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1. Introduction

Suppose A and B are structures for the same countable relational vocabulary. We
denote the universe of .4 by A and the universe of 5 by B. A partial mapping
p : A — Bisapartial isomorphism (p.i.) A — B if p is an isomorphism between
A [ dom(p) and B | rng(p). Let

Ze ={p:pisapi.A— Band|p| <«}.

We study the poset (Z,., C) as a measure of how similar the structures .4 and 5 are
to each other.
A subset X of Z has the « - back-and-forth property if for all A < k

Vp € X[Va € *A3b € *B (p U {{a(i), b(i)) :i < A} € X)
AVDb € *BIa € *A(p U {{a(i), b)) :i < A} € X)].

It is obvious that there is a largest x-back-and-forth set which we denote by Z;.
The structures A and B are said to be partially isomorphic, A ~, B, if I} # @.
We get stronger criteria by demanding that Z) is not just non-empty but “large”.
This leads naturally to the condition:

(o) There is a set D C Z} which has the «-back-and-forth property and is
o-closed.

By D being o - closed we mean thatif po € p; € ... C p, C---(n < w) are
elements of D, then |, p, € D. Structures A and B satisfying (o)y, are said in
[1] to be strongly partially isomorphic .4 ), B. Kueker [5] mentions this concept,
too. Not much is known about (o). Just as the classical back-and-forth argument
gives

(A=, B&I|A||B| <80 = A=B
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we have
(A, B&|A| Bl <8) = A=B.

If A and B are homogeneous, then A >, B and A =), B are both equivalent
to A = B. If A and B are n;-real closed fields, then (¢o)y, holds.

The main open question concerning (o )y, is whether it is transitive, that is,
whether

(A:;B&B:;C):A:;C?

We get some partial answers to this problem. We show that (o')y, is transitive in the
class of structures of size < 2% and in various classes of structures of size < 8y,
and that (o) ,+ is transitive in the class of structures of size « .

The condition A ~~,, B can be characterized in terms of the Ehrenfeucht-Fraissé
game. It is natural to investigate connections between this game and A :‘; B. The
game EF{ on A and B has two players ¥ and 3. The game has § rounds. During
round « player V picks A, < «, one of the models A and 15, say .4, and a sequence
Xo € *A. Then player 3 picks y, € *B_1In this case we denote x, by a, and y,
by bg. If V picked B instead of A and x,, € **B, then x,, would be denoted by b,
and the choice y, € **A of 3 would be denoted by a,. After § rounds have been
played we have

p = {{aa(i), by(@)) 11 < A, a < &}

If p is a partial isomorphism A — B, then 3 won. Otherwise V won. We get the
following criterion:

(3§ Player 3 has a winning strategy in the game E F on A and B.

It is well-known that
TE40 o (32,

and easy to see that
(@), = Y.

The question whether
), & @Y)?

is open. Note that a “yes” would imply that (o), is transitive, as (3)f is clearly
transitive. We establish (o), < (EI)Zi‘l in the case that |A|, | B| < 2%0 as well as for
special classes of A and B of size R;. Although we cannot prove (3)2? = (0)y,
even for all models of size N, we can prove (3)2: . = (0)x, and (EI)S% & (o),
for models of size K.

We can look at the largeness of Z;} also in terms of the Banach-Mazur game
G(Z}) onposet (ZF, D). For this game, see [3], [2] and [6]. The game G(P) has two
players called Empty and Nonempty. They alternately play descending sequence
of P:

Empty |po  p2
Nonempty\ 14! p3

Nonempty wins the run of the game if there is p € P such that p < p, for all
n < . We show that if Nonempty has a winning strategy in G (I;;l) and either A
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or B has cardinality < 8, then the poset (I;;] , D) has a o-closed dense set. Previ-
ously this was known for posets that are trees [6] and for posets whose regular-open
algebra contains a dense subset of size < 280 [2]. As an application of our result
we can show that if Nonempty has a winning strategy in G (1';1 ), then (o), holds.

