Measuring together with the continuum large

Miguel Angel Mota (ITAM)

Joint work with David Asperó

III Arctic Set Theory Meeting

Measuring holds if and only if for every sequence $\vec{C} = (C_\delta : \delta \in \omega_1)$, if each C_δ is a closed subset of δ in the order topology, then there is a club $C \subseteq \omega_1$ such that for every $\delta \in C$ there is some $\alpha < \delta$ such that either

- $(C \cap \delta) \setminus \alpha \subseteq C_{\delta}$, or
- $(C \setminus \alpha) \cap C_{\delta} = \emptyset$.

That is, a tail of $(C \cap \delta)$ is either contained in or disjoint from C_{δ} .

This principle is of course equivalent to its restriction to club-sequences \bar{C} on ω_{\uparrow} .

Measuring is a strong form of failure of Club Guessing at ω_1

Measuring holds if and only if for every sequence $\vec{C} = (C_\delta : \delta \in \omega_1)$, if each C_δ is a closed subset of δ in the order topology, then there is a club $C \subseteq \omega_1$ such that for every $\delta \in C$ there is some $\alpha < \delta$ such that either

- $(C \cap \delta) \setminus \alpha \subseteq C_{\delta}$, or
- $(C \setminus \alpha) \cap C_{\delta} = \emptyset$.

That is, a tail of $(C \cap \delta)$ is either contained in or disjoint from C_{δ} .

This principle is of course equivalent to its restriction to club-sequences \vec{C} on ω_1 .

Measuring is a strong form of failure of Club Guessing at ω_1 .

Measuring holds if and only if for every sequence $\vec{C} = (C_\delta : \delta \in \omega_1)$, if each C_δ is a closed subset of δ in the order topology, then there is a club $C \subseteq \omega_1$ such that for every $\delta \in C$ there is some $\alpha < \delta$ such that either

- $(C \cap \delta) \setminus \alpha \subseteq C_{\delta}$, or
- $(C \setminus \alpha) \cap C_{\delta} = \emptyset$.

That is, a tail of $(C \cap \delta)$ is either contained in or disjoint from C_{δ} .

This principle is of course equivalent to its restriction to club-sequences \vec{C} on ω_1 .

Measuring is a strong form of failure of Club Guessing at ω_1 .

Measuring holds if and only if for every sequence $\vec{C} = (C_\delta : \delta \in \omega_1)$, if each C_δ is a closed subset of δ in the order topology, then there is a club $C \subseteq \omega_1$ such that for every $\delta \in C$ there is some $\alpha < \delta$ such that either

- $(C \cap \delta) \setminus \alpha \subseteq C_{\delta}$, or
- $(C \setminus \alpha) \cap C_{\delta} = \emptyset$.

That is, a tail of $(C \cap \delta)$ is either contained in or disjoint from C_{δ} .

This principle is of course equivalent to its restriction to club-sequences \vec{C} on ω_1 .

Measuring is a strong form of failure of Club Guessing at ω_1 .

Theorem

(CH) Let κ be a cardinal such that $2^{<\kappa} = \kappa$ and $\kappa^{\aleph_1} = \kappa$. There is then a partial order \mathcal{P} with the following properties.

- \bigcirc \mathcal{P} is proper.
- 2 \mathcal{P} is \aleph_2 -Knaster.
- $\mathfrak{3} \mathcal{P}$ forces measuring.
- 4 \mathcal{P} forces $2^{\aleph_0} = 2^{\aleph_1} = \kappa$.
- **5** \mathcal{P} forces $\mathfrak{b}(\omega_1) = cf(\kappa)$

Recall that a poset is \aleph_2 –Knaster iff every collection of \aleph_2 –many conditions contains a subcollection of cardinality \aleph_2 consisting of pairwise compatible cond. Also, $\mathfrak{b}(\omega_1)$ denotes the minimal cardinality of an unbounded subset of $\omega_1 \omega_1$ mod. countable.

Theorem

(CH) Let κ be a cardinal such that $2^{\kappa} = \kappa$ and $\kappa^{\aleph_1} = \kappa$. There is then a partial order \mathcal{P} with the following properties.

- \bigcirc \mathcal{P} is proper.
- 2 \mathcal{P} is \aleph_2 -Knaster.
- \odot \mathcal{P} forces measuring.
- **4** \mathcal{P} forces $2^{\aleph_0} = 2^{\aleph_1} = \kappa$.
- **5** \mathcal{P} forces $\mathfrak{b}(\omega_1) = cf(\kappa)$

Recall that a poset is \aleph_2 –Knaster iff every collection of \aleph_2 –many conditions contains a subcollection of cardinality \aleph_2 consisting of pairwise compatible cond. Also, $\mathfrak{b}(\omega_1)$ denotes the minimal cardinality of an unbounded subset of $\omega_1\omega_1$ mod. countable.

The theorem will be proved by means of what can be described as a finite support iteration incorporating systems of ctble. struct. with symmetry requirements as side cond. In fact, our forcing $\mathcal P$ will be $\mathcal P_\kappa$, where $\mathcal P_\kappa$ is the last step of this iteration. The actual construction is a variation of previous works.

There are 2 main new ingredients in our present construction. Specifically, at any given stage $\beta < \kappa$ of the iteration,

- (a) the set \mathcal{N}_{β}^{q} of models N that are active at that stage, in the sense that $\beta \in N$ and that the marker associated to N at that stage is β , is actually a T-symmetric system (for a suitable predicate T), and
- (b) if $\beta=\alpha+1$, we use a separate symmetric system in the working part at α included in the above symmetric system corresponding to the previous stage, i.e., in \mathcal{N}_{α}^{q} ; these are the symmetric systems we will denote by $\mathcal{O}_{q,\alpha}$.

The theorem will be proved by means of what can be described as a finite support iteration incorporating systems of ctble. struct. with symmetry requirements as side cond. In fact, our forcing $\mathcal P$ will be $\mathcal P_\kappa$, where $\mathcal P_\kappa$ is the last step of this iteration. The actual construction is a variation of previous works.

