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-
Graphs and Ordered Graphs

Graphs are sets of vertices with edges between some of the pairs of
vertices.
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Embeddings of Graphs

An ordered graph A embeds into an ordered graph B if there is a
one-to-one mapping of the vertices of A into some of the vertices of B

such that each edge in A gets mapped to an edge in B, and each non-edge
in A gets mapped to a non-edge in B.
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Figure: A copy of A in B
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|
More copies of A into B
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Still more copies of A into B
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-
Different Types of Colorings on Graphs

Let G be a given graph.
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-
Different Types of Colorings on Graphs

Let G be a given graph.
Vertex Colorings: The vertices in G are colored.
Edge Colorings: The edges in G are colored.

Colorings of Triangles: All triangles in G are colored. (These may be
thought of as hyperedges.)

Colorings of n-cycles: All n-cycles in G are colored.

Colorings of A: Given a finite graph A, all copies of A which occur in G
are colored.
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-
Ramsey Theorem for Finite Ordered Graphs

Thm. (Nesetfil/R6dl) For any finite ordered graphs A and B such
that A < B, there is a finite ordered graph C such that for each
coloring of all the copies of A in C into red and blue, there is a B’ < C
which is a copy of B such that all copies of A in B’ have the same color.
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-
Ramsey Theorem for Finite Ordered Graphs

Thm. (Nesetfil/R6dl) For any finite ordered graphs A and B such
that A < B, there is a finite ordered graph C such that for each
coloring of all the copies of A in C into red and blue, there is a B’ < C
which is a copy of B such that all copies of A in B’ have the same color.

In symbols, given any f : (g) — 2, thereis a B’ € (g) such that f takes

only one color on all members of (]i )
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-
The Random Graph

The random graph is the graph on infinitely many nodes such that for each
pair of nodes, there is a 50-50 chance that there is an edge between them.
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-
The Random Graph

The random graph is the graph on infinitely many nodes such that for each
pair of nodes, there is a 50-50 chance that there is an edge between them.

This is often called the Rado graph since it was constructed by Rado, and
is denoted by R.

The random graph is
@ the Fraissé limit of the Fraissé class of all countable graphs.

@ universal for countable graphs: Every countable graph embeds into R.

© homogeneous: Every isomorphism between two finite subgraphs in R
is extendible to an automorphism of R.
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-
Vertex Colorings in R

Thm. (Folklore) Given any coloring of vertices in R into finitely many
colors, there is a subgraph R’ < R which is also a random graph such
that the vertices in R’ all have the same color.
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-
Edge Colorings in R

Thm. (Pouzet/Sauer) Given any coloring of the edges in R into
finitely many colors, there is a subgraph R’ < R which is also a
random graph such that the edges in R’ take no more than two colors.
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-
Edge Colorings in R

Thm. (Pouzet/Sauer) Given any coloring of the edges in R into
finitely many colors, there is a subgraph R’ < R which is also a
random graph such that the edges in R’ take no more than two colors.

Can we get down to one color?
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-
Edge Colorings in R

Thm. (Pouzet/Sauer) Given any coloring of the edges in R into
finitely many colors, there is a subgraph R’ < R which is also a
random graph such that the edges in R’ take no more than two colors.

Can we get down to one color?

No!
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-
Colorings of Copies of Any Finite Graph in R

Thm. (Sauer) Given any finite graph A, there is a finite number n(A)
such that the following holds:

For any / > 1 and any coloring of all the copies of A in R into / colors,
there is a subgraph R’ < R, also a random graph, such that the set of
copies of A in R’ take on no more than n(A) colors.
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For any / > 1 and any coloring of all the copies of A in R into / colors,
there is a subgraph R’ < R, also a random graph, such that the set of
copies of A in R’ take on no more than n(A) colors.

In the jargon, we say that the big Ramsey degrees for R are finite,
because we can find a copy of the whole infinite graph R in which all
copies of A have at most some bounded number of colors.
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-
Colorings of Copies of Any Finite Graph in R

Thm. (Sauer) Given any finite graph A, there is a finite number n(A)
such that the following holds:

For any / > 1 and any coloring of all the copies of A in R into / colors,
there is a subgraph R’ < R, also a random graph, such that the set of
copies of A in R’ take on no more than n(A) colors.

In the jargon, we say that the big Ramsey degrees for R are finite,
because we can find a copy of the whole infinite graph R in which all
copies of A have at most some bounded number of colors.

