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Constructible hierarchy generalized

Ly = 0
Uy = Defr(L))
L, = Uge, L, for limit v

We use C(L*) to denote the class |, L.
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Thus a typical setin L , ; has the form

X={acll,:(L,¢e)E¢(ab)}



Introduction
0008000

The cof-model

0000000000000 000

The aa-model

0000000000000 0

HOD;

000000
Logics

Inner models

D¢

4/43



Introduction The cof-model The aa-model HOD¢
0000e00 0000000000000 000 0000000000000 0 000000

Examples

C
e C
e C
C(L

w) =
Low) = L( )
L., ) = Chang model
2) = HOD

(Lo
(
(
(£

5/43



Introduction The cof-model The aa-model HOD4
0000080 0000000000000 000 0000000000000 0 000000

Possible attributes of inner models

Forcing absolute.

Support large cardinals.
Satisfy Axiom of Choice.
Arise “naturally".

Decide questions such as CH.
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Inner models we have

L: Forcing-absolute but no large cardinals (above WC)
HOD: Has large cardinals but forcing-fragile

L(R): Forcing-absolute, has large cardinals, but no AC
Extender models
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Shelah’s cofinality quantifier

Definition
The cofinality quantifier Q" is defined as follows:
M E Qixyp(x,y,8) = {(c.d): M ¢(c,d,8)}
is a linear order of cofinality w.

e Axiomatizable
e Fully compact
e Downward Léwenheim-Skolem down to ¥4
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The “cof-model" C*

Definition

C* =qer C(Q)

Example:
{a<B:ct () >w}eC”
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Theorem

If 0% exists, then 0% € C*.

Proof.

Let

X ={¢ <N, :¢isaregular cardinal in L and cf(¢) > w}

Now X € C* and

0F = {"p(X1, ..., Xn) 7 : Ln, = ©(71, ..., 7n) fOor some v < ... < v, in X}.
L]
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Theorem
The Dodd-Jensen Core model is contained in C*.

Theorem
Suppose L+ exists. Then some LV is contained in C*.
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Theorem
If there is a measurable cardinal k, then V # C*.

Proof.

Suppose V = C* and « is a measurable cardinal. Let

i : V — M with critical point x and M* C M. Now

(C )M = (C*)V = V, whence M = V. This contradicts Kunen’s
result that there cannot be a non-trivial i : V — V. Ol
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Theorem
If there is an infinite set E of measurable cardinals (in V), then
E ¢ C*. Moreover, then C* # HOD.

Proof.
As Kunen’s result that if there are uncountably many
measurable cardinals, then AC is false in the Chang model. [
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Stationary Tower Forcing

Suppose \ is Woodin'.
e There is a forcing Q such that in V[G] thereisj: V — M
with V[G] E M¥ C M and j(w1) = A.
e For all regular wy < k < A there is a cofinality w preserving
forcing P such that in V[G] thereis j : V — M with
V[G] E M¥ C M and j(k) = .

WA= ATk < AN{F(B)IB <Kk} CRhAT 1V = M((k)>KAj K=
id A Vi) © M-
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Theorem
If there is a Woodin cardinal, then w4 is (strongly) Mahlo in C*.

Proof.

LetQ, Gandj: V — M with M ¢ M and j(wy) = A be as
above.

Now,

(CM=crycV.
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Theorem
Suppose there is a Woodin cardinal \. Then every regular
cardinal k such thatwy < k < X is weakly compact in C*.

Proof.

Suppose ) is a Woodin cardinal, « > wq is regular and < A. To
prove that « is strongly inaccessible in C* we can use the
“second" stationary tower forcing P above. With this forcing,
cofinality w is not changed, whence (C*)M = C*. O
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Theorem
If V = L*, then C* is exactly the inner model M, .[E], where
M, is the w?th iterate of V and E = {k.n: N < w}.

w
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Theorem
Suppose there is a proper class of Woodin cardinals. Suppose
P is a forcing notion and G C P is generic. Then

Th((C")") = Th((C*)"19).
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Proof.
Let H; be generic for Q. Now

ji: (€)Y = (€M = (C) = (cxy)".
Let H» be generic for Q over V[G]. Then
fo: (CHIE — (€)M = (C1)"PRl = (C2 )19 = (C)".

O
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Theorem
[P(w) N C*| < N
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Theorem
If there are infinitely many Woodin cardinals, then there is a
cone of reals x such that C*(x) satisfies CH.
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If two reals x and y are Turing-equivalent, then C*(x) = C*(y).
Hence the set
{y Cw:Cy) = CH} (1)
is closed under Turing-equivalence. Need to show that
() The set (1) is projective.
(Il) For every real x there is areal y suchthat x <y yand y is
in the set (1).
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Lemma
Suppose there is a Woodin cardinal and a measurable cardinal
above it. The following conditions are equivalent:

(i) C(y) = CH.

(il) There is a countable iterable structure M with a
Woodin cardinal such thaty € M,
M & a(“L.(y) = CH") and for all countable
iterable structures N with a Woodin cardinal such
thaty € N: P(w)(€)" C P(w)€".
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Stationary logic

Definition

M = aasp(s) <= {Ac M= : M = ¢(A)} contains a club
of countable subsets of M. (i.e. almost all countable subsets A
of M satisfy ¢(A).) We denote —aas—¢ by stat sy.

C(aa) = C(L(aa))

C* C C(aa)
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Definition
1. Afirst order structure M is club-determined if

—, —.

