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Definition
Measuring holds if and only if for every sequence
~C = (Cδ : δ ∈ ω1), if each Cδ is a closed subset of δ in the
order topology, then there is a club C ⊆ ω1 such that for every
δ ∈ C there is some α < δ such that either
• (C ∩ δ) \ α ⊆ Cδ, or
• (C \ α) ∩ Cδ = ∅.

That is, a tail of (C ∩ δ) is either contained in or disjoint from Cδ.

This principle is of course equivalent to its restriction to
club-sequences ~C on ω1.

Measuring is a strong form of failure of Club Guessing at ω1.

Measuring follows from BPFA and also from MRP.
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Theorem
(CH) Let κ be a cardinal such that 2<κ = κ and κℵ1 = κ. There
is then a partial order P with the following properties.

1 P is proper.
2 P is ℵ2–Knaster.
3 P forces measuring.
4 P forces 2ℵ0 = 2ℵ1 = κ.
5 P forces b(ω1) = cf (κ)

Recall that a poset is ℵ2–Knaster iff every collection of ℵ2–many
conditions contains a subcollection of cardinality ℵ2 consisting
of pairwise compatible cond. Also, b(ω1) denotes the minimal
cardinality of an unbounded subset of ω1ω1 mod. countable.
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The theorem will be proved by means of what can be described
as a finite support iteration incorporating systems of ctble.
struct. with symmetry requirements as side cond. In fact, our
forcing P will be Pκ, where Pκ is the last step of this iteration.
The actual construction is a variation of previous works.

There are 2 main new ingredients in our present construction.
Specifically, at any given stage β < κ of the iteration,
(a) the set N q

β of models N that are active at that stage, in the
sense that β ∈ N and that the marker associated to N at
that stage is β, is actually a T–symmetric system (for a
suitable predicate T ), and

(b) if β = α + 1, we use a separate symmetric system in the
working part at α included in the above symmetric system
corresponding to the previous stage, i.e., in N q

α ; these are
the symmetric systems we will denote by Oq,α.
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This use of local symmetry is crucial in the verification that
measuring holds in the final generic extension. Specifically, it is
needed in the verification that the generic club C added at a
stage α will be such that for every δ ∈ Lim(ω1), a tail of C ∩ δ
will be contained in Cδ in case we could not make the promise
of avoiding Cδ (where Cδ is the δ–indexed member of the
club–sequence picked at stage α).



In a paper from the 80’s, Abraham and Shelah build, given any
cardinal λ ≥ ℵ2, a forcing notion P which, if CH holds,
preserves cardinals and is such that if G is P–generic over V ,
then in V [G] there is a family C of size λ consisting of clubs of
ω1 and with the property that, in any outer model M of V [G]
with the same ω1 and ω2 as V [G], there is no club E of ω1 in M
diagonalising C (where E diagonalising C means that E \ D is
bounded in ω1 for each D ∈ C).

CH necessarily fails in the Abraham–Shelah model V [G] since,
by a result of Galvin, CH implies that for every family C of size
ℵ2 consisting of clubs of ω1 there is an uncountable C′ ⊆ C such
that

⋂
C′ is a club.



It is not difficult to see that the generic club added at every
stage α < κ of our iteration diagonalises all clubs of ω1 from
V[Gα] (where Gα is the generic filter at that stage). So, it would
be impossible to run anything like our iteration over the
Abraham–Shelah model without collapsing ω2, and therefore
we should start from a ground model which is sufficiently
different from the Abraham–Shelah model. That is
accomplished by imposing that CH must be true in our ground
model.

Question: Is it consistent to have measuring together with
b(ω1) = ℵ2 and 2ℵ1 > ℵ2?.

Important problem: Is measuring compatible with CH?
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Notation. if N ∩ ω1 ∈ ω1, then δN := N ∩ ω1.

Definition
Let T ⊆ H(θ) and let N be a finite set of countable subsets of
H(θ). We will say that N is a T–symmetric system iff

(A) For every N ∈ N , (N,∈,T ) ≺ (H(θ),∈,T ).
(B) Given distinct N, N ′ in N , if δN = δN′ , then there is a

unique isomorphism

ΨN,N′ : (N,∈,T ) −→ (N ′,∈,T )

Furthermore, ΨN,N′ is the identity on N ∩ N ′.
(C) N is closed under isomorphisms. That is, for all N, N ′, M

in N , if M ∈ N and δN = δN′ , then ΨN,N′(M) ∈ N .
(D) For all N, M in N , if δM < δN , then there is some N ′ ∈ N

such that δN′ = δN and M ∈ N ′.