The proof that this is best possible uses Ramsey theory on trees.
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Strong Trees

A tree T C 2<% is a strong tree if there is a set of levels L C N such that

each node in T has length in L, and every non-maximal node in T
branches.
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Strong Trees

A tree T C 2<% is a strong tree if there is a set of levels L C N such that

each node in T has length in L, and every non-maximal node in T
branches.

Each strong tree is either isomorphic to 2<¢ or to 2=k for some finite k.

0010 0 0101 10 1001 1110 1111

Figure: A strong subtree isomorphic to 2=<3
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Strong Subtree = 2<? Ex. 1

000 001 010 011 100 101 110 111

00 0 0 11
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]
Strong Subtree = 2<2 Ex. 2

000 001 010 011 100 101 110 111

00 0 0 11
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Strong Subtree = 2<? Ex. 3

000 001 010 011 100 101 110 111
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Strong Subtree = 2<? Ex. 4

000 001 010 011 100 101 110 111

00 0 0 11
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]
Strong Subtree = 2<2 Ex. 5

000 001 010 011 100 101 110 111

00 0 0 11
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Milliken's Theorem

Let T be an infinite strong tree, k > 0, and let f be a coloring of all the
finite strong subtrees of T which are isomorphic to 2=k.

Then there is an infinite strong subtree S C T such that all copies of 2=k
in S have the same color.
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Milliken's Theorem

Let T be an infinite strong tree, k > 0, and let f be a coloring of all the
finite strong subtrees of T which are isomorphic to 2=k.

Then there is an infinite strong subtree S C T such that all copies of 2=k
in S have the same color.

Remark. For k = 0, the coloring is on the nodes of the tree T.
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|
The Main Steps in Sauer's Proof

Proof outline:

@ Graphs can be coded by trees.
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© Each diagonal tree can be enveloped in certain strong trees, called
their envelopes.

@ Given a fixed diagonal tree A, if its envelope is of form 2=k, then each
strong subtree of 2<¢ isomorphic to 2<% contains a unique copy of A.
Color the strong subtree by the color of its copy of A.
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|
The Main Steps in Sauer's Proof

Proof outline:

o
2]

o

Graphs can be coded by trees.
Only diagonal trees need be considered.

Each diagonal tree can be enveloped in certain strong trees, called
their envelopes.

Given a fixed diagonal tree A, if its envelope is of form 2=k then each
strong subtree of 2<¢ isomorphic to 2<% contains a unique copy of A.
Color the strong subtree by the color of its copy of A.

Apply Milliken's Theorem to the coloring on the strong subtrees of
2<¥ of the form 2=k,

The number of isomorphism types of diagonal trees coding A gives
the number n(A).
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-
Using Trees to Code Graphs

Let A be a graph.
Enumerate the vertices of A as (v, : n < N).
The n-th coding node t, in 2<% codes v,,.

For each pair i < n,
vp Evi & t,,(’t,'|) =1
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-
A Tree Coding a 4-Cycle
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-
Diagonal Trees Code Graphs

A tree T is diagonal if there is at most one meet or terminal node per level.

big Ramsey numbers University of Denver 22 /53



-
Diagonal Trees Code Graphs

A tree T is diagonal if there is at most one meet or terminal node per level.

0001
010

Figure: A diagonal tree D coding an edge between two vertices

Every graph can be coded by the terminal nodes of a diagonal tree.
Moreover, there is a diagonal tree which codes R.
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Strong Tree Envelopes of Diagonal Trees

()

Figure: The strong tree enveloping D
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-
Strongly Diagonal Tree

10011/

111

00
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-
Strongly Diagonal Tree and Subtree Envelope 1

000 001 010 011 100 101 110 111

00 0 0 11
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-
Strongly Diagonal Tree and Subtree Envelope 2

000 001 010 011 100 101 110 111

00 0 0 11
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The Big Ramsey Degrees for the Random Graph

Theorem. (Sauer) The Ramsey degree for a given finite graph A in the

Rado graph is the number of different isomorphism types of diagonal
trees coding A.
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Theorem. (Sauer) The Ramsey degree for a given finite graph A in the

Rado graph is the number of different isomorphism types of diagonal
trees coding A.

There are exactly two types of diagonal trees coding an edge. The tree
D a few slides ago, and the following type:
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The Big Ramsey Degrees for the Random Graph

Theorem. (Sauer) The Ramsey degree for a given finite graph A in the

Rado graph is the number of different isomorphism types of diagonal
trees coding A.

There are exactly two types of diagonal trees coding an edge. The tree
D a few slides ago, and the following type:

0101
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Ramsey theory for homogeneous structures has seen increased activity in
recent years.