There are 2 main new ingredients in our present construction. Specifically, at any given stage $\beta < \kappa$ of the iteration,

- (a) the set \mathcal{N}^q_β of models N that are active at that stage, in the sense that $\beta \in N$ and that the marker associated to N at that stage is β , is actually a T-symmetric system (for a suitable predicate T), and
- (b) if $\beta=\alpha+1$, we use a separate symmetric system in the working part at α included in the above symmetric system corresponding to the previous stage, i.e., in \mathcal{N}_{α}^{q} ; these are the symmetric systems we will denote by $\mathcal{O}_{q,\alpha}$.

This use of local symmetry is crucial in the verification that measuring holds in the final generic extension. Specifically, it is needed in the verification that the generic club C added at a stage α will be such that for every $\delta \in Lim(\omega_1)$, a tail of $C \cap \delta$ will be contained in C_δ in case we could not make the promise of avoiding C_δ (where C_δ is the δ -indexed member of the club-sequence picked at stage α).

In a paper from the 80's, Abraham and Shelah build, given any cardinal $\lambda \geq \aleph_2$, a forcing notion $\mathcal P$ which, if CH holds, preserves cardinals and is such that if G is $\mathcal P$ —generic over V, then in V[G] there is a family $\mathcal C$ of size λ consisting of clubs of ω_1 and with the property that, in any outer model M of V[G] with the same ω_1 and ω_2 as V[G], there is no club E of ω_1 in M diagonalising $\mathcal C$ (where E diagonalising $\mathcal C$ means that $E\setminus D$ is bounded in ω_1 for each $D\in \mathcal C$).

CH necessarily fails in the Abraham–Shelah model V[G] since, by a result of Galvin, CH implies that for every family $\mathcal C$ of size \aleph_2 consisting of clubs of ω_1 there is an uncountable $\mathcal C'\subseteq \mathcal C$ such that $\bigcap \mathcal C'$ is a club.

It is not difficult to see that the generic club added at every stage $\alpha<\kappa$ of our iteration diagonalises all clubs of ω_1 from $\mathbb{V}[G_\alpha]$ (where G_α is the generic filter at that stage). So, it would be impossible to run anything like our iteration over the Abraham–Shelah model without collapsing ω_2 , and therefore we should start from a ground model which is sufficiently different from the Abraham–Shelah model. That is accomplished by imposing that CH must be true in our ground model.

Question: Is it consistent to have measuring together with $\mathfrak{b}(\omega_1) = \aleph_2$ and $2^{\aleph}_1 > \aleph_2$?.

Important problem: Is measuring compatible with CH?

It is not difficult to see that the generic club added at every stage $\alpha<\kappa$ of our iteration diagonalises all clubs of ω_1 from $\mathbb{V}[G_\alpha]$ (where G_α is the generic filter at that stage). So, it would be impossible to run anything like our iteration over the Abraham–Shelah model without collapsing ω_2 , and therefore we should start from a ground model which is sufficiently different from the Abraham–Shelah model. That is accomplished by imposing that CH must be true in our ground model.

Question: Is it consistent to have measuring together with $\mathfrak{b}(\omega_1) = \aleph_2$ and $2_1^{\aleph} > \aleph_2$?.

Important problem: Is measuring compatible with CH?

It is not difficult to see that the generic club added at every stage $\alpha<\kappa$ of our iteration diagonalises all clubs of ω_1 from $\mathbb{V}[G_\alpha]$ (where G_α is the generic filter at that stage). So, it would be impossible to run anything like our iteration over the Abraham–Shelah model without collapsing ω_2 , and therefore we should start from a ground model which is sufficiently different from the Abraham–Shelah model. That is accomplished by imposing that CH must be true in our ground model.

Question: Is it consistent to have measuring together with $\mathfrak{b}(\omega_1) = \aleph_2$ and $2^{\aleph}_1 > \aleph_2$?.

Important problem: Is measuring compatible with CH?

Notation. if $N \cap \omega_1 \in \omega_1$, then $\delta_N := N \cap \omega_1$.

Definition

Let $T \subseteq H(\theta)$ and let \mathcal{N} be a finite set of countable subsets of $H(\theta)$. We will say that \mathcal{N} is a T-symmetric system iff

- (A) For every $N \in \mathcal{N}$, $(N, \in, T) \prec (H(\theta), \in, T)$.
- (*B*) Given distinct *N*, *N'* in \mathcal{N} , if $\delta_N = \delta_{N'}$, then there is a unique isomorphism

$$\Psi_{N,N'}:(N,\in,T)\longrightarrow(N',\in,T)$$

Furthermore, $\Psi_{N,N'}$ is the identity on $N \cap N'$.

- (*C*) \mathcal{N} is closed under isomorphisms. That is, for all N, N', M in \mathcal{N} , if $M \in N$ and $\delta_N = \delta_{N'}$, then $\Psi_{N,N'}(M) \in \mathcal{N}$.
- (*D*) For all *N*, *M* in \mathcal{N} , if $\delta_M < \delta_N$, then there is some $N' \in \mathcal{N}$ such that $\delta_{N'} = \delta_N$ and $M \in N'$.

Remark. In all practical cases $\bigcup T = H(\theta)$, so T does determine $H(\theta)$ in these cases.

The following lemmas are proved in TAMS, vol. 367 (2015), 6103-6129.

Lemma

Let $T \subseteq H(\theta)$ and let N and N' be countable elementary substructures of $(H(\theta), \in, T)$. Suppose $\mathcal{N} \in N$ is a T-symmetric system and $\Psi: (N, \in, T) \longrightarrow (N', \in, T)$ is an isomorphism. Then $\Psi(\mathcal{N}) = \Psi$ " \mathcal{N} is also a T-symmetric system.