Remark. In all practical cases
⋃

T = H(θ), so T does
determine H(θ) in these cases.

The following lemmas are proved in TAMS, vol. 367 (2015),
6103-6129.

Lemma
Let T ⊆ H(θ) and let N and N ′ be countable elementary
substructures of (H(θ),∈,T ). Suppose N ∈ N is a
T–symmetric system and Ψ : (N,∈,T ) −→ (N ′,∈,T ) is an
isomorphism. Then Ψ(N ) = Ψ“N is also a T–symmetric
system.



Lemma
Let T ⊆ H(θ), let N be a partial T–symmetric system and let
N ∈ N . Then the following holds.

1 N ∩ N is a T–symmetric system.
2 Suppose N ∗ ∈ N is a T–symmetric system such that
N ∩ N ⊆ N ∗. Let

M = N ∪
⋃
{ΨN,N′“N ∗ : N ′ ∈ N , δN′ = δN}

ThenM is the ⊆–minimal T–symmetric systemW such
that N ∪N ∗ ⊆ W.



Given T ⊆ H(θ) and T –symmetric systems N0, N1, let us write
N0 ∼= N1 iff
• (

⋃
N0) ∩ (

⋃
N1) = R and

• for some m < ω, there are enumerations (N0
i )i<m and

(N1
i )i<m of N0 and N1, respectively, together with an

isomorphism between

〈
⋃
N0,∈,T ,R,N0

i 〉i<m

and
〈
⋃
N1,∈,T ,R,N1

i 〉i<m

which is the identity on R.

Lemma
Let T ⊆ H(θ) and let N0 and N1 be T–symmetric systems.
Suppose N0 ∼= N1. Then N0 ∪N1 is a T–symmetric system.



3 More preparations
1 Given sets N, X and an ordinal η, we define Rank (X ,N) ≥ η
recursively by:
• Rank (X ,N) ≥ 1 if and only if for every a ∈ N there is

some M ∈ X ∩ N such that a ∈ M.
• If η > 1, then Rank (X ,N) ≥ η if and only if for every η′ < η

and every a ∈ N there is some M ∈ X ∩ N such that a ∈ M
and Rank (X ,M) ≥ η′.

2 Now let Φ : κ −→ H(κ) be such that Φ−1(x) is unbounded in
κ for all x ∈ H(κ). Let also C be a well–order of H((2κ)+).
Notice that Φ exists by 2<κ = κ.



3 Let (θα)α<κ be the seq. of card. defined by θ0 = |H((2κ)+)|+

and θα = (2supβ<αθβ )+ if α > 0. For each α < κ letM∗α be the
collection of all ctble. el. substruct. of H(θα) containing Φ, C
and (θβ)β<α, and letMα = {N∗ ∩H(κ) : N∗ ∈M∗α}. Let Tα be
the C–first T ⊆ H(κ) such that for every N ∈ [H(κ)]ℵ0 , if
(N,∈,T ∩ N) ≺ (H(κ),∈,T ), then N ∈Mα. Let also

T α = {N ∈ [H(κ)]ℵ0 : (N,∈,Tα ∩ N) ≺ (H(κ),∈,Tα)}.

So, T α is a club of el. substruct. of H(κ). Its elements are
coded by a certain pred. Tα and they are project. of some
other el. substruct. of H(θα), where (θα)α<κ is a canonical seq.
Fact. Let α < β ≤ κ.

1 If N∗ ∈M∗β and α ∈ N∗, thenM∗α ∈ N∗ and
N∗ ∩ H(κ) ∈ T α.

2 If N, N ′ ∈ T β, Ψ : (N,∈,T β ∩ N) −→ (N ′,∈,T β ∩ N ′) is an
isomorphism, and M ∈ N ∩ T β, then Ψ(M) ∈ T β.



The forcing construction

Our forcing P will be Pκ, where (Pβ : β ≤ κ) is the sequence of
posets to be defined next.
From now on, if q is an ordered pair (F ,∆), we will denote F
and ∆ by Fq and ∆q, respectively.
Let β ≤ κ and suppose Pα has been defined for all α < β.
Conditions in Pβ are ordered pairs q = (F ,∆) satisfying:

1 F is a finite function with dom (F ) ⊆ β.
2 ∆ is a finite set of pairs (N, γ) such that N ∈ [H(κ)]ℵ0 and γ

is an ordinal such that γ ≤ β and γ ≤ sup(N ∩ κ).
3 N q

β := {N : (N, β) ∈ ∆, β ∈ N} is a T β–symmetric
system.

