = \bigcup_{\xi < \omega_1} \mathcal{G}_{\xi}$ is Σ_1 resp. Σ_2^1 . It can be replaced by a Π_1^1 formula because each $\sigma \in \mathcal{G}$ knows via z a witness to the leading existential quantifier.

Outline

- Maximal discrete sets
- Maximal cofinitary groups
- Maximal orthogonal families of measures
- Maximal discrete sets in the iterated Sacks extension
- 6 Hamel bases
- Questions

- Let $P(2^{\omega})$ be the set of Borel probability measures on 2^{ω} .
- Note that $P(2^{\omega})$ is an effective Polish space.
- Two measures $\mu, \nu \in P(2^{\omega})$ are said to be orthogonal, written

$$\mu \perp \nu$$

exactly if there is a Borel set $A \subseteq 2^{\omega}$ such that

$$\mu(A) = 1$$

and

$$\nu(A)=0.$$

This is an arithmetical relation.

- Let $P(2^{\omega})$ be the set of Borel probability measures on 2^{ω} .
- Note that $P(2^{\omega})$ is an effective Polish space.
- Two measures $\mu, \nu \in P(2^{\omega})$ are said to be orthogonal, written

$$\mu \perp \nu$$

exactly if there is a Borel set $A \subseteq 2^{\omega}$ such that

$$\mu(A) = 1$$

and

$$\nu(A)=0.$$

This is an arithmetical relation.

- Let $P(2^{\omega})$ be the set of Borel probability measures on 2^{ω} .
- Note that $P(2^{\omega})$ is an effective Polish space.
- Two measures $\mu, \nu \in P(2^{\omega})$ are said to be orthogonal, written

$$\mu \perp \nu$$

exactly if there is a Borel set $A \subseteq 2^{\omega}$ such that

$$\mu(A) = 1$$

and

$$\nu(A)=0.$$

This is an arithmetical relation.

- Let $P(2^{\omega})$ be the set of Borel probability measures on 2^{ω} .
- Note that $P(2^{\omega})$ is an effective Polish space.
- Two measures $\mu, \nu \in P(2^{\omega})$ are said to be orthogonal, written

$$\mu \perp \nu$$

exactly if there is a Borel set $A \subseteq 2^{\omega}$ such that

$$\mu(A) = 1$$

and

$$\nu(A) = 0.$$

This is an arithmetical relation.

- Let $P(2^{\omega})$ be the set of Borel probability measures on 2^{ω} .
- Note that $P(2^{\omega})$ is an effective Polish space.
- Two measures $\mu, \nu \in P(2^{\omega})$ are said to be orthogonal, written

$$\mu \perp \nu$$

exactly if there is a Borel set $A \subseteq 2^{\omega}$ such that

$$\mu(A) = 1$$

and

$$\nu(A)=0.$$

This is an arithmetical relation.

Question (Mauldin, circa 1980)

Can a **mof** in $P(2^{\omega})$ be analytic?

The answer turned out to be 'no':

Theorem (Preiss-Rataj, 1985)

There is no analytic **mof** in $P(2^{\omega})$.

This is optimal, in a sense:

Theorem (Fischer-Törnqust, 2009)

In **L**, there is a Π^1_1 **mof** in $P(2^{\omega})$.

In fact:

Theorem (S.-Törnquist 2015)

Question (Mauldin, circa 1980)

Can a **mof** in $P(2^{\omega})$ be analytic?

The answer turned out to be 'no':

Theorem (Preiss-Rataj, 1985)

There is no analytic **mof** in $P(2^{\omega})$.

This is optimal, in a sense:

Theorem (Fischer-Törnqust, 2009)

In **L**, there is a Π^1_+ **mof** in $P(2^{\omega})$.

In fact:

Theorem (S.-Törnquist 2015)

Question (Mauldin, circa 1980)

Can a **mof** in $P(2^{\omega})$ be analytic?

The answer turned out to be 'no':

Theorem (Preiss-Rataj, 1985)

There is no analytic **mof** in $P(2^{\omega})$.

This is optimal, in a sense:

Theorem (Fischer-Törnqust, 2009)

In **L**, there is a Π_1^1 **mof** in $P(2^{\omega})$.

In fact:

Theorem (S.-Törnquist 2015)

Question (Mauldin, circa 1980)

Can a **mof** in $P(2^{\omega})$ be analytic?

The answer turned out to be 'no':

Theorem (Preiss-Rataj, 1985)

There is no analytic **mof** in $P(2^{\omega})$.

This is optimal, in a sense:

Theorem (Fischer-Törnqust, 2009)

In **L**, there is a Π_1^1 **mof** in $P(2^{\omega})$.

In fact:

Theorem (S.-Törnquist 2015)

Can definable mofs survive forcing?

Mofs are fragile creatures:

- Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
- ② Using methods reminiscent of Hjorth's theory of turbulency, one can show there is no Σ_2^1 mof whenever there exists a real of the following type over L:
 - ► A Cohen real (Fischer-Törnquist, 2009)
 - ► A random real (Fischer-Friedman-Törnquist, 2010).
 - ► A Mathias real (S.-Törnquist, 2015).

Question (Fischer-Törnquist)

If there is a Π^1_1 **mof**, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?

Can definable mofs survive forcing?

Mofs are fragile creatures:

- Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
- ② Using methods reminiscent of Hjorth's theory of turbulency, one can show there is no Σ_2^1 mof whenever there exists a real of the following type over L:
 - ► A Cohen real (Fischer-Törnquist, 2009)
 - ► A random real (Fischer-Friedman-Törnquist, 2010).
 - ► A Mathias real (S.-Törnquist, 2015).

Question (Fischer-Törnquist)

If there is a Π^1 mof, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?

Can definable mofs survive forcing?

