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The ε-Calculus

In the early 1900s, D. Hilbert investigated logic enhanced with built-in
choice functions as part of his foundational program.

This resulted in the ε-calculus.

Essentially, ε-calculus = propositional logic + ε.

More precisely, one adds to zeroth-order logic (that is, first-order logic
without quantifiers) terms of the form εxA(x), where ‘x ’ is a (bound)
variable.
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The ε-Calculus

If A(·) is a predicate, εxA(x) means “something of which A holds, if
it does of anything; and an arbitrary object, otherwise.”

This is captured syntactically by the rule

A(t)

A(εxA(x))

“from A(t) for some t, infer A(εxA(x)).”

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 3 / 17
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The ε-Calculus

Thus, one can express quantifiers:

We write A(εxA(x)) for ∃x A(x).

“A holds of the thing of which it would hold if it held of anything.”

We write A(εx¬A(x)) for ∀x A(x).

“A holds of the thing of which it would not hold if it didn’t of
something.”

This is syntactically captured by the rule:

A(εx¬A(x))

A(t)

“from A(εx¬A(x)), infer A(t) for any t.”
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The ε-Calculus

Example: consider the formula ∃x ∃y A(x , y). This can be translated
as follows:

The translation of ∃y A(x , y) is obtained by substituting εyA(x , y) for
y in A(x , y):

A(x , εyA(x , y)).

The translation of ∃x ∃y A(x , y) is thus obtained by substituting
εxA(x , εyA(x , y)) for x in A(x , εyA(x , y)):

A(εxA(x , εyA(x , y)), εyA(εxA(x , εyA(x , y)), y)).

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 5 / 17
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The ε-Calculus

The ε-calculus: add to a Hilbert-style axiomatization of propositional
logic all formulae of the form

A(t)→ A(εxA(x)), and
A(εx¬A(x))→ A(t),

as axioms.

For example, A(εzB(y , z))→ A(εxA(x)) is an axiom.

A(εxA(x)) means ∃x A(x);
A(εzB(y , z)) doesn’t mean much if we don’t know what B and y mean.(

A(x)↔ B(x)
)
→ εxA(x) = εxB(x) need not be an axiom.

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 6 / 17



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

The ε-Calculus

The ε-calculus: add to a Hilbert-style axiomatization of propositional
logic all formulae of the form

A(t)→ A(εxA(x)), and
A(εx¬A(x))→ A(t),

as axioms.

For example, A(εzB(y , z))→ A(εxA(x)) is an axiom.

A(εxA(x)) means ∃x A(x);
A(εzB(y , z)) doesn’t mean much if we don’t know what B and y mean.(

A(x)↔ B(x)
)
→ εxA(x) = εxB(x) need not be an axiom.

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 6 / 17



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

The ε-Calculus

The ε-calculus: add to a Hilbert-style axiomatization of propositional
logic all formulae of the form

A(t)→ A(εxA(x)), and
A(εx¬A(x))→ A(t),

as axioms.

For example, A(εzB(y , z))→ A(εxA(x)) is an axiom.

A(εxA(x)) means ∃x A(x);
A(εzB(y , z)) doesn’t mean much if we don’t know what B and y mean.

(
A(x)↔ B(x)

)
→ εxA(x) = εxB(x) need not be an axiom.

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 6 / 17



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

The ε-Calculus

The ε-calculus: add to a Hilbert-style axiomatization of propositional
logic all formulae of the form

A(t)→ A(εxA(x)), and
A(εx¬A(x))→ A(t),

as axioms.

For example, A(εzB(y , z))→ A(εxA(x)) is an axiom.

A(εxA(x)) means ∃x A(x);
A(εzB(y , z)) doesn’t mean much if we don’t know what B and y mean.(

A(x)↔ B(x)
)
→ εxA(x) = εxB(x) need not be an axiom.

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 6 / 17



ar
X

iv
:

so
m

e
ot

h
er

te
xt

go
es

h
er

e

The ε-Calculus

Theorem (Hilbert)

The ε-calculus is conservative over propositional logic.

This is usually called the “ε-theorem.”

Question

Can there be an infinitary analog of the ε-calculus? For example, can one
find an analog of Lω1ω1?

