Infinitely often equal trees and Cohen reals

Yurii Khomskii joint with Giorgio Laguzzi

Arctic Set Theory III, 25-30 January 2017

Infinitely often equal reals

 $x, y \in \omega^{\omega}$ are infinitely often equal (ioe) iff

$$\exists^{\infty} n: \ x(n) = y(n).$$

Infinitely often equal reals

 $x, y \in \omega^{\omega}$ are infinitely often equal (ioe) iff

$$\exists^{\infty} n: \ x(n) = y(n).$$

 $A \subseteq \omega^{\omega}$ is an infinitely often equal (ioe) family iff

 $\forall x \exists y \in A : y \text{ is ioe to } x.$

Infinitely often equal reals

 $x, y \in \omega^{\omega}$ are infinitely often equal (ioe) iff

$$\exists^{\infty} n: \ x(n) = y(n).$$

 $A \subseteq \omega^{\omega}$ is an infinitely often equal (ioe) family iff

 $\forall x \,\exists y \in A : y \text{ is ioe to } x.$

 $A \subseteq \omega^{\omega}$ is a countably infinitely often equal (ioe) family iff

 $\forall \{x_i \mid i < \omega\} \ \exists y \in A : \ y \text{ is ioe to every } x_n.$

Full-splitting Miller trees

Who can come up with a **simple** countably ioe family?

Full-splitting Miller trees

Who can come up with a simple countably ioe family?

Definition

A tree $T \subseteq \omega^{<\omega}$ is called a **full-splitting Miller tree** (Rosłanowski tree) iff every $t \in T$ has an extension $s \in T$ such that $\operatorname{succ}_T(s) = \omega$.

Full-splitting Miller trees

Who can come up with a simple countably ioe family?

Definition

A tree $T\subseteq\omega^{<\omega}$ is called a **full-splitting Miller tree** (Rosłanowski tree) iff every $t\in T$ has an extension $s\in T$ such that $\mathrm{succ}_T(s)=\omega$.

If T is a full-splitting Miller tree then [T] is a countably ioe family (does everyone agree?)

Perfect-set-type theorem

Theorem (Spinas 2008)

Every analytic countably ioe family contains [T] for some full-splitting Miller tree T.

Otmar Spinas, *Perfect set theorems*, Fundamenta Mathematicae 201 (2): 179–195, 2008.

Idealized Forcing

We were mainly interested in Spinas' result because of "Idealized Forcing"

- Let $\mathfrak{I}_{ioe} := \{ A \subseteq \omega^{\omega} \mid A \text{ is not a countably ioe family.} \}$
- Then $\mathrm{Borel}(\omega^{\omega})/\mathfrak{I}_{\mathrm{ioe}}$ is a forcing for generically adding an **ioe real** (i.e., a real which is ioe to all ground model reals).
- By the dichotomy of Spinas:

$$\mathbb{FM} \hookrightarrow_d \operatorname{Borel}(\omega^{\omega})/\mathfrak{I}_{ioe}$$
.

where \mathbb{FM} denotes the collection of full-splitting Miller trees.

What happened

Giorgio and I began working on some questions about this forcing \dots

... and we obtained contradictory results!

Spinas' Dichotomy Theorem

Theorem (Spinas 2008)

Every analytic countably ioe family contains [T] for some full-splitting Miller tree T.

Spinas' Dichotomy Theorem

Theorem (Spinas 2008)

Every analytic countably ioe family contains [T] for some full-splitting Miller tree T.

Counterexample

Let T be the tree on $\omega^{<\omega}$ defined as follows:

- If |s| is even then $\operatorname{succ}_{\mathcal{T}}(s) = \{0, 1\}$.
- If |s| is odd then $\mathrm{succ}_{\mathcal{T}}(s) = \left\{ \begin{array}{ll} 2\mathbb{N} & \text{if} \quad s(|s|-1) = 0 \\ 2\mathbb{N}+1 & \text{if} \quad s(|s|-1) = 1 \end{array} \right.$

Then [T] is a countably ioe family not containing a full-splitting Miller subtree.

New tree

Definition (Spinas)

A tree $T\subseteq \omega^{\omega}$ is called an **infinitely often equal tree (ioe-tree)**, if for each $t\in T$ there exists N>|t|, such that for every $k\in \omega$ there exists $s\in T$ extending t such that s(N)=k.

New tree

Definition (Spinas)

A tree $T \subseteq \omega^{\omega}$ is called an **infinitely often equal tree (ioe-tree)**, if for each $t \in T$ there exists N > |t|, such that for every $k \in \omega$ there exists $s \in T$ extending t such that s(N) = k.

Theorem (Spinas 2008)

Every analytic countably ioe family contains [T] for some ioe-tree T.

New tree

Definition (Spinas)

A tree $T \subseteq \omega^{\omega}$ is called an **infinitely often equal tree (ioe-tree)**, if for each $t \in T$ there exists N > |t|, such that for every $k \in \omega$ there exists $s \in T$ extending t such that s(N) = k.

Theorem (Spinas 2008)

Every analytic countably ioe family contains [T] for some ioe-tree T.