Mofs are fragile creatures:

- Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
- ② Using methods reminiscent of Hjorth's theory of turbulency, one can show there is no Σ_2^1 **mof** whenever there exists a real of the following type over **L**:
 - A Cohen real (Fischer-Törnquist, 2009)
 - ► A random real (Fischer-Friedman-Törnquist, 2010).
 - ► A Mathias real (S.-Törnquist, 2015).

Question (Fischer-Törnquist)

If there is a Π^1 mof, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?

Can definable mofs survive forcing?

Mofs are fragile creatures:

- Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
- ② Using methods reminiscent of Hjorth's theory of turbulency, one can show there is no Σ_2^1 **mof** whenever there exists a real of the following type over **L**:
 - A Cohen real (Fischer-Törnquist, 2009)
 - A random real (Fischer-Friedman-Törnquist, 2010).
 - ► A Mathias real (S.-Törnquist, 2015).

Question (Fischer-Törnquist)

If there is a Π^1 mof, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?

Can definable mofs survive forcing?

Mofs are fragile creatures:

- Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
- ② Using methods reminiscent of Hjorth's theory of turbulency, one can show there is no Σ_2^1 **mof** whenever there exists a real of the following type over **L**:
 - A Cohen real (Fischer-Törnquist, 2009)
 - A random real (Fischer-Friedman-Törnquist, 2010).
 - A Mathias real (S.-Törnquist, 2015).

Question (Fischer-Törnquist)

If there is a Π_1^1 **mof**, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?

Can definable mofs survive forcing?

Mofs are fragile creatures:

- Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
- ② Using methods reminiscent of Hjorth's theory of turbulency, one can show there is no Σ_2^1 mof whenever there exists a real of the following type over \mathbf{L} :
 - A Cohen real (Fischer-Törnquist, 2009)
 - A random real (Fischer-Friedman-Törnquist, 2010).
 - ► A Mathias real (S.-Törnquist, 2015).

Question (Fischer-Törnquist)

If there is a Π_1^1 **mof**, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?

Outline

- Maximal discrete sets
- Maximal cofinitary groups
- Maximal orthogonal families of measures
- 4 Maximal discrete sets in the iterated Sacks extension
- 6 Hamel bases
- Questions

Theorem (S. 2016)

Let R be a binary symmetric Σ_1^1 relation on an effective Polish space X. If \bar{s} is generic for iterated Sacks forcing over L, there is a Δ_2^1 R-**mds** in $L[\bar{s}]$.

Note we are always referring to the *lightface* (effective) hierarchy.

As existence of a Σ_2^1 **mof** implies existence of a Π_1^1 **mof**, we obtain a strong negative answer to the previous question:

Theorem (S. 2016)

Theorem (S. 2016)

Let R be a binary symmetric Σ_1^1 relation on an effective Polish space X. If \bar{s} is generic for iterated Sacks forcing over L, there is a Δ_2^1 R-**mds** in $L[\bar{s}]$.

Note we are always referring to the *lightface* (effective) hierarchy.

As existence of a Σ_2^1 **mof** implies existence of a Π_1^1 **mof**, we obtain a strong negative answer to the previous question:

Theorem (S. 2016)

Theorem (S. 2016)

Let R be a binary symmetric Σ_1^1 relation on an effective Polish space X. If \bar{s} is generic for iterated Sacks forcing over L, there is a Δ_2^1 R-**mds** in $L[\bar{s}]$.

Note we are always referring to the *lightface* (effective) hierarchy.

As existence of a Σ_2^1 **mof** implies existence of a Π_1^1 **mof**, we obtain a strong negative answer to the previous question:

Theorem (S. 2016)

Theorem (S. 2016)

Let R be a binary symmetric Σ_1^1 relation on an effective Polish space X. If \bar{s} is generic for iterated Sacks forcing over L, there is a Δ_2^1 R-**mds** in $L[\bar{s}]$.

Note we are always referring to the lightface (effective) hierarchy.

As existence of a Σ_2^1 **mof** implies existence of a Π_1^1 **mof**, we obtain a strong negative answer to the previous question:

Theorem (S. 2016)

Assume R is a symmetric Δ_1^1 relation on ω^ω and $\mathbf{L}[s]$ is a Sacks extension of \mathbf{L} .

Recall that Sacks forcing $\mathbb S$ is the set of *perfect trees* $p \subseteq 2^{<\omega}$, ordered by inclusion and [p] is the set of branches through p.

We need the following standard fact:

Fact

Any element of $\mathbf{L}[s] \cap \omega^{\omega}$ is equal to f(s) for some continuous function $f: 2^{\omega} \to \omega^{\omega}$ with code in \mathbf{L} .

We also need the following theorem of Galvin:

Theorem (Galvin's Theorem)

Let $c: (2^{\omega})^2 \to \{0,1\}$ be symmetric and Baire measurable. Then there is a perfect set $P \subseteq 2^{\omega}$ such that c is constant on $P^2 \setminus \text{diag}$.

Assume R is a symmetric Δ_1^1 relation on ω^{ω} and $\mathbf{L}[s]$ is a Sacks extension of \mathbf{L} .

Recall that Sacks forcing $\mathbb S$ is the set of *perfect trees* $p \subseteq 2^{<\omega}$, ordered by inclusion and [p] is the set of branches through p.

We need the following standard fact:

Fact

Any element of $\mathbf{L}[s] \cap \omega^{\omega}$ is equal to f(s) for some continuous function $f: 2^{\omega} \to \omega^{\omega}$ with code in \mathbf{L} .

We also need the following theorem of Galvin:

Theorem (Galvin's Theorem)

Let $c\colon (2^\omega)^2\to \{0,1\}$ be symmetric and Baire measurable. Then there is a perfect set $P\subseteq 2^\omega$ such that c is constant on $P^2\setminus \text{diag}$.

