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Definability in an abstract logic is compared with defina-
bility in set theory. This leads to set theoretical character-
izations of implicit definability, Lowenheim-numbers and Hanf-
numbers of various abstract logics. A new logic, sort logic,
is introduced as the ultimate limit of abstract logics definable

in set theory.

§ 0. Introduction

The aim of this paper is to bring together, in a coherent framework, both
old and new results about unbounded abstract logics (a logic is unbounded if it
is able to characterize the notion of well-ordering). Typical problems that can

be asked about any lbgic are:

(1) Which model classes are implicitly (with extra predicates and sorts) defina-
ble?

(2) Which classes of cardinals are spectra?

(3) What is the Lowenheim-number?

(4) What is the Hanf-number?

In the case of unbounded logics these problems are particularly relevant as
such logics fail to be axiomatizable and mostly lack workable model theory. An
attempt to shed light on (1)-(L4) is the main purpose of this paper.

Out method is to build, right from the beginning, a close connection bhetween
abstract logic and set theory.

The basic notion of the whole paper is that of symbiosis. We say that an
abstract logic L* and a predicate P of set theory are symbiotic if, roughly
speaking, the family of A(L*)-definable model classes coincides with the family
of model classes which are A1(P). For example, second order logic s

symbiotic with the power-set operation, or, what amounts to the same,

11

AML77) = {K|the model class K is AQ}.

In Chapter 2 we give a new proof of the following result (essentially due to
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Oikkonen [10}): If L* and P are symbiotic, then
An(L*) = {K|the model class K is An(P)}.
As a corollary we get for n > 1:
An(me) = {K|the model class K is -An}.

Consideration of the logics An(me) leads very naturally to what we call
sort logic. To grasp the idea of sort logic, let us consider a typical many-

sorted structure
M= <M1,...,Mn;R1,...,Rm;al,...,ak>.

M consists of three kinds of objects: universes Mi’ relations Ri and indi-
viduals & - To quantify over the individuals we have first order logic; to
quantify over relations we have second order logic; but to quantify over uni-
verses (i.e. sorts) we need a new logic. Accordingly, let sort logic L®
be the many-sorted logic which allows quantification over individuals, rela-
tions and sorts. It is clearly impossible to define the semantics of sort
logic in set theory, but it can be done, for example, in MKM (Morse-
Kelley-Mostowski) theory of classes.

It follows readily from the above analysis of An(me) that

L® = (K|the model class K is definable in set theory}

(stated in [8] p. 174).
The rest of Chapter 2 is devoted to an analysis of the non-syntactic nature
of the A-operation. We show, for example, that the set of LII—sentences which

give rise to A(LII)—definitions, is M- but not Ea-definable in set theory. This

3
II)‘

result reflects the difficultness of finding a simple syntax for A(L

Chapter 3 is concerned with & restricted A-operation, A}, which does not
allow the use of new sorts {or universes). This operation is clearly related to
LII as we may think of LI as Agw)(me). The key notion of this chapter is
that of a flat formula of set theory. We obtaln the following characterization
of generalized second order logic: If L* and P satisfy a strengthend

symbiosis assumption, then

Azu)(L*) = {i|the model class K 1is defined by a flat formula of the
language {e,P}}.
In particular

LII = {K|the model class K 1is defined by a flat formula of set theory}l.
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These results are proved in a level-by-level form.
In Chapter 4 we extend the analysis of the set theoretic nature of model
theoretic definability to spectra and LOwenheim-numbers L(L*). We characterize

the spectra of symbiotic logics and prove for L*, symbiotic with P,

1(a (L¥))

eny sup {a]a is Hn(P)—definable with parameters in A}

2s, (L))

sup {a]a is An-definable with parameters in A} (n > 1).

A similar analysis of Hanf-numbers #k(L*) 1is carried out in Chapter 5. The
non-preservation of Hanf-numbers under A necessiates the introduction of a
bounded A-operation AB, and respective set theoretical notions 2?, H? and A?.
The main result says: If L* and P are symbiotic in & sufficiently bounded way,
then

h(LX) = sup {ala is 2?(P)~definable with parameters in A}

and for n > 1,
h(a (LA)) = sup {alo is En(P)—definable with parameters in A}.
In the rest of Chapter 5 we consider the numbers

L, = sup {a]a is N ~definable}

h, = sup {aja is Zn—definable}.

Note that Zn 1(a (L )) eand hn = A(A(L )) (for n > 1). It turns out that

n' " ww ww
for n> 1,

1 = sup {a|a is An-definable}

and

2(1%) = A(L°) = sup {a|o is definable in set theory).

This paper is based on Chapter 2 of the author's Ph.D. thesis and the author
wishes to use this opportunity to express his gratitude to his supervisor P.H.G.
Aczel for the help he provided during the preparation of the thesis. This work

was financially supported by Osk. Huttunen Foundation.
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§ 1. Preliminaries

We give at first a rough sketch of the preliminaries, which should be enough
for a casual reader familiar with [2] and [8]. More detailed preliminaries then
follow.

Our abstract logics are defined roughly as in [2]. If Q 1is a generalized
quantifier 1LQ 1is like me[Q] in [8]. I 1is the Hértig—%?antifier, W the
well-ordering quantifier and QH the Henkin—quantifier. L is second order
logic. All logics are understood to be many-sorted. The logic which is obtained
from LII by adding quantification over sorts is called sort logic and denoted
1%, If L* is an abstract logic, J(IL*) is the family of PC-classes of L* 1in
the sense of [8]. T(L*) consists of the complements of PC-classes of LX*. En(L*)
and Hn(L*) are obtained by iterations of the )— and N-operations. An(L*) refers
to the intersection of Zn(L*) and Hn(L*)' The families Z;(L*), H;(L*) and
A;(L*) are defined similarly but the PC-definitions are not allowed to introduce

new sorts. This ends the sketch.

1.1. Abstract logics

For many-sorted logic we refer to [5]. Types are sets of sorts, relation-
symbels and constant-symbols. If L 1s a type, the class of all structures of
type L 1is denoted Str(L). If M€ Str(L) and K is a type such that K< L,
then M x denotes the reduct of M to K. If x € L, then xIUI denotes the
interpretation of x in M. |M| denotes the union of the universes of M,

A quasilogic is a pair L* = <Stec*,E*> such that

(L1) If @ € L* (that is Stc*{L,»)), then L is a type and @ 1is a set called
an L*—sentence,

(L2) If M F* @ (that is FE* (M,9)), then there is a type L such that
M€ str(lL) and @ € L*,

(L3) If M F* @ and M= N, then N fE* .

This definition is somewhat weaker than the definition of a system of logics in
[2], and substantially weaker than the definition of a logic in [8].

The guasilogic me is defined as usual. If Q1,...,Qn are generalized
guantifiers, we let me(Q1,...,Qn) denote the quasilogic which is obtained
from wa by addition of theI;ew quantifiers Q1...Qn. Second order infinitary
logic, which is denoted by me, is obtained from me by addition of quanti-
fication over (finitary) relations. The following generalized gquantifiers play

a special role in this paper:

Hirtig-quantifier: IxyA(x)B(y) <+ card(A) = card(B),
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Well-ordering-quantifier: WxyA(x,y) <> A well-orders its domain,

Regularity-quantifier: RxyA(x,y) <> A orders its domain in the type of
a regular cardinal,

Henkin-quantifier: QnyuvA(x,y,u,v) <> VEVgIxIyAlx,y,f(x),gly)).

Note that our Henkin-quantifier is the dual of the original one.

