HOD in $M_n(\overline{x,g})$

Sandra Uhlenbrock

January 25th-30th, 2017

work in progress with Grigor Sargsyan

Arctic Set Theory Workshop 3, Kilpisjärvi, Finland

Some like it HOD

UC IRVINE, JULY 18 - 29, 2016

• Want to understand HOD^M for various inner models M like $L(\mathbb{R}), L[x]$ or $M_n(x)$ (assuming determinacy).

- Want to understand HOD^M for various inner models M like $L(\mathbb{R}), L[x]$ or $M_n(x)$ (assuming determinacy).
- Test question: Is HOD^M a model of GCH?

- Want to understand HOD^M for various inner models M like $L(\mathbb{R}), L[x]$ or $M_n(x)$ (assuming determinacy).
- Test question: Is HOD^M a model of GCH?
- ullet Goal: Show that HOD^M is a core model (i.e. a fine structural model).

- Want to understand HOD^M for various inner models M like $L(\mathbb{R}), L[x]$ or $M_n(x)$ (assuming determinacy).
- Test question: Is HOD^M a model of GCH?
- ullet Goal: Show that HOD^M is a core model (i.e. a fine structural model).
- This would imply that we have $GCH, \Diamond, \Box, \ldots$ in HOD^M .

Assume $\mathrm{AD}^{L(\mathbb{R})}$.

What is known about $\overline{\mathrm{HOD}^{L(\mathbb{R})}}$

Assume $\mathrm{AD}^{L(\mathbb{R})}$.

• (Becker, 1980) $HOD^{L(\mathbb{R})} \models GCH_{\alpha}$ for all $\alpha < \omega_1^V$.

Assume $\mathrm{AD}^{L(\mathbb{R})}$.

- (Becker, 1980) $HOD^{L(\mathbb{R})} \models GCH_{\alpha}$ for all $\alpha < \omega_1^V$.
- (Steel, Woodin, 1993) $\mathrm{HOD}^{L(\mathbb{R})} \cap \mathbb{R} = M_{\omega} \cap \mathbb{R}$.

Assume $\mathrm{AD}^{L(\mathbb{R})}$.

- (Becker, 1980) $\mathrm{HOD}^{L(\mathbb{R})} \vDash \mathrm{GCH}_{\alpha}$ for all $\alpha < \omega_1^V$.
- (Steel, Woodin, 1993) $\mathrm{HOD}^{L(\mathbb{R})} \cap \mathbb{R} = M_{\omega} \cap \mathbb{R}$.
- (Steel, Woodin, 1993)

$$\mathrm{HOD}^{L(\mathbb{R})} \cap \mathcal{P}(\omega_1^V) = N \cap \mathcal{P}(\omega_1^V),$$

where N is the $\omega_1^V\text{-th}$ iterate of M_ω by it's least measure.

Assume $\mathrm{AD}^{L(\mathbb{R})}$.

- (Becker, 1980) $\mathrm{HOD}^{L(\mathbb{R})} \vDash \mathrm{GCH}_{\alpha}$ for all $\alpha < \omega_1^V$.
- (Steel, Woodin, 1993) $\mathrm{HOD}^{L(\mathbb{R})} \cap \mathbb{R} = M_{\omega} \cap \mathbb{R}$.
- (Steel, Woodin, 1993)

$$\mathrm{HOD}^{L(\mathbb{R})} \cap \mathcal{P}(\omega_1^V) = N \cap \mathcal{P}(\omega_1^V),$$

where N is the ω_1^V -th iterate of M_ω by it's least measure.

• (Steel, 1995)

$$\mathrm{HOD}^{L(\mathbb{R})} \cap V_{(\boldsymbol{\delta}_1^2)^{L(\mathbb{R})}} = M_{\infty} \cap V_{(\boldsymbol{\delta}_1^2)^{L(\mathbb{R})}},$$

where M_{∞} is a direct limit of iterates of M_{ω} , and $(\delta_1^2)^{L(\mathbb{R})} = \sup\{\alpha \mid \exists f(f: \mathbb{R} \to \alpha \text{ and } f \text{ is surjective and } \Delta_1^{L(\mathbb{R})})\}.$

Assume $AD^{L(\mathbb{R})}$.