Assume R is a symmetric Δ_1^1 relation on ω^{ω} and $\mathbf{L}[s]$ is a Sacks extension of \mathbf{L} .

Recall that Sacks forcing $\mathbb S$ is the set of *perfect trees* $p \subseteq 2^{<\omega}$, ordered by inclusion and [p] is the set of branches through p.

We need the following standard fact:

Fact

Any element of $L[s] \cap \omega^{\omega}$ is equal to f(s) for some continuous function $f: 2^{\omega} \to \omega^{\omega}$ with code in L.

We also need the following theorem of Galvin:

Theorem (Galvin's Theorem)

Let $c\colon (2^\omega)^2\to \{0,1\}$ be symmetric and Baire measurable. Then there is a perfect set $P\subseteq 2^\omega$ such that c is constant on $P^2\setminus \text{diag}$.

Assume R is a symmetric Δ_1^1 relation on ω^{ω} and $\mathbf{L}[s]$ is a Sacks extension of \mathbf{L} .

Recall that Sacks forcing $\mathbb S$ is the set of *perfect trees* $p\subseteq 2^{<\omega}$, ordered by inclusion and [p] is the set of branches through p.

We need the following standard fact:

Fact

Any element of $L[s] \cap \omega^{\omega}$ is equal to f(s) for some continuous function $f: 2^{\omega} \to \omega^{\omega}$ with code in L.

We also need the following theorem of Galvin:

Theorem (Galvin's Theorem)

Let $c: (2^{\omega})^2 \to \{0,1\}$ be symmetric and Baire measurable. Then there is a perfect set $P \subseteq 2^{\omega}$ such that c is constant on $P^2 \setminus \text{diag}$.

Assume R is a symmetric Δ_1^1 relation on ω^{ω} and $\mathbf{L}[s]$ is a Sacks extension of \mathbf{L} .

Recall that Sacks forcing $\mathbb S$ is the set of *perfect trees* $p\subseteq 2^{<\omega}$, ordered by inclusion and [p] is the set of branches through p.

We need the following standard fact:

Fact

Any element of $L[s] \cap \omega^{\omega}$ is equal to f(s) for some continuous function $f: 2^{\omega} \to \omega^{\omega}$ with code in L.

We also need the following theorem of Galvin:

Theorem (Galvin's Theorem)

Let $c: (2^{\omega})^2 \to \{0,1\}$ be symmetric and Baire measurable. Then there is a perfect set $P \subseteq 2^{\omega}$ such that c is constant on $P^2 \setminus \text{diag}$.

Assume R is a symmetric Δ_1^1 relation on ω^{ω} and $\mathbf{L}[s]$ is a Sacks extension of \mathbf{L} .

Recall that Sacks forcing $\mathbb S$ is the set of *perfect trees* $p\subseteq 2^{<\omega}$, ordered by inclusion and [p] is the set of branches through p.

We need the following standard fact:

Fact

Any element of $\mathbf{L}[s] \cap \omega^{\omega}$ is equal to f(s) for some continuous function $f \colon 2^{\omega} \to \omega^{\omega}$ with code in \mathbf{L} .

We also need the following theorem of Galvin:

Theorem (Galvin's Theorem)

Let $c\colon (2^\omega)^2\to \{0,1\}$ be symmetric and Baire measurable. Then there is a perfect set $P\subseteq 2^\omega$ such that c is constant on $P^2\setminus \text{diag}$.

A lemma: Complete and discrete conditions

Lemma

Suppose R is a Σ_1^1 symmetric binary relation on ω^{ω} , $p \in \mathbb{S}$, and $f \in C(2^{\omega}, \omega^{\omega})$. There is $q \leq p$ such that one of the following holds:

- f"[q] is R-discrete
- f"[q] is R-complete, i.e. any two elements of f"[q] are R-related.

Proof.

Apply Galvin's Theorem for the coloring on $[p]^2$ given by

$$c(x,y) = \begin{cases} 1 & \text{if } f(x) R f(y), \\ 0 & \text{if } f(x) R f(y). \end{cases}$$

Note: \bullet is a Π_1^1 statement about q;

② is a Π_2^1 statement about q, so both are absolute.

A lemma: Complete and discrete conditions

Lemma

Suppose R is a Σ_1^1 symmetric binary relation on ω^{ω} , $p \in \mathbb{S}$, and $f \in C(2^{\omega}, \omega^{\omega})$. There is $q \leq p$ such that one of the following holds:

- f"[q] is R-discrete
- f"[q] is R-complete, i.e. any two elements of f"[q] are R-related.

Proof.

Apply Galvin's Theorem for the coloring on $[p]^2$ given by

$$c(x,y) = \begin{cases} 1 & \text{if } f(x) R f(y), \\ 0 & \text{if } f(x) \cancel{R} f(y). \end{cases}$$

Note: \blacksquare is a Π_1^1 statement about q;

② is a Π_2^1 statement about q, so both are absolute.

A lemma: Complete and discrete conditions

Lemma

Suppose R is a Σ_1^1 symmetric binary relation on ω^{ω} , $p \in \mathbb{S}$, and $f \in C(2^{\omega}, \omega^{\omega})$. There is $q \leq p$ such that one of the following holds:

- f"[q] is R-discrete
- f"[q] is R-complete, i.e. any two elements of f"[q] are R-related.

Proof.

Apply Galvin's Theorem for the coloring on $[p]^2$ given by

$$c(x,y) = \begin{cases} 1 & \text{if } f(x) R f(y), \\ 0 & \text{if } f(x) \cancel{R} f(y). \end{cases}$$

Note: \bullet is a Π_1^1 statement about q;

a is a Π_2^1 statement about q, so both are absolute.

Ideas for the proof (continued).

