Introduction •000000

Inner models from extended logics

Joint work with Juliette Kennedy and Menachem Magidor

Department of Mathematics and Statistics, University of Helsinki ILLC, University of Amsterdam

January 2017

Constructible hierarchy generalized

$$\begin{array}{lll} L'_0 & = & \emptyset \\ L'_{\alpha+1} & = & \mathsf{Def}_{\mathcal{L}^*}(L'_\alpha) \\ L'_\nu & = & \bigcup_{\alpha<\nu} L'_\alpha \text{ for limit } \nu \end{array}$$

We use $C(\mathcal{L}^*)$ to denote the class $\bigcup_{\alpha} L'_{\alpha}$.

Introduction 0000000

$$X = \{ a \in \mathcal{L}'_{\alpha} : (\mathcal{L}'_{\alpha}, \in) \models \varphi(a, \vec{b}) \}$$

Introduction

0000000

Examples

• $C(\mathcal{L}_{\omega\omega}) = L$

Introduction 0000000

- $C(\mathcal{L}_{\omega_1\omega}) = L(\mathbb{R})$
- $C(\mathcal{L}_{\omega_1\omega_1}) = \text{Chang model}$
- $C(\mathcal{L}^2) = HOD$

Possible attributes of inner models

- Forcing absolute.
- Support large cardinals.
- Satisfy Axiom of Choice.
- Arise "naturally".
- Decide questions such as CH.

Inner models we have

- L: Forcing-absolute but no large cardinals (above WC)
- HOD: Has large cardinals but forcing-fragile
- $L(\mathbb{R})$: Forcing-absolute, has large cardinals, but no AC
- Extender models

Shelah's cofinality quantifier

Definition

The cofinality quantifier Q_{ω}^{cf} is defined as follows:

$$\mathcal{M} \models Q_{\omega}^{\mathrm{cf}} x y \varphi(x, y, \vec{a}) \iff \{(c, d) : \mathcal{M} \models \varphi(c, d, \vec{a})\}$$

is a linear order of cofinality ω .

- Axiomatizable
- Fully compact
- Downward Löwenheim-Skolem down to №1

The "cof-model" C*

Definition

$$C^* =_{def} C(Q^{\mathrm{cf}}_{\omega})$$

Example:

$$\{\alpha < \beta : \operatorname{cf}^{\mathsf{V}}(\alpha) > \omega\} \in C^*$$

If 0^{\sharp} exists, then $0^{\sharp} \in C^*$.

Proof.

Let

$$X = \{ \xi < \aleph_{\omega} : \xi \text{ is a regular cardinal in } L \text{ and } \mathrm{cf}(\xi) > \omega \}$$

Now $X \in C^*$ and

$$0^{\sharp} = \{ \lceil \varphi(x_1, ..., x_n) \rceil : L_{\aleph_{\omega}} \models \varphi(\gamma_1, ..., \gamma_n) \text{ for some } \gamma_1 < ... < \gamma_n \text{ in } X \}.$$

The Dodd-Jensen Core model is contained in C*.

Theorem

Suppose L^{μ} exists. Then some L^{ν} is contained in C^* .

If there is a measurable cardinal κ , then $V \neq C^*$.

Proof.

Suppose $V = C^*$ and κ is a measurable cardinal. Let $i: V \to M$ with critical point κ and $M^{\kappa} \subseteq M$. Now $(C^*)^M = (C^*)^V = V$, whence M = V. This contradicts Kunen's result that there cannot be a non-trivial $i: V \to V$.

If there is an infinite set E of measurable cardinals (in V), then $E \notin C^*$. Moreover, then $C^* \neq \text{HOD}$.

Proof.

As Kunen's result that if there are uncountably many measurable cardinals, then AC is false in the Chang model.

Stationary Tower Forcing

Suppose λ is Woodin¹.

