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Singular cardinals

Why are they interesting?

I deep constraints provable from ZFC,

I consistency results require large cardinals.

Can use them to “test the power of forcing”.

A familiar phenomenon in singular cardinal combinatorics:

Singular cardinals with countable cofinality behave quite differently
from those with uncountable cofinality.

For example: the powerset function for singular cardinals.
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Singular cardinals: countable vs. uncountable cofinality

A dichotomy about the behavior of the powerset function:

Recall the singular cardinal hypothesis (SCH): if κ is singular strong
limit, then 2κ = κ+, an analogue of CH for singular cardinals.

1. Silver: SCH cannot fail for the first time at a singular cardinal
with uncountable cofinality.

2. Magidor: SCH can consistently fail at ℵω, from large cardinals.
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Singular cardinals: countable vs. uncountable cofinality

We discuss another example of such a difference:

a sharp dichotomy in analyzing the definability of subsets of a
singular cardinal, based on its cofinality.

I (Shelah) If κ is singular of uncountable cofinality, then there is
x ⊂ κ, such that P(κ) ⊂ HODx .
HODx is the class of all sets hereditarily ordinal-definable from
x .

I We show that this is not the case for countable cofinalities.
More precisely, we construct a forcing extension where the
above fails.
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The main result

Theorem
(Cummings, S. Friedman, Magidor, Rinot, S.)
Suppose that κ < λ, cf(κ) = ω, λ is inaccessible, and κ is a limit
of λ-supercompact cardinals. Then there is a generic extension
V [G ], in which

I no bounded subsets of κ are added and κ+ = λ;

I for every x ⊂ κ, (κ+)HODx < λ.

Note: work during a SQuaRE at AIM; thank you AIM!
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The main points

I Let κ = supκn, each κn is λ-supercompact.

I Force with a diagonal extender based supercompact Prikry
forcing.

I The generic objects adds
I an unbounded F ⊂ λ \ κ,
I ω-sequences
~xα = 〈xαn | n < ω〉 for α ∈ F , such that
each xαn ∈ Pκn(α), and α = ∪nxα.

I Preserves cardinals up to κ and above λ and makes λ = κ+.
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Forcing, in one slide

Goal: Adjoin a new object to a model of set theory.
Start with:

I a model M of ZFC, called the ground model,

I a partially ordered set (P,≤) ∈ M,

I elements of P are called conditions.

Then pick an object G ⊂ P called a generic filter of P where:

I G is a filter

I G meets every maximal antichain of P in M.

Obtain a model M[G ] of ZFC, called a generic extension, s. t.:

I M ⊂ M[G ],

I G ∈ M[G ] and G /∈ M,

I information about M[G ] can be obtained while working in M.
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I M ⊂ M[G ],

I G ∈ M[G ] and G /∈ M,

I information about M[G ] can be obtained while working in M.
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Prikry type forcing

I Classical Prikry forcing:

let κ be a measurable cardinal and
U be a normal measure on κ. The forcing conditions are pairs
〈s,A〉, where s is a finite sequence of ordinals in κ and A ∈ U.
〈s1,A1〉 ≤ 〈s0,A0〉 iff:

I s0 is an initial segment of s1.
I s1 \ s0 ⊂ A0,
I A1 ⊂ A0.

A generic object for this poset will add a sequence
〈αn | n < ω〉, cofinal in κ, such that for every A ∈ U, for all
large n, αn ∈ A.
Cardinals are preserved, due to the Prikry property.
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Prikry forcings

I Classical Prikry uses a measure on κ to add an ω-sequence
through κ.

I Supercompact Prikry: uses a measure on Pκ(λ) to add an ω
-sequence 〈xn | n < ω〉 through Pκ(λ), such that in the
generic extension λ = ∪nxn.

I In our construction: λ > κ = supn κn. Use many
supercompact measures to add ω sequences through Pκn(α)
for unboundedly many α < λ.
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The set up - measures

I 〈κn | n < ω〉 is an increasing sequence of λ-supercompact
cardinals with limit κ.

I For n < ω, fix normal measures Un on Pκn(λ).

I For n < ω,α < λ, let Un,α be the projection of Un to Pκn(α).

I The extender at level n is obtained by the approximations
Un,α.

I We will use the sequence of measures 〈Un,α | n < ω〉 to add
〈xαn | n < ω〉.

I The support of the conditions is quite large, which is
necessary for preservation of cardinals.
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The forcing

Conditions in P are of the form:

p = 〈f0, ..., fn−1, 〈an,An, fn〉, 〈an+1,An+1, fn+1〉, ...〉,

where
I each fk is a function with

I dom(fk) ⊂ [κ, λ) of size less than λ, and
I each fk(η) ∈ Pκk

(η),

I each ak ⊂ [κ, λ) of size less than λ and is disjoint from
dom(fk),

I Ak is a measure one set in Uk,max(ak ),

I an ⊂ an+1 ⊂ ...
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Properties of the forcing

I λ+ c.c.

I The Prikry property,

I ≤∗ restricted to conditions of length n is κn-closed.

The last two properties give:

1. no new bounded subsets of κ;

2. preservation of λ.
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The generic Prikry sequences

Denote p = 〈f p0 , ..., f
p
n−1, 〈a

p
n ,A

p
n, f

p
n 〉, ...〉, n = lh(p).

Let G be P-generic. G adds:

I F = ∪{apk | p ∈ G , k ≥ lh(p)}.
I Let f ∗n = ∪p∈G f pn .

I For α ∈ F , xαn = f ∗n (α).

I For α ∈ F , 〈xαn | n < ω〉 is ⊂-increasing with union α.
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Projected forcing

P adds:

I An unbounded F ⊂ λ and

I 〈xαn | n < ω〉 is ⊂-increasing with union α for α ∈ F .

We define Qα to be precisely the subposet used to add
〈xαn | n < ω〉, i.e.
V [Qα] = V [〈xαn | n < ω〉].
Properties of Qα:

I λ -c.c.;

I P projects to Qα below any condition forcing that α ∈ Ḟ .

I If x ⊂ κ in V [P], then there is α ∈ F , such that x ∈ V [Qα].
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Projected forcing

Suppose x ⊂ κ in V [P].

Want to show P(κ) * HODx .
Let α ∈ F , be such that x ∈ V [Qα].
By a homogeneity argument, we have (HODx)V [P] ⊂ V [Qα].

So, (κ+)HODx < λ.
In other words, in V [P], for all x ⊂ κ, P(κ) * HODx .

Actually, with some more work and stronger assumptions, can

make λ supercompact in HOD
V [G ]
x .
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