A homogeneous structure S which is a Fraissé limit of some Fraissé class
IC of finite structures is said to have finite big Ramsey degrees if for each
A € K there is a finite number n(A) such that for any coloring of all copies
of Ain S into finitely many colors, there is a substructure S’ which is
isomorphic to S such that all copies of A in S’ take on no more than n(A)
colors.
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Ramsey theory for homogeneous structures has seen increased activity in
recent years.

A homogeneous structure S which is a Fraissé limit of some Fraissé class
IC of finite structures is said to have finite big Ramsey degrees if for each
A € K there is a finite number n(A) such that for any coloring of all copies
of Ain S into finitely many colors, there is a substructure S’ which is
isomorphic to S such that all copies of A in S’ take on no more than n(A)
colors.

Question. Which homogeneous structures have finite big Ramsey
degrees?

Question. What if some irreducible substructure is omitted?
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-
Triangle-free graphs

A graph G is triangle-free if no copy of a triangle occurs in G.
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Triangle-free graphs

A graph G is triangle-free if no copy of a triangle occurs in G.

In other words, given any three vertices in G, at least two of the vertices
have no edge between them.
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-
Finite Ordered Triangle-Free Graphs have Ramsey Property

Theorem. (Nesetfil-R6dl) Given finite ordered triangle-free graphs

A < B, there is a finite ordered triangle-free graph C such that for any
coloring of the copies of A in C, there is a copy B’ € (g) such that all
copies of A in B’ have the same color.
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-
The Universal Triangle-Free Graph

The universal triangle-free graph H3 is the triangle-free graph on infinitely
many vertices into which every countable triangle-free graph embeds.
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-
The Universal Triangle-Free Graph

The universal triangle-free graph H3 is the triangle-free graph on infinitely
many vertices into which every countable triangle-free graph embeds.

The universal triangle-free graph is also homogeneous: Any isomorphism
between two finite subgraphs of H3 extends to an automorphism of Hs.

‘Hs3 is the Fraissé limit of the Fraissé class K3 of finite ordered triangle-free
graphs.

The universal triangle-free graph was constructed by Henson in 1971.
Henson also constructed universal k-clique-free graphs for each k > 3.
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-
Vertex and Edge Colorings

Theorem. (Komjath/Rodl) For each coloring of the vertices of Hz into
finitely many colors, there is a subgraph H' < H3 which is also
universal triangle-free in which all vertices have the same color.
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-
Vertex and Edge Colorings

Theorem. (Komjath/Rodl) For each coloring of the vertices of Hz into
finitely many colors, there is a subgraph H' < H3 which is also
universal triangle-free in which all vertices have the same color.

Theorem. (Sauer) For each coloring of the edges of H3 into finitely
many colors, there is a subgraph H’' < H3 which is also universal
triangle-free such that all edges in H have at most 2 colors.

This is best possible for edges.
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-
Are the big Ramsey degrees for H3 finite?

That is, given any finite triangle-free graph A, is there a number n(A)
such that for any / and any coloring of the copies of A in H3 into / colors,

there is a subgraph H of H3 which is also universal triangle-free, and in
which all copies of A take on no more than n(A) colors?
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-
Are the big Ramsey degrees for H3 finite?

That is, given any finite triangle-free graph A, is there a number n(A)
such that for any / and any coloring of the copies of A in H3 into / colors,

there is a subgraph H of H3 which is also universal triangle-free, and in
which all copies of A take on no more than n(A) colors?

Three main obstacles:

@ There is no natural sibling of Hz. (R and the graph coded by 2<“ are
bi-embeddable and Sauer’s proof relied strongly on this.)

@ There was no known useful way of coding H3 into a tree.
© There was no analogue of Milliken's Theorem for Hs3.

Even if one had all that, one would still need a new notion of envelope.
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So, this is what we did.
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-
‘H3 has Finite Big Ramsey Degrees

Theorem*. (D.) For each finite triangle-free graph A, there is a
number n(A) such that for any coloring of the copies of A in H3 into
finitely many colors, there is a subgraph H’ < H3 which is also
universal triangle-free such that all copies of A in H’ take no more than
n(A) colors.

* 4/5ths finished typing.
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Structure of Proof

(1) Develop a notion of strong triangle-free trees coding triangle-free
graphs.

These trees have special coding nodes coding the vertices of the
graph and branch as much as possible without any branch coding a
triangle (Triangle-Free and Maximal Extension Criteria).
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Structure of Proof

(1) Develop a notion of strong triangle-free trees coding triangle-free
graphs.

These trees have special coding nodes coding the vertices of the
graph and branch as much as possible without any branch coding a
triangle (Triangle-Free and Maximal Extension Criteria).