4 For every α < β, the restriction of q to α,

q|α := (F � α, {(N,min{α, γ}) : (N, γ) ∈ ∆}),

is a condition in Pα.



(5) Suppose β = α + 1. Let N Ġα be a Pα–name for⋃
{N r

α : r ∈ Ġα}.

Assume that Ċα := Φ(α) is a Pα–name for a club–seq. on ω1.
If α ∈ dom (F ), then F (α) = (p,b,O) has the following prop.

(a) p ⊆ ω1 × ω1 is a finite strictly increasing function.

(b) O ⊆ N q|α
α is a T β–symmetric system.

(c) ran (p) ⊆ {δN : N ∈ O}
(d) For every δ ∈ dom (p), if N ∈ O is such that p(δ) = δN ,

then
q|α 
Pα Rank (N Ġα ∩ T β,N) ≥ δ

(e) dom (b) ⊆ dom (p) and b(δ) < p(δ) for every δ ∈ dom (b).



(f) For every δ ∈ dom (b),

q|α 
Pα ran (p � δ) ∩ Ċα(p(δ)) ⊆ b(δ)

(g) For every δ ∈ dom (b), if N ∈ O is such that p(δ) = δN ,
then

q|α 
Pα Rank ({M ∈ N Ġα ∩ T β : δM /∈ Ċα(p(δ))},N) ≥ δ

(h) If N ∈ N q
β , then N ∈ O, δN ∈ dom (p) and p(δN) = δN .



Given Pβ–conditions qi = (Fi ,∆i), for i = 0, 1, q1 extends q0 iff

• dom (F0) ⊆ dom (F1) and for all α ∈ dom (F0), if
F0(α) = (p,b,O) and F1(α) = (p′,b′,O′), then p ⊆ p′,
b ⊆ b′ and O ⊆ O′, and

• for every (N, γ) ∈ ∆0 there is some γ′ ≥ γ such that
(N, γ′) ∈ ∆1.

If q ∈ Pβ for some β ≤ κ, we will use supp (q) to denote the
domain of Fq (supp (q) stands for the support of q). Also, if
α ∈ supp (q) and Fq(α) = (p,b,O), then pq,α, bq,α and Oq,α
denote p, b and O, respectively.



Lemma
Let α ≤ β ≤ κ. If q = (Fq,∆q) ∈ Pα, r = (Fr ,∆r ) ∈ Pβ, and
q ≤α r |α, then

r ∧α q := (Fq ∪ (Fr � [α, β)),∆q ∪∆r )

is a condition in Pβ extending r . Hence, Pα is a complete
suborder of Pβ.
Proof. The proof depends on the use of the markers in the
definition of the forcing. The fact that a marker γ is associated
to a submodel N in a condition (F ,∆) (i.e., the fact that
(N, γ) ∈ ∆) tells us that N is ‘active’, for that condition, up to
and including stage γ in the iteration. New side conditions
(N, γ) appearing in ∆q may well be such that N ∩ [α, β) is
nonempty, but they will not impose any problematic promises on
ordinals occurring in the interval [α, β) simply because γ ≤ α.



Lemma
For every ordinal α ≤ κ, Pα is ℵ2–Knaster.
Proof. Case α = 0. Suppose m < ω and qξ = {Nξ

i : i < m} is
a P0–condition for each ξ < ω2. Of course, we are identifying a
P0–condition q with dom (∆q). By CH we may assume that

{
⋃
i<m

Nξ
i : ξ < ω2}

forms a ∆–system with root X . Furthermore, again by CH, we
may assume that, for all ξ, ξ′ < ω2, the structures

〈
⋃
i<m

Nξ
i ,∈,X ,T

0,Nξ
i 〉i<m and 〈

⋃
i<m

Nξ′

i ,∈,X ,T
0,Nξ′

i 〉i<m

are isomorphic and that the corresponding iso. fixes X . This is
true since there are only ℵ1–many isomorphism types for such
structures and since the only isomorphism between X and itself
is the identity. So, qξ ∪ qξ′ extends both qξ and qξ′ .