We also use the following well-known property of Sacks forcing, which can be seen as a special case of the previous:

Corollary

Say Φ is a Σ_1^1 (or Π_1^1) formula, $p \in \mathbb{S}$ and

$$p \Vdash \neg \Phi(\dot{s}).$$

Then there is $q \le p$ such that

$$[q] \cap \{x \mid \Phi(x)\} = \emptyset.$$

Also note that $[q] \cap \{x \mid \Phi(x)\} = \emptyset$ is Π_1^1 , hence absolute, and thus will also hold in the Sacks extension.

Ideas for the proof (continued).

We also use the following well-known property of Sacks forcing, which can be seen as a special case of the previous:

Corollary

Say Φ is a Σ_1^1 (or Π_1^1) formula, $p \in \mathbb{S}$ and

$$p \Vdash \neg \Phi(\dot{s}).$$

Then there is $q \le p$ such that

$$[q] \cap \{x \mid \Phi(x)\} = \emptyset.$$

Also note that $[q] \cap \{x \mid \Phi(x)\} = \emptyset$ is Π_1^1 , hence absolute, and thus will also hold in the Sacks extension.

Ideas for the proof (continued).

We also use the following well-known property of Sacks forcing, which can be seen as a special case of the previous:

Corollary

Say Φ is a Σ_1^1 (or Π_1^1) formula, $p \in \mathbb{S}$ and

$$p \Vdash \neg \Phi(\dot{s}).$$

Then there is $q \le p$ such that

$$[q] \cap \{x \mid \Phi(x)\} = \emptyset.$$

Also note that $[q] \cap \{x \mid \Phi(x)\} = \emptyset$ is Π_1^1 , hence absolute, and thus will also hold in the Sacks extension.

By recursion, choose for each $\xi < \omega_1$ a tree $T_{\xi} \subseteq p_{\xi}$ such that in L[s], $A = \bigcup \{ [T_{\xi}] \mid \xi < \omega_1 \}$ will be a **mds**. At stage $\xi < \omega_1$, suppose

$$p_{\xi} \Vdash f_{\xi}(\dot{s}) \notin \operatorname{span}_{R} \left(\bigcup_{\nu < \xi} [T_{\nu}] \right),$$
 (1)

otherwise let $T_{\varepsilon} = \emptyset$.

By the previous, we may find $q \le p_{\varepsilon}$ such that

- ① $f_{\xi}''[q]$ is R-discrete or R-complete.
- - In discrete case, let $[T_{\xi}] = f_{\xi}''[q]$.
 - In complete case, let $[T_{\xi}] = \{f_{\xi}(x)\}$ where x is the left-most branch of q.

By recursion, choose for each $\xi < \omega_1$ a tree $T_{\xi} \subseteq p_{\xi}$ such that in L[s], $A = \bigcup \{ [T_{\xi}] \mid \xi < \omega_1 \}$ will be a **mds**. At stage $\xi < \omega_1$, suppose

$$p_{\xi} \Vdash f_{\xi}(\dot{s}) \notin \operatorname{span}_{R} \Big(\bigcup_{\nu < \xi} [T_{\nu}] \Big),$$
 (1)

otherwise let $T_{\varepsilon} = \emptyset$.

By the previous, we may find $q \le p_{\varepsilon}$ such that

- - In discrete case, let $[T_{\xi}] = f_{\xi}^{"}[q]$.
 - In complete case, let $[T_{\xi}] = \{f_{\xi}(x)\}$ where x is the left-most branch of q.

By recursion, choose for each $\xi < \omega_1$ a tree $T_{\xi} \subseteq p_{\xi}$ such that in L[s], $\mathcal{A} = \bigcup \{ [T_{\xi}] \mid \xi < \omega_1 \}$ will be a **mds**. At stage $\xi < \omega_1$, suppose

$$p_{\xi} \Vdash f_{\xi}(\dot{s}) \notin \operatorname{span}_{R} \Big(\bigcup_{\nu < \xi} [T_{\nu}] \Big),$$
 (1)

otherwise let $T_{\xi} = \emptyset$.

By the previous, we may find $q \leq p_{\xi}$ such that

- - In discrete case, let $[T_{\xi}] = f_{\xi}^{"}[q]$.
 - In complete case, let $[T_{\xi}] = \{f_{\xi}(x)\}$ where x is the left-most branch of q.

By recursion, choose for each $\xi < \omega_1$ a tree $T_{\xi} \subseteq p_{\xi}$ such that in L[s], $A = \bigcup \{ [T_{\xi}] \mid \xi < \omega_1 \}$ will be a **mds**. At stage $\xi < \omega_1$, suppose

$$p_{\xi} \Vdash f_{\xi}(\dot{s}) \notin \operatorname{span}_{R} \Big(\bigcup_{\nu < \xi} [T_{\nu}] \Big),$$
 (1)

otherwise let $T_{\varepsilon} = \emptyset$.

By the previous, we may find $q \le p_{\xi}$ such that

- $f_{\varepsilon}''[q]$ is *R*-discrete or *R*-complete.
- - In discrete case, let $[T_{\xi}] = f_{\xi}^{"}[q]$.
 - In complete case, let $[T_{\xi}] = \{f_{\xi}(x)\}$ where x is the left-most branch of q.

By recursion, choose for each $\xi < \omega_1$ a tree $T_{\xi} \subseteq p_{\xi}$ such that in L[s], $A = \bigcup \{ [T_{\xi}] \mid \xi < \omega_1 \}$ will be a **mds**. At stage $\xi < \omega_1$, suppose

$$p_{\xi} \Vdash f_{\xi}(\dot{s}) \notin \operatorname{span}_{R} \Big(\bigcup_{\nu < \xi} [T_{\nu}] \Big),$$
 (1)

otherwise let $T_{\xi} = \emptyset$.

By the previous, we may find $q \leq p_{\xi}$ such that

- **1** $f_{\xi}''[q]$ is *R*-discrete or *R*-complete.
- - In discrete case, let $[T_{\xi}] = f_{\xi}^{"}[q]$.
 - In complete case, let $[T_{\xi}] = \{f_{\xi}(x)\}$ where x is the left-most branch of q.