*
A
are those @ € L* for which L € A and ¢ € A, and the s=mantics of which

If L* is a quasilogic we let L¥* be the quasilogic the sentences of which

follows that of L*. For example, (me)H(K) will be LKm if the syntax of
me is defined in the usual set theoretical way (see e.g. [3]). We denote LﬁF
II

. 1 n
% % %
by L and i1in general LH( ) by L . (Q ) ) and L are shortend

to L(QT,...,QH) and LII. As usual, L, denotes (Lm ),. For w< A €A, we

A w' A
use L,, to denote (Lmk)A' Similarly L,. (LmG)A'

LKX does not make much sense, but we redefine it as LKK added with the weak

second order quantifiers 3X(|X| £ a@ A...) for a < A. The cbvious set theoret-

L
ww

denotes If k < X, then

ic definition gives Loy < H(k + |a|) whenever A = }tu'
A class of structures of the same type is called a model class if it is

closed under isomorphisms. If K € Str(L) 1is a model class, then the model

=
class Str(L) - K 1is denoted by K. A model class K 1is L¥*-definable if there
are L and @ € L*¥ such that K = Mod(g) = {M € str(L)|M E* @}. We say, as
usual, that a quasilogic IL* is a sublogic of another gquasilogic L+, L* < L+,
if every L*-definable model class is 1 -definable. 1* and L' are equivalent,
L¥* ~ L+, if they are soblogics of each other.

An abstract logic is a quasilogic L* such that

(L4) If T and L' are types such that L € L', then L¥ S L'* and for o € L¥,
M € str(L'),

M E* ¢ if and only if M‘L E* o.

(L5) For every rudimentary set A, type L € A and o, Y € L*¥, there are @Y A ¥
and @ v ¢ in LX such that Mod(way) = Mod(y) N Mod(y) and Mod(way) =
Mod(p) N Mod(y).

(L6) For every rudimentary set A, types L,L' € A and @ € L'* there are 3cg
and Vew in L* such that if L' - L. consists of the comstant-symbol c,

A
then

Mod(3ew) = (M{3N € Str(L')(N‘L M& N E* o)}

Mod( Ve)

M|WN € Str(L')(N'L M- N E* @l

(L7) L. S 1* .,
ww ww
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It 1s obvious that wa, me(Q1,...,Qn), Lii, and their fragments are
abstract logics. If the analogue of (L5) and (L6) holds for the negation, we
call L* a Boolean logic.

When we are only interested in the definable model classes of an abstract

logic L*, we sometimes write
L* = (K|the model class K is...}

meaning that an arbitrary model class K is L*-definable if and only if X is...

1.2. Sort logic

The class of formulae of infinitary sort logic Liw is oObtained if the

following formation rule is added to the recursive definition of Lii—formulae:

If ¢ 1s a formula and s 1is a sort, then 3s¢ and Vs are

formulae.

To define the semantics of L:m we have to work in the MKM theory of classes
or in any other theory in which satisfaction for formulee of set theory is defi-
nable. If L is a type, s asort, s €L and L'=LU {s}, then for any

M € str(L) we define

Me& N E @)

M E 3s¢ if and only if 3N € Str(L')(NlL
M E vsp if and only if VN € ser(L')(Nj, = M > N Eo.

This defines Liw as an abstract logic. We denote by 5. It appears

s
LHF
that sort logic has not been singled out as a logic before, although it has been

studied in a semantical form in [10].

Let Z“(me), n 2 1, be the sublogic of Liw the formulae of which have the
form
351V52...3(V)snw
where s,,...,s are sorts and ¢ € LII. Let N (L ) %be the sublogic of L®
n 0w n' ey o
consisting of formulae of the form
VS1352"'V(3)Snw
where 51""’Sn are sorts and ¢ € Lii. For each n < «, the abstract logics
Y{L ) and T (L ) are definable in 2ZF. Note that ) (L_) and T (L_)
n' e n' ey n ey n' ey

are closed under second order quantifiers.
Let An(me) be the sublogic of Zn(me) the formulae of which are equiva-

lent to ﬂn(me)—formula. An(me) is an abstract logic but it does not seem to
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have such a simple syntax as zn(L

Uy

) and Hn(wa)' In fact the class of

An(me)—formulae reflects to a certain extent the properties of the underlying
model of set theory and changes when the model is changed. Note that A1(me)
Jum (L, )~

An+1(me)' The fragments zn(LA), Hn(LA) and An(LA) are defined similarly.

is just A(me) in the sense of [8]. More generally, A(EH(L

o

1.3. Extension-operations

We review the definition of the A-operation from [8] because the definition
naturally leads to both more genersl and more restricted operations.

If @€ L* L'cL and ME Str(L'), let
E(M,p) = {N € Str(L)IN‘L, = Mg N E* @}.
A model class K of type L' is )-defined by ¢ if L - L' is finite and
K = {ME€E str(L")|E(M,0) # &}.
K is N-defined by ¢ is L - L' 1is finite and
K={ME€str(L')|WN € Str(L)(NIL, =M+ N E* @},

K is Z(L*)—definable (n(L*)-definable) if it is z—defined (M-defined) by some
@ € L*. Finally, K is A(L*)-definable if it is both Z(L*)— and N(L*)~definable.
A(L*) gives rise to the semantics of an abstract logic, but to find a syntax for
that logic seems as difficult as finding a syntax for An(me)' Note however,
that in special cases A(L*) has a beautiful syntax (see e.g. [8] §4). To be
specific let us agree that A(L*) is the abstract logic the sentences of which
are 4-tuples <@,L,y,L'> where @ € L*, y € L'* and ¢ z—defines the same model
class as ¥ T-defines. One of our results will imply that A(L*) hardly has
a less artificial syntax. The families E(L*) and T(L*) can alsc be made into
abstract logics if, for example, a model class which is z—defined by @ € L* is
associated an artificial sentence <@,L>. Note that this syntax for X(L*) de-
pends only on the syntax of L* and not on the underlying set theory. We say
that L* is unbounded if W 1is A(L*)-definable.

By induction on n < @ we define zn+1(L*) = Z(HH(L*)), Ioq(L*) = H(En(Lf))
and An+1(L*) = A(ZH(L*) u Hn(L*)). Now we have two integpretations for
zn(me), either as a Fn—extension of me or as a fragm%nt of sz, but it is
obvious that the two interpretations are essentially equivalent. All standard
logics are sublogics of A3(me) and therefore the operations An, n > 2, are
relatively uninteresting, apart from their relation to sort logic.

If the above definition of Z(L*) and TN(L*) is modified by requiring that
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L has no new sorts over and above those of L', the essentially weaker notions

of H}(L*)— and 21(L*)—definability are obtained. Let A}(L*) be defined as

A(L*) above. More generally we define Z;+1(L*) = 21(H;(L*)), H;+1(L*) =
1ol . T iy = A1 o
n1({n(L )) and A (L*) =8, (] (L*) U n (L*)).

1.4, Set theory

Our set theoretical notation follows mostly that of [L4]. However, we write

"

Ra for the a'th level of the ramified hierarchy. Cd(x) is the predicate "x
is a cardinal number (initial ordinal)", Rg(x) is the predicate "x is a regular
cardinal" and Pw(x,y) 1is the predicate x = P(y), where P 1s the power-set
operation. Card(x) is the least ordinal which has the same power as x. HC(x) =
max(card(TC(x)),?{o). We sometimes use }(n as a predicate, meaning the predi-
cate "x € ?(n", of course. PK(y) is the set {x €yl||x] < «} and PwK(x,y)

is the predicate "y = PK(x)". The sets of zn(P)_ and Hn(P)-formulae are de-
fined as usual. A predicate is zn(P) (Hn(P)) w.p.i. (= with parameters in) A
if it is definable with a zn(P) (Hn(P))—formula w.p.i. A. A predicate is

An(P) w.p.i. A if it is both Zn(P) and Hn(P) w.p.i. A. An ordinal «

is zn(P) (Hn(P),An(P))—definable w.p.i. A 1if the predicate "x € a" is.

§ 2. The basic representations

In this chapter we define the symbiosis of a logic and a predicate of set
theory, and prove the main result about symbiosis (Theorem 2.4). The chapter
ends with some remarks on the non-absclute nature of the A-operation.

By its very definition an abstract logic determines two predicates of set
theory: Ste and [. It is convenient for our purposes to establish a converse
relation, that 1s, associate every predicate with a generalized guantifier.