- There is a forcing ℚ such that in V[G] there is j: V → M with V[G] |= M^ω ⊆ M and j(ω₁) = λ.
- For all regular $\omega_1 < \kappa < \lambda$ there is a cofinality ω preserving forcing $\mathbb P$ such that in V[G] there is $j:V\to M$ with $V[G]\models M^\omega\subseteq M$ and $j(\kappa)=\lambda$.

If there is a Woodin cardinal, then ω_1 is (strongly) Mahlo in C^* .

Proof.

Let \mathbb{Q} , G and $j: V \to M$ with $M^{\omega} \subset M$ and $j(\omega_1) = \lambda$ be as above.

Now,

$$(C^*)^M = C^*_{<\lambda} \subseteq V.$$

Suppose there is a Woodin cardinal λ . Then every regular cardinal κ such that $\omega_1 < \kappa < \lambda$ is weakly compact in C^* .

Proof.

Suppose λ is a Woodin cardinal, $\kappa > \omega_1$ is regular and $< \lambda$. To prove that κ is strongly inaccessible in C^* we can use the "second" stationary tower forcing \mathbb{P} above. With this forcing, cofinality ω is not changed, whence $(C^*)^M = C^*$.

If $V = L^{\mu}$, then C^* is exactly the inner model $M_{\omega^2}[E]$, where M_{ω^2} is the ω^2 th iterate of V and $E = \{\kappa_{\omega \cdot n} : n < \omega\}$.

Suppose there is a proper class of Woodin cardinals. Suppose \mathcal{P} is a forcing notion and $G \subseteq \mathcal{P}$ is generic. Then

$$Th((C^*)^V) = Th((C^*)^{V[G]}).$$

Proof. Let H_1 be generic for \mathbb{Q} . Now

$$j_1: (C^*)^V \to (C^*)^{M_1} = (C^*)^{V[H_1]} = (C^*_{<\lambda})^V.$$

Let H_2 be generic for \mathbb{Q} over V[G]. Then

$$j_2: (C^*)^{V[G]} o (C^*)^{M_2} = (C^*)^{V[H_2]} = (C^*_{<\lambda})^{V[G]} = (C^*_{<\lambda})^{V}.$$

$$|\mathcal{P}(\omega) \cap C^*| \leq \aleph_2.$$

If there are infinitely many Woodin cardinals, then there is a cone of reals x such that $C^*(x)$ satisfies CH.

$$\{y \subseteq \omega : C^*(y) \models CH\} \tag{1}$$

is closed under Turing-equivalence. Need to show that

- (I) The set (1) is projective.
- (II) For every real x there is a real y such that $x \leq_T y$ and y is in the set (1).

Lemma

Suppose there is a Woodin cardinal and a measurable cardinal above it. The following conditions are equivalent:

- (i) $C^*(y) \models CH$.
- (ii) There is a countable iterable structure M with a Woodin cardinal such that $v \in M$. $M \models \exists \alpha("L'_{\alpha}(y) \models CH")$ and for all countable iterable structures N with a Woodin cardinal such that $\mathbf{v} \in \mathbb{N}$: $\mathcal{P}(\omega)^{(C^*)^N} \subset \mathcal{P}(\omega)^{(C^*)^M}$.

Stationary logic

Definition

 $\mathcal{M} \models aa s\varphi(s) \iff \{A \in [M]^{\leq \omega} : \mathcal{M} \models \varphi(A)\}$ contains a club of countable subsets of M. (i.e. almost all countable subsets A of *M* satisfy $\varphi(A)$.) We denote $\neg aa s \neg \varphi$ by stat $s\varphi$.

$$C(aa) = C(\mathcal{L}(aa))$$

$$C^* \subseteq C(aa)$$

A first order structure M is club-determined if

$$\mathcal{M} \models \forall \vec{\mathbf{s}} \forall \vec{\mathbf{x}} [\text{aa} \vec{t} \varphi(\vec{\mathbf{x}}, \vec{\mathbf{s}}, \vec{t}) \vee \text{aa} \vec{t} \neg \varphi(\vec{\mathbf{x}}, \vec{\mathbf{s}}, \vec{t})],$$

The aa-model 0000000000000

where $\varphi(\vec{x}, \vec{s}, \vec{t})$ is any formula of $\mathcal{L}(aa)$.

