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Discrete sets

Let R be a binary symmetric relation on a set X .

Definition
We say a set A ⊆ X is discrete (w.r.t. R) ⇐⇒ no two distinct
elements x , y of A are R-related.

Definition
We call such a set maximal discrete (w.r.t. R; short an R-mds) if it is
not a proper subset of any discrete set.

Let spanR(A) = A ∪ {x ∈ X | (∃a ∈ A) a R x}.

Then A is maximal discrete iff it is discrete and spanR(A) = X .
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Discrete sets (non-binary)

Let X be a set and R ⊆ [X ]<ω.

Definition
We say a set A ⊆ X is discrete (w.r.t. R) ⇐⇒ (∀n > 1) [A]n ∩ R = ∅.

The notion of R-mds is defined as before.

Maximal discrete sets exist by AC.

Our main interest is when R is an (effectively) Borel relation on an
(effective) Polish space X . One can then ask whether it is possible that
an R-mds is definable or more precisely, where such sets first appear
in the (lightface) projective hierarchy.
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Short excursion: Irregular sets of reals

We think of maximal discrete sets as a type of irregular set of reals.

Some classical regularity properties:

Lebesgue measurability
Baire property
being completely Ramsey (Baire property with respect to the
Ellentuck-topology, in [ω]ω)

How complicated must a set of reals be in order to be irregular?

analytic sets can usually be shown to be regular
In L, there are ∆1

2 irregular sets
Under large cardinals, all projective sets are regular
between these extremes, one can obtain lots of independence
results via forcing (some requiring smaller large cardinals)
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Instances of maximal discrete sets

Binary

Transversals for equivalence relations
Mad families
Maximal eventually different families
Maximal independent families of sets (or of functions)
Maximal orthogonal families of measures (mofs)

Higher arity

Hamel basis (basis of R over Q)
Maximal cofinitary groups (mcgs)

This talk is about mofs, mcgs and Hamel bases.
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Interaction between different notions

Existence of one type of irregular or maximal discrete set can entail
the existence of another.

If there is a projective Hamel basis, there is a projective Vitali set.
“Every Σ1

2 set is Lebesgue measurable”⇒ “every Σ1
2 set has the

property of Baire” (Bartoszynsky 1984).

More often, one can show no such interaction occurs:

Theorem (Shelah 1984)
“Every projective set has the property of Baire” 6⇒ “Every projective set
is Lebesgue measurable”

Theorem (S.)
“Every projective set is Lebesgue measurable” 6⇒ “Every projective set
has the property of Baire”
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Cofinitary groups

Work in the space X = S∞, the group of bijections from N to itself
(permutations).
idN is the identity function on N, the neutral element of S∞.

Definition
We say g ∈ S∞ is cofinitary ⇐⇒

{n ∈ N | g(n) = n} is finite.

G ≤ S∞ is cofinitary ⇐⇒ every g ∈ G \ {idN} is cofinitary.

A maximal cofinitary group is maximal R-discrete set, where

{g0, . . . ,gn} ∈ R ⇐⇒ 〈g0, . . . ,gn〉S∞ is not cofinitary.
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Definability of mcgs
Theorem (Kastermans)
No mcg can be Kσ.

Some history:
Gao-Zhang: If V = L, there is a mcg with a Π1

1 set of generators.
Kastermans: If V = L, there is a Π1

1 mcg.

Theorem (Fischer-S.-Törnquist, 2015)

If V = L, there is a Π1
1 mcg which remains maximal after adding any

number of Cohen reals.

Surprisingly, and in contrast to classical irregular sets:

Theorem (Horowitz-Shelah, 2016)
(ZF) There is a Borel maximal cofinitary group.

By Σ1
2 absoluteness, a Borel mcg remains maximal in any outer model.