Suppose P = P(x1,...,xn) is a predicate of set theory. Let

K[P]

MM = <M,€,8,,...,8 > such that M is transitive and

P(a1,...,an)}.

Let QP be the generalized gquentifier associated with X[P] and

L(P] = me(QP)'

Lemma 2. 1.

(1) }=L[P] Zs 4,(P).

(2) klpr] <s A(L[P]M)-deﬁ'nable.
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Proof. An elaboration of the proof of the well-known fact that }=L is
e
(see e.g. [3] p. 83) gives (1). (2) is trivial as K[P] is even L[P]um—

definable. o

The above lemma shows that L[P] and P are in a sense definable from each

other. We take a slight weakening of this property as the definition of symbiosis.

Definition 2.2. Suppose L* <s an abstract logic, P a predicate of set
theory and A a transitive class. We say that 1* and P are symbiotic
on A if the following two conditions hold:

(S1) If ¢ € L*, then Mod(yp) <s A1(P) w.p.z. {y,L}

(s2) X[P] <s A(LX)-definabZe.

The logic L* is symbiotic on A if there is a predicate P # § such that

L* and P are symbiotic on A. If A = HF, we omit the clause "on A".
Note that symbiosis on A implies symbiosis on any transitive A' DA,

Examples 2.3. The following pairs are symbiotic on HF for any rudimentary
A:
(1) L[P]A and P,

(2) LQ,A and Q, ©1f Q <s a generalized quantifier and LQ is unbounded,
(3) 1M, and On,

A
(4) LIA and Cd,
(5) LR, and Reg,
(6) L/{I and Pw,
(?) L and Pw .
wo w
n n

The following pairs are symbiotic on H(k) for any rundimentary A 2 H(k)

+
and k= X , X 2 w:

(8) L and PwK,

Ak
(9) Lig and On.
Proof. The proof of (S1) is similar to the proof of 2.1(1) in any of (1)-(9).
As a typical example of the proof of (S2), let us consider (4). Recall that W
J(LI). Wow

is

<M,E,a> € K[d]

<M,E,a> F Wxy(xEy) A Vxy(yEx A xEa + yEa) A
A Vxyz(zEy A YEx A xEa + 2Ex) A
A Vz(zEa » = Ixy(xEz)(yEa)) A

A Vxy(Vz(zEx < zEy) » x=y). @
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Note that, if L* is symbiotic with P (# ¢) on A then LK is unbounded,

in fact, as K{P] is A(LX)-definable, it suffices to observe that

Wxy(xAy) <> there are M, E and a;s..,a  Such that

<M, E,8, 50058 > € K[P] and

12"
<M,E 500058 > E vxy(xAy > xEy).

Conversely, it is by no means the case that every unbounded logic is
symbiotic on some A. We shall indicate later why the logic L(W’Q1""’Qn"")n<w
is not symbiotic.

The next theorem is the basic result about symbiosis and about relation
between logic and set theory in general. It was proved in the author's Ph.D.
thesis [13] and appeared later, but independently in [10]. We repeat the proof

here for completeness. The proof clearly owes a great deal to [2].

Theorem 2.4, Suppose A and Ao € A are transitive classes, P a predicate,
and L* an abstract logic extending L, and symbtotic with P on A Then
the following are equivalent for any model class K of type L € A:
(1) X s Z(LK)-definabZe,
(2) XK <s 21(P) w.p.t. A.
Proof. (1) » (2): Suppose © € L¥ J-defines K. Let L, € A such that

€ L;. Now

K= {ME€ str(L)|3N € Str(Lo)(NlL =M& N F* @)l

Hence K 1is 21(P) w.p.i. A,
(2) + (1): Suppose

vx(x € K <> @(x,a))

where @(x,y) is 21(P) and a € A. Let a' =Tc({a}) (€ A). Let E be

a binary predicate symbol not in L and 1 a sort not in L. For any formula
w(x1,...,xn) of set theory let [w(xi""’xn)]E
by replacing atomic formulae teu by tEu (i.e. E(t,u)) and changing all bound

be obtained from w(x1,...,xn)

variables to variables of sort 1. Let L° be L extended with E and i. As
L* 1is symbiotic, there is an L, 2 L, and 6 € L?A such that 6 )-defines the
class of well-founded extensional structures <Mi,E>. By (52) there is an L2 2 L1
and n € L;A such that n z-defines the class K[P]. Suppose P = P(x1,...,xn)
and Cqseesc are the constant symbols in the type of K[P]. Let ¢ be the

L*¥ -sentence obtained from

2A
[P(C‘]""’Cn)]E hind n(C1,---,Cn)
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by universally quantifying over CyaeresCy using variables of sort i. Let

t
mb(x) be the formula Wy(yEx +ﬁ'\x/ch wc(x)) for every element b of a'.
Let ¢(x) be the Lz—sentence which says, using E instead of €, that x 1is
a structure of type L 1in which any atomic R(x1,...,xn) is satisfied by ele-
ments a,,....a if and only if R(a1,...,am) is true. Finally, let £ be

the conjunction of
&L
mbEa I, (x) & @, (c,)
X ([olx e, g & vixh).

Now & € LEA and we prove that it z—defines K. Suppose at first that
M € K. Hence @{M,a) is true. Let N %be a transitive set which reflects
©(M,a) and P. M can be expanded to a model of £ by letting N serve as
the universe of sort i elements. For the converse, suppose N E E. Let
N M= <""Mi’€""> such that Mi is a transitive set. As M F ¢, Mi
reflects P. Clearly c, is interpreted as a in M. Let AE M. such that

ME [o(A,c) )] & w(A).

Then A € Str(L) and ¢(A,a), whence A € K. As K is closed under isomorphism,
M'LE K. =]

Corollary 2.5, For any rudimentary class A:

(1) A(LWA) {K|the model class K is A w.p.7. A},

= ALy
(2) a(ir,) = {x|the model class K 1is a,(cd) w.p.i. A},
(3) A(LiI) = {K|the model class K is A, w.p.t. A}
(4) AL ) = {K|the model class K is A, (Pw )},
ww 1 wy

If A2HK), « =", 2 2w, then:

(5) A(LAK) = {K|the model class X <8 A (PwK) v.p.t. A).

1
In [11] a predicate P(x) is called local if it is of the form Ba(Ra E olx))

for some formula ¢(x) of set theory, and a proof is sketched to the effect that

a predicate is local if and only if it is equivalent to a zz—predicate. Combining

this with Theorem 2.4 yields:

Corollary 2.6. A model class is Z(Lil)—definable if and only if it s de-
fined by a local property w.p.Z. A.

Theorem 2.4 can be immediately iterated to yield a result about zn—defina—
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bility. A form of the following corollary was first proved by J. Oikkonen in
[10] with a different proof.

Corollary 2.7. Suppose A and A S A are transitive classes, P a predi-
cate, and LX a Boolean logic extending L, and symbiotic with P on

A Then the following are equivalent for any model class K of type

LEA and for any n < w:

. .\ e
(1) XK <is Zn+1(LA) definable,

(2) K <is Zn+1(P) w.p.2. A.

Proof. We use induction on n. If n = 0, the claim follows from 2.k.

Suppose then K 1is (L*)-definable and n > 0. Let ¢ € I (L*) )-define K.
n+1 n

A A

By induction hypothesis Mod(@) is HH(P) w.p.i. A. Now

K={ME€str(L)[3N € Mod(w)(N'L =MaNEOQI,

and therefore K is Zn+1(P) w.p.i. A.