- (Becker, 1980) $HOD^{L(\mathbb{R})} \models GCH_{\alpha}$ for all $\alpha < \omega_1^V$.
- (Steel, Woodin, 1993) $\mathrm{HOD}^{L(\mathbb{R})} \cap \mathbb{R} = M_{\omega} \cap \mathbb{R}$.
- (Steel, Woodin, 1993)

$$\mathrm{HOD}^{L(\mathbb{R})} \cap \mathcal{P}(\omega_1^V) = N \cap \mathcal{P}(\omega_1^V),$$

where N is the ω_1^V -th iterate of M_ω by it's least measure.

• (Steel, 1995)

$$\mathrm{HOD}^{L(\mathbb{R})} \cap V_{(\boldsymbol{\delta}_1^2)^{L(\mathbb{R})}} = M_{\infty} \cap V_{(\boldsymbol{\delta}_1^2)^{L(\mathbb{R})}},$$

where M_{∞} is a direct limit of iterates of M_{ω} , and $(\delta_1^2)^{L(\mathbb{R})} = \sup\{\alpha \mid \exists f(f:\mathbb{R} \to \alpha \text{ and } f \text{ is surjective and } \Delta_1^{L(\mathbb{R})})\}.$

• (Woodin, ≈ 1996)

$$\mathrm{HOD}^{L(\mathbb{R})} = L[M_{\infty}, \Lambda],$$

where Λ is a partial iteration strategy for M_{∞} .

What is known about $\mathrm{HOD}^{L[x]}$

What is known about $\mathrm{HOD}^{L[x]}$

... very little.

What is known about $\mathrm{HOD}^{L[x]}$

... very little.

Question

Assume Δ^1_2 -determinacy. Do we have

$$HOD^{L[x]} \models GCH$$

for a Turing cone of reals x?

What we can do is (under the right determinacy assumption) analyze $\mathrm{HOD}^{L[x][G]}$ for a Turing cone of reals x, where

- ullet G is $\operatorname{Col}(\omega, <\!\kappa_x)$ -generic over L[x], and
- κ_x = least inaccessible cardinal in L[x].

$\mathrm{HOD}^{L[x,G]}$ as a core model

For every real x let κ_x denote the least inaccessible cardinal in L[x].

Theorem (Woodin, 90's)

Assume Δ_2^1 -determinacy. For a Turing cone of x,

$$\mathrm{HOD}^{L[x,G]} = L[M_{\infty}, \Lambda],$$

where G is $\operatorname{Col}(\omega, <\kappa_x)$ -generic over L[x], M_∞ is a direct limit of mice, and Λ is a partial iteration strategy for M_∞ .

$\overline{\mathrm{HOD}}$ in $\overline{M_n(x,g)}$

HOD in $M_n(x,g)$

Assume Π^1_{n+2} -determinacy.

Goal: Generalize this analysis to $\mathrm{HOD}^{M_n(x)[g]}$ for a Turing cone of reals x

HOD in $M_n(x, g)$

Assume Π^1_{n+2} -determinacy.

Goal: Generalize this analysis to $\mathrm{HOD}^{M_n(x)[g]}$ for a Turing cone of reals x, where

• $M_n(x)$ denotes the least proper class iterable premouse with n Woodin cardinals.

HOD in $M_n(x,g)$

Assume Π^1_{n+2} -determinacy.

Goal: Generalize this analysis to $\mathrm{HOD}^{M_n(x)[g]}$ for a Turing cone of reals x, where

- $M_n(x)$ denotes the least proper class iterable premouse with n Woodin cardinals,
- g is $\operatorname{Col}(\omega, <\kappa_x)$ -generic over $M_n(x)$,

HOD in $M_n(x, g)$

Assume Π^1_{n+2} -determinacy.

Goal: Generalize this analysis to $\mathrm{HOD}^{M_n(x)[g]}$ for a Turing cone of reals x, where

- $M_n(x)$ denotes the least proper class iterable premouse with n Woodin cardinals,
- g is $\operatorname{Col}(\omega, <\kappa_x)$ -generic over $M_n(x)$, and
- $\kappa_x < \delta_0^{M_n(x)}$ is an inaccessible strong cutpoint cardinal of $M_n(x)$ such that κ_x is a limit of strong cutpoint cardinals in $M_n(x)$.

