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A “classical enigma”: reconstructing from symmetry.

At a very classical

extreme, there is the old

enigma:

There is some object M .

I give you the

symmetries of M , i.e.

Aut(M).

Tell me what is M!
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Reconstructing models?

In Model Theory (and in other parts of Mathematics!), the same

naïve enigma has important variants. The main version is usually

called “The Reconstruction Problem”:

I if for some (First Order) structure M we are given Aut(M),
what can we say about M? (In general, not much! by e.g.

Ehrenfeucht-Mostowski).

I a more reasonable question: if for some (First Order)

structure M we are given Aut(M), what can we say about

Th(M)?

I an even more reasonable question: if for some (FO)

structure M we are given Aut(M), when can we recover

all models biinterpretable with M?

I we follow ONE line of reconstruction, di�erent from (but

related to) the work of M. Rubin!
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Where else in mathematics?

The “naïve question” is quite important: What information about a

model M and Th(M) is contained in the group Aut(M)?

What information on a metric structure (M, d, . . . ) is contained in

the isometry group Iso(M, d, . . . )?

I (Anabelian geometry) the anabelian question: recover the

isomorphism class of a variety X from its étale fundamental

group π1(X). Neukirch, Uchida, for algebraic number �elds.

I (Koenigsmann) K and GK(t)/K are biinterpretable for K a perfect

�eld with �nite extensions of degree > 2 and prime to char(K).

These are versions of the same kind of problem - but we will not

concentrate on these today. They may however be amenable to

model theoretic treatment.
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La reconstruction de structures à la Lascar

I Every automorphism of M extends uniquely to an

automorphism of Meq
; therefore, Aut(M) ≈ Aut(Meq)

canonically.

I Having that Meq ≈ N eq
implies that M and N are

bi-interpretable.

I If M is ℵ0-categorical, any open subgroup of Aut(M) is a

stabilizer Autα(M) for some imaginary α. Also

Aut(M) y {H ≤ Aut(M) | H open} (conjugation).

I The action Aut(M) y is (almost) ≈ to Aut(M) y Meq
.

So, we have recovered the action of Aut(M) on Meq
from the

topology of Aut(M)... so, if M,N are countable ℵ0-categorical

structures, TFAE:

I There is a bicontinuous isomorphism from Aut(M) onto Aut(N )

I M and N are bi-interpretable.
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Some (non-)Examples - Why is saturation needed?

Let M1 be the countable

saturated model of Pi (i < ω)

disjoint in�nite predicates and

let M2 be a countable model of

an equivalence relation with

in�nitely many in�nite classes,

with exactly one constant ci in

each class but one

yet Aut(M1) ≈ Aut(M2)
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SIP - the link between algebra and topology

Now, to the main property of the group Aut(M) that

enables us to capture its topology...
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The Small Index Property (countable version)

De�nition (Small Index Property - SIP)

Let M be a countable structure. M has the small index property if for

any subgroup H of Aut(M) of index less than 2
ℵ0

, there exists a

�nite set A ⊂ M such that AutA(M) ⊂ H .
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Basic facts on countable SIP

SIP allows us to recover the topological structure of Aut(M) from its

pure group structure:

Open neighborhoods of 1 in pointwise convergence topology =
Subgroups containing pointwise stabilizers AutA(M) for some �nite

A.

I SIP holds for random graph, in�nite set, DLO, vector spaces

over �nite �elds, generic relational structures, ℵ0-categorical

ℵ0-stable structures, etc.

I It fails e.g. for M |= ACF0 with∞ transc. degree.
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Galois group (of a theory)

The Galois group of a model M ,

Gal(M) := Aut(M)/Autf (M),

is invariant across saturated models of a theory.

Possible failures of SIP are encoded in this quotient.
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To the uncountable / the non-elementary
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SIP for uncountable structures

We now switch focus to the uncountable, �rst order, case.

Fix λ = λ<λ an uncountable cardinal, and �x M a saturated model of

cardinality λ.

We now use the topology T λ on Aut(M), whose basic open sets

around 1M are stabilizers of subsets of size < λ - as before AutA(M)
but now A ⊂ M with |A| < λ.

Aut(M) with this topology is of course no longer a Polish space. The

techniques from Descriptive Set Theory that have been used for the

countable case need to be replaced (Friedman, Hyttinen and Kulikov

have a start of Descriptive Set Theory for some uncountable

cardinalities, however).
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Lascar-Shelah’s Theorem

Theorem (Lascar-Shelah: Uncountable saturated models have

the SIP)

Let M be saturated, of cardinality λ = λ<λ and let G be a subgroup of
Aut(M) such that [Aut(M) : G] < 2

λ. Then there exists A ⊂ M with
|A| < λ such that AutA(M) ⊂ G.

The proof consists of building directly (assuming that G does not

contain any open set AutA(M) around the identity) a binary tree of

height λ of automorphisms of M in such a way that every two of

them are not conjugate. This is enough but requires two crucial

notions: generic and existentially closed (sequences of)
automorphisms. These are obtained by assuming that G is not

open.
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Beyond First Order

Although results on the reconstruction problem, so far have been

stated and proved for saturated models in �rst order theories, the

scope of the matter can go far beyond:

I Abstract Elementary Classes with well-behaved closure

notions, and the particular case:

I Quasiminimal (qm excellent) Classes.
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The setting: Strong amalgamation classes

A setting for homogeneity: let (K,≺K) be an AEC, with LS(K) ≤ λ,

|M| = κ > λ, κ<κ = κ.

Let K<(M) := {N : N 4K M, |N | < κ} and �x M ∈ K
homogeneous.