Lemma

Let $T \subseteq H(\theta)$, let \mathcal{N} be a partial T–symmetric system and let $N \in \mathcal{N}$. Then the following holds.

- **1** $\mathcal{N} \cap N$ is a T-symmetric system.
- 2 Suppose $\mathcal{N}^* \in \mathbb{N}$ is a T-symmetric system such that $\mathcal{N} \cap \mathbb{N} \subseteq \mathcal{N}^*$. Let

$$\mathcal{M} = \mathcal{N} \cup \bigcup \{ \Psi_{N,N'} \text{ "} \mathcal{N}^* : N' \in \mathcal{N}, \, \delta_{N'} = \delta_N \}$$

Then \mathcal{M} is the \subseteq -minimal T-symmetric system \mathcal{W} such that $\mathcal{N} \cup \mathcal{N}^* \subseteq \mathcal{W}$.

Given $T \subseteq H(\theta)$ and T-symmetric systems \mathcal{N}_0 , \mathcal{N}_1 , let us write $\mathcal{N}_0 \cong \mathcal{N}_1$ iff

- $(\bigcup \mathcal{N}_0) \cap (\bigcup \mathcal{N}_1) = R$ and
- for some $m < \omega$, there are enumerations $(N_i^0)_{i < m}$ and $(N_i^1)_{i < m}$ of \mathcal{N}_0 and \mathcal{N}_1 , respectively, together with an isomorphism between

$$\langle \bigcup \mathcal{N}_0, \in, T, R, N_i^0 \rangle_{i < m}$$

and

$$\langle \bigcup \mathcal{N}_1, \in, T, R, N_i^1 \rangle_{i < m}$$

which is the identity on R.

Lemma

Let $T \subseteq H(\theta)$ and let \mathcal{N}_0 and \mathcal{N}_1 be T-symmetric systems. Suppose $\mathcal{N}_0 \cong \mathcal{N}_1$. Then $\mathcal{N}_0 \cup \mathcal{N}_1$ is a T-symmetric system.

3 More preparations

1 Given sets N, \mathcal{X} and an ordinal η , we define Rank $(\mathcal{X}, N) \ge \eta$ recursively by:

- Rank $(\mathcal{X}, N) \ge 1$ if and only if for every $a \in N$ there is some $M \in \mathcal{X} \cap N$ such that $a \in M$.
- If $\eta > 1$, then Rank $(\mathcal{X}, N) \ge \eta$ if and only if for every $\eta' < \eta$ and every $a \in N$ there is some $M \in \mathcal{X} \cap N$ such that $a \in M$ and Rank $(\mathcal{X}, M) \ge \eta'$.

2 Now let $\Phi: \kappa \longrightarrow H(\kappa)$ be such that $\Phi^{-1}(x)$ is unbounded in κ for all $x \in H(\kappa)$. Let also \lhd be a well–order of $H((2^{\kappa})^+)$. Notice that Φ exists by $2^{<\kappa} = \kappa$.

3 Let $(\theta_{\alpha})_{\alpha<\kappa}$ be the seq. of card. defined by $\theta_0=|H((2^{\kappa})^+)|^+$ and $\theta_{\alpha}=(2^{\sup_{\beta<\alpha}\theta_{\beta}})^+$ if $\alpha>0$. For each $\alpha<\kappa$ let \mathcal{M}_{α}^* be the collection of all ctble. el. substruct. of $H(\theta_{\alpha})$ containing Φ, \lhd and $(\theta_{\beta})_{\beta<\alpha}$, and let $\mathcal{M}_{\alpha}=\{N^*\cap H(\kappa):N^*\in\mathcal{M}_{\alpha}^*\}$. Let T^{α} be the \lhd -first $T\subseteq H(\kappa)$ such that for every $N\in[H(\kappa)]^{\aleph_0}$, if $(N,\in,T\cap N)\prec(H(\kappa),\in,T)$, then $N\in\mathcal{M}_{\alpha}$. Let also

$$\mathcal{T}^{\alpha} = \{ \mathbf{N} \in [\mathbf{H}(\kappa)]^{\aleph_0} : (\mathbf{N}, \in, T^{\alpha} \cap \mathbf{N}) \prec (\mathbf{H}(\kappa), \in, T^{\alpha}) \}.$$

So, \mathcal{T}^{α} is a club of el. substruct. of $H(\kappa)$. Its elements are coded by a certain pred. T^{α} and they are project. of some other el. substruct. of $H(\theta_{\alpha})$, where $(\theta_{\alpha})_{\alpha<\kappa}$ is a canonical seq. **Fact.** Let $\alpha<\beta\leq\kappa$.

- 1 If $N^* \in \mathcal{M}_{\beta}^*$ and $\alpha \in N^*$, then $\mathcal{M}_{\alpha}^* \in N^*$ and $N^* \cap H(\kappa) \in \mathcal{T}^{\alpha}$.
- 2 If $N, N' \in \mathcal{T}^{\beta}$, $\Psi : (N, \in, T^{\beta} \cap N) \longrightarrow (N', \in, T^{\beta} \cap N')$ is an isomorphism, and $M \in N \cap \mathcal{T}^{\beta}$, then $\Psi(M) \in \mathcal{T}^{\beta}$.

The forcing construction

Our forcing \mathcal{P} will be \mathcal{P}_{κ} , where $(\mathcal{P}_{\beta} : \beta \leq \kappa)$ is the sequence of posets to be defined next.

From now on, if q is an ordered pair (F, Δ) , we will denote F and Δ by F_q and Δ_q , respectively.