For the converse, suppose (2) holds. Let S be a Hn(P)—predicate such that
K 1is 21(8) w.p.i. A. By 2.4 K is J-defined by some @ € L[S]A' By 2.1
Mod () is A1(S) w.p.i. A, and therefore A (L*)-definable. Hence K is

n+1 A
XYoo
En+1(LA) definable. 0O

Corollary 2.8. For n > 0 and for any rudimentary class A:
(1) AH(LWA) = {K|the model class K is A w.p.Z. A},

(2) a (Lt

e ) = {K|the model class K 18 A w.p.7. A}.

n+1

Note that KX[Pw] is H(wa)—definable, whence L[Pw] < AE(me) and there-

Iy < ‘ o A 1I .
fore A(LA ) 2 A2(L ). On the other hand AE(LA) < A2(LWA) < A(LA ). Hence in

II II .
fact A(LA )~ AE(LA)’ and therefore An(LA ) ~ An+1(LA) for all n > 0, If

this is combined with 2.8, the following obtains:

Corollary 2.9. For n > 1,

A (L

. A) = {K|the model class K 1is 6, w.p.t. A}.

Therefore in MKM:
LZ = {K|the model class X s definable in set theory w.p.i. A}.

The second part of the above corollary was stated on page 174 of [8].
As A1(wa) is just the usual first order logic me, and A2(L ) is

ww
A(LII), that is, essentially second order logic, it would be tempting to conjec-—
ture that A3(me) is essentially third order logic. This is not the case,

however. By familiar methods (see e.g. [9]) one can prove that for any analytical
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(this can be improved, see [9]) ordinal o the a'th order logic in A-equivalent
to second order logic. It seems plausible to put A3(LA) above the whole notion
of higher order logic and consider it rather as a fragment of a quite new power-
ful logic, sort logic. Similarly it seems implausible to call z a second order
quantifier, or even a generalized second order quantifier, as z leads to some-
thing far beyond second aﬁd higher order logic, viz. set theory. We return to
the problematics of second order logic in the next chapter.

The A-operation can be used to give a very near characterization

of symbiosis:

Proposition 2.10. Suppose LX i8 a Boolean logic extending L, and P
a predicate. Then A(LX) ~ A(L[P]A) if and only if (52) and

(51),: If ¢ € L%, then Mod(¢) s A1(P) w.p.7. A.

Proof. Suppose at first that (S1)A and (S2) hold. By Theorem 2.1

every L[P]A—definable model class is A, (P) w.p.i. A, whence by 2.k,

1

L[P]A < A(LX). Therefore A(L[P]A) < A(LX). On the other hand, if K is LX—
definable, then by (51)A K 1is A1(P) w.p.i. A, whence by 2.4 K is A(L[P]A)—

definable. Hence A(LZ) ~ A(L[P]A). The converse is immediate in view of 2.4. O

We can use 2.10 to show that the logic L* = L(W’Q1""’Qn"")n<w is not
symbiotic on any A. Indeed, suppose LK is symbiotic with P on A. As

LX = L;‘IF, we may assume A = HP. By 2.10, A(L*) ~ A(L[P]ww). Let n < w such
that K[P] is A-definable in L' = L(W,Q1,...,Qn). Now A(L*) ~ A(L[P]ww) ~alth),
a contradiction.

The existence on non-symbiotic unbounded logics may seem to limit the appli-

cability of Theorem 2.4. However, if L* is the union (in the obvious sense) of

. + + . Lo .
the logies L n (n < w), where L n is symbiotic with Pn on An, then for
A=UA,
n
n
A(LX) = {K|the model class K is A1(Pn) w.p.i. A for some n < w}.

Thus the range of Theorem 2.4 extends to many non-symbiotic logics. Por example:

NSACR-FRNRR-TRS B

n < {K|the model class K is A1(N1""’Nn)

for some n < w}

{K|the model class K is A, w.p.i.

1
1 WIS SRS X

benn) is symbiotic on HC.

Note howevey, that Lw1w(W,Q1,...,Q <

.

In the next results we investigate the absoluteness of symbiotic logics. Let

n

us consider the following three properties of an abstract logic L* and a predi-
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cate P:

(A1) sSte* is 21(P) and @V ¥, @AY, Jc and VYeyw in (L5) and (L6) can be
found with 21(P)—functions.
(A2) There is a A1(P)—predicate S such that if ¢ € L*, then

WM € str(L)(M E* @ «> S(M,p)).

The conditions (A1) and (A2) together form a natural notion of P-absoluteness
of L* generalizing the notion of an absolute logic in [2]. Note that (A2) > (S1).

The following lemma is obvious:

Lemma 2.11.

(1) If L* and P are symbiotic on A and Lt s ﬁ(LZ), then LT and P
satisfy (SJ)A.

(2) If 1% and P satisfy (42) and Lt a(L}),
(51) 4

then L° and P satisfy

The next result generalizes a theorem by Burgess (Theorem 2.2 in [8]) which
says that no unbounded absolute logic is A-closed. The proof remains almost the

same.

Theorem 2.12. Suppose L* <s a Boolean logic symbiotic with P on A and
L~ A(LK). Then 1V and P satisfy (SJ)A but not (A2).

Proof. Suppcse S 1is a A1(P)—predicate such that if © € L+, then
W€ str(L)(M ET @ < S(M,0)). Let

n

K = {M|M = <7c({a}),€> for some a such that - S(M,a)}.

K is clearly A1(P). By 2.4 there is a @ € LY such that ¥ = Mod(¢p) .
Let M= <7C({@}),€>. Then M€ K «— M F+ @ <+ 1 5(M,@) <+ M ¢ K, a contradic-

tion. O

Corollary 2.13. Suppose L* <s a Boolean logic, L* and P are symbiotic

on A and they satisfy (A2). Then LK 18 not A-closed.

Corollery 2.14. The following logics are not t-closed:
(1) L[P]A where P 1s a predicate of set theory,
(2) 1Q, where Q 18 a generalized quantifier such that LQ <8 unbounded.

(3) Ly, LI, IR, L, L, L .
m1m1 w1G

A’ A° TA
Hence, 1f LZ s a symbiotic logic extending L
such that

A there are no Q1,...,Qn

1 n
A(LX) ~ LQ ...QA.
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The following theorem gives another aspect of the failure of syntactical

methods in constructing A-extensions. Recall the definition of Stc in §1.

A(L*)
Theorem 2.15. Suppose A and Ag S A are transitive classes, P a predi-

cate and L¥* an abstract logte such that there is a XI(P)—function embedding

A
L, nto LK and LY is symbiotic with P on A_ . Then the predicate

, , . .
StCA(L*) zs HZ(P) but not XE(P). Therefore A(LA) and P do not satisfy
(A1).

Proof. By definition

L, € TC(x)

StCA(LX)(L’X) 7 ALL,

(stc*(LO,w) & Stc*(L1,w) & x = <@L ,Y,L > &

"

wM € str(L)(3N € Str(Lo)(N{L M&NE*o)—

(WN € Str(L1)(N(L =M= N E*y)))).

This proves that StcA(LK) is HZ(P)' To prove that StcA(LK

let R{x,y) be a HZ(P)—predicate which is not ZQ(P). We construct 21(P)—func—

) is not ZQ(P),

tions f and g such that
(*) VXVY(R(X:)’) s StCA(L*)(f(x’Y)’g(x’Y)))-
A

From this it follows that Stc ) is not I(P).

*
A(LA
Let T{x,y,z) be a 21(P)—predicate such that

VXVY(R(X’Y) A VZT(X’Y’Z) ).

K[T] 1is 21(P) whence by 2.4 there is an LK—sentence w(c1,02,c3) which Z—de—
fines X[T]. For any x let wx(y,E) ve the L -formula (see the proof of 2.4}

/XN 3z0,(z) & o (y).

a€TCc ({x))

Let 6(E)}) Ve an LK—sentence which z—defines the class of models <dom(E),E,c3>

where E 1is well-founded and extensional. For any x and y let nxy be the

sentence
(6(E) & wx(c1,E) & wy(cz,E)) - w(CT,C2,03).

: ' 1k
By (A1) we may assume there is a type ny such that nxy € nyA

+ = =L' !
cates 2z ey and z ny are 21(P). Let ny be the subtype of ny
associated with C35C55C, and E. Let & be an arbitrary valid L*-sentence.

and the predi-

We define
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t(x,y) = Ly
g(x,y) = Ny Ly 6ol
Now (*) holds as is not too difficult to see. 0O

It follows, for example, that there is no Zz—formula which decides whether
a given Lii—fonnula z—defines the same model class as another given Lii—sen—

tence lI-defines. So, although Lim has a primitive recursive syntax, it seems
II
)

ha\}

unlikely that any similar syntax can be found for its fragment A(L or for

8,(r,).