The topology τ cl : base of open neighborhoods given by sets of the

form AutX (M) where X ∈ C, where

C :=
{

cl
M (A) : A ⊆ M such that |A| < κ

}
and the “closure

operator” is clM(A) :=
⋂

A⊂N≺KM A.

This class of clM-closed sets has enough structure for the proof of

SIP.



Reconstructing models The Small Index Property SIP beyond �rst order Examples: quasiminimal classes, the Zilber �eld, j-invariants

The setting: Strong amalgamation classes

A setting for homogeneity: let (K,≺K) be an AEC, with LS(K) ≤ λ,

|M| = κ > λ, κ<κ = κ.

Let K<(M) := {N : N 4K M, |N | < κ} and �x M ∈ K
homogeneous.

The topology τ cl : base of open neighborhoods given by sets of the

form AutX (M) where X ∈ C, where

C :=
{

cl
M (A) : A ⊆ M such that |A| < κ

}
and the “closure

operator” is clM(A) :=
⋂

A⊂N≺KM A.

This class of clM-closed sets has enough structure for the proof of

SIP.



Reconstructing models The Small Index Property SIP beyond �rst order Examples: quasiminimal classes, the Zilber �eld, j-invariants

The main result: SIP for homogeneous AEC.

Theorem (SIP for (Aut(M), T cl) - Ghadernezhad, V.)

Let M be a homogeneous model in an AEC (K,≺K), with
|M| = λ = λ<λ > LS(K), such that K<λ is a strong amalgamation
class. Let G ≤ Aut(M) with [Aut(M) : G] ≤ λ (this is, G has small
index in Aut(M)). Then there exists X ∈ C such that AutX (M) ≤ G
(i.e., G is open in (Aut(M), T cl)).
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Getting many non-conjugates

Proof (rough sketch): suppose G has small index in Aut(M) but is

not open (does not contain any basic AutX (M) for X ∈ C.

We have enough tools (generic sequences and strong amalgamation

bases) to build a Lascar-Shelah tree to reach a contradiction (2
λ

many branches giving automorphisms of M gσ for σ ∈ 2
λ

such that

if σ 6= τ ∈ 2
λ

then g−1

σ ◦ gτ /∈ G).

Of course, the possibility of getting these 2
λ
-many automorphisms

requires using the non-openness of G to get the construction going.
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Lascar-Shelah tree for our situation

A λ-Lascar-Shelah tree for M and G ≤ Aut(M) is a binary tree of height λ
with, for each s ∈ 2

<λ
, a model Ms ∈ K<(M), gs ∈ Aut(Ms),

hs, ks ∈ AutMs(M) such that

I hs,0 ∈ G and hs,1 /∈ G for all s ∈ S ;

I ks,0 = ks,1 for all s ∈ S ;

I for s ∈ S and all t ∈ S such that t 6 s :ht [Ms] = Ms (i.e.

ht ∈ Aut{Ms} (M)) and ...;

I for s ∈ S and all t ∈ S such that t 6 s : gs · (ht � Ms) · g−1

s = kt � Ms;

I for s ∈ S and β < length (s): as ∈ Ms;

I for all s, the families {ht : t 6 s, t ∈ S} and {kt : t 6 s, t ∈ S} are

elements of F (i.e. they are generic).
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Generic seqences and Strong amalgamation bases

The main technical tools in the construction of a LS tree are

I Guaranteeing generic sequences of automorphisms

(g ∈ Aut(M) is generic if

∀N ∈ K<(M) such that g � N ∈ Aut(N )
∀N1 �K N , N1 ∈ K<(M)
∀h ⊃ g � N , h ∈ Aut(N1)
∃α ∈ AutN (M) such that g ⊃ α ◦ h ◦ α−1

),

I showing they are unique up to conjugation,

I getting a generic sequence F = (gi : i ∈ I) such that

1. the set {i ∈ I : gi � M0 = h and gi /∈ G} has cardinality κ for all

M0 ∈ K< (M) and h ∈ Aut (M0);
2. the set {i ∈ I : gi ∈ G} has cardinality κ.
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�asiminimal pregeometry classes

In a language L, a quasiminimal pregeometry class Q is a class of

pairs 〈H , clH 〉 where H is an L-structure, clH is a pregeometry

operator on H such that the following conditions hold:

1. Closed under isomorphisms,

2. For each 〈H , clH 〉 ∈ Q, the closure of any �nite set is countable.

3. If 〈H , clH 〉 ∈ Q and X ⊆ H , then 〈clH (X) , clH � clH (X)〉 ∈ Q.

4. If 〈H , clH 〉 , 〈H ′, clH ′〉 ∈ Q, X ⊆ H , y ∈ H and f : H → H ′ is a

partial embedding de�ned on X ∪ {y}, then y ∈ clH (X) if and

only if f (y) ∈ clH ′ (f (X)).

5. Homogeneity over countable models.

These can all be generated by ONE

canonical structure.
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Very recent updates

I In November 2016 - about a week ago, Sébastien Vasey has

posted a paper on the ArXiV proving that quasiminimal

pregeometries do not require the exchange axiom of

pregeometries. This makes it in principle easier to prove that

classes are quasiminimal!

I Vasey has also suggested that our theorem applies to wider

classes (excellent classes, and even wider: certain “non-forking

frames”). This is work in progress now.
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Example: qasiminimal classes, “Zilber field”

I Q quasiminimal pregeometry class. M ∈ Q of size ℵ1,

C = {cl(A) | A ⊂ M,A small} then C has the free

aut-independence amalgamation property. (Based on

Haykazyan’s paper on qm classes.)

I Q qm pregeom. class→ for every model M of Q, Aut(M) has

SIP,

I The “Zilber �eld” has SIP.

I The j-invariant has the SIP.
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Thanks, thanks, to you all (and especially to J and J)
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