Let $\beta \leq \kappa$ and suppose \mathcal{P}_{α} has been defined for all $\alpha < \beta$. Conditions in \mathcal{P}_{β} are ordered pairs $q = (F, \Delta)$ satisfying:

- **1** F is a finite function with dom $(F) \subseteq \beta$.
- 2 Δ is a finite set of pairs (N, γ) such that $N \in [H(\kappa)]^{\aleph_0}$ and γ is an ordinal such that $\gamma \leq \beta$ and $\gamma \leq \sup(N \cap \kappa)$.
- 3 $\mathcal{N}^q_\beta:=\{\mathbf{N}: (\mathbf{N},\beta)\in\Delta,\,\beta\in\mathbf{N}\}$ is a T^β -symmetric system.
- **4** For every $\alpha < \beta$, the restriction of q to α ,

$$q|_{\alpha} := (F \upharpoonright \alpha, \{(N, \min\{\alpha, \gamma\}) : (N, \gamma) \in \Delta\}),$$

is a condition in \mathcal{P}_{α} .

(5) Suppose $\beta=\alpha+1$. Let $\mathcal{N}^{\dot{G}_{\alpha}}$ be a \mathcal{P}_{α} -name for

$$\bigcup \{\mathcal{N}_{\alpha}^r : r \in \dot{G}_{\alpha}\}.$$

Assume that $C^{\alpha} := \Phi(\alpha)$ is a \mathcal{P}_{α} -name for a club-seq. on ω_1 . If $\alpha \in \text{dom }(F)$, then $F(\alpha) = (p, b, \mathcal{O})$ has the following prop.

- (a) $p \subseteq \omega_1 \times \omega_1$ is a finite strictly increasing function.
- (b) $\mathcal{O} \subseteq \mathcal{N}_{\alpha}^{q|_{\alpha}}$ is a T^{β} -symmetric system.
- (c) $\operatorname{ran}(p) \subseteq \{\delta_N : N \in \mathcal{O}\}\$
- (d) For every $\delta \in \text{dom }(p)$, if $N \in \mathcal{O}$ is such that $p(\delta) = \delta_N$, then

$$q|_{lpha}\Vdash_{\mathcal{P}_{lpha}} \mathsf{Rank} \ (\mathcal{N}^{\mathcal{G}_{lpha}}\cap\mathcal{T}^{eta}, \mathit{N}) \geq \delta$$

(e) dom (b) \subseteq dom (p) and $b(\delta) < p(\delta)$ for every $\delta \in$ dom (b).

(f) For every $\delta \in \text{dom } (b)$,

$$q|_{\alpha} \Vdash_{\mathcal{P}_{\alpha}} \operatorname{ran}(p \upharpoonright \delta) \cap \dot{C}^{\alpha}(p(\delta)) \subseteq b(\delta)$$

(g) For every $\delta \in \text{dom }(b)$, if $N \in \mathcal{O}$ is such that $p(\delta) = \delta_N$, then

$$q|_{\alpha}\Vdash_{\mathcal{P}_{\alpha}} \mathsf{Rank} \ (\{M\in\mathcal{N}^{\dot{G}_{\alpha}}\cap\mathcal{T}^{\beta} \ : \ \delta_{M}\notin\dot{C}^{\alpha}(p(\delta))\}, N)\geq \delta$$

(h) If $N \in \mathcal{N}^q_\beta$, then $N \in \mathcal{O}$, $\delta_N \in \text{dom }(p)$ and $p(\delta_N) = \delta_N$.

Given \mathcal{P}_{β} —conditions $q_i = (F_i, \Delta_i)$, for $i = 0, 1, q_1$ extends q_0 iff

- dom $(F_0) \subseteq$ dom (F_1) and for all $\alpha \in$ dom (F_0) , if $F_0(\alpha) = (p, b, \mathcal{O})$ and $F_1(\alpha) = (p', b', \mathcal{O}')$, then $p \subseteq p'$, $b \subseteq b'$ and $\mathcal{O} \subseteq \mathcal{O}'$, and
- for every $(N, \gamma) \in \Delta_0$ there is some $\gamma' \ge \gamma$ such that $(N, \gamma') \in \Delta_1$.

If $q \in \mathcal{P}_{\beta}$ for some $\beta \leq \kappa$, we will use $\mathrm{supp}\,(q)$ to denote the domain of F_q ($\mathrm{supp}\,(q)$ stands for the support of q). Also, if $\alpha \in \mathrm{supp}\,(q)$ and $F_q(\alpha) = (p,b,\mathcal{O})$, then $p_{q,\alpha}$, $p_{q,\alpha}$ and $p_{q,\alpha}$ denote p, p and $p_{q,\alpha}$, respectively.

Lemma

Let $\alpha \leq \beta \leq \kappa$. If $q = (F_q, \Delta_q) \in \mathcal{P}_{\alpha}$, $r = (F_r, \Delta_r) \in \mathcal{P}_{\beta}$, and $q \leq_{\alpha} r|_{\alpha}$, then

$$r \wedge_{\alpha} q := (F_q \cup (F_r \upharpoonright [\alpha, \beta)), \Delta_q \cup \Delta_r)$$

is a condition in \mathcal{P}_{β} extending r. Hence, \mathcal{P}_{α} is a complete suborder of \mathcal{P}_{β} .

Proof. The proof depends on the use of the markers in the definition of the forcing. The fact that a marker γ is associated to a submodel N in a condition (F, Δ) (i.e., the fact that $(N, \gamma) \in \Delta$) tells us that N is 'active', for that condition, up to and including stage γ in the iteration. New side conditions (N, γ) appearing in Δ_q may well be such that $N \cap [\alpha, \beta)$ is nonempty, but they will not impose any problematic promises on ordinals occurring in the interval $[\alpha, \beta)$ simply because $\gamma \leq \alpha$.

Lemma

For every ordinal $\alpha \leq \kappa$, \mathcal{P}_{α} is \aleph_2 –Knaster.