They also claim they will show there is a closed mcg in a future paper.
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Adding a generic cofinitary group

Theorem (Zhang)
Let G be a cofinitary group. There is a forcing PG which adds a generic
permutation σ such that

1 G′ = 〈G, σ〉 is cofinitary,

2 G′ is maximal with respect to the ground model: For any τ ∈ V \ G,
〈G′, τ〉 is not cofinitary.

We adapted this forcing so that given an arbitrary z ∈ 2ω in addition,
every new group element codes z:

Theorem (Fischer-Törnquist-S. 2015)
Let G be a cofinitary group and z ∈ 2ω. There is a forcing PG,z which
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A Cohen-indestructible Π1
1 maximal cofinitary group

The group is constructed by recursion, reproving Kasterman’s
Theorem and imitating Miller’s classical construction of Π1

1 mds.
1 Assume we have {σν | ν < ξ} = Gξ where ξ < ω1.
2 Let η < ω1 be least such that Gξ ∈ Lη.
3 We may demand that moreover there is a surjection from ω onto

Lη which is definable in Lη.
4 Use this to code Lη canonically into a real z.
5 Let σξ be the ≤L-least generic over Lη for PGξ,z .

The “natural” formula expressing membership in G =
⋃
ξ<ω1

Gξ is Σ1

resp. Σ1
2. It can be replaced by a Π1

1 formula because each σ ∈ G
knows via z a witness to the leading existential quantifier.

Indesctructibility is shown using a “forcing product” lemma and the fact
that Cohen forcing lies in each of the Lη ’s.
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Outline

1 Maximal discrete sets

2 Maximal cofinitary groups

3 Maximal orthogonal families of measures

4 Maximal discrete sets in the iterated Sacks extension

5 Hamel bases

6 Questions



Orthogonality of measures

Let P(2ω) be the set of Borel probability measures on 2ω.

Note that P(2ω) is an effective Polish space.

Two measures µ, ν ∈ P(2ω) are said to be orthogonal, written

µ ⊥ ν

exactly if there is a Borel set A ⊆ 2ω such that

µ(A) = 1

and
ν(A) = 0.

This is an arithmetical relation.
A maximal discrete set w.r.t. 6⊥ is called a maximal orthogonal
family of measures (or short, mof).
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History of maximal orthogonal families
Question (Mauldin, circa 1980)
Can a mof in P(2ω) be analytic?

The answer turned out to be ‘no’:

Theorem (Preiss-Rataj, 1985)
There is no analytic mof in P(2ω).

This is optimal, in a sense:

Theorem (Fischer-Törnqust, 2009)

In L, there is a Π1
1 mof in P(2ω).

In fact:

Theorem (S.-Törnquist 2015)

If there is a Σ1
2 mof in P(2ω), there is a Π1

1 mof.
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Can definable mofs survive forcing?

Mofs are fragile creatures:

1 Adding any real destroys maximality of mofs from the
groundmodel (observed by Ben Miller; not restricted to forcing
extensions)

2 Using methods reminiscent of Hjorth’s theory of turbulency, one
can show there is no Σ1

2 mof whenever there exists a real of the
following type over L:

I A Cohen real (Fischer-Törnquist, 2009)
I A random real (Fischer-Friedman-Törnquist, 2010).
I A Mathias real (S.-Törnquist, 2015).

Question (Fischer-Törnquist)

If there is a Π1
1 mof, does it follow that P(ω) ⊆ L?
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A general theorem for Σ1
1 relations

Theorem (S. 2016)

Let R be a binary symmetric Σ1
1 relation on an effective Polish space

X. If s̄ is generic for iterated Sacks forcing over L, there is a ∆1
2 R-mds

in L[s̄].

Note we are always referring to the lightface (effective) hierarchy.

As existence of a Σ1
2 mof implies existence of a Π1

1 mof, we obtain a
strong negative answer to the previous question:

Theorem (S. 2016)

The statement ‘there is a Π1
1 mof ’ is consistent with 2ω = ω2.
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Proof sketch (for a single Sacks real and Borel R).

Assume R is a symmetric ∆1
1 relation on ωω and L[s] is a Sacks

extension of L.

Recall that Sacks forcing S is the set of perfect trees p ⊆ 2<ω, ordered
by inclusion and [p] is the set of branches through p.

