Introduction •000000 # Inner models from extended logics Joint work with Juliette Kennedy and Menachem Magidor Department of Mathematics and Statistics, University of Helsinki ILLC, University of Amsterdam January 2017 # Constructible hierarchy generalized $$\begin{array}{lll} L'_0 & = & \emptyset \\ L'_{\alpha+1} & = & \mathsf{Def}_{\mathcal{L}^*}(L'_\alpha) \\ L'_\nu & = & \bigcup_{\alpha<\nu} L'_\alpha \text{ for limit } \nu \end{array}$$ We use $C(\mathcal{L}^*)$ to denote the class $\bigcup_{\alpha} L'_{\alpha}$. Introduction 0000000 $$X = \{ a \in \mathcal{L}'_{\alpha} : (\mathcal{L}'_{\alpha}, \in) \models \varphi(a, \vec{b}) \}$$ Introduction 0000000 # **Examples** • $C(\mathcal{L}_{\omega\omega}) = L$ Introduction 0000000 - $C(\mathcal{L}_{\omega_1\omega}) = L(\mathbb{R})$ - $C(\mathcal{L}_{\omega_1\omega_1}) = \text{Chang model}$ - $C(\mathcal{L}^2) = HOD$ # Possible attributes of inner models - Forcing absolute. - Support large cardinals. - Satisfy Axiom of Choice. - Arise "naturally". - Decide questions such as CH. # Inner models we have - L: Forcing-absolute but no large cardinals (above WC) - HOD: Has large cardinals but forcing-fragile - $L(\mathbb{R})$: Forcing-absolute, has large cardinals, but no AC - Extender models # Shelah's cofinality quantifier ### Definition The cofinality quantifier Q_{ω}^{cf} is defined as follows: $$\mathcal{M} \models Q_{\omega}^{\mathrm{cf}} x y \varphi(x, y, \vec{a}) \iff \{(c, d) : \mathcal{M} \models \varphi(c, d, \vec{a})\}$$ is a linear order of cofinality ω . - Axiomatizable - Fully compact - Downward Löwenheim-Skolem down to №1 # The "cof-model" C* ## Definition $$C^* =_{def} C(Q^{\mathrm{cf}}_{\omega})$$ ## Example: $$\{\alpha < \beta : \operatorname{cf}^{\mathsf{V}}(\alpha) > \omega\} \in C^*$$ If 0^{\sharp} exists, then $0^{\sharp} \in C^*$. # Proof. Let $$X = \{ \xi < \aleph_{\omega} : \xi \text{ is a regular cardinal in } L \text{ and } \mathrm{cf}(\xi) > \omega \}$$ Now $X \in C^*$ and $$0^{\sharp} = \{ \lceil \varphi(x_1, ..., x_n) \rceil : L_{\aleph_{\omega}} \models \varphi(\gamma_1, ..., \gamma_n) \text{ for some } \gamma_1 < ... < \gamma_n \text{ in } X \}.$$ The Dodd-Jensen Core model is contained in C*. **Theorem** Suppose L^{μ} exists. Then some L^{ν} is contained in C^* . If there is a measurable cardinal κ , then $V \neq C^*$. ## Proof. Suppose $V = C^*$ and κ is a measurable cardinal. Let $i: V \to M$ with critical point κ and $M^{\kappa} \subseteq M$. Now $(C^*)^M = (C^*)^V = V$, whence M = V. This contradicts Kunen's result that there cannot be a non-trivial $i: V \to V$. If there is an infinite set E of measurable cardinals (in V), then $E \notin C^*$. Moreover, then $C^* \neq \text{HOD}$. ## Proof. As Kunen's result that if there are uncountably many measurable cardinals, then AC is false in the Chang model. # Stationary Tower Forcing # Suppose λ is Woodin¹. - There