(2) Construct a strong triangle-free tree T* coding H3 with the coding
nodes dense in T*.

(3) Stretch T* to a diagonal strong triangle-free tree T densely coding
Hs.

(4) Many subtrees of T can be extended within the given tree to form
another coding of H3. (Parallel 1's Criterion, Extension Lemma).
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(5) Prove a Ramsey theorem for finite subtrees of T satisfying the Parallel
1's Criterion.

(The proof uses forcing but is in ZFC, extending the proof method of
Harrington's forcing proof of the Halpern-Lauchli Theorem.)
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(6) For each finite triangle-free graph G there are finitely many
isomorphism types of subtrees A of T coding G.
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(The proof uses forcing but is in ZFC, extending the proof method of
Harrington's forcing proof of the Halpern-Lauchli Theorem.)

(6) For each finite triangle-free graph G there are finitely many
isomorphism types of subtrees A of T coding G.

(7) Find the correct notion of a triangle-free envelope E(A).

(8) Transfer colorings from diagonal trees to their envelopes. Apply the
Ramsey theorem.
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(5)

Prove a Ramsey theorem for finite subtrees of T satisfying the Parallel
1's Criterion.

(The proof uses forcing but is in ZFC, extending the proof method of
Harrington's forcing proof of the Halpern-Lauchli Theorem.)

For each finite triangle-free graph G there are finitely many
isomorphism types of subtrees A of T coding G.

Find the correct notion of a triangle-free envelope E(A).

Transfer colorings from diagonal trees to their envelopes. Apply the
Ramsey theorem.

Take a diagonal subtree of T which codes H3 and is homogeneous for
each type coding G along with a collection W of ‘witnessing nodes’
which are used to construct envelopes.
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Building a strong triangle-free tree T* to code H3

Let (F; : i < w) be a listing of all finite subsets of N such that each set
repeats infinitely many times.

Alternate taking care of requirement F; and taking care of density
requirement for the coding nodes.
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-
Building a strong triangle-free tree T* to code H3

Let (F; : i < w) be a listing of all finite subsets of N such that each set
repeats infinitely many times.

Alternate taking care of requirement F; and taking care of density
requirement for the coding nodes.

Satisfy the Triangle Free Criterion: If s has the same length as a coding
node t,, and s and t, have parallel 1's, then s can only extend left past t,.

The TFC ensures that in each finite initial segment of T, each node in T

can be extended to a coding node without coding a triangle with any of
the coding nodes already established.
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-
Building a strong triangle-free T* to code H;

T* is a perfect tree.
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-
Skew tree coding Hs
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A subtree S C T satisfies the Parallel 1's Criterion if whenever two nodes
s,t € S have parallel 1's, there is a coding node in S witnessing this.
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A subtree S C T satisfies the Parallel 1's Criterion if whenever two nodes
s,t € S have parallel 1's, there is a coding node in S witnessing this.

That is, if s,t € S and s(/) = t(/) = 1 for some /, then there is a coding
node ¢ € S such that s(|c|) = t(|c|) = 1 and the minimal / such that

s(I) = t(/) =1 has length between the longest splitting node in S below ¢
and |c].
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A subtree S C T satisfies the Parallel 1's Criterion if whenever two nodes
s,t € S have parallel 1's, there is a coding node in S witnessing this.

That is, if s,t € S and s(/) = t(/) = 1 for some /, then there is a coding
node ¢ € S such that s(|c|) = t(|c|) = 1 and the minimal / such that

s(I) = t(/) =1 has length between the longest splitting node in S below ¢
and |c].

This guarantees that a subtree of S of T can be extended in T to another
strong tree coding H3. It is also necessary.
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Strong Similarity Types of Trees Coding Graphs

The similarity type is a strong notion of isomorphism, taking into account
passing numbers at coding nodes, and when first parallel 1's occur.
This builds on Sauer’s notion but adds a few more ingredients.
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A tree coding a non-edge

v

This is a strong similarity type satisfying the Parallel 1's Criterion.
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Another tree coding a non-edge

v

This is a strong similarity type not satisfying the Parallel 1's Criterion.
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0

This tree has parallel 1's which are not witnessed by a coding node.
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Its Envelope

This satisfies the Parallel 1's Criterion.

big Ramsey numbers University of Denver 46 / 53



Ramsey theorem for strong triangle-free trees

Theorem. (D.) For each finite subtree A of T satisfying the Parallel 1’s
Criterion, for any coloring of all copies of A in T into finitely many
colors, there is a subtree T of T which is isomorphic to T (hence codes
H3) such that the copies of A in T have the same color.
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Ramsey theorem for strong triangle-free trees

Theorem. (D.) For each finite subtree A of T satisfying the Parallel 1’s
Criterion, for any coloring of all copies of A in T into finitely many
colors, there is a subtree T of T which is isomorphic to T (hence codes
H3) such that the copies of A in T have the same color.