M = V&VX[aate(X, 5, 1) V aat-¢(X, §, 1)],

where (X, §, 1) is any formula of £(aa).
2. We say that the inner model C(aa) is club-determined if
every level L, is.
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Theorem
If there are a proper class of measurable Woodin cardinals or
MM ™" holds, then C(aa) is club-determined.

Proof.
Suppose L, is the least counter-example. W.L.o.g o < wy. Let §
be measurable Woodin, or ws in the case of MM ™. The
hierarchies

C(aa)V, C(aa)V!®, C(aa;)"

are all the same and the (potential) failure of
club-determinateness occurs in all at the same level. O
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Theorem

Suppose there are a proper class of measurable Woodin

cardinals or MM ™. Then every regular > R is measurable
in C(aa).
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Theorem
Suppose there are a proper class of measurable Woodin
cardinals. Then the theory of C(aa) is (set) forcing absolute.

Proof.

Suppose P is a forcing notion and § is a Woodin cardinal > |P|.

Letj: V — M be the associated elementary embedding. Now
C(aa) = (C(aa))" = (C(aa<s))"

On the other hand, let H C P be generic over V. Then § is still
Woodin, so we have the associated elementary embedding
J - V[H] — M'. Again

(C(aa)) " = (C(aa))" = (C(aa<s)) 1.

Finally, we may observe that (C(aa.;))"I"! = (C(aa;))Y.
Hence
(C(aa)"!" = (C(aa))".
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Definition
C(aa’) is the extension of C(aa) obtained by allowing “implicit"
definitions.

e C* C C(aa) C C(aa).
e The previous results about C(aa) hold also for C(aa’).
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Definition

f: P, (L)) — L, is definable in the aa-model if f(p) is uniformly
definable in L], for p € P,,(L,) i.e. there is a formula 7(P, x, a)
in L(aa), with possibly a parameter a from L, such that for a
club of p € P,,,(L,,)) there is exactly one x satisfying 7(P, x, @) in
(L., p). We (misuse notation and) denote this unique x by 7(p),
and call the function p — 7(p) a definable function.
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Definition
1. Define forafixedaand a,be L), 7(P, x,a) =, o(P, x, b) if
L, = aaP3x(r(P, x,a) A o(P, x,b)). The equivalence
classes are denoted [(«, 7, @)].

2. Suppose we have 7(P, x, a) on L., defining f, and
(P, x,b) on L, a < 3, defining f*. We say that f* is a
lifting of f if for a club of g in R,,(L}), f*(q) = f(g N Ly).
3. Define [(«, 7, a)]E[(B, ', b)] if « < 8 and
L = aaP(r*(P) € 7/(P)), where 7* is the lifting of 7 to L}.
4. Fix a. Let D, be the class of all [(«, 7, a)].
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Assume MM+,

Lemma
J(w1) = wo.

Lemma
L, E aaPp(P) <= M E ¢o(j"«a).
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Theorem (MM+)
C(aa) &= CH (even better: $).
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Shelah’s stationary logic

Definition
M = Q% xyzp(x, a)i(y, z, &) if and only if (My, Ro), where

Mo ={beM: M= (b, a)}

and
Ro = {(b,c) € M: M = (b, c,3)},

is an Ny-like linear order and the set 7 of initial segments of
(Mo, Ro) with an Ry-supremum in M is stationary in the set D
of all (countable) initial segments of M in the following sense:
If 7 C D is unbounded in D and o-closed in D, then 7 NZ # (.
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« The logic £(Q%), a sublogic of £(aa), is recursively
axiomatizable and Ry-compact. We call this logic Shelah’s
stationary logic, and denote C(£(QS!)) by C(aa™).

o We can say in the logic £(Q%!) that a formula o(x) defines
a stationary (in V) subset of wq in a transitive model M
containing w1 as an element as follows:

M = Vx(o(x) = x € wi) AQ%xyzo(X)(p(y) Ap(2) Ay € 2).

Hence
C(aa”)NNS,, € C(aa™).
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Theorem
If there is a Woodin cardinal or MM holds, then the filter
D = C(aa™) NNS,, is an ultrafilter in C(aa™) and

C(aa™) = L[D].
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Theorem
If there is a proper class of Woodin cardinals, then for all set
forcings P and generic sets G C P

Th(C(aa™)") = Th(C(aa™)14).
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We write
HOD; =¢ C(X1).

Note:
o {a < f:cfY(a) =w} € HOD;
* {(.f) €7 :|a]” < |B|"} € HOD;
e {a < f:«cardinalin V} € HOD4
e {(ag,a1) € A% |ag|" < (211)¥} € HOD;
e {a<p:(2P)Y = (ja|")"} € HOD;
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Lemma
1. C* C HOD;.
2. C(Q{"™=*) C HOD;y
3. If0! exists, then 0f € HODj4
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Theorem

It is consistent, relative to the consistency of infinitely many
weakly compact cardinals that for some \:

{k < X\ : k weakly compact (in V)} ¢ HODy,

and, moreover, HOD¢ = L £ HOD.
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Open questions

C* has small large cardinals, is forcing absolute (assuming
PCW).

OPEN: Can C* have a measurable cardinal?

C* has some elements of GCH

OPEN: Does C* satisfy CH if large cardinals are present?
C(aa) has measurable cardinals.

OPEN: Bigger cardinals in C(aa)?
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