We end this chapter with some remarks on decision problems of symbiotic
logics. For simplicity we only consider logics of the form L:m' The decision
problem of L* = is the set Val(L* ) = {p € HF | € L* and o is valid}. It
is known (see [13] and [12]) that Val(Lii) is the complete H2~subset of HF.
More generally, if L* 1is symbiotic with P and L* 1is sufficiently syntactic
(e.g. IL* = LQ for some Q), then Val(L:w) is the complete H1(P)—subset of HF.
A proof of this can be found in [13]. For results about Val(LImm) and Val(Lwa)
see [1L4].

§ 3. Flat definability and second order logic

In this chapter we construct the part of set theory which coincides with
second order logic in the same way as the whole set theory coincides with sort

logic.
Definition 3.1. Quantifiers of the form

(1) 3x(HC(x) = HC(y1 u...u yn) & m(x,y1,...,yn))
(2) wx(HC(x) < HC(y1 U...u yn) > w(x,y1,...,yn))

are called flat quantifiers. The set of flat fornulae of set theory is the
smallest set containing Zo—fbrmulae and closed under &,v,— and flat

quantification.

The ZE(P)— and HE(P)—formulae are defined by induction on n as follows:

b b . b
ZO(P) and HO(P)—formulae are just the ZO(P)—formulae. zn+1

formulae of the form (1) where w(x,y1,...,yn) is Hn(P). i

(P)-formulae are

(P)-formulae are
n+1

formulae of the form (2) where w(x,y1,...,yn) is ZE(P). ZE(P)ZFC— and HE(P)ZFC‘
formulae are defined as usual.
It is easy to see that the set of ZE(P)ZFC—formulae is closed under

&,v,7 ,3x€y,Vx€y and (1) above. Note that by Levy's theorem ([4] p. 104) every
. bzFc
21—formula is 21 .
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The whole point of flat formulae is the following reflection principle:

Lemma 3.2. Suppose w(x1,...,xn) zs a flat formula and a an arbitrary
set. Then there is a transitive set M such that =a € M, HC(M) = HC(a)
and M reflects w(x1,...,xn).

Proof. By the usual reflection principle ([4] p. 99) there is a transitive

set N containing a such that N reflects w(x1,...,xn). For any subformula

2,...,bm €N let
)(bz,...,bm) € ¥ such that HC(f) < Hc(b2 U...U bm) and

w(y1,...,ym) of w(x1,...,xn) and for any b
b

=T
w(yw,---,ym

N E 3y1(HC(y1) < HC(bE,...,bm) & w(y1,b2,...,bm)) -> w(f,bz,...,bm).
Choose M to be the smallest transitive set containing & and closed under the

functions f , where y(y.,...,¥y.) runs through the subformulae of
w(y1,...,y ) 1 m

m
w(x1,...,xn). o

The above lemma shows, among other things, that every flat formula is AZFC

2
(using Theorem 3.7.2 of [4]).
Definition 3,3. Suppose L* is an abstract logic, A a transitive class

and P a predicate of set theory. L* and P are strongly symbiotic
on A if the following two conditions are satisfied

(851) If @ € L*, then Mod(y) <s A?(P) w.p.t. {o,L}.

(ssg) KI[rl <s A](LK).

Strong symbiosis is harder to come by than symbiosis. For example,W 1is
not Al(LI)-definable (essentially becausé in countable domains I 1is redudent
and Theorem 7.3 of [3] can be used), whence LI is not strongly symbiotic.
This failure can be regarded as an indication of the incompleteness of the
definition of LI, rather than as a characteristic property of LI. The
situation is different with second order logic which seems to resist strong

symbiosis in an essential way, as we shall prove in a moment.

Examples 3.4. The following pairs are strongly symbiotic on HF for any
rudimentary A:

(1) L[P]A and P,

(2) LA(W,Q) and Q, 1f Q s any generalized quantifier,

(3) LA(W) and On,

(4) LA(W,I) and Cd,

(5) LA(W,R) and Rg.

Theorem 3.5. Suppose A S HC and A E A are transitive sets, P a predi-

cate, and LX an abstract logic extending L, and strongly symbrotic with
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P on A. Then the following are equivalent for any model class K of type
L € A:

(1) K s Zl(LX)—definabZe,
(2) % s [°(P) wp.i. A

Proof. We follow the proof of 2.4. The implication (1) -+ (2) is obvious.
For (2) -+ (1), suppose o(x,y) is Z?(P), a €A and

vx(x € K <> @(x,a)).

Let &' = TC({a)). Let u be the conjunction of & (as it is defined in the
proof of 2.L) and the first order sentence which says that there is a bijection
which maps all elements of the sorts in L3 one-one to elements of the sorts in
L. Using Lemma 3.2 one can prove that u still Z—defines K. But every model
of 1y has the same power as its L-reduct. Hence the new ﬁniverses introduced

by L can be dispensed with in favour of new predicates, and therefore u can

3
be converted into a A}(LK)—definition of K. o

The proof of Corollary 2.7 carries over immediately and we have:

Corollary 3.6. Suppose A S HC and A S A are transitive sets, P a pred-
Teate, and L% a Boolean logic extending L, and strongly symbilotic with
P oon A_. Then the following are equivalent for any model class X of
type L €A and for any n < w:
S I

(1) K <s Zn+1(LA) definable,

: .. tb .

(2) K s Zn+1(P) w.p.T. A.
Corollary 3.7. For A S H(m1%

(1) A;(LA(W)) = {K|tke model class K <s Ag w.p.t. Al,

(2) A;(LA(W,I)) = {K|the model class X is AE(Cd) w.p.T. Al.
The following corollary is proved mutatis mutandis as Proposition 2.10:

Corollary 3.8. Suppose LK s a Boolean logic extending Ly

predicate. Then Al(LK) ~ Al(L[P]A) if and only <f (S52) and
(SSZ)A: If ¢ € L*, then Mod(¢) s A?(P) w.p.i. A.

and P a

It follows that second order logic is not strongly symbiotic, because there
T~ A](LH

the closure of first order logic under the 21

is no Q such that L )) ~ A}(LQ). Second order logic is rather
-operation. More exactly, let us

define for any zbstract logic L*:

Azw)(L*) = {K| the model class K is A;(L*)—definable for some n < wl.
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IT

Clearly, L™~ = Azm)(wa) = Agw)(Lw) = Azm)(LI). Note that Azw)(L*) satis-

fies the single-sorted interpolation theorem. The following characterization of

Azw)(L*) and second order logic follows from 3.6:

Corollary 3.9. Suppose LY g8 a Boolean logic extending L, and P
a predicate such that LX and P are strongly symbiotic on A S H(u1L
Then the following hold:

(1) Azm)(LX) = {K|the model class K 1is definable with a flat formula of

the language {e,P} w.p.Z. A}.
(2) LEI = {K|the model class K is definable with a flat formula w.p.i. A}.

To sum up, second order definability corresponds to flat definability in set
theory, implicit second order (that is A(LII)-) definability corresponds to b=
definability in set theory, and finally, definability in sort logic corresponds
to definability in set theory. Recall that by Theorem 3,7 of [2], first order
definability corresponds to Afp—definability.

It is well-known (see e.g. [9]) that the H:—part of second order logic has
already the whole implicit strength of second order logic. Another way of saying
the same is LII < A(LQH), because QH is H:—definable (see [7]). This fact has

the following more general analogue:

Proposition 3.1C. Suppose A S HC and Ao S A are transitive classes and
L* g a Boolean logic symbiotic on A If H1(L ) £ A(L*), then

1 . . 1 ww A
A(m)(LA) € alry).