Parallel 1’s Criterion: A tree A C T satisfies the Parallel 1’s Criterion if
any two nodes with parallel 1’s has a coding node witnessing that.

big Ramsey numbers University of Denver 47 / 53



The proof uses three different forcings and much fusion

The simplest of the three cases is where we have a fixed tree A satisfying

the Parallel 1's Criterion and a 1-level extension of A to some C which has
one splitting node.
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The proof uses three different forcings and much fusion

The simplest of the three cases is where we have a fixed tree A satisfying

the Parallel 1's Criterion and a 1-level extension of A to some C which has
one splitting node.

Fix T a strong triangle-free tree densely coding G3 and fix a copy of A in
T. We are coloring all extensions of A in T which make a copy of C.
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The proof uses three different forcings and much fusion

The simplest of the three cases is where we have a fixed tree A satisfying

the Parallel 1's Criterion and a 1-level extension of A to some C which has
one splitting node.

Fix T a strong triangle-free tree densely coding G3 and fix a copy of A in
T. We are coloring all extensions of A in T which make a copy of C.

Let d + 1 be the number of maximal nodes in C.

Fix x large enough so that k — (N1)§g+2 holds.
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-
The forcing for Case 1

P is the set of conditions p such that p is a function of the form
p:{d}u(dxd,)—= T,
where d,, € [k]<“ and [, € L, such that
(i) p(d) is the splitting node extending sy at level /p;
(i) Foreach i< d, {p(i,d):0 € gp} CTill.

g < p if and only if either
Q@ /;=1,and g 2 p (so also gq D 5,3); or else
Q@ ;> Ip, 552 3p, and
(i) g(d) D p(d), and for each & € &, and i < d, q(i,8) D p(i,d);
(i) Whenever (ag,...,aq—1) is a strictly increasing sequence in (gp)d and

{p(i,e;) : i < d}U{p(d)} € Extr(A, C), then also
{q(i,c;) : i < d}U{q(d)} € Extr(A, C).
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The three types of forcings take care of
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The three types of forcings take care of

Case 1. End-extension of level sets to a new level with a splitting node.
This gives homogeneity for end-extensions of A to next level.
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The three types of forcings take care of

Case 1. End-extension of level sets to a new level with a splitting node.
This gives homogeneity for end-extensions of A to next level.

Case 2. End-extension of level sets to a new level with a coding node.

This gives end-homogeneity above a minimal extension of A with the
correct passing numbers.
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The three types of forcings take care of

Case 1. End-extension of level sets to a new level with a splitting node.
This gives homogeneity for end-extensions of A to next level.

Case 2. End-extension of level sets to a new level with a coding node.
This gives end-homogeneity above a minimal extension of A with the
correct passing numbers.

Case 3. Splitting predecessors and left branches if no splits of a level with
a coding node. This allows to homogenize over the end-homogeneity in
Case 2.
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The three types of forcings take care of

Case 1. End-extension of level sets to a new level with a splitting node.
This gives homogeneity for end-extensions of A to next level.

Case 2. End-extension of level sets to a new level with a coding node.
This gives end-homogeneity above a minimal extension of A with the
correct passing numbers.

Case 3. Splitting predecessors and left branches if no splits of a level with

a coding node. This allows to homogenize over the end-homogeneity in
Case 2.

Eventually we obtain a strong triangle-free tree Scoding H3 such that
every copy of C in S has the same color.
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To finish, given a finite triangle-free graph G, there are only finitely many
strong similarity types of trees coding G (with the coding nodes in the
tree).

Each of these has a unique type of minimal extension to an envelope
satisfying the Parallel 1's Criterion.

Apply the Ramsey theorem to these.

Obtain a finite bound for the big Ramsey degree of G inside H3.
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To finish, given a finite triangle-free graph G, there are only finitely many
strong similarity types of trees coding G (with the coding nodes in the
tree).

Each of these has a unique type of minimal extension to an envelope
satisfying the Parallel 1's Criterion.

Apply the Ramsey theorem to these.

Obtain a finite bound for the big Ramsey degree of G inside H3.

Thanks!
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Most graphics in this talk were either made by or modified from codes
made by Timothy Trujillo.
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