By recursion, choose for each $\xi < \omega_1$ a tree $T_{\xi} \subseteq p_{\xi}$ such that in L[s], $\mathcal{A} = \bigcup \{ [T_{\xi}] \mid \xi < \omega_1 \}$ will be a **mds**. At stage $\xi < \omega_1$, suppose

$$p_{\xi} \Vdash f_{\xi}(\dot{s}) \notin \operatorname{span}_{R} \Big(\bigcup_{\nu < \xi} [T_{\nu}] \Big),$$
 (1)

otherwise let $T_{\varepsilon} = \emptyset$.

By the previous, we may find $q \le p_{\xi}$ such that

- $f_{\xi}''[q]$ is *R*-discrete or *R*-complete.
- - In discrete case, let $[T_{\xi}] = f_{\xi}''[q]$.
 - In complete case, let $[T_{\xi}] = \{f_{\xi}(x)\}$ where x is the left-most branch of q.

By recursion, choose for each $\xi < \omega_1$ a tree $T_{\xi} \subseteq p_{\xi}$ such that in L[s], $A = \bigcup \{ [T_{\xi}] \mid \xi < \omega_1 \}$ will be a **mds**. At stage $\xi < \omega_1$, suppose

$$p_{\xi} \Vdash f_{\xi}(\dot{s}) \notin \operatorname{span}_{R} \Big(\bigcup_{\nu < \xi} [T_{\nu}] \Big),$$
 (1)

otherwise let $T_{\xi} = \emptyset$.

By the previous, we may find $q \leq p_{\xi}$ such that

- $f_{\xi}''[q]$ is *R*-discrete or *R*-complete.
- - In discrete case, let $[T_{\xi}] = f_{\xi}''[q]$.
 - In complete case, let $[T_{\xi}] = \{f_{\xi}(x)\}$ where x is the left-most branch of q.

By recursion, choose for each $\xi < \omega_1$ a tree $T_{\xi} \subseteq p_{\xi}$ such that in L[s], $A = \bigcup \{ [T_{\xi}] \mid \xi < \omega_1 \}$ will be a **mds**. At stage $\xi < \omega_1$, suppose

$$p_{\xi} \Vdash f_{\xi}(\dot{s}) \notin \operatorname{span}_{R} \Big(\bigcup_{\nu < \xi} [T_{\nu}] \Big),$$
 (1)

otherwise let $T_{\xi} = \emptyset$.

By the previous, we may find $q \leq p_{\xi}$ such that

- $f_{\xi}''[q]$ is *R*-discrete or *R*-complete.
- - In discrete case, let $[T_{\xi}] = f_{\xi}''[q]$.
 - In complete case, let $[T_{\xi}] = \{f_{\xi}(x)\}$ where x is the left-most branch of q.

Towards a contradiction, suppose there is $x \in \mathbf{L}[s] \cap \omega^{\omega}$ and $x \notin \operatorname{span}_R(\mathcal{A})$.

We can pick

- $f \in C(2^{\omega}, \omega^{\omega})$ such that x = f(s),
- $p \in \mathbb{S}$ such that $p \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$.

Find the stage ξ when we considered (p, f), i.e. $(p, f) = (p_{\xi}, f_{\xi})$. We found $q \leq p$ which was either complete or discrete.

- Discrete case: $[T_{\xi}] = f''[q]$, whence $q \Vdash f(\dot{s}) \in [T_{\xi}] \subseteq \mathcal{A}$.
- Complete case: $[T_{\xi}] = \{x\}$ with $x \in [q]$, and $q \Vdash f(\dot{s}) \ R \ f(x) \in \mathcal{A}$.

In either case, we reach a contradiction to $q \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$ above.

Towards a contradiction, suppose there is $x \in \mathbf{L}[s] \cap \omega^{\omega}$ and $x \notin \operatorname{span}_R(\mathcal{A})$.

We can pick

- $f \in C(2^{\omega}, \omega^{\omega})$ such that x = f(s),
- $p \in \mathbb{S}$ such that $p \Vdash f(\dot{s}) \notin \operatorname{span}_{R}(A)$.

Find the stage ξ when we considered (p, f), i.e. $(p, f) = (p_{\xi}, f_{\xi})$. We found $q \leq p$ which was either complete or discrete.

- Discrete case: $[T_{\xi}] = f''[q]$, whence $q \Vdash f(\dot{s}) \in [T_{\xi}] \subseteq A$.
- Complete case: $[T_{\xi}] = \{x\}$ with $x \in [q]$, and $q \Vdash f(\dot{s}) \ R \ f(x) \in \mathcal{A}$.

In either case, we reach a contradiction to $q \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$ above.

Towards a contradiction, suppose there is $x \in \mathbf{L}[s] \cap \omega^{\omega}$ and $x \notin \operatorname{span}_{R}(A)$.

We can pick

- $f \in C(2^{\omega}, \omega^{\omega})$ such that x = f(s),
- $p \in \mathbb{S}$ such that $p \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$.

Find the stage ξ when we considered (p, f), i.e. $(p, f) = (p_{\xi}, f_{\xi})$. We found $q \leq p$ which was either complete or discrete.

- Discrete case: $[T_{\xi}] = f''[q]$, whence $q \Vdash f(\dot{s}) \in [T_{\xi}] \subseteq A$.
- Complete case: $[T_{\xi}] = \{x\}$ with $x \in [q]$, and $q \Vdash f(\dot{s}) \ R \ f(x) \in \mathcal{A}$.

In either case, we reach a contradiction to $q \Vdash f(\dot{s}) \notin \operatorname{span}_B(A)$ above.