2. We say that the inner model C(aa) is club-determined if every level L'_{α} is.

If there are a proper class of measurable Woodin cardinals or MM^{++} holds, then C(aa) is club-determined.

Proof.

Suppose L'_{α} is the least counter-example. W.l.o.g $\alpha < \omega_2^{V}$. Let δ be measurable Woodin, or ω_2 in the case of MM⁺⁺. The hierarchies

$$C(aa)^M$$
, $C(aa)^{V[G]}$, $C(aa_{<\delta})^V$

are all the same and the (potential) failure of club-determinateness occurs in all at the same level.

Suppose there are a proper class of measurable Woodin cardinals or MM⁺⁺. Then every regular $\kappa \geq \aleph_1$ is measurable in C(aa).

The aa-model 0000000000000

Suppose there are a proper class of measurable Woodin cardinals. Then the theory of C(aa) is (set) forcing absolute.

Proof.

Suppose \mathbb{P} is a forcing notion and δ is a Woodin cardinal $> |\mathbb{P}|$. Let $i: V \to M$ be the associated elementary embedding. Now

$$C(aa) \equiv (C(aa))^M = (C(aa_{<\delta}))^V.$$

On the other hand, let $H \subseteq \mathbb{P}$ be generic over V. Then δ is still Woodin, so we have the associated elementary embedding $j':V[H]\to M'$. Again

$$(C(aa))^{V[H]} \equiv (C(aa))^{M'} = (C(aa_{<\delta}))^{V[H]}.$$

Finally, we may observe that $(C(aa_{<\delta}))^{V[H]} = (C(aa_{<\delta}))^{V}$. Hence

$$(C(aa))^{V[H]} \equiv (C(aa))^{V}$$

C(aa') is the extension of C(aa) obtained by allowing "implicit" definitions.

- $C^* \subseteq C(aa) \subseteq C(aa')$.
- The previous results about C(aa) hold also for C(aa').

 $f: \mathcal{P}_{\omega}(L'_{\alpha}) \to L'_{\alpha}$ is definable in the aa-model if f(p) is uniformly definable in L'_{α} , for $p \in \mathcal{P}_{\omega_1}(L'_{\alpha})$ i.e. there is a formula $\tau(P, x, a)$ in $\mathcal{L}(aa)$, with possibly a parameter a from \mathcal{L}'_{α} , such that for a club of $p \in \mathcal{P}_{\omega}(L'_{\alpha})$ there is exactly one x satisfying $\tau(P, x, a)$ in (L'_{α}, p) . We (misuse notation and) denote this unique x by $\tau(p)$, and call the function $p \mapsto \tau(p)$ a definable function.

- 1. Define for a fixed α and $a, b \in L'_{\alpha}, \tau(P, x, a) \equiv_{\alpha} \sigma(P, x, b)$ if $L'_{\alpha} \models aaP\exists x(\tau(P, x, a) \land \sigma(P, x, b))$. The equivalence classes are denoted $[(\alpha, \tau, a)]$.
- 2. Suppose we have $\tau(P, x, a)$ on L'_{α} defining f, and $\tau'(P, x, b)$ on L'_{β} , $\alpha < \beta$, defining f^* . We say that f^* is a *lifting* of f if for a club of q in $\mathcal{P}_{\omega_1}(L'_{\beta})$, $f^*(q) = f(q \cap L'_{\alpha})$.
- 3. Define $[(\alpha, \tau, a)]E[(\beta, \tau', b)]$ if $\alpha < \beta$ and $L'_{\beta} \models aaP(\tau^*(P) \in \tau'(P))$, where τ^* is the lifting of τ to L'_{β} .
- 4. Fix α . Let D_{α} be the class of all $[(\alpha, \tau, a)]$.