We need the following standard fact:

Fact
Any element of L[s] ∩ ωω is equal to f (s) for some continuous function
f : 2ω → ωω with code in L.

We also need the following theorem of Galvin:

Theorem (Galvin’s Theorem)

Let c : (2ω)2 → {0,1} be symmetric and Baire measurable. Then there
is a perfect set P ⊆ 2ω such that c is constant on P2 \ diag.
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A lemma: Complete and discrete conditions
Lemma
Suppose R is a Σ1

1 symmetric binary relation on ωω, p ∈ S, and
f ∈ C(2ω, ωω). There is q ≤ p such that one of the following holds:

1 f ′′[q] is R-discrete

2 f ′′[q] is R-complete, i.e. any two elements of f ′′[q] are R-related.

Proof.
Apply Galvin’s Theorem for the coloring on [p]2 given by

c(x , y) =

{
1 if f (x) R f (y),
0 if f (x)��R f (y).

Note: 1 is a Π1
1 statement about q;

2 is a Π1
2 statement about q, so both are absolute.
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Ideas for the proof (continued).

We also use the following well-known property of Sacks forcing, which
can be seen as a special case of the previous:

Corollary

Say Φ is a Σ1
1 (or Π1

1) formula, p ∈ S and

p 
 ¬Φ(ṡ).

Then there is q ≤ p such that

[q] ∩ {x | Φ(x)} = ∅.

Also note that [q] ∩ {x | Φ(x)} = ∅ is Π1
1, hence absolute, and thus will

also hold in the Sacks extension.
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Work in L. Let 〈(pξ, fξ) | ξ < ω1〉 enumerate S×C(2ω, ωω).
By recursion, choose for each ξ < ω1 a tree Tξ ⊆ pξ such that in L[s],
A =

⋃
{[Tξ] | ξ < ω1} will be a mds. At stage ξ < ω1, suppose

pξ 
 fξ(ṡ) /∈ spanR

( ⋃
ν<ξ

[Tν ]
)
, (1)

otherwise let Tξ = ∅.
By the previous, we may find q ≤ pξ such that

1 fξ ′′[q] is R-discrete or R-complete.

2 fξ ′′[q] ∩ spanR

(⋃
ν<ξ [Tξ]

)
= ∅.

In discrete case, let [Tξ] = fξ ′′[q].
In complete case, let [Tξ] = {fξ(x)} where x is the left-most
branch of q.

By construction A is ∆1
2 and discrete in L[s].
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It remains to show that A is maximal:

Towards a contradiction, suppose there is x ∈ L[s] ∩ ωω and
x /∈ spanR(A).

We can pick
f ∈ C(2ω, ωω) such that x = f (s),
p ∈ S such that p 
 f (ṡ) /∈ spanR(A).

Find the stage ξ when we considered (p, f ), i.e. (p, f ) = (pξ, fξ). We
found q ≤ p which was either complete or discrete.

Discrete case: [Tξ] = f ′′[q], whence q 
 f (ṡ) ∈ [Tξ] ⊆ A.
Complete case: [Tξ] = {x} with x ∈ [q], and q 
 f (ṡ) R f (x) ∈ A.

In either case, we reach a contradiction to q 
 f (ṡ) /∈ spanR(A) above.
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A Ramsey theoretic result about iterated Sacks forcing
One of the main ingredients for the general result for iterated Sacks
forcing is an analogue of Galvin’s theorem.

Let P be a countable support iteration of Sacks forcing.

On a dense set of p̄ ∈ P, we can define [p̄] as a perfect subspace
of (2ω)supp(p̄) in a meaningful way (supp(p̄) is the support of p̄).

Question:
Is there for every p̄ ∈ P and every nice symmetric c : [p̄]2 → {0,1}
some q̄ ∈ P, q̄ ≤ p̄ such that c is constant on [q̄]2 \ diag?