Proof. Suppose L* is symbiotic with P on Ao' In view of 3.9 it suffices
to prove that if K 1is definable by a flat formula of set theory in the language
{e,P} w.p.i. A, then K is A1(P) w.p.i. A. Suppose ®(x,y) is a flat
formula in the language {e,P} and a € A. Then ©(a,b) holds if and only if
there is a strong limit o such that R(a) reflects P, a2 and b are in R(a),
and R(a) E ¢(a,b). As the assumption ﬂl(me) < A(LK) implies that Pw 1is
AT(P) w.p.i. A, the above equivalence shows that o(a,y) is zj(P) w.p.i. A,
Similarly = @(a.y) is 21(P) wv.p.i. A. O

Proposition 3.10 can be improved by considering suitably defined A?w)—opera-
tions, where o 1s an ordinal definable in finite order logic or a € A

o).

The results about absoluteness of symbiotic logics in the previous chapter

(see

carry over to strongly symbiotic logics as follows: Ieh us consider the following

properties:

(SA1)  Ste* is Z?(P) and @vy, @AY, Jcp and Yew in (LS5) and (L6) can be
found with Z?(P)—functions.
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(SA2) There is a A?(P)—predicate S such that if ¢ € L*, then
W € str(L) (M E* ¢ < s(M,p).

The condition (SA1) and (SA2) together from a notion of strong P-absoluteness
of L*. Note that if P 1s omitted, strong absoluteness coincides with the
notion of absoluteness, because every 21—predicate is Z?. S0 the difference
comes only when some non-trivial predicates P are considered. For example,
second order logic is Pw-absolute but not strongly Pw-absolute (see the remarks
after 3.8).

The‘following theorem is proved as 2.12:

Theorem 3.11. Suppose Boolean L* and P are strongly symbiotic on A

and 1Y < Al(LX). Then LY and P satisfy (551), but not (S42).

Corollary 3.12. Suppose Boolean L* and P are strongly symbiotic on A

and satisfy (SAZ2). Then LX s not A}—alosed.

Corollary 3.13. The following logtes are not A}—alosed:

(1) L[P]A, where P 18 a predicate of set theory,
(2) LA(W,Q), where Q 18 a generalized quantifier.

Hence, <if LK s a strongly symbiotic logic on A extending Lyo there are
no generalized quantifiers Q1...Qn such that

Trrx 1 n
A (LF) ~1,(Q,...,97).
Also the proof of Theorem 2.15 carries over:

Theorem 3,14, Suppose L* and P are strongly symbiotic on V, satisfy
(841), and there is a X?(P)—fhnation which embedds wa into 1*., Then

the predicate Stc is Hb(P) but not Xb(P).
1 2 2

A1(L )

This theorem shows how difficult it is to find a syntax for Al—

whereas the full Azw)~extension has a simple primitive recursive syntax. The

extensions,

situation is hence oimilar as in the case of A-extension.

§ L., Liéwenheim numbers

The purpose of this chapter is to transfer the definability results of § 2
frem the level of model classes to the level of spectra and in particular minima

of spectra, that is LOwenheim numbers.

Definition 4.1. Suppose L* s an abstract logic and © € L*. The spectrum
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of @, sple), 7s the class
feara(M) M E* ).

The indesed family
Sp(L*) = {Sp(w)lw € 1*}

ts called the family of L*-spectra.

Examples 4.2.

(1) The class of successor cardinals and the class of limit cardinals are
LI-spectra.

(2) {A[BK(K+ <1 £2%) 4s an LI-spectrum.

(3) The class of regular cardinals and the class of weakly inaccessible
cardinals are LR-spectra.

(4) (2%|« a cardinal}l is an LII-spectrum.

(5) 12|« is measurable} 1is an LII—spectrum.

For other examples of spectra see [13] and [14].

The following problem is called the spectrum problem for L*: Is the comple—
ment of an arbitrary L*-spectrum again an L*-spectrum? The spectrum problem for
LW, for example, has a negative solution because {KIK < ?{o} is an LW-spectrum
but {K\K > }(O} is not. The spectrum problem for LI can have a negative
answer - this will be discussed later. The spectrum problem for LII has a
positive solution for a rather trivial reason: if C 1is an LII—spectrum, then
C = Sp(y) for some identity-sentence ¢ and the complement of C 1is just

Sp(— ). This fact has a more general analogue. At first we note the following

trivial lema:

Lemma 4.3. Suppose C <8 a class of cardinals and C' <s the class of
structures <A>, where card(A) € C. Them C 18 an L¥-spectrum <if and
only tf C' is ZJ(L*)—definable.

If this is combined with Theorem 3.5 and Corollary 3.9, the following charac-

terization of spectra yields:

Theorem 4.4. Suppose A € HC and A © A are transitive classes, P a pred-
teate, and LK a Boolean logic extending LA and strongly symbiotic with P
on AO. Then

sp(1}) = {c € od[c is Zb(P) w.p.t. A},

1

Sp(Azw)(LA)) = {c € cd|C <s definable by a flat formula in the language
{e,P} w.p.z. A},
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LII

N ) = {ccca|c is definable with a flat formula of set theory

w.p.t. A}

sp(

Definition 4,9, Suppose L1* is an abstract logic. The Lowenheimnumber
L(L*) of L* i3 the least cardinal « such that min(C) < « for
every C € Sp(L*), if any such « exist. FEquivalently, L(L¥) <is

the least cardinal « such that if @ € L* has a model, then ¢ has

a model power < «.

It is well-known that Z(Lz) exists if A 1is a set.

Theorem 4.6. Suppose A and A0 C A are transitive classes, P a pred-
teate, and LK a Boolean logic extending Ly and symbiotic with P on
AO. Then for any n < w:

LA (L) = sup {x|c s T (P)-definable w.p.t. Al

If Z(%(LK)) is a limit cardinal (e.g. n >1 or LI <ALY)), then

moreover

Z(An(LK)) = sup {a|e is nn(P)—definabZe w.p.i. A L

Proof. Suppose at first that o is Hn(P)—definable w.p.i. A, Suppose
o(x,y) is a zn(P)-—formula. and a € A such that

VB(B 2 o > @(B,a)).

Let K be the class of linearly ordered structures the ordertype of which is

an ordinal 2 a. K is clearly zn(P) w.p.i. A, whence K is zn(LK)—definable.
But every model of K has power 2 card(o). Hence a % min {card(M)|M € K} <
Z(An(LK))' For the converse, suppose Kk < Z(A'n(LX)). Let @ € LZ such that

K 2 A = min(Sply)) < Z(An(LZ))' Now

VB(B > X >3y X BIM(|M] = v & M E* o))

vhence A 1is Hn(P)-definable w.p.i. A. @

Corollary 4,7, For any rudimentary set A and n > 1:
(1) Z(LIA) = sup {e|a s H1(Cd)-def‘inable w.p.7. A},
(2) Z(Lil) = sup {a|a <is ng—definable»w.p.i. A},

(3) Us (L)) = sup {aja s N -definable w.p.<. A},

(4) Z(Li) = sup {ala 78 definable in set theory w.p.i. A} (in MKM}.
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Part (2) of the above corollary was proved earlier but independently in [6].
Léwenheim-numbers can also be characterized in terms of a notion of de-
scribability. This notion is related to the notion of indiscribability (see [4]

p. 268) but differs mainly in that less parameters are allowed.

Definition 4,8, Let D be a set of formulae of set theory. An ordinal a

18 D-deseribable w.p.Z. A 1if there are a @(x) €D and an & € R, NA
such that

RB Ewla) for B 2o

and
Ry f ola) for rk(e) S8 <a.

The predicate P 18 R—absolute if every Ra reflects P.

Lemma 4.9. Suppose P <is R-absolute and a s n1(P)—definabZe w.p.i. A,
Then there is a B > o such that B is 21(P)—describable w.p.?. A.

Proof. Suppose @(x,y) is 21(P)—formula and a € A such that
VB(B 2 a +> @(B,a)).