If so, it would need to have as axioms the translations of

A(~t)→ ∃~x A(~x), and
∀~x A(~x)→ A(~t),
where ~t (resp. ~x) is a countable sequence of terms (resp. variables free
in A(~x)).

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 7 / 17
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The ε-Calculus

This translation requires, however, to consider infinitely deep terms.

Recall that ∃x ∃y A(x , y) was translated as A(t0, t1), where

t0 = εxA(x , εyA(x , y)),
t1 = εyA(εxA(x , εyA(x , y)), y) = εyA(t0, y).

There is a general pattern. For example, ∃x ∃y ∃z A(x , y , z) is
translated as A(t0, t1, t2), where letting

s0(y , z) = εxA(x , y , z),
s1(x , z) = εyA(x , y , z),
s2(x , y) = εzA(x , y , z);

we have

t0 = s0(s1(x , s2(x , y)), s2(x , y)),
t1 = s1(t0, s2(t0, y)),
t2 = s2(t0, t1).

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 8 / 17
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Infinitely deep terms

This leads us to define the translation of ∃x0 ∃x1 . . .A(x0, x1, . . .) as
A(t0, t1, . . .), where

si (x0, x1, . . . , xi−1, xi+1, . . .) = εxiA(x0, x1, . . .)
ti = si (t0, t1, . . . , ti−1, si+1, si+2, . . .)

The (Hilbert-style) infinite ε-calculus can be defined by adding to
Lω1,0 the translations of all axioms of the form:

A(~t)→ ∃~x A(~x), and
∀~x A(~x)→ A(~t).

(Convention: we assume that every atomic formula is of finite arity.)

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 9 / 17
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The ε-theorem

Is there an analog of Hilbert’s theorem?

Theorem

Assume there are uncountably many Woodin cardinals. Then the infinite
ε-calculus is conservative over (infinitary) propositional logic.

It is to be expected that large cardinals are needed.

This is because the language can express the determinacy of games of
(fixed) countable length.

Juan P. Aguilera (TU Vienna) Some Applications of Set Theory in Proof Theory The Arctic, January 2017 10 / 17
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The ε-theorem

To see this: suppose one has a proof of A(s, t).

As before, one then derives A(s, εyA(s, y)) and, from it, the formula

A(εxA(x , εy (x , y)), εyA(εxA(x , εy (x , y), y)) (1)

However, suppose that A(x , y) is of the form
B(x , εz¬B(x , z , εyB(x , y , z)), y).

Then, (1) expresses something of the form ∃x ∀z ∃y B(x , y , z).

Thus, by only using rules that correspond to existential quantifiers,
one can infer statements expressing infinite alternating strings of
quantifiers.
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Sequent Calculi

A sequent is an expression of the form Γ ` ∆, where Γ and ∆ are
sequences of formulae.

It is to be interpreted as “if all the formulae in Γ are true, then some
formula in ∆ is true.”

One builds up proofs of sequents by using rules. For example:

Γ ` ∆A
Γ ` ∆,A ∨ B
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The Cut Rule

The cut rule:
Γ ` ∆,A A, Γ ` ∆

Γ ` ∆

Essentially modus ponens.

Gentzen’s consistency proof for Peano Arithmetic: he defined a
sequent calculus that is sound and complete for arithmetic, LK. Then
he proved the cut-elimination theorem:

Theorem (Gentzen)

If a sequent is provable in LK, then it is provable without the cut-rule.
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The ε-theorem

Theorem

Let E be the reformulation of the infinite ε-calculus in terms of sequents.
Then the following are equivalent:

1 The ε-theorem holds for E.

2 The cut-elimination theorem holds for E.

3 All games of countable length with projective payoff are determined.
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Cut Elimination

One possible proof is based on interpreting a suitable first-order proof
system inside E.

Theorem

There is an infinitary first-order sequent calculus F such that the following
are equivalent:

1 The cut-elimination theorem holds for F.

2 All games of countable length with projective payoff are determined.
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Cut Elimination

This in turn is based on a similar construction by Takeuti.

Theorem (Takeuti, 1970s)

There is an infinitary first-order sequent calculus D such that the following
are equivalent for any transitive model M of ZF+DC:

1 M |= “The cut-elimination theorem holds for D.”

2 M |= AD.

Takeuti’s method also yields analogous results for, say, ADR or PD.
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The end

Thank you.
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