Let IE denote the partial order of ioe-trees, ordered by inclusion:

$$\mathbb{IE} \hookrightarrow_d \operatorname{Borel}(\omega^{\omega})/\mathfrak{I}_{ioe}$$

Cohen reals

We have several results about this forcing/ideal; but in this talk I will just focus on one question.

Cohen reals

We have several results about this forcing/ideal; but in this talk I will just focus on one question.

Question

Does IE add Cohen reals?

Half a Cohen real

Theorem (Bartoszyński)

Adding an infinitely often equal real twice adds a Cohen real.

For this reason, an ioe real is sometimes called "half a Cohen real".

Half a Cohen real

Theorem (Bartoszyński)

Adding an infinitely often equal real twice adds a Cohen real.

For this reason, an ioe real is sometimes called "half a Cohen real".

Corollary

 $\mathbb{IE} * \mathbb{IE}$ adds a Cohen real.

Half a Cohen real

Theorem (Bartoszyński)

Adding an infinitely often equal real twice adds a Cohen real.

For this reason, an ioe real is sometimes called "half a Cohen real".

Corollary

IE * **I**E adds a Cohen real.

Question (Fremlin)

Is there a forcing adding $\frac{1}{2}$ Cohen real without adding a Cohen real?

Zapletal's soluton

Theorem (Zapletal 2013)

Let X be a compact metrizable space which is infinite-dimensional, and all of its compact subsets are either infinite-dimensional or zero-dimensional. Let \Im be the σ -ideal σ -generated by the compact zero-dimensional subsets of X. Then $\operatorname{Borel}(X)/\Im$ adds an ioe real but not a Cohen real.

Could ${\mathbb I}{\mathbb E}$ be a more natural example?

Could \mathbb{IE} be a more natural example?

Definition

A forcing \mathbb{P} has the **meager image property (MIP)** iff for every continuous $f:\omega^{\omega}\to\omega^{\omega}$ there exists $T\in\mathbb{P}$ such that f "[T] is meager.

Could ${\mathbb I}{\mathbb E}$ be a more natural example?

Definition

A forcing \mathbb{P} has the **meager image property (MIP)** iff for every continuous $f:\omega^{\omega}\to\omega^{\omega}$ there exists $T\in\mathbb{P}$ such that f''[T] is meager.

How is this related to not adding Cohen reals?

Could ${\mathbb I}{\mathbb E}$ be a more natural example?

Definition

A forcing \mathbb{P} has the **meager image property (MIP)** iff for every continuous $f:\omega^{\omega}\to\omega^{\omega}$ there exists $T\in\mathbb{P}$ such that f "[T] is meager.

How is this related to not adding Cohen reals?

If we could prove the MIP **below an arbitrary condition** $S \in \mathbb{IE}$, then we would know that \mathbb{IE} does not add Cohen reals.

Why? Using continuous reading of names, for every name for a real \dot{x} there is $S \in \mathbb{E}$ and continuous $f:[S] \to \omega^{\omega}$ such that $S \Vdash \dot{x} = f(\dot{x}_G)$. If $T \leq S$ is such that $f''[T] \in \mathcal{M}$ then $T \Vdash "\dot{x} \in f''[T] \in \mathcal{M}"$ and hence $T \Vdash "\dot{x}$ is not Cohen".

Meager image property

Theorem (Kh-Laguzzi)

 ${\mathbb I}{\mathbb E}$ has the MIP.

Meager image property

Theorem (Kh-Laguzzi)

IE has the MIP.

The proof of this theorem is weird:

Lemma

If $add(\mathcal{M}) < cov(\mathcal{M})$ then \mathbb{IE} has the MIP.

Corollary

IIE has the MIP.

Proof

Proof of Lemma \Rightarrow Corollary

What is the **complexity** of " $\forall f: \omega^{\omega} \to \omega^{\omega}$ continuous $\exists T \in \mathbb{IE}$ such that f"[T] $\in \mathcal{M}$ "?

Proof

Proof of Lemma ⇒ Corollary

What is the **complexity** of " $\forall f : \omega^{\omega} \to \omega^{\omega}$ continuous $\exists T \in \mathbb{IE}$ such that $f''[T] \in \mathcal{M}$ "?

- " $f:\omega^{\omega}\to\omega^{\omega}$ is a continuous function" can be expressed as " $f':\omega^{<\omega}\to\omega^{<\omega}$ is monotone and unbounded along each real", which is a Π^1_1 statement with parameter f'.
- " $T \in \mathbb{IE}$ " is arithmetic on the code of T.
- f''[T] is an analytic set whose code is recursive in f' and T.
- For an analytic set to be meager is Π_1^1 .

So the statement "IE has the MIP" is Π_3^1 .

Now go to any forcing extension satisfying $\operatorname{add}(\mathcal{M}) < \operatorname{cov}(\mathcal{M})$ (e.g add ω_2 Cohen reals), apply the lemma and conclude that \mathbb{IE} had the MIP in the ground model by **downward** Π_3^1 -absoluteness.