is a forcing ℚ such that in V[G] there is j: V → M with V[G] |= M^ω ⊆ M and j(ω₁) = λ. - For all regular $\omega_1 < \kappa < \lambda$ there is a cofinality ω preserving forcing $\mathbb P$ such that in V[G] there is $j:V\to M$ with $V[G]\models M^\omega\subseteq M$ and $j(\kappa)=\lambda$. If there is a Woodin cardinal, then ω_1 is (strongly) Mahlo in C^* . ### Proof. Let \mathbb{Q} , G and $j: V \to M$ with $M^{\omega} \subset M$ and $j(\omega_1) = \lambda$ be as above. Now, $$(C^*)^M = C^*_{<\lambda} \subseteq V.$$ Suppose there is a Woodin cardinal λ . Then every regular cardinal κ such that $\omega_1 < \kappa < \lambda$ is weakly compact in C^* . ## Proof. Suppose λ is a Woodin cardinal, $\kappa > \omega_1$ is regular and $< \lambda$. To prove that κ is strongly inaccessible in C^* we can use the "second" stationary tower forcing \mathbb{P} above. With this forcing, cofinality ω is not changed, whence $(C^*)^M = C^*$. If $V = L^{\mu}$, then C^* is exactly the inner model $M_{\omega^2}[E]$, where M_{ω^2} is the ω^2 th iterate of V and $E = \{\kappa_{\omega \cdot n} : n < \omega\}$. Suppose there is a proper class of Woodin cardinals. Suppose \mathcal{P} is a forcing notion and $G \subseteq \mathcal{P}$ is generic. Then $$Th((C^*)^V) = Th((C^*)^{V[G]}).$$ Proof. Let H_1 be generic for \mathbb{Q} . Now $$j_1: (C^*)^V \to (C^*)^{M_1} = (C^*)^{V[H_1]} = (C^*_{<\lambda})^V.$$ Let H_2 be generic for \mathbb{Q} over V[G]. Then $$j_2: (C^*)^{V[G]} o (C^*)^{M_2} = (C^*)^{V[H_2]} = (C^*_{<\lambda})^{V[G]} = (C^*_{<\lambda})^{V}.$$ $$|\mathcal{P}(\omega) \cap C^*| \leq \aleph_2.$$ If there are infinitely many Woodin cardinals, then there is a cone of reals x such that $C^*(x)$ satisfies CH. $$\{y \subseteq \omega : C^*(y) \models CH\} \tag{1}$$ is closed under Turing-equivalence. Need to show that - (I) The set (1) is projective. - (II) For every real x there is a real y such that $x \leq_T y$ and y is in the set (1). ### Lemma Suppose there is a Woodin cardinal and a measurable cardinal above it. The following conditions are equivalent: - (i) $C^*(y) \models CH$. - (ii) There is a countable iterable structure M with a Woodin cardinal such that $v \in M$. $M \models \exists \alpha("L'_{\alpha}(y) \models CH")$ and for all countable iterable structures N with a Woodin cardinal such that $\mathbf{v} \in \mathbb{N}$: $\mathcal{P}(\omega)^{(C^*)^N} \subset \mathcal{P}(\omega)^{(C^*)^M}$. # Stationary logic ### Definition $\mathcal{M} \models aa s\varphi(s) \iff \{A \in [M]^{\leq \omega} : \mathcal{M} \models \varphi(A)\}$ contains a club of countable subsets of M. (i.e. almost all countable subsets A of *M* satisfy $\varphi(A)$.) We denote $\neg aa s \neg \varphi$ by stat $s\varphi$. $$C(aa) = C(\mathcal{L}(aa))$$ $$C^* \subseteq C(aa)$$ A first order structure M is club-determined if $$\mathcal{M} \models \forall \vec{\mathbf{s}} \forall \vec{\mathbf{x}} [\text{aa} \vec{t} \varphi(\vec{\mathbf{x}}, \vec{\mathbf{s}}, \vec{t}) \vee \text{aa} \vec{t} \neg \varphi(\vec{\mathbf{x}}, \vec{\mathbf{s}}, \vec{t})],$$ The aa-model 0000000000000 where $\varphi(\vec{x}, \vec{s}, \vec{t})$ is any formula of $\mathcal{L}(aa)$. 