‘Yes’, if c is continuous on [p̄]2 \ diag
(Geschke-Kojman-Kubiś-Schipperus)

For more complicated c, there are combinatorial obstructions to such a
straightforward generalization.
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A generalization of Galvin’s Theorem
For x̄0, x̄1 ∈ [p̄] (a subspace of (2ω)supp(p̄)), let

∆(x̄0, x̄1) = the least ξ ∈ supp(p̄) such that x̄0(ξ) 6= x̄1(ξ).

Theorem (S. 2016)
For every p̄ ∈ P and every symmetric universally Baire

c : [p̄]2 → {0,1}

there is q̄ ∈ P, q̄ ≤ p̄, with an enumeration 〈σk | k ∈ ω〉 of supp(q̄) and
a function N : supp(q̄)→ ω such that for (x̄0, x̄1) ∈ [q̄]2 \ diag, the value
of c(x̄0, x̄1) only depends on ∆(x̄0, x̄1) = ξ and the following (finite)
piece of information:

(x̄0 � K , x̄1 � K )

where K = {σ0, . . . , σN(ξ)} × N(ξ).

Above we simplify notation by identifying (2ω)supp(p̄) and 2ω×supp(p̄).
Schrittesser (Copenhagen) Definability of maximal discrete sets Arctic Set Theory 3 22 / 25



A generalization of Galvin’s Theorem
For x̄0, x̄1 ∈ [p̄] (a subspace of (2ω)supp(p̄)), let

∆(x̄0, x̄1) = the least ξ ∈ supp(p̄) such that x̄0(ξ) 6= x̄1(ξ).

Theorem (S. 2016)
For every p̄ ∈ P and every symmetric universally Baire

c : [p̄]2 → {0,1}

there is q̄ ∈ P, q̄ ≤ p̄, with an enumeration 〈σk | k ∈ ω〉 of supp(q̄) and
a function N : supp(q̄)→ ω such that for (x̄0, x̄1) ∈ [q̄]2 \ diag, the value
of c(x̄0, x̄1) only depends on ∆(x̄0, x̄1) = ξ and the following (finite)
piece of information:

(x̄0 � K , x̄1 � K )

where K = {σ0, . . . , σN(ξ)} × N(ξ).

Above we simplify notation by identifying (2ω)supp(p̄) and 2ω×supp(p̄).
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A basis for R over Q

Hamel bases
Let X = R and let RH be the set of finite tuples from X which are
linearly dependent over Q. An RH -mds is usually known as a Hamel
basis.

A more involved proof but using similar ideas as in the previous sketch
gives us:

Theorem (S. 2016)

If s is a Sacks real over L, there is a Π1
1 Hamel basis in L[s].

In particular this uses another generalization of Galvin’s theorem to
k -tuples due to Blass.
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Ideas for further work

Conjecture

Every (not necessarily binary) Σ1
1 relation has a ∆1

2 maximal discrete
set in the (iterated) Sacks extension of L.

Conjecture
There is a model where 2ω > ω1 and any cofinitary group of size < 2ω

is a subgroup of a Π1
2 maximal cofinitary group.

Some open questions
1 (Mathias) Does “every projective set is completely Ramsey” imply

“there is no projective mad family”?
2 Is there a Borel maximal incomparable set of Turing degrees?
3 (Horowitz-Shelah) Is there a Σ1

1 relation R on a Polish space such
that “there is no projective R-mds” is equiconsistent with, say, a
measurable?
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Thank You!
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Large cardinals from mds
“there is no projective R-mds” is equiconsistent with ZFC in several
other cases, as well:

so-called independent families of sets (Brendle-Khomskii,
unpublished)
maximal orthogonal families of measures (Fischer-Törnquist,
2010); This is because “every projective set has the Baire
property”⇒ “there are no projective maximal orthogonal families
of measures”, and the first statement is equiconsistent with ZFC.

The statement that there are no definable R-mds can have large
cardinal strength:

Theorem (Horowitz-Shelah, 2016)
There is a Borel binary relation R on 2ω (in fact, a graph relation) such
that “there is no projective R-mds” is equiconsistent with the existence
of an inaccessible cardinal.

It is not known whether one can obtain larger cardinals in this way.
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