Towards a contradiction, suppose there is $x \in \mathbf{L}[s] \cap \omega^{\omega}$ and $x \notin \operatorname{span}_R(\mathcal{A})$.

We can pick

- $f \in C(2^{\omega}, \omega^{\omega})$ such that x = f(s),
- $p \in \mathbb{S}$ such that $p \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$.

Find the stage ξ when we considered (p, f), i.e. $(p, f) = (p_{\xi}, f_{\xi})$. We found $q \leq p$ which was either complete or discrete.

- Discrete case: $[T_{\xi}] = f''[q]$, whence $q \Vdash f(\dot{s}) \in [T_{\xi}] \subseteq A$.
- Complete case: $[T_{\xi}] = \{x\}$ with $x \in [q]$, and $q \Vdash f(\dot{s}) \ R \ f(x) \in \mathcal{A}$.

In either case, we reach a contradiction to $q \Vdash f(\dot{s}) \notin \operatorname{span}_B(A)$ above.

Towards a contradiction, suppose there is $x \in \mathbf{L}[s] \cap \omega^{\omega}$ and $x \notin \operatorname{span}_R(\mathcal{A})$.

We can pick

- $f \in C(2^{\omega}, \omega^{\omega})$ such that x = f(s),
- $p \in \mathbb{S}$ such that $p \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$.

Find the stage ξ when we considered (p, f), i.e. $(p, f) = (p_{\xi}, f_{\xi})$. We found $q \leq p$ which was either complete or discrete.

- Discrete case: $[T_{\xi}] = f''[q]$, whence $q \Vdash f(\dot{s}) \in [T_{\xi}] \subseteq A$.
- Complete case: $[T_{\xi}] = \{x\}$ with $x \in [q]$, and $q \Vdash f(\dot{s}) \ R \ f(x) \in \mathcal{A}$.

In either case, we reach a contradiction to $q \Vdash f(\dot{s}) \notin \operatorname{span}_{R}(A)$ above.

Towards a contradiction, suppose there is $x \in \mathbf{L}[s] \cap \omega^{\omega}$ and $x \notin \operatorname{span}_{R}(\mathcal{A})$.

We can pick

- $f \in C(2^{\omega}, \omega^{\omega})$ such that x = f(s),
- $p \in \mathbb{S}$ such that $p \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$.

Find the stage ξ when we considered (p, f), i.e. $(p, f) = (p_{\xi}, f_{\xi})$. We found $q \leq p$ which was either complete or discrete.

- Discrete case: $[T_{\xi}] = f''[q]$, whence $q \Vdash f(\dot{s}) \in [T_{\xi}] \subseteq A$.
- Complete case: $[T_{\xi}] = \{x\}$ with $x \in [q]$, and $q \Vdash f(\dot{s}) R f(x) \in \mathcal{A}$.

In either case, we reach a contradiction to $q \Vdash f(\dot{s}) \notin \text{span}_{R}(A)$ above.

Towards a contradiction, suppose there is $x \in \mathbf{L}[s] \cap \omega^{\omega}$ and $x \notin \operatorname{span}_{R}(A)$.

We can pick

- $f \in C(2^{\omega}, \omega^{\omega})$ such that x = f(s),
- $p \in \mathbb{S}$ such that $p \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$.

Find the stage ξ when we considered (p, f), i.e. $(p, f) = (p_{\xi}, f_{\xi})$. We found $q \leq p$ which was either complete or discrete.

- Discrete case: $[T_{\xi}] = f''[q]$, whence $q \Vdash f(\dot{s}) \in [T_{\xi}] \subseteq \mathcal{A}$.
- Complete case: $[T_{\xi}] = \{x\}$ with $x \in [q]$, and $q \Vdash f(\dot{s}) R f(x) \in \mathcal{A}$.

In either case, we reach a contradiction to $q \Vdash f(\dot{s}) \notin \operatorname{span}_R(A)$ above.

A Ramsey theoretic result about iterated Sacks forcing

One of the main ingredients for the general result for iterated Sacks forcing is an analogue of Galvin's theorem.

- ullet Let ${\mathbb P}$ be a countable support iteration of Sacks forcing.
- On a dense set of $\bar{p} \in \mathbb{P}$, we can define $[\bar{p}]$ as a perfect subspace of $(2^{\omega})^{\text{supp}(\bar{p})}$ in a meaningful way $(\text{supp}(\bar{p}) \text{ is the support of } \bar{p})$.

Question:

Is there for every $\bar{p} \in \mathbb{P}$ and every *nice* symmetric $c : [\bar{p}]^2 \to \{0, 1\}$ some $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that c is constant on $[\bar{q}]^2 \setminus \text{diag}$?

'Yes', if c is continuous on $[\bar{p}]^2 \setminus \text{diag}$ (Geschke-Kojman-Kubiś-Schipperus)

For more complicated c, there are combinatorial obstructions to such a straightforward generalization.

One of the main ingredients for the general result for iterated Sacks forcing is an analogue of Galvin's theorem.

- Let \mathbb{P} be a countable support iteration of Sacks forcing.
- On a dense set of $\bar{p} \in \mathbb{P}$, we can define $[\bar{p}]$ as a perfect subspace of $(2^{\omega})^{\text{supp}(\bar{p})}$ in a meaningful way $(\text{supp}(\bar{p}) \text{ is the support of } \bar{p})$.

Question:

Is there for every $\bar{p} \in \mathbb{P}$ and every *nice* symmetric $c : [\bar{p}]^2 \to \{0, 1\}$ some $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that c is constant on $[\bar{q}]^2 \setminus \text{diag}$?

'Yes', if c is continuous on $[\bar{p}]^2 \setminus diag$ (Geschke-Kojman-Kubiś-Schipperus)

One of the main ingredients for the general result for iterated Sacks forcing is an analogue of Galvin's theorem.