Let y(y) be the 21(P)—formula Ixp(x,y) and B the least 8 such that
Rg E ¢(a). Then y 28 ~+ RY  y(a). Hence y(a) describes 8. Rg E y(a)
clearly implies B8 > a. a

Lemms 4.10. Suppose P <s R-absolute and o is 21(P)—describable W.p.T.
A. Then a + 1 18 H1(P)—definable w.p.t. A,

Proof. Suppose ®(x) is a 21(P)—formula and & € A such that Rg E o(a)
if and only if B 2 a. Let y(y,x) be the 21(P)—formu1a which says that ¢(x)
is true in a transitive set which reflects P and the ordinal of which is < y.
If y(B,a), then (because P reflects)for some vy < B RY F 9(e), whence B > a.

On the other hand, if B8 > a, then y(B,a) as one can choose Ra as the required

transitive set. o

Corollary 4,11, Suppose A and A, S A are transitive sets, P an R-abso-

lute predicate, and LK an abstract logic extending L, and symbiotic with

A
P on Al and Z(LZ) 18 a limit eardinal. Then

Z(LK) = sup {a]a 7s 21—describable w.p.i. A},

Proof. The claim follows immediately from 4. 9, 4.10 and 4.6. o

Lemma L.12. Suppose o 1is first order describable (that is described by
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some formula of set theory) w.p.i. A. Then o <8 Hz—definable w.p.z. A.
Proof. Suppose ©(x) is a formula and a € A such that for 2 rk(a)
RS F ¢(a) if and only if B 2 a.
Let y(y,x) be the Zz—formula "Ry E o(a)". Then w(B,a) if and only if
g 2 a.
Corollary 4,13. For any set A:

Z(LII

i ) = sup {a|a <s first order describable w.p.%i. A}.

Another way of formulating Corollary 4.11 is the following:

Proposition 4,14. Suppose A and A S A are rudimentary sets, P an R-

absolute predicate, and LK an abstract logic extending L

with P on Ay s and Z(LK) i a limit cardinal. Then

A and symbiotic

*) = =
Z(LA) the least o Such that <Ru,€,a>a€AnRcx 21(P)<V’E’&>a€A'
In particular,
Z(LII) = the least o such that <R ,€,a> =c <V,€,a> .
A 0> 7 a€AR T), T el
The above result suggest the study of ordinals o such that
(*) <R,€> 412 <V,€>,
n
Let us denote the predicate (*) of « by Dn(a). The following lemma will be

most useful:

Lemma 4.15, The predicate Dn(u) ig L for n > 1,

Proof. Let S(x,y) be the Zn—predicate which is universal for Zn—formulae
with one free varisble y (see e.g. [4] p. 272). Let F(z) by the A1—predicate
"z is a Zn—formula with one free variable y". If F(z), let f(z,a) be the
relativization of z to Ra' f 1is clearly A2. Let So(x,y) be the A1—predi—

cate which is universal for Zo—formulae with one free variable y. Now we have:

D (a) <> Vy € R Vz € w(F(z) > (5 (f(z,a),y) v 8(z,y))),

and therefore D (a) is T.. o
n n

Proposition U.16. If o <s Hn—definable w.p.z. A, then there is a B 2 a
such that B <s An—definable w.p.i. A (n>1).

Proof. Let o(x,y) be a N -formula and a € A such that
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VB(R € a <« ©(B,a)).

Let y(u,v) be the A -predicate "D _ (u) & R, E 3x — ¢(x,v)". Note that

D1(a) may not be II1 but by the proof of 4.15 it is b,. Let 8(w,v) be the

An—predicate Ju 2 wy(u,v). We claim that - 6(w,a) defines an ordinal 2 a.

By reflection there is an ordinal g such that y(B,a). Let B8 be the least
such B. If y 2 B8 then 6(y,a). On the other hand, if 6(y,a), then ¢(§,a)

for some & £ y, whence B8 < § X vy, o
Corollary 4, 17. For any rudimentary set A and n > 1:

Z(Lil) = sup {aja s Az—definable w.p.7. Al}.

Z(An(LA)) = sup {ala s An—definable w.p.%. A}.

The predicate Dn(u) is actually equivalent to a Ldwenheim-Skolem-theorem,

as the following theorem shows:
Theorem 4,18. The following are equivalent for any n > 1:

(1) U (L)) = x,

(2) <R,€><<z <V,€>,
n

Proof. Note that both (1) and (2) imply « = jK. If (2) holds and
$E An(LKm) has a model, then R E "¢ has a model", whence ¢ has a model
of power < ]K:= k. So (2) implies (1). Suppose then (1) holds. We may assume
thet D (k) holds because if n = 2, it follows from k = :1 , and if n > 2,

n-1 K

it follows from a suitable induction hypothesis. Suppose @(x) is a zn-formula
end a € RK such that @(a) holds. Let X be the class of ordinals & such
that Dn_1(u) and R E ¢(a). By Theorem 2.4 and (1), there is a B € K such

that B € k. As Dn_1(K), we have RK E @la), as required. o

Corollary L.19. If « <8 supercompact, then Z(AQ(LKN)) =k. If k s
extendible, then Z(AB(LKN)) = k.

Proof. If «k 1is supercompact, then D2(K); if k 1is extendible, then

D,(x). These facts are proved in [11]. o

§ 5. Henf-numbers

Hanf-numbers can be characterized in the same way as Ldwenheim-numbers., One
has to bear in mind, however, that A does not preserve Hanf-numbers (see [15]).
Therefore we introduce a new notion of definability, bounded definability, which

is neat enough to preserve Hanf-numbers but still almost as powerful as A~ or A=
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definability. This notion was first studied in [15]. The main result of this
chapter is Theorem 5.6. The chapter ends with a discussion on definable ordinals

and sort logic.
Definition 5,1, Let P be a predicate of set theory. A predicate

S(x1,...,xn) of set theory is 2?(P) w.p.T. A 1If there are a ZO(P)—
formula w(x1,...,xn,x,z) and a € A such that

Vx1...Vxn(S(x1,...,xn) > 3xw(x1,...,xn,x,a))
and
Vx1...Vxn({x|w(x1,...,xn,x,a)} is a set).
. B . . . B .
S(X.y...5x ) Zs W.(P) w.p.i. A Zf — S(x1,...,x ) 1s 21(P) w.p. 1.

1 n 1 n

A. S is A5 w.p.i. A if S is both 2]13(1:) and H?(P) w.p.i. A

An example of a A1(Cd)—predicate which is not (provably) AB(Cd) is given

1
in [15]. Note that every 21—predicate is 2? by Levy's theorem. From the fact

Ixe(x) <> Ix(o(x) & Yerk(y) < rk(x) > — o(y))

it follows that every 21(P)—predicate is 2?(P,Pw). Therefore there is no need
to define ZE(P)—predicates for n > 1 - they would coincide with the zn(P)—
predicates.

Now we define the model theoretic analogues of the above notions.

Definition 5.2, Let L* be an abstract logic. A model class K f©s ZB(L*)—
definable if it is z-defined by an L*-sentence O such that

VA 3ckvB € E(A,p)(card(B) < «).

B

K 7s HB(L*)—definabZe if X 1s ZB(L*)—definabZe. K Zs A (L*)-definable
if it ie both JB(L*)- and T°(L*)-definable.

AB is a natural operation on logics and resembles A-operation so much that

it is in fact not at all obvious that there is any difference between them. For
a treatment of AB see [15]. We pick up some of the results of [15] to the
following lemma (note that (1) below fails for A):

Lemma 5.3.

(1) AB preserves Lowenheim— and Hanf-numbers.

(2) ZB(L*) ~ J{1L*) if LM < AB(1*) or 1* s ome of the following
logics (or a fragment of one) Ly? Loy (W)s Ty (Q,), me(QMM(n)), Log

BiL*) ~ a(1*) for such L*.

(3) V=1L implies AB(L1) ~ a(LI).

Hence A
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(4) If Con(ZF), then Con(ZFC + A(LI) 4 A(LI)).