Let x be a real such that $M_{n+1}^{\#} \in M_n(x)$.

• Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_∞^+ .

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_∞^+ .
- M_{∞}^+ is well-founded as M_{n+1} is sufficiently iterable.

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_∞^+ .
- M_{∞}^+ is well-founded as M_{n+1} is sufficiently iterable.
- Define an internal direct limit system of suitable strongly s-iterable premice in $M_n(x)[g]$ and call its direct limit M_{∞} .

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_{∞}^+ .
- M_{∞}^+ is well-founded as M_{n+1} is sufficiently iterable.
- Define an internal direct limit system of suitable strongly s-iterable premice in $M_n(x)[g]$ and call its direct limit M_{∞} .
- Sargsyan: $M_{\infty}=M_{\infty}^+$, so in particular M_{∞} is well-founded.

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_∞^+ .
- M_{∞}^+ is well-founded as M_{n+1} is sufficiently iterable.
- Define an internal direct limit system of suitable strongly s-iterable premice in $M_n(x)[g]$ and call its direct limit M_{∞} .
- Sargsyan: $M_{\infty}=M_{\infty}^+$, so in particular M_{∞} is well-founded.
- Sargsyan: $\delta^{M_{\infty}} = (\kappa_x^+)^{M_n(x)}$.

- Define a direct limit system of iterates of $M_{n+1}|(\delta_0^{+\omega})^{M_{n+1}}$ which have a Woodin cardinal that is countable in $M_n(x)[g]$ together with iteration embeddings, call the direct limit M_∞^+ .
- M_{∞}^+ is well-founded as M_{n+1} is sufficiently iterable.
- Define an internal direct limit system of suitable strongly s-iterable premice in $M_n(x)[g]$ and call its direct limit M_{∞} .
- Sargsyan: $M_{\infty}=M_{\infty}^+$, so in particular M_{∞} is well-founded.
- Sargsyan: $\delta^{M_{\infty}} = (\kappa_x^+)^{M_n(x)}$.
- By definability of the internal direct limit system we have that

$$M_{\infty} \subseteq \mathrm{HOD}^{M_n(x)[g]}$$
.

Let κ_{∞} be the least inaccessible cardinal of M_{∞} strictly above δ_{∞} .

• $M_{\infty}[H]$ for a $\operatorname{Col}(\omega, <\kappa_{\infty})$ -generic H is the derived model of M_{∞} .

Let κ_{∞} be the least inaccessible cardinal of M_{∞} strictly above δ_{∞} .

- $M_{\infty}[H]$ for a $\mathrm{Col}(\omega, <\kappa_{\infty})$ -generic H is the derived model of M_{∞} .
- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\mathrm{HOD}^{M_n(x)[g]}$.

Let κ_{∞} be the least inaccessible cardinal of M_{∞} strictly above δ_{∞} .

- $M_{\infty}[H]$ for a $\mathrm{Col}(\omega, <\kappa_{\infty})$ -generic H is the derived model of M_{∞} .
- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\mathrm{HOD}^{M_n(x)[g]}$.

Lemma (Derived model resemblance, Woodin)

The derived model $M_{\infty}[H]$ is elementary equivalent to $M_n(x)[g]$.

Let κ_{∞} be the least inaccessible cardinal of M_{∞} strictly above δ_{∞} .

- $M_{\infty}[H]$ for a $\mathrm{Col}(\omega, <\kappa_{\infty})$ -generic H is the derived model of M_{∞} .
- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\mathrm{HOD}^{M_n(x)[g]}$.

Lemma (Derived model resemblance, Woodin)

The derived model $M_{\infty}[H]$ is elementary equivalent to $M_n(x)[g]$.

• Therefore $M_{\infty}[H]$ has its own version of the direct limit system, call the direct limit model $M_{\infty}^* = (M_{\infty})^{M_{\infty}[H]}$.

Let κ_{∞} be the least inaccessible cardinal of M_{∞} strictly above δ_{∞} .