Proof. Case $\alpha=0$. Suppose $m<\omega$ and $q_{\xi}=\{N_{i}^{\xi}:i< m\}$ is a \mathcal{P}_{0} -condition for each $\xi<\omega_{2}$. Of course, we are identifying a \mathcal{P}_{0} -condition q with dom (Δ_{q}) . By CH we may assume that

$$\{\bigcup_{i< m} N_i^{\xi} : \xi < \omega_2\}$$

forms a Δ -system with root X. Furthermore, again by CH, we may assume that, for all ξ , $\xi' < \omega_2$, the structures

$$\langle \bigcup_{i < m} N_i^{\xi}, \in, X, T^0, N_i^{\xi} \rangle_{i < m} \text{ and } \langle \bigcup_{i < m} N_i^{\xi'}, \in, X, T^0, N_i^{\xi'} \rangle_{i < m}$$

are isomorphic and that the corresponding iso. fixes X. This is true since there are only \aleph_1 —many isomorphism types for such structures and since the only isomorphism between X and itself is the identity. So, $q_{\mathcal{E}} \cup q_{\mathcal{E}'}$ extends both $q_{\mathcal{E}}$ and $q_{\mathcal{E}'}$.

For general α , suppose that q_{ξ} is a \mathcal{P}_{α} -condition for each $\xi < \omega_2$. We may assume that there is some $m < \omega$ such that we may write

$$dom (\Delta_{q_{\xi}}) = \{N_i^{\xi} : i < m\}$$

for each ξ . Let

$$\vec{T} = \{(a, \gamma) : \gamma \leq \alpha, a \in T^{\gamma}\}$$

By an argument as in the case $\alpha=0$, we are allowed to adopt the point of view that $\{\bigcup_{i< m} N_i^\xi: \xi<\omega_2\}$, for $\xi<\omega_2$, forms a Δ -system with root X and that for all $\xi, \xi'<\omega_2$, the structures

$$\langle \bigcup_{i < m} N_i^{\xi}, \in, X, \vec{T}, N_i^{\xi} \rangle_{i < m} \text{ and } \langle \bigcup_{i < m} N_i^{\xi'}, \in, X, \vec{T}, N_i^{\xi'} \rangle_{i < m}$$

are isomorphic.

We may also assume that there is a finite set $x \subseteq X$ such that

- $\{\operatorname{supp}(q_{\xi}): \xi \in \omega_2\}$ forms a Δ -system with root x, and
- for all $\xi, \xi' \in \omega_2$ and for all $\alpha \in x$, $(p_{q_{\xi},\alpha}, b_{q_{\xi},\alpha}) = (p_{q_{\xi'},\alpha}, b_{q_{\xi'},\alpha}).$

Finally, again by the same argument as above, we may assume that for all $\xi, \xi' \in \omega_2$ and all $\gamma \in x$, $\mathcal{O}_{\xi,\gamma} \cup \mathcal{O}_{\xi',\gamma}$ is a T^{γ} –symmetric system. So, for all ξ, ξ' , $(F_{q_{\xi}} \cup F_{q_{\xi'}}, \Delta_{q_{\xi}} \cup \Delta_{q_{\xi'}})$ is a condition in \mathcal{P}_{α} witnessing the compatibility of q_{ξ} and $q_{\xi'}$.

Lemma

 \mathcal{P}_{κ} forces measuring.

Proof. Let $\alpha < \kappa$, let G be \mathcal{P}_{α} -generic, and suppose $\Phi(\alpha)$ is a \mathcal{P}_{α} -name for a club-sequence on ω_1 . Let $\vec{C} = \Phi(\alpha)_G = (C_{\epsilon} : \epsilon \in Lim(\omega_1))$. Let H be a $\mathcal{P}_{\alpha+1}$ -generic filter such that $H \upharpoonright \mathcal{P}_{\alpha} = G$, and let $C = \bigcup \operatorname{ran} \{p_{q,\alpha} : q \in H\}$. By the \aleph_2 -c.c. of \mathcal{P}_{κ} and the choice of Φ , the conclusion will follow if we show that C is a club of ω_1 measuring \vec{C} .

By condition (5) (d) in the def. of our iteration it follows that C is a club of ω_1 . Also, if $\epsilon \in C$ is such that there is some $q \in H$ such that $\epsilon = p_{q,\alpha}(\delta)$ for some $\delta \in \text{dom } (b_{q,\alpha})$, then a tail of $C \cap \epsilon$ is disjoint from C_{ϵ} (by (5) (e), (f) in the def. of the iteration).

Lemma

 \mathcal{P}_{κ} forces measuring.

Proof. Let $\alpha < \kappa$, let G be \mathcal{P}_{α} -generic, and suppose $\Phi(\alpha)$ is a \mathcal{P}_{α} -name for a club-sequence on ω_1 . Let $\vec{C} = \Phi(\alpha)_G = (C_{\epsilon} : \epsilon \in Lim(\omega_1))$. Let H be a $\mathcal{P}_{\alpha+1}$ -generic filter such that $H \upharpoonright \mathcal{P}_{\alpha} = G$, and let $C = \bigcup \operatorname{ran} \{p_{q,\alpha} : q \in H\}$. By the \aleph_2 -c.c. of \mathcal{P}_{κ} and the choice of Φ , the conclusion will follow if we show that C is a club of ω_1 measuring \vec{C} .

By condition (5) (d) in the def. of our iteration it follows that C is a club of ω_1 . Also, if $\epsilon \in C$ is such that there is some $q \in H$ such that $\epsilon = p_{q,\alpha}(\delta)$ for some $\delta \in \text{dom } (b_{q,\alpha})$, then a tail of $C \cap \epsilon$ is disjoint from C_{ϵ} (by (5) (e), (f) in the def. of the iteration).

Hence, it suffices to show that if $\delta \in \omega_1$ is such that $\delta \notin \text{dom } (b_{q,\alpha})$ for every $q \in H$ and ϵ is such that $p_{q,\alpha}(\delta) = \epsilon$ for some $q \in H$, then a tail of $C \cap \epsilon$ is contained in C_{ϵ} .