Related to the bounded notions of definability is a new notion of symbiosis

as well:

Definition 5.4. Suppose L* <s an abstract logie, P a predicate of set
theory and A a transitive class. 1*¥ and P are boundedly symbiotic on
A if the following two conditions are satisfied:

(BS1) If @ € L*, then Mod(w) is A?(
(Bs2) K[P] is a"(L%)-definable.

The pairs of example 2.3 are all boundedly symbiotic.

P) w.p.z. {g,L}

We omit the proof of the following theorem because the proof would be mutatis
mutandis as that of 2.4,
Theorem 5.5. OSuppose A and %EA are transitive classes, P a predi-
cate, and LZ an abstract logic extending Ly and boundedly symbiotic
with P on A Then the following are equivalent:
(1) K is [°(1})-definable,
(2) X is Z?(P) w.p.T. A.

Theorem 5,6, Suppose A and Al S A are transitive classes, P a predi-
cate, and LX a Boolean logic extending L, and boundedly symbiotie with
P on A Then

(L3) = sup {ala s {?(p)-definabze w.p.t. A}

and for n > 1:

h(An(LK)) = sup {a]a s In(P)— definable w.p.7. A}.

Proof. 1In order to prove the two claims simultaneously, let us agree that
ZE(P) for n > 1 means In(P). Now, let n > 0. Suppose that o 1is IE(P)—
definable w.p.i. A. Let K be the class of linearly ordered structures the
order type of which is < a. X is IE(P) w.p.i. A and therefore EE(LX)-
definable (using 2.4 and 5.k, Z§(LX) for n > 1 means In(LK))' Hence K is
I(AE(LA))-definable. If n > 1, then LII < AE(LX) whence by 5.3 (2) K is
ZB(AE(LK))—definable. If n = 1, the same conclusion follows trivially. Hence
there is & y € AE(LX) which ZB—defines K. As K has models of power £ card(a)

only, ¥y does not have arbitrary large models. But ¢ has a model of power 2 Kk

for every k < a. Hence card(a) < h(AE(LX)). It follows easily that
B4 B, . B
o < h(An(LA)). For the converse, suppose Kk < h(An(LA)). Let ¢ be in An(LA)

such that k £ A = sup Sp(p). Now

o< A<+>3BMa B & M =8 e ME*g).
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Hence A is Eﬁ(P)—definable w.p.i. A. o
Corollary 5.7. For any rudimentary set A:
(1) h(LﬁI) = sup {a|a is 22—definable w.p.Z. A},
(2) h(An(LA)) = sup {ala <s zn-definable w.p.Z. A} (n > 1).
(3) In MKM: h(L:) = sup {a|la 7s definable in set theory w.p.i. A}
_ s
2(L,)-
Part (1) of the above corollary was proved earlier, but independently, in

[6] (see also [1]).

Let us write

1, for sup {a|a is Hn-definable],

hn for sup {ala is zn—definable}.

By what we have already proved: (for n > 1)

Zn = Z(A;(LHF)) = sup {a|e is An-definable],
hyo= h(a (L)),

In the next few lemmas we shall establish the mutual relations of the ordinals

Zn,hn,n < w. It turns out that the following notation is helpful:

t
n

the least o such that Dn(a)

il

the least o such that <Rm,€>-<z <V,€>

n
the least o« such that Z(A (L ))= a.
n oW

Trivially I <t <h for n > 1.
n n n

Lerma 5.8. For n >0, 1 <t .

Proof. Let S(x,y) be the zn—formula which is universal for zn—formulae

with the free variable y. Let

a = {o(y)|oly) is a zn—formula such that = @(y)

defines an ordinal}.

a € R ,, 8nd therefore a € R . Let v(x,y) be a zn-formula equivalent to
n
Vu € xS{u,y). Now y(a,y) is true for some y, whence y(a,y) is true for some
y € Rt . This y 1is an ordinal which is greater than any Hn—definable ordinal.
n
<
Therefore Zn fy«< tn. ]

Lemma 5.9, If n > 1, then tn 8 zn—definable, and hence tn < hn.



ABSTRACT LOGIC AND SET THEORY 419

Proof. Recall from 4.15 that Dn is Hn. Hence the claim follows from
Vo(o <t «>-D (a) & VB < @« = D_(B)). o
n n n
Lemma 5.10. If n > 1, then hn = Zn+1'

Proof. Suppose a is Hn+1—definab1e and @{x,y) is a Zn—formula such

that
(*) VB B < a +> Vx¢(x,B)).

Let ¥(x) be a zn-formula saying that x is an ordinal and ¢(y,B) holds for
all y € Rx and 8 < x. If Vx¢(x), then WVx@(x,a), a contradiction. Therefore
there are 8 such that — y{6). Let & be the least of them. Hence if B < &
then ${B). On the other hand, if ¥(B) and y £ B then ¢(y), whence y # 8.
Therefore ¥(x) zn—defines 8. Hence it suffices to prove that o X §. Suppose
the contrary, that is 6§ < ¢. If y € R, and B < 8§, then by (*) o@(y,8). Hence

v(8) holds, a contradiction. Therefore a £ 6. o

Corollary 5.11, 12 < h2 = 13 < h3 = Zh < hh = ZS <o

If the proofs of 5.8-5.10 are carried out with parameters, the following

theorem yields:

Theorem 5.12. Suppose A s a rudimentary set and n > 1. Then

o (L)) < h(An(LA

S _ 5 -
Corollary 5,13, (MKM) Z(LHF) = h(LHF) = the least o such that Ra'< v.

Proof. Suppose m(x1,...,xn) is a formula of set theory and 13.1,...,an
sets in Ra’ o = Z(LEF)’ such that w(a1,...,an). Let m < w such that
w(x1,...,xn) is equivalent to a Zm-formula @(X1,---,Xn)- Now Rtk F W(a1,...,an)
for a sufficiently large k < w. We may assume Dm_1(a). Therefore
R, E w(a1,...,an). Hence R E w(a1,...,an). For the converse, suppose
Ra V. Then every definable ordinal must be < «., Therefore a 2 Z(L;F). a]

Corollary 5.14, If the required cardinals exist, then

st measurable < l, < 18t supercompact < hy = 13 < 18t extendible < h3.

Proof. The predicate "a 1is measurable" is 22. Hénce the 1st measurable

is T, -definable and therefore < l,- If « is supercompact, then D2(K) (see
{11] p. 86), and hence 12 < t, £ k. The predicate "o 1s supercompact” is I

Hence the 1st supercompact is zz-definable and therefore < K

o
o If « is ex-
tendible, then D3(K) (see [11] p. 103), and hence 13 < t3 < k. The predicate
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3
Hence the 1st extendible < h3. o

o is extendible" is I, and therefore the Ist extendible is ZB—definable.

So we see that the Ldwenheim—- and Hanf-numbers of even the lowest levels of
sort logic exhaust & wide range of large cardinals. This would seem to suggest
that the logics An(LA)
that the ordinals Zn,hn,n < w exist even if there are no large cardinals; they

are rather strong indeed. In connection with 5.14, note

exist in L, for example.

Tt seems to be & rather common phenomenon that the Ldwenheim-number of a
logic is smaller (often substantiaslly) than the Hanf-number (see e.g. 5.12).
However, in the second part of this peper we shall construct a model of set
theory where the Hanf-number of LI 1is smaller than the Ldwenheim-number of LI.
In that model the spectrum problem for LI has a negative solution, because
there is a cardinal « between 1(LI) and h(LI) such that {Alr 2k} is
a spectrum, but {A[A < k} is (obviously) not.

We end this chapter with & remark on another wey of characterizing h(LiI).

Definition 5,15. An ordinal o 1is weakly first order describable w.p.7. A

if there are a formula @(x) of set theory and an a € Ra N A such that
Rg Eola) for B 2a
and

RB )é ¢(a) for arbitrary large B < o, B 2 rk(a).

Theorem 5.16. Suppose A 1s a rudimentary set.

h(LiI) = sup {a|o Zs weakly first order describable w.p.Z. Al}.
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