- $M_{\infty}[H]$ for a $\mathrm{Col}(\omega, <\kappa_{\infty})$ -generic H is the derived model of M_{∞} .
- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\mathrm{HOD}^{M_n(x)[g]}$.

Lemma (Derived model resemblance, Woodin)

The derived model $M_{\infty}[H]$ is elementary equivalent to $M_n(x)[g]$.

- Therefore $M_{\infty}[H]$ has its own version of the direct limit system, call the direct limit model $M_{\infty}^* = (M_{\infty})^{M_{\infty}[H]}$.
- M_{∞} shows up in this direct limit system, let $\pi_{\infty}:M_{\infty}\to M_{\infty}^*$ be the corresponding map.

Let κ_{∞} be the least inaccessible cardinal of M_{∞} strictly above δ_{∞} .

- $M_{\infty}[H]$ for a $\mathrm{Col}(\omega, <\kappa_{\infty})$ -generic H is the derived model of M_{∞} .
- Use the derived model as a surrogate for $M_n(x)[g]$ to compute $\mathrm{HOD}^{M_n(x)[g]}$.

Lemma (Derived model resemblance, Woodin)

The derived model $M_{\infty}[H]$ is elementary equivalent to $M_n(x)[g]$.

- Therefore $M_{\infty}[H]$ has its own version of the direct limit system, call the direct limit model $M_{\infty}^* = (M_{\infty})^{M_{\infty}[H]}$.
- M_{∞} shows up in this direct limit system, let $\pi_{\infty}:M_{\infty}\to M_{\infty}^*$ be the corresponding map.
- In fact, $\pi_{\infty} \upharpoonright \alpha \in M_{\infty}$ for all $\alpha < \delta$.

$\text{HOD}^{\overline{M_n(x,g)}}$

Using this we can show:

Theorem

$$\mathrm{HOD}^{M_n(x)[g]} \cap V_{\delta_{\infty}} = M_{\infty} \cap V_{\delta_{\infty}}.$$

$\overline{\mathrm{HOD}^{M_n}(x,g)}$

Using this we can show:

Theorem

$$\mathrm{HOD}^{M_n(x)[g]} \cap V_{\delta_{\infty}} = M_{\infty} \cap V_{\delta_{\infty}}.$$

Lemma

For some $M_n(x)[g]$ -definable set $A\subseteq \omega_2^{M_n(x)[g]}$ we have that

$$HOD^{M_n(x)[g]} = M_n(A).$$

$\overline{\mathrm{HOD}}^{M_n(x,g)}$

Using this we can show:

Theorem

$$\mathrm{HOD}^{M_n(x)[g]} \cap V_{\delta_{\infty}} = M_{\infty} \cap V_{\delta_{\infty}}.$$

Lemma

For some $M_n(x)[g]$ -definable set $A\subseteq \omega_2^{M_n(x)[g]}$ we have that

$$HOD^{M_n(x)[g]} = M_n(A).$$

This should then give that

$$\mathrm{HOD}^{M_n(x)[g]} = M_n(M_\infty, \Lambda),$$

where Λ is a partial iteration strategy for M_{∞} .

Open questions

Question

Is $\mathrm{HOD}^{L[x]}$ (without the generic G) a core model?

Open questions

Question

Is $HOD^{L[x]}$ (without the generic G) a core model?

Proposition (Schlutzenberg, 2016)

Given sufficient large cardinals, there is a cone of reals x such that if \mathcal{F} is a natural candidate for a limit system to analyze $\mathrm{HOD}^{L[x]}$, then \mathcal{F} is not closed under pseudo-comparison of pairs.

Open questions

Question

Is $HOD^{L[x]}$ (without the generic G) a core model?

Proposition (Schlutzenberg, 2016)

Given sufficient large cardinals, there is a cone of reals x such that if \mathcal{F} is a natural candidate for a limit system to analyze $\mathrm{HOD}^{L[x]}$, then \mathcal{F} is not closed under pseudo-comparison of pairs.

Question

Is $\mathrm{HOD}^{M_n(x)}$ (without the generic g) a core model?

It is not even known if $HOD^{L[x]}$ and $HOD^{M_n(x)}$ are models of GCH.

Thank you for your attention!