2. We say that the inner model C(aa) is club-determined if every level L'_{α} is. If there are a proper class of measurable Woodin cardinals or MM^{++} holds, then C(aa) is club-determined. ### Proof. Suppose L'_{α} is the least counter-example. W.l.o.g $\alpha < \omega_2^{V}$. Let δ be measurable Woodin, or ω_2 in the case of MM⁺⁺. The hierarchies $$C(aa)^M$$, $C(aa)^{V[G]}$, $C(aa_{<\delta})^V$ are all the same and the (potential) failure of club-determinateness occurs in all at the same level. Suppose there are a proper class of measurable Woodin cardinals or MM⁺⁺. Then every regular $\kappa \geq \aleph_1$ is measurable in C(aa). The aa-model 0000000000000 Suppose there are a proper class of measurable Woodin cardinals. Then the theory of C(aa) is (set) forcing absolute. ## Proof. Suppose \mathbb{P} is a forcing notion and δ is a Woodin cardinal $> |\mathbb{P}|$. Let $i: V \to M$ be the associated elementary embedding. Now $$C(aa) \equiv (C(aa))^M = (C(aa_{<\delta}))^V.$$ On the other hand, let $H \subseteq \mathbb{P}$ be generic over V. Then δ is still Woodin, so we have the associated elementary embedding $j':V[H]\to M'$. Again $$(C(aa))^{V[H]} \equiv (C(aa))^{M'} = (C(aa_{<\delta}))^{V[H]}.$$ Finally, we may observe that $(C(aa_{<\delta}))^{V[H]} = (C(aa_{<\delta}))^{V}$. Hence $$(C(aa))^{V[H]} \equiv (C(aa))^{V}$$ C(aa') is the extension of C(aa) obtained by allowing "implicit" definitions. - $C^* \subseteq C(aa) \subseteq C(aa')$. - The previous results about C(aa) hold also for C(aa'). $f: \mathcal{P}_{\omega}(L'_{\alpha}) \to L'_{\alpha}$ is definable in the aa-model if f(p) is uniformly definable in L'_{α} , for $p \in \mathcal{P}_{\omega_1}(L'_{\alpha})$ i.e. there is a formula $\tau(P, x, a)$ in $\mathcal{L}(aa)$, with possibly a parameter a from \mathcal{L}'_{α} , such that for a club of $p \in \mathcal{P}_{\omega}(L'_{\alpha})$ there is exactly one x satisfying $\tau(P, x, a)$ in (L'_{α}, p) . We (misuse notation and) denote this unique x by $\tau(p)$, and call the function $p \mapsto \tau(p)$ a definable function. - 1. Define for a fixed α and $a, b \in L'_{\alpha}, \tau(P, x, a) \equiv_{\alpha} \sigma(P, x, b)$ if $L'_{\alpha} \models aaP\exists x(\tau(P, x, a) \land \sigma(P, x, b))$. The equivalence classes are denoted $[(\alpha, \tau, a)]$. - 2. Suppose we have $\tau(P, x, a)$ on L'_{α} defining f, and $\tau'(P, x, b)$ on L'_{β} , $\alpha < \beta$, defining f^* . We say that f^* is a *lifting* of f if for a club of q in $\mathcal{P}_{\omega_1}(L'_{\beta})$, $f^*(q) = f(q \cap L'_{\alpha})$. - 3. Define $[(\alpha, \tau, a)]E[(\beta, \tau', b)]$ if $\alpha < \beta$ and $L'_{\beta} \models aaP(\tau^*(P) \in \tau'(P))$, where τ^* is the lifting of τ to L'_{β} . - 4. Fix α . Let D_{α} be the class of all $[(\alpha, \tau, a)]$. The aa-model Assume MM⁺⁺. ### Lemma $$j(\omega_1)=\omega_2.