But this implies, by (5) (g) and the usual density argument, that there is some $q \in H$ and some $N \in \mathcal{O}_{q,\alpha}$ such that $p_{q,\alpha}(\delta) = \delta_N$ and such that $q|_{\alpha}$ forces, in \mathcal{P}_{α} , that Rank $(\{M \in \mathcal{N}^{G_{\alpha}} \cap \mathcal{T}^{\alpha+1} : \delta_M \notin \Phi(\alpha)(\epsilon)\}, N) = \delta_0$ for some

It will now be enough to find some $\eta \in [\delta_0, \delta)$ and some extension q^* of q such that every extension q' of q^* is such that $q'|_{\alpha}$ forces that $p_{q',\alpha}(\delta') \in \Phi(\alpha)(\delta)$ for every $\delta' \in \text{dom } (p_{q',\alpha}) \cap [\eta, \delta)$.

Hence, it suffices to show that if $\delta \in \omega_1$ is such that $\delta \notin \text{dom } (b_{q,\alpha})$ for every $q \in H$ and ϵ is such that $p_{q,\alpha}(\delta) = \epsilon$ for some $q \in H$, then a tail of $C \cap \epsilon$ is contained in C_{ϵ} .

But this implies, by (5) (g) and the usual density argument, that there is some $q \in H$ and some $N \in \mathcal{O}_{q,\alpha}$ such that $p_{q,\alpha}(\delta) = \delta_N$ and such that $q|_{\alpha}$ forces, in \mathcal{P}_{α} , that Rank $(\{M \in \mathcal{N}^{G_{\alpha}} \cap \mathcal{T}^{\alpha+1} : \delta_M \notin \Phi(\alpha)(\epsilon)\}, N) = \delta_0$ for some given $\delta_0 < \delta$.

It will now be enough to find some $\eta \in [\delta_0, \delta)$ and some extension q^* of q such that every extension q' of q^* is such that $q'|_{\alpha}$ forces that $p_{q',\alpha}(\delta') \in \Phi(\alpha)(\delta)$ for every $\delta' \in \text{dom } (p_{q',\alpha}) \cap [\eta, \delta)$.

Hence, it suffices to show that if $\delta \in \omega_1$ is such that $\delta \notin \text{dom } (b_{q,\alpha})$ for every $q \in H$ and ϵ is such that $p_{q,\alpha}(\delta) = \epsilon$ for some $q \in H$, then a tail of $C \cap \epsilon$ is contained in C_{ϵ} .

But this implies, by (5) (g) and the usual density argument, that there is some $q \in H$ and some $N \in \mathcal{O}_{q,\alpha}$ such that $p_{q,\alpha}(\delta) = \delta_N$ and such that $q|_{\alpha}$ forces, in \mathcal{P}_{α} , that Rank $(\{M \in \mathcal{N}^{G_{\alpha}} \cap \mathcal{T}^{\alpha+1} : \delta_M \notin \Phi(\alpha)(\epsilon)\}, N) = \delta_0$ for some given $\delta_0 < \delta$.

It will now be enough to find some $\eta \in [\delta_0, \, \delta)$ and some extension q^* of q such that every extension q' of q^* is such that $q'|_{\alpha}$ forces that $p_{q',\alpha}(\delta') \in \Phi(\alpha)(\delta)$ for every $\delta' \in \text{dom } (p_{q',\alpha}) \cap [\eta, \, \delta)$.

Claim. By extending $q|_{\alpha}$ if necessary we may assume that there is some $a \in N$ such that $q|_{\alpha}$ forces that if $M \in N \cap \mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1}$ is such that $a \in M$ and Rank $(\mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1}, M) \geq \delta_0$, then $\delta_M \in \Phi(\alpha)(\epsilon)$.

Proof of the claim. Let us work in $\mathbb{V}^{\mathcal{P}_{\alpha} \upharpoonright q \mid_{\alpha}}$. If the conclusion fails, then for every $a \in N$ there is some $M \in N \cap \mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1}$ such that $a \in M$, $\delta_M \notin \Phi(\alpha)(\epsilon)$ and Rank $(\mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1}, M) \geq \delta_0$. Fix any such M. By the openness of $\epsilon \setminus \Phi(\alpha)(\epsilon)$ there is some $\rho < \delta_M$ such that $[\rho, \delta_M) \cap \Phi(\alpha)(\epsilon) = \emptyset$.

Now, if Rank $(\mathcal{N}^{\dot{G}_{\alpha}}\cap\mathcal{T}^{\alpha+1},M)=\delta^*$, then for every $\gamma<\delta^*$ and every $b\in M$ there is some $M'\in M\cap\mathcal{N}^{\dot{G}_{\alpha}}\cap\mathcal{T}^{\alpha+1}$ such that $\{b,\rho\}\in M'$ and Rank $(\mathcal{N}^{\dot{G}_{\alpha}}\cap\mathcal{T}^{\alpha+1},M')\geq\gamma$, and of course $\delta_{M'}\notin\Phi(\alpha)(\epsilon)$ by the above choice of ρ since $\delta_{M'}\in[\rho,\delta_M)$.

Iterating this argument we then have that Rank $(\{M' \in \mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1} : \delta_{M'} \notin \Phi(\alpha)(\epsilon)\}, M) = \delta^*$. This shows that Rank $(\{M \in \mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1} : \delta_{M'} \notin \Phi(\alpha)(\epsilon)\}, N) > \delta_0$ since $\delta_M \notin \Phi(\alpha)(\epsilon)$, which is a contradiction. This ends the proof of the claim.

Now, if Rank $(\mathcal{N}^{\dot{G}_{\alpha}}\cap\mathcal{T}^{\alpha+1},M)=\delta^*$, then for every $\gamma<\delta^*$ and every $b\in M$ there is some $M'\in M\cap\mathcal{N}^{\dot{G}_{\alpha}}\cap\mathcal{T}^{\alpha+1}$ such that $\{b,\rho\}\in M'$ and Rank $(\mathcal{N}^{\dot{G}_{\alpha}}\cap\mathcal{T}^{\alpha+1},M')\geq\gamma$, and of course $\delta_{M'}\notin\Phi(\alpha)(\epsilon)$ by the above choice of ρ since $\delta_{M'}\in[\rho,\delta_M)$.