- Let \mathbb{P} be a countable support iteration of Sacks forcing.
- On a dense set of $\bar{p} \in \mathbb{P}$, we can define $[\bar{p}]$ as a perfect subspace of $(2^{\omega})^{\text{supp}(\bar{p})}$ in a meaningful way $(\text{supp}(\bar{p}))$ is the support of \bar{p} .

Question:

Is there for every $\bar{p} \in \mathbb{P}$ and every *nice* symmetric $c : [\bar{p}]^2 \to \{0, 1\}$ some $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that c is constant on $[\bar{q}]^2 \setminus \text{diag}$?

'Yes', if c is continuous on $[\bar{p}]^2 \setminus diag$ (Geschke-Kojman-Kubiś-Schipperus)

One of the main ingredients for the general result for iterated Sacks forcing is an analogue of Galvin's theorem.

- Let \mathbb{P} be a countable support iteration of Sacks forcing.
- On a dense set of $\bar{p} \in \mathbb{P}$, we can define $[\bar{p}]$ as a perfect subspace of $(2^{\omega})^{\text{supp}(\bar{p})}$ in a meaningful way $(\text{supp}(\bar{p}) \text{ is the support of } \bar{p})$.

Question:

Is there for every $\bar{p} \in \mathbb{P}$ and every *nice* symmetric $c : [\bar{p}]^2 \to \{0, 1\}$ some $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that c is constant on $[\bar{q}]^2 \setminus \text{diag}$?

'Yes', if c is continuous on $[\bar{p}]^2 \setminus diag$ (Geschke-Kojman-Kubiś-Schipperus)

One of the main ingredients for the general result for iterated Sacks forcing is an analogue of Galvin's theorem.

- ullet Let ${\mathbb P}$ be a countable support iteration of Sacks forcing.
- On a dense set of $\bar{p} \in \mathbb{P}$, we can define $[\bar{p}]$ as a perfect subspace of $(2^{\omega})^{\text{supp}(\bar{p})}$ in a meaningful way $(\text{supp}(\bar{p}))$ is the support of \bar{p}).

Question:

Is there for every $\bar{p} \in \mathbb{P}$ and every *nice* symmetric $c : [\bar{p}]^2 \to \{0,1\}$ some $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that c is constant on $[\bar{q}]^2 \setminus \text{diag}$?

'Yes', if c is continuous on $[\bar{p}]^2 \setminus \text{diag}$ (Geschke-Kojman-Kubiś-Schipperus)

One of the main ingredients for the general result for iterated Sacks forcing is an analogue of Galvin's theorem.

- Let \mathbb{P} be a countable support iteration of Sacks forcing.
- On a dense set of $\bar{p} \in \mathbb{P}$, we can define $[\bar{p}]$ as a perfect subspace of $(2^{\omega})^{\text{supp}(\bar{p})}$ in a meaningful way $(\text{supp}(\bar{p}) \text{ is the support of } \bar{p})$.

Question:

Is there for every $\bar{p} \in \mathbb{P}$ and every *nice* symmetric $c : [\bar{p}]^2 \to \{0, 1\}$ some $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that c is constant on $[\bar{q}]^2 \setminus \text{diag}$?

'Yes', if c is continuous on $[\bar{p}]^2 \setminus \text{diag}$ (Geschke-Kojman-Kubiś-Schipperus)

A generalization of Galvin's Theorem

For $\bar{x}_0, \bar{x}_1 \in [\bar{p}]$ (a subspace of $(2^{\omega})^{\text{supp}(\bar{p})}$), let

 $\Delta(\bar{x}_0, \bar{x}_1) = \text{the least } \xi \in \text{supp}(\bar{p}) \text{ such that } \bar{x}_0(\xi) \neq \bar{x}_1(\xi).$

Theorem (S. 2016)

For every $\bar{p} \in \mathbb{P}$ and every symmetric universally Baire

$$c \colon [\bar{p}]^2 \to \{0,1\}$$

there is $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$, with an enumeration $\langle \sigma_k \mid k \in \omega \rangle$ of $\operatorname{supp}(\bar{q})$ and a function N: $\operatorname{supp}(\bar{q}) \to \omega$ such that for $(\bar{x}_0, \bar{x}_1) \in [\bar{q}]^2 \setminus \operatorname{diag}$, the value of $c(\bar{x}_0, \bar{x}_1)$ only depends on $\Delta(\bar{x}_0, \bar{x}_1) = \xi$ and the following (finite) piece of information:

$$(\bar{x}_0 \upharpoonright K, \bar{x}_1 \upharpoonright K)$$

where $K = \{\sigma_0, \ldots, \sigma_{N(\xi)}\} \times N(\xi)$.

Above we simplify notation by identifying $(2^{\omega})^{\text{supp}(\bar{p})}$ and $2^{\omega \times \text{supp}(\bar{p})}$

A generalization of Galvin's Theorem

For $\bar{x}_0, \bar{x}_1 \in [\bar{p}]$ (a subspace of $(2^{\omega})^{\text{supp}(\bar{p})}$), let

 $\Delta(\bar{x}_0, \bar{x}_1) = \text{the least } \xi \in \operatorname{supp}(\bar{p}) \text{ such that } \bar{x}_0(\xi) \neq \bar{x}_1(\xi).$

Theorem (S. 2016)

For every $\bar{p} \in \mathbb{P}$ and every symmetric universally Baire

$$c \colon [\bar{p}]^2 \to \{0,1\}$$

there is $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$, with an enumeration $\langle \sigma_k \mid k \in \omega \rangle$ of $\mathrm{supp}(\bar{q})$ and a function N: $\mathrm{supp}(\bar{q}) \to \omega$ such that for $(\bar{x}_0, \bar{x}_1) \in [\bar{q}]^2 \setminus \mathrm{diag}$, the value of $c(\bar{x}_0, \bar{x}_1)$ only depends on $\Delta(\bar{x}_0, \bar{x}_1) = \xi$ and the following (finite) piece of information:

$$(\bar{x}_0 \upharpoonright K, \bar{x}_1 \upharpoonright K)$$

where $K = \{\sigma_0, \dots, \sigma_{N(\xi)}\} \times N(\xi)$.