$$ ### Lemma $$\mathcal{L}'_{\alpha} \models \mathrm{aa} P \varphi(P) \iff M \models \varphi(j''\alpha).$$ The aa-model 00000000000000 Theorem (MM⁺⁺) $C(aa) \models CH (even better: \lozenge).$ $\mathcal{M} \models Q^{St}xyz\varphi(x,\vec{a})\psi(y,z,\vec{a})$ if and only if (M_0,R_0) , where $$M_0 = \{b \in M : \mathcal{M} \models \varphi(b, \vec{a})\}$$ and $$R_0 = \{(b, c) \in M : \mathcal{M} \models \psi(b, c, \vec{a})\},$$ is an \aleph_1 -like linear order and the set \mathcal{I} of initial segments of (M_0, R_0) with an R_0 -supremum in M_0 is stationary in the set \mathcal{D} of all (countable) initial segments of M_0 in the following sense: If $\mathcal{J} \subseteq \mathcal{D}$ is unbounded in \mathcal{D} and σ -closed in \mathcal{D} , then $\mathcal{J} \cap \mathcal{I} \neq \emptyset$. • We can say in the logic $\mathcal{L}(Q^{St})$ that a formula $\varphi(x)$ defines a stationary (in V) subset of ω_1 in a transitive model M containing ω_1 as an element as follows: $$M \models \forall x (\varphi(x) \to x \in \omega_1) \land Q^{St} xyz \varphi(x) (\varphi(y) \land \varphi(z) \land y \in z).$$ Hence $$C(aa^-) \cap NS_{\omega_1} \in C(aa^-).$$ If there is a Woodin cardinal or MM holds, then the filter $D = C(aa^{-}) \cap NS_{\omega_1}$ is an ultrafilter in $C(aa^{-})$ and $$C(aa^-) = L[D].$$ If there is a proper class of Woodin cardinals, then for all set forcings P and generic sets $G \subseteq P$ $$\mathit{Th}(\mathit{C}(\mathsf{aa}^{-})^{\mathit{V}}) = \mathit{Th}(\mathit{C}(\mathsf{aa}^{-})^{\mathit{V}[\mathit{G}]}).$$ #### We write $$HOD_1 =_{\mathrm{df}} C(\Sigma_1^1).$$ #### Note: - $\{\alpha < \beta : \operatorname{cf}^{V}(\alpha) = \omega\} \in \operatorname{HOD}_{1}$ - $\{(\alpha, \beta) \in \gamma^2 : |\alpha|^V \le |\beta|^V\} \in HOD_1$ - $\{\alpha < \beta : \alpha \text{ cardinal in } V\} \in HOD_1$ - $\{(\alpha_0, \alpha_1) \in \beta^2 : |\alpha_0|^V \le (2^{|\alpha_1|})^V\} \in HOD_1$ - $\{\alpha < \beta : (2^{|\alpha|})^V = (|\alpha|^+)^V\} \in HOD_1$ - 1. $C^* \subseteq HOD_1$. - **2**. $C(Q_1^{MM,<\omega}) \subseteq HOD_1$ - 3. If 0^{\sharp} exists, then $0^{\sharp} \in \mathrm{HOD}_1$ It is consistent, relative to the consistency of infinitely many weakly compact cardinals that for some λ : $\{\kappa < \lambda : \kappa \text{ weakly compact (in V)}\} \notin HOD_1$, and, moreover, $HOD_1 = L \neq HOD$. # Open questions - C* has small large cardinals, is forcing absolute (assuming) PCW). - OPEN: Can C* have a measurable cardinal? - C* has some elements of GCH - OPEN: Does C* satisfy CH if large cardinals are present? - C(aa) has measurable cardinals. - OPEN: Bigger cardinals in C(aa)?