Iterating this argument we then have that Rank $(\{M' \in \mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1} : \delta_{M'} \notin \Phi(\alpha)(\epsilon)\}, M) = \delta^*$. This shows that Rank $(\{M \in \mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1} : \delta_{M'} \notin \Phi(\alpha)(\epsilon)\}, N) > \delta_0$ since $\delta_M \notin \Phi(\alpha)(\epsilon)$, which is a contradiction. This ends the proof of the claim.

Again by extending $q|_{\alpha}$ if necessary, we may also assume that there is some $M \in N \cap \mathcal{N}_{\alpha}^{q|_{\alpha}} \cap \mathcal{T}^{\alpha+1}$ containing all relevant objects, where this includes a, and such that $q|_{\alpha}$ forces Rank $(\mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1}, M) = \delta_1$, where $\delta_1 < \delta$ is such that $\delta_1 > \max(\text{dom }(p_{q,\alpha} \upharpoonright \delta))$ and $\delta_1 \geq \delta_0$.

Let now q^* be any ext. of q such that $M \in \mathcal{O}_{q^*,\alpha}$ and such that $p_{q^*,\alpha}(\delta_1) = \delta_M$. We claim that $\eta = \delta_1$ and q^* are as desired.

Indeed, it suffices to note that if q' is any cond. extending q^* and $R \in \mathcal{O}_{q',\alpha}$ is such that $\delta_R > \delta_M$ and $\delta_R < \delta_N$, then $q'|_{\alpha} \Vdash_{\mathcal{P}_{\alpha}} \delta_R \in \Phi(\alpha)(\epsilon)$. But by symmetry of $\mathcal{O}_{q',\alpha}$ there is some $R' \in \mathcal{O}_{q',\alpha} \cap N$ such that $M \in R'$ and $\delta_{R'} = \delta_R$. Since $a \in R'$ and $q'|_{\alpha}$ extends $q^*|_{\alpha}$, it follows then that

$$q'|_{\alpha} \Vdash_{\mathcal{P}_{\alpha}} \delta_R = \delta_{R'} \in \Phi(\alpha)(\epsilon).$$

Again by extending $q|_{\alpha}$ if necessary, we may also assume that there is some $M \in N \cap \mathcal{N}_{\alpha}^{q|_{\alpha}} \cap \mathcal{T}^{\alpha+1}$ containing all relevant objects, where this includes a, and such that $q|_{\alpha}$ forces Rank $(\mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1}, M) = \delta_1$, where $\delta_1 < \delta$ is such that $\delta_1 > \max(\text{dom }(\rho_{q,\alpha} \upharpoonright \delta))$ and $\delta_1 \geq \delta_0$.

Let now q^* be any ext. of q such that $M \in \mathcal{O}_{q^*,\alpha}$ and such that $p_{q^*,\alpha}(\delta_1) = \delta_M$. We claim that $\eta = \delta_1$ and q^* are as desired.

Indeed, it suffices to note that if q' is any cond. extending q^* and $R \in \mathcal{O}_{q',\alpha}$ is such that $\delta_R > \delta_M$ and $\delta_R < \delta_N$, then $q'|_{\alpha} \Vdash_{\mathcal{P}_{\alpha}} \delta_R \in \Phi(\alpha)(\epsilon)$. But by symmetry of $\mathcal{O}_{q',\alpha}$ there is some $R' \in \mathcal{O}_{q',\alpha} \cap N$ such that $M \in R'$ and $\delta_{R'} = \delta_R$. Since $a \in R'$ and $q'|_{\alpha}$ extends $q^*|_{\alpha}$, it follows then that

$$q'|_{\alpha} \Vdash_{\mathcal{P}_{\alpha}} \delta_{R} = \delta_{R'} \in \Phi(\alpha)(\epsilon)$$

Again by extending $q|_{\alpha}$ if necessary, we may also assume that there is some $M \in N \cap \mathcal{N}_{\alpha}^{q|_{\alpha}} \cap \mathcal{T}^{\alpha+1}$ containing all relevant objects, where this includes a, and such that $q|_{\alpha}$ forces Rank $(\mathcal{N}^{\dot{G}_{\alpha}} \cap \mathcal{T}^{\alpha+1}, M) = \delta_1$, where $\delta_1 < \delta$ is such that $\delta_1 > \max(\text{dom }(p_{q,\alpha} \upharpoonright \delta))$ and $\delta_1 \geq \delta_0$.

Let now q^* be any ext. of q such that $M \in \mathcal{O}_{q^*,\alpha}$ and such that $p_{q^*,\alpha}(\delta_1) = \delta_M$. We claim that $\eta = \delta_1$ and q^* are as desired.

Indeed, it suffices to note that if q' is any cond. extending q^* and $R \in \mathcal{O}_{q',\alpha}$ is such that $\delta_R > \delta_M$ and $\delta_R < \delta_N$, then $q'|_{\alpha} \Vdash_{\mathcal{P}_{\alpha}} \delta_R \in \Phi(\alpha)(\epsilon)$. But by symmetry of $\mathcal{O}_{q',\alpha}$ there is some $R' \in \mathcal{O}_{q',\alpha} \cap N$ such that $M \in R'$ and $\delta_{R'} = \delta_R$. Since $a \in R'$ and $q'|_{\alpha}$ extends $q^*|_{\alpha}$, it follows then that

$$q'|_{\alpha} \Vdash_{\mathcal{P}_{\alpha}} \delta_{R} = \delta_{R'} \in \Phi(\alpha)(\epsilon).$$

A similar argument (using properness) shows that if H is a $\mathcal{P}_{\alpha+1}$ -generic filter and $C=\bigcup \operatorname{ran} \{f_{q,\alpha}: q\in H\}$, then C diagonalises all clubs of ω_1 in V[G], where $G=H\cap \mathcal{P}_\alpha$. By the \aleph_2 -c.c. of \mathcal{P}_κ , it follows that \mathcal{P}_κ forces $\mathfrak{b}(\omega_1)=cf(\kappa)$

Properness

Given $\alpha < \kappa$, a condition $q \in \mathcal{P}_{\alpha}$, and a countable elementary substructure N of $H(\kappa)$, we will say that q is $(N, \mathcal{P}_{\alpha})$ –pre-generic in case $(N, \alpha) \in \Delta_q$.