For general α, suppose that qξ is a Pα–condition for each
ξ < ω2. We may assume that there is some m < ω such that we
may write

dom (∆qξ) = {Nξ
i : i < m}

for each ξ. Let

~T = {(a, γ) : γ ≤ α, a ∈ T γ}

By an argument as in the case α = 0, we are allowed to adopt
the point of view that {

⋃
i<m Nξ

i : ξ < ω2}, for ξ < ω2, forms a
∆–system with root X and that for all ξ, ξ′ < ω2, the structures

〈
⋃
i<m

Nξ
i ,∈,X , ~T ,N

ξ
i 〉i<m and 〈

⋃
i<m

Nξ′

i ,∈,X , ~T ,N
ξ′

i 〉i<m

are isomorphic.



We may also assume that there is a finite set x ⊆ X such that

• {supp (qξ) : ξ ∈ ω2} forms a ∆–system with root x , and
• for all ξ, ξ′ ∈ ω2 and for all α ∈ x ,

(pqξ,α,bqξ,α) = (pqξ′ ,α,bqξ′ ,α).

Finally, again by the same argument as above, we may assume
that for all ξ, ξ′ ∈ ω2 and all γ ∈ x , Oξ,γ ∪ Oξ′,γ is a
T γ–symmetric system. So, for all ξ, ξ′, (Fqξ ∪ Fqξ′ ,∆qξ ∪∆qξ′ )
is a condition in Pα witnessing the compatibility of qξ and qξ′ .



Lemma
Pκ forces measuring.
Proof. Let α < κ, let G be Pα–generic, and suppose Φ(α) is a
Pα–name for a club–sequence on ω1. Let
~C = Φ(α)G = (Cε : ε ∈ Lim(ω1)). Let H be a Pα+1–generic
filter such that H � Pα = G, and let C =

⋃
ran {pq,α : q ∈ H}.

By the ℵ2–c.c. of Pκ and the choice of Φ, the conclusion will
follow if we show that C is a club of ω1 measuring ~C.

By condition (5) (d) in the def. of our iteration it follows that C is
a club of ω1. Also, if ε ∈ C is such that there is some q ∈ H such
that ε = pq,α(δ) for some δ ∈ dom (bq,α), then a tail of C ∩ ε is
disjoint from Cε (by (5) (e), (f) in the def. of the iteration).
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Hence, it suffices to show that if δ ∈ ω1 is such that
δ /∈ dom (bq,α) for every q ∈ H and ε is such that pq,α(δ) = ε for
some q ∈ H, then a tail of C ∩ ε is contained in Cε.

But this implies, by (5) (g) and the usual density argument, that
there is some q ∈ H and some N ∈ Oq,α such that pq,α(δ) = δN
and such that q|α forces, in Pα, that
Rank ({M ∈ N Ġα ∩ T α+1 : δM /∈ Φ(α)(ε)},N) = δ0 for some
given δ0 < δ.

It will now be enough to find some η ∈ [δ0, δ) and some
extension q∗ of q such that every extension q′ of q∗ is such that
q′|α forces that pq′,α(δ′) ∈ Φ(α)(δ) for every
δ′ ∈ dom (pq′,α) ∩ [η, δ).
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Claim. By extending q|α if necessary we may assume that
there is some a ∈ N such that q|α forces that if
M ∈ N ∩N Ġα ∩ T α+1 is such that a ∈ M and
Rank (N Ġα ∩ T α+1,M) ≥ δ0, then δM ∈ Φ(α)(ε).

Proof of the claim. Let us work in VPα�q|α . If the conclusion
fails, then for every a ∈ N there is some M ∈ N ∩N Ġα ∩ T α+1

such that a ∈ M, δM /∈ Φ(α)(ε) and Rank (N Ġα ∩T α+1,M) ≥ δ0.
Fix any such M. By the openness of ε \ Φ(α)(ε) there is some
ρ < δM such that [ρ, δM) ∩ Φ(α)(ε) = ∅.



Now, if Rank (N Ġα ∩ T α+1,M) = δ∗, then for every γ < δ∗ and
every b ∈ M there is some M ′ ∈ M ∩N Ġα ∩ T α+1 such that
{b, ρ} ∈ M ′ and Rank (N Ġα ∩ T α+1,M ′) ≥ γ, and of course
δM′ /∈ Φ(α)(ε) by the above choice of ρ since δM′ ∈ [ρ, δM).