The aa-model

Assume MM⁺⁺.

Lemma

$$j(\omega_1)=\omega_2.$$

Lemma

$$\mathcal{L}'_{\alpha} \models \mathrm{aa} P \varphi(P) \iff M \models \varphi(j''\alpha).$$

The aa-model 00000000000000

Theorem (MM⁺⁺) $C(aa) \models CH (even better: \lozenge).$

 $\mathcal{M} \models Q^{St}xyz\varphi(x,\vec{a})\psi(y,z,\vec{a})$ if and only if (M_0,R_0) , where

$$M_0 = \{b \in M : \mathcal{M} \models \varphi(b, \vec{a})\}$$

and

$$R_0 = \{(b, c) \in M : \mathcal{M} \models \psi(b, c, \vec{a})\},$$

is an \aleph_1 -like linear order and the set \mathcal{I} of initial segments of (M_0, R_0) with an R_0 -supremum in M_0 is stationary in the set \mathcal{D} of all (countable) initial segments of M_0 in the following sense: If $\mathcal{J} \subseteq \mathcal{D}$ is unbounded in \mathcal{D} and σ -closed in \mathcal{D} , then $\mathcal{J} \cap \mathcal{I} \neq \emptyset$. • We can say in the logic $\mathcal{L}(Q^{St})$ that a formula $\varphi(x)$ defines a stationary (in V) subset of ω_1 in a transitive model M containing ω_1 as an element as follows:

$$M \models \forall x (\varphi(x) \to x \in \omega_1) \land Q^{St} xyz \varphi(x) (\varphi(y) \land \varphi(z) \land y \in z).$$

Hence

$$C(aa^-) \cap NS_{\omega_1} \in C(aa^-).$$

If there is a Woodin cardinal or MM holds, then the filter $D = C(aa^{-}) \cap NS_{\omega_1}$ is an ultrafilter in $C(aa^{-})$ and

$$C(aa^-) = L[D].$$

If there is a proper class of Woodin cardinals, then for all set forcings P and generic sets $G \subseteq P$

$$\mathit{Th}(\mathit{C}(\mathsf{aa}^{-})^{\mathit{V}}) = \mathit{Th}(\mathit{C}(\mathsf{aa}^{-})^{\mathit{V}[\mathit{G}]}).$$

We write

$$HOD_1 =_{\mathrm{df}} C(\Sigma_1^1).$$

Note:

- $\{\alpha < \beta : \operatorname{cf}^{V}(\alpha) = \omega\} \in \operatorname{HOD}_{1}$
- $\{(\alpha, \beta) \in \gamma^2 : |\alpha|^V \le |\beta|^V\} \in HOD_1$
- $\{\alpha < \beta : \alpha \text{ cardinal in } V\} \in HOD_1$
- $\{(\alpha_0, \alpha_1) \in \beta^2 : |\alpha_0|^V \le (2^{|\alpha_1|})^V\} \in HOD_1$
- $\{\alpha < \beta : (2^{|\alpha|})^V = (|\alpha|^+)^V\} \in HOD_1$

- 1. $C^* \subseteq HOD_1$.
- **2**. $C(Q_1^{MM,<\omega}) \subseteq HOD_1$
- 3. If 0^{\sharp} exists, then $0^{\sharp} \in \mathrm{HOD}_1$

It is consistent, relative to the consistency of infinitely many weakly compact cardinals that for some λ :

 $\{\kappa < \lambda : \kappa \text{ weakly compact (in V)}\} \notin HOD_1$,

and, moreover, $HOD_1 = L \neq HOD$.

Open questions

- C* has small large cardinals, is forcing absolute (assuming) PCW).
- OPEN: Can C* have a measurable cardinal?
- C* has some elements of GCH
- OPEN: Does C* satisfy CH if large cardinals are present?
- C(aa) has measurable cardinals.
- OPEN: Bigger cardinals in C(aa)?