Also, given a countable elementary substructure N of $H(\kappa)$ and a \mathcal{P}_{α} -condition q, we will say that q is (N,\mathcal{P}_{α}) -generic iff q forces $G_{\alpha} \cap A \cap N \neq \emptyset$ for every maximal antichain A of \mathcal{P}_{α} such that $A \in N$.

Note that this is more general than the standard notion of (N,\mathbb{P}) -genericity, for a forcing notion \mathbb{P} , which applies only if $\mathbb{P} \in N$. Indeed, in our situation \mathcal{P}_{α} is of course never a member of N if $N \subseteq H(\kappa)$.

Lemma

Suppose $\alpha < \kappa$ and $N \in \mathcal{T}^{\alpha+1}$. Then the following holds.

- (1) $_{\alpha}$ For every $q \in N$ there is $q' \leq_{\alpha} q$ such that q' is $(N, \mathcal{P}_{\alpha})$ -pre-generic.
- (2) $_{\alpha}$ If $q \in \mathcal{P}_{\alpha}$ is $(N, \mathcal{P}_{\alpha})$ –pre-generic, then q is $(N, \mathcal{P}_{\alpha})$ –generic.

Instances of the inductive proof on α . The case $\alpha=0$ is well known and so, we omit it. Let us proceed to the case $(1)_{\alpha}$ with $\alpha=\sigma+1$. By $(1)_{\sigma}$ we may assume, by extending $q|_{\sigma}$, that $q|_{\sigma}$ is (N,\mathcal{P}_{σ}) -pre-generic. So, if $\sigma\notin\operatorname{supp}(q)$, then $q'=(F_q,\Delta_q\cup\{(N,\alpha)\})$ witnesses $(1)_{\alpha}$.

Assume that $\sigma \in \operatorname{supp}(q)$. Since $q|_{\sigma}$ is $(N, \mathcal{P}_{\sigma})$ -pre-gen., $q|_{\sigma}$ forces in \mathcal{P}_{σ} that $N \in \mathcal{N}^{\dot{G}_{\sigma}}$. So, $q|_{\sigma}$ forces that for every $x \in N$ there is $M \in \mathcal{N}^{\dot{G}^{\sigma}} \cap \mathcal{T}^{\sigma+1}$ such that $x \in M$ (as witnessed by N).

Let us work in $V^{\mathcal{P}_{\sigma} \upharpoonright q|_{\sigma}}$. Since

$$\langle N[\dot{G}_{\sigma}], \dot{G}_{\sigma}, T^{\sigma+2}, H(\kappa)^{V} \rangle \leq \langle H(\kappa)[\dot{G}_{\sigma}], \dot{G}_{\sigma}, T^{\sigma+2}, H(\kappa)^{V} \rangle,$$

there is an M as above in $N[\dot{G}_{\sigma}] \cap V$ (where V denotes the ground model). We may also assume that $M \in N$, since $N[\dot{G}_{\sigma}] \cap V = N$ (which follows from $(2)_{\sigma}$ applied to N and $q|_{\sigma}$).

This shows that $q|_{\sigma}$ forces Rank $(\mathcal{N}^{G_{\sigma}} \cap \mathcal{T}^{\sigma+1}, N) \geq 1$. In fact, by iterating this argument we can show, by induction on μ , that $q|_{\sigma}$ forces Rank $(\mathcal{N}^{\dot{G}_{\sigma}} \cap \mathcal{T}^{\sigma+1}, N) \geq \mu$ for every $\mu < \delta_N$. In view of these considerations, it suffices to define q' as the condition $(F', \Delta_q \cup \{(N, \alpha)\})$, where F' extends F_q and

$$F'(\sigma) = (p_{a,\sigma} \cup \{\langle \delta_N, \delta_N \rangle\}, b_{a,\sigma}, \mathcal{O}_{a,\sigma} \cup \{N\})$$

Let us work in $V^{\mathcal{P}_{\sigma} \upharpoonright q|_{\sigma}}$. Since

$$\langle N[\dot{G}_{\sigma}], \dot{G}_{\sigma}, T^{\sigma+2}, H(\kappa)^{V} \rangle \preceq \langle H(\kappa)[\dot{G}_{\sigma}], \dot{G}_{\sigma}, T^{\sigma+2}, H(\kappa)^{V} \rangle,$$

there is an M as above in $N[G_{\sigma}] \cap V$ (where V denotes the ground model). We may also assume that $M \in N$, since $N[G_{\sigma}] \cap V = N$ (which follows from $(2)_{\sigma}$ applied to N and $q|_{\sigma}$).

This shows that $q|_{\sigma}$ forces Rank $(\mathcal{N}^{\dot{G}_{\sigma}} \cap \mathcal{T}^{\sigma+1}, N) \geq 1$. In fact, by iterating this argument we can show, by induction on μ , that $q|_{\sigma}$ forces Rank $(\mathcal{N}^{\dot{G}_{\sigma}} \cap \mathcal{T}^{\sigma+1}, N) \geq \mu$ for every $\mu < \delta_N$. In view of these considerations, it suffices to define q' as the condition $(F', \Delta_q \cup \{(N, \alpha)\})$, where F' extends F_q and

$$F'(\sigma) = (p_{q,\sigma} \cup \{\langle \delta_N, \delta_N \rangle\}, b_{q,\sigma}, \mathcal{O}_{q,\sigma} \cup \{N\})$$