Above we simplify notation by identifying $(2^{\omega})^{\text{supp}(\bar{p})}$ and $2^{\omega \times \text{supp}(\bar{p})}$

Outline

- Maximal discrete sets
- Maximal cofinitary groups
- Maximal orthogonal families of measures
- Maximal discrete sets in the iterated Sacks extension
- 6 Hamel bases
- Questions

Hamel bases

Let $X = \mathbb{R}$ and let R_H be the set of finite tuples from X which are linearly dependent over \mathbb{Q} . An R_H -**mds** is usually known as a *Hamel basis*.

A more involved proof but using similar ideas as in the previous sketch gives us:

Theorem (S. 2016)

If s is a Sacks real over L, there is a Π^1 Hamel basis in L[s].

Hamel bases

Let $X = \mathbb{R}$ and let R_H be the set of finite tuples from X which are linearly dependent over \mathbb{Q} . An R_H -**mds** is usually known as a *Hamel basis*.

A more involved proof but using similar ideas as in the previous sketch gives us:

Theorem (S. 2016)

If s is a Sacks real over L, there is a Π^1 Hamel basis in L[s].

Hamel bases

Let $X = \mathbb{R}$ and let R_H be the set of finite tuples from X which are linearly dependent over \mathbb{Q} . An R_H -**mds** is usually known as a *Hamel basis*.

A more involved proof but using similar ideas as in the previous sketch gives us:

Theorem (S. 2016)

If s is a Sacks real over L, there is a Π_1^1 Hamel basis in L[s].

Hamel bases

Let $X = \mathbb{R}$ and let R_H be the set of finite tuples from X which are linearly dependent over \mathbb{Q} . An R_H -**mds** is usually known as a *Hamel basis*.

A more involved proof but using similar ideas as in the previous sketch gives us:

Theorem (S. 2016)

If s is a Sacks real over L, there is a Π^1 Hamel basis in L[s].

Outline

- Maximal discrete sets
- Maximal cofinitary groups
- Maximal orthogonal families of measures
- Maximal discrete sets in the iterated Sacks extension
- 6 Hamel bases
- Questions

Ideas for further work

Conjecture

Every (not necessarily binary) Σ_1^1 relation has a Δ_2^1 maximal discrete set in the (iterated) Sacks extension of **L**.

Conjecture

There is a model where $2^{\omega} > \omega_1$ and any cofinitary group of size $< 2^{\omega}$ is a subgroup of a $\underline{\Pi}_2^1$ maximal cofinitary group.

Some open questions

- (Mathias) Does "every projective set is completely Ramsey" imply "there is no projective mad family"?
- Is there a Borel maximal incomparable set of Turing degrees?
- (Horowitz-Shelah) Is there a Σ_1^1 relation R on a Polish space such that "there is no projective R-**mds**" is equiconsistent with, say, a measurable?

Thank You!

"there is no projective *R*-**mds**" is equiconsistent with ZFC in several other cases, as well:

- so-called independent families of sets (Brendle-Khomskii, unpublished)
- maximal orthogonal families of measures (Fischer-Törnquist, 2010); This is because "every projective set has the Baire property" > "there are no projective maximal orthogonal families of measures", and the first statement is equiconsistent with ZFC.

The statement that there are no definable *R*-**mds** can have large cardinal strength:

Theorem (Horowitz-Shelah, 2016)

There is a Borel binary relation R on 2^{ω} (in fact, a graph relation) such that "there is no projective R-**mds**" is equiconsistent with the existence of an inaccessible cardinal.

"there is no projective *R*-**mds**" is equiconsistent with ZFC in several other cases, as well:

- so-called independent families of sets (Brendle-Khomskii, unpublished)
- maximal orthogonal families of measures (Fischer-Törnquist, 2010); This is because "every projective set has the Baire property" > "there are no projective maximal orthogonal families of measures", and the first statement is equiconsistent with ZFC.

The statement that there are no definable *R*-**mds** can have large cardinal strength:

Theorem (Horowitz-Shelah, 2016)

There is a Borel binary relation R on 2^{ω} (in fact, a graph relation) such that "there is no projective R-**mds**" is equiconsistent with the existence of an inaccessible cardinal.

"there is no projective *R*-**mds**" is equiconsistent with ZFC in several other cases, as well:

- so-called independent families of sets (Brendle-Khomskii, unpublished)
- maximal orthogonal families of measures (Fischer-Törnquist, 2010); This is because "every projective set has the Baire property"

 — "there are no projective maximal orthogonal families of measures", and the first statement is equiconsistent with ZFC.

The statement that there are no definable *R*-**mds** can have large cardinal strength:

Theorem (Horowitz-Shelah, 2016)

There is a Borel binary relation R on 2^{ω} (in fact, a graph relation) such that "there is no projective R-**mds**" is equiconsistent with the existence of an inaccessible cardinal.

"there is no projective *R*-**mds**" is equiconsistent with ZFC in several other cases, as well:

- so-called independent families of sets (Brendle-Khomskii, unpublished)
- maximal orthogonal families of measures (Fischer-Törnquist, 2010); This is because "every projective set has the Baire property" > "there are no projective maximal orthogonal families of measures", and the first statement is equiconsistent with ZFC.

The statement that there are no definable *R*-**mds** can have large cardinal strength:

Theorem (Horowitz-Shelah, 2016)

There is a Borel binary relation R on 2^{ω} (in fact, a graph relation) such that "there is no projective R-mds" is equiconsistent with the existence of an inaccessible cardinal.