Proofs

Proof of Lemma

- Let $\operatorname{add}(\mathfrak{I}_{\mathrm{ioe}}, \mathbb{E})$ be the least size of a family $\{X_{\alpha} \mid \alpha < \kappa\}$ such that $X_{\alpha} \in \mathfrak{I}_{\mathrm{ioe}}$ but there is no \mathbb{E} -tree T completely contained in the **complement** of $\bigcup_{\alpha < \kappa} X_{\alpha}$.
- Prove that $cov(\mathcal{M}) \leq add(\mathfrak{I}_{ioe}, \mathbb{IE})$.
- Assume \mathbb{IE} does **not** have the MIP: then there is $f:\omega^\omega\to\omega^\omega$ such that f''[T] is not meager for all $T\in\mathbb{IE}$. This is equivalent to saying that f-preimages of meager sets are $\mathfrak{I}_{\mathrm{ioe}}$ -small. From this it (essentially) follows that $\mathrm{add}(\mathfrak{I}_{\mathrm{ioe}},\mathbb{IE})\leq\mathrm{add}(\mathcal{M})$.
- This contradicts $add(\mathcal{M}) < cov(\mathcal{M})$.

Homogeneity

Theorem (Kh-Laguzzi)

IE has the MIP.

Homogeneity

Theorem (Kh-Laguzzi)

IE has the MIP.

But what we need is the MIP **below every** $S \in \mathbb{IE}$.

It would be sufficient for $\mathfrak{I}_{\mathrm{ioe}}$ to be **homogeneous** (the forcing as a whole is isomorphic to the part below a fixed condition).

Goldstern-Shelah tree

Recall the **full-splitting Miller** partial order \mathbb{FM} from the wrong dichotomy. It is easy to see that \mathbb{FM} adds Cohen reals.

Goldstern-Shelah tree

Recall the **full-splitting Miller** partial order \mathbb{FM} from the wrong dichotomy. It is easy to see that \mathbb{FM} adds Cohen reals.

Lemma (Goldstern-Shelah 1994)

There exists $T^{GS} \in \mathbb{IE}$ such that **every** $T \leq T^{GS}$ is an **almost-full-splitting Miller tree**, i.e., every t in T^{GS} has an extension s such that $\forall n \neq 0 \ (s^{\frown} \langle n \rangle \in T)$.

Construct T^{GS} in such a way that:

- $\textbf{ 1} \text{ All splitting nodes of } T^{GS} \text{ have different length, i.e., if } s,t \in \operatorname{Split}(T^{GS}) \text{ and } s \neq t \text{ then } |s| \neq |t|.$
- 2 All $t \in T^{GS}$ which are **not** splitting satisfy t(|t|-1)=0.

If $S \subset T^{GS}$ is an ioe-tree, this can **only** happen if every node can be extended to an almost-full-splitting one!

Consequences:

In fact, $\mathbb{IE} \upharpoonright T^{GS}$ is isomorphic to \mathbb{FM} .

Consequences:

In fact, $\mathbb{IE} \upharpoonright T^{GS}$ is isomorphic to \mathbb{FM} .

Consequences:

- $\ensuremath{\mathbf{0}}$ $\ensuremath{\mathfrak{I}}_{\mathrm{ioe}}$ is very much not homogeneous.
- 2 "IE has the MIP below every condition" is false.
- **3** $T^{GS} \Vdash_{\mathbb{IE}}$ "there is a Cohen real".

Consequences:

In fact, $\mathbb{IE} \upharpoonright T^{GS}$ is isomorphic to \mathbb{FM} .

Consequences:

- $\ensuremath{\mathbf{0}}$ $\ensuremath{\mathfrak{I}}_{\mathrm{ioe}}$ is very much $\ensuremath{\textbf{not}}$ homogeneous.
- "IE has the MIP below every condition" is false.
- **3** $T^{GS} \Vdash_{\mathbb{IE}}$ "there is a Cohen real".

But could it be that $\exists T_0 \in \mathbb{IE} \ \forall S \leq T_0 \ (\mathbb{IE} \ \text{has the MIP below } S)$? Then T_0 would force that there are no Cohen reals.

On the other hand, if trees like T^{GS} are dense in \mathbb{IE} , then $\Vdash_{\mathbb{IE}}$ "there is a Cohen real".

Game

This is still an **open question**. We can formulate it in terms of a game:

where $s_i, t_i \in \omega^{<\omega} \setminus \{\emptyset\}$ and $x(i) \in \omega$ are such that $x \in [T]$. Assuming all the rules are followed, Player I wins iff $f(x) = s_0 \hat{t}_0 \hat{s}_1 \hat{t}_1 \dots$

Lemma

If I wins then $\Vdash_{\mathbb{TE}}$ "there is a Cohen real". If II wins with first move T_0 , then $T_0 \Vdash_{\mathbb{TR}}$ "there are no Cohen reals".

Question

Is there $T_0 \in \mathbb{IE}$ forcing that no Cohen reals are added?

Kiitos huomiostanne!

Yurii Khomskii yurii@deds.nl