Iterating this argument we then have that
Rank ({M ′ ∈ N Ġα ∩ T α+1 : δM′ /∈ Φ(α)(ε)},M) = δ∗. This
shows that Rank ({M ∈ N Ġα ∩ T α+1 : δM′ /∈ Φ(α)(ε)},N) > δ0
since δM /∈ Φ(α)(ε), which is a contradiction. This ends the
proof of the claim.
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Again by extending q|α if necessary, we may also assume that
there is some M ∈ N ∩N q|α

α ∩ T α+1 containing all relevant
objects, where this includes a, and such that q|α forces
Rank (N Ġα ∩ T α+1,M) = δ1, where δ1 < δ is such that
δ1 > max(dom (pq,α � δ)) and δ1 ≥ δ0.

Let now q∗ be any ext. of q such that M ∈ Oq∗,α and such that
pq∗,α(δ1) = δM . We claim that η = δ1 and q∗ are as desired.

Indeed, it suffices to note that if q′ is any cond. extending q∗

and R ∈ Oq′,α is such that δR > δM and δR < δN , then
q′|α 
Pα δR ∈ Φ(α)(ε). But by symmetry of Oq′,α there is some
R′ ∈ Oq′,α ∩ N such that M ∈ R′ and δR′ = δR. Since a ∈ R′

and q′|α extends q∗|α, it follows then that

q′|α 
Pα δR = δR′ ∈ Φ(α)(ε).



Again by extending q|α if necessary, we may also assume that
there is some M ∈ N ∩N q|α

α ∩ T α+1 containing all relevant
objects, where this includes a, and such that q|α forces
Rank (N Ġα ∩ T α+1,M) = δ1, where δ1 < δ is such that
δ1 > max(dom (pq,α � δ)) and δ1 ≥ δ0.
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A similar argument (using properness) shows that if H is a
Pα+1–generic filter and C =

⋃
ran {fq,α : q ∈ H}, then C

diagonalises all clubs of ω1 in V [G], where G = H ∩ Pα. By the
ℵ2–c.c. of Pκ, it follows that Pκ forces b(ω1) = cf (κ)



Properness

Given α < κ, a condition q ∈ Pα, and a countable elementary
substructure N of H(κ), we will say that q is
(N, Pα)–pre-generic in case (N, α) ∈ ∆q.

Also, given a countable elementary substructure N of H(κ) and
a Pα–condition q, we will say that q is (N,Pα)–generic iff q
forces Ġα ∩ A ∩N 6= ∅ for every maximal antichain A of Pα such
that A ∈ N.

Note that this is more general than the standard notion of
(N,P)–genericity, for a forcing notion P, which applies only if
P ∈ N. Indeed, in our situation Pα is of course never a member
of N if N ⊆ H(κ).



Lemma
Suppose α < κ and N ∈ T α+1. Then the following holds.

(1)α For every q ∈ N there is q′ ≤α q such that q′ is
(N, Pα)–pre-generic.

(2)α If q ∈ Pα is (N, Pα)–pre-generic, then q is
(N, Pα)–generic.

Instances of the inductive proof on α. The case α = 0 is well
known and so, we omit it. Let us proceed to the case (1)α with
α = σ + 1. By (1)σ we may assume, by extending q|σ, that q|σ
is (N,Pσ)–pre-generic. So, if σ /∈ supp (q), then
q′ = (Fq,∆q ∪ {(N, α)} witnesses (1)α.

Assume that σ ∈ supp (q). Since q|σ is (N,Pσ)–pre-gen., q|σ
forces in Pσ that N ∈ N Ġσ . So, q|σ forces that for every x ∈ N
there is M ∈ N Ġσ ∩ T σ+1 such that x ∈ M (as witnessed by N).



Let us work in VPσ�q|σ . Since

〈N[Ġσ], Ġσ,T σ+2,H(κ)V 〉 4 〈H(κ)[Ġσ], Ġσ,T σ+2,H(κ)V 〉,

there is an M as above in N[Ġσ] ∩ V (where V denotes the
ground model). We may also assume that M ∈ N, since
N[Ġσ] ∩ V = N (which follows from (2)σ applied to N and q|σ).

This shows that q|σ forces Rank (N Ġσ ∩ T σ+1,N) ≥ 1. In fact,
by iterating this argument we can show, by induction on µ, that
q|σ forces Rank (N Ġσ ∩ T σ+1,N) ≥ µ for every µ < δN . In view
of these considerations, it suffices to define q′ as the condition
(F ′,∆q ∪ {(N, α)}), where F ′ extends Fq and

F ′(σ) = (pq,σ ∪ {〈δN , δN〉},bq,σ,Oq,σ ∪ {N})



Let us work in VPσ�q|σ . Since
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