2. Models of size 2%

One approach to getting (o)x, from (El)ff,l, is to organize the partial isomorphisms
arising from positions in the Ehrenfeucht-Fraissé -game in such a way that they
uniquely determine the position they come from. In this section we use this approach
to prove that (3)2‘,} implies (o), for models A and B of size < 2%0_ First we note
a simple lemma:

Lemma 1. The following conditions are equivalent for any A and B:

(1) 3 has a winning strategy in EF:;1 on A and B.
(2) There is a countably closed notion of forcing P such that It-p A=B

Theorem 2. Suppose A and B have size < 2™, Then (3)2{ & (0)y,-

Proof. Suppose (EI)Zi}. Let us assume for simplicity that A = B = 2“. By
Lemma 1 there is a countably closed notion of forcing P and a name f such
that

Fp f: A= B.

Case 1. Thereis a p € P such that for all « there is a unique g with r I+ fa =48
for some r < p, and a unique B with r I+ f(8) = (&) for some r < p. Let

g={{a.B) | (3q <p)g I f@ =P
Now it is clear that g : A = B3, so (0)y, holds.

Case 2. Forall p € P there is o such that for two different 8 we have r IF f (&) = /§
for some r < p or for two different 8 we have r I f(,é) = « for some r < p.

Thus every p € P has continuum many incompatible extensions all decid-
ing mutually contradictory things about f. These extensions can then be further
extended to py, @ < 2%, such that each p, decides f(&) and f~!(c) but for
a # B pq and pg differ on f . By iterating this w; times we get sets

{fs s € =12}
{ps s €12}

so that

C) pslFfCf
(C2) s <5’ & py < ps
(C3) s<s' & fs C fy
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(C4) For every s € <“12 and every a< 2 there are B < 2 and s’ € ~“'12 such
that s <s"and f; U {{a, B)} C fy.

(C5) For every s € <“12 and every B < 2 there are o < 2% and s’ € <“12 such
that s <s"and f; U {{a, B)} C fy.

Now it is clear that D = { f; : s € =®12} is a o-closed NX-back-and-forth set. O

3. Models of different cardinality

In this section we deduce (o)y, from (El)f,i in all cases where the models are of
different cardinality.

Theorem 3. Suppose A and B have different cardinality. Then (El)ff)} & (0)y-

Proof. Suppose (EI)S)} . Pick a countably closed notion of forcing P and a name f
such that
bp f: A= B.

Suppose |A| = « and |B| = A > k. We may assume k > . We assume A is
singular. The regular case is similar but easier. Let A¢, § < ¢f (1), be an increasing
cofinal sequence in A such that ¢f (1) < Ag for all £. Let us call a set of partial
functions A — B an antichain if the union of any two of them fails to be a partial
function. Let T be the tree of sequences s : w; — A such that for all limit v and all
n < w we have

s(w+3n) <cf(A),s(v+3n+1) < Agwy3n), S +3n+2) < k.

We will use repeatedly the following fact:

(*) Ifk < ut < xand p € P such that p IF g C f, then there are extensions qs,
& < ut, of p and extensions g¢ of g such that gg I g& < f and {ge: & <u™}
is an antichain.

By iterating this way of extending a condition, we get conditions ps,s € T, and
functions f;, s € T such that:

O psl-fs<f

D2) s <s" & py < ps

D3) s <s' & f; C fy

(D4) If s € T and a € A, then there is 8 € B and s’ € T such that s < s" and

Js Ulle, B)} C f
(D5) If s € T and B € B then thereis o € A and s’ € T such that s < s’ and

fs Ulla, B)} € fy

Let
D={fs:seT}

By construction, D is an R|-back-and-forth set which is o-closed. So we have
Oy - o
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4. Models of the same cardinality: Trees

For models of the same size we do not have a general proof for the equivalence of
(o)x, and (EI)EZ}. However, we show now that for trees of height w; the condition
(EI)S} implies (0)y; -

Theorem 4. If the trees Ty and Ty are of height w and satisfy (3)3)1: then they
satisfy (o)y,-

Before we start the proof we present a simple lemma about bipartite graphs
which may have some interest in its own. Recall that a bipartite graph is a triple
G = (A, B, E) where A and B are nonempty sets and £ C A x B is the set of
edges between A and B. A matching is a (possibly partial) injective function f
from A to B such that for every x € dom(f) (x, f(x)) € E. A perfect matching is
a bijection between A and B which is also a matching. Let M be a family of partial
matchings. We say that M has the extension property if forevery f € M,x € A
and y € B thereis g € M with f C g suchthatx € dom(g) and y € ran(g). Thus
if M has the extension property and we consider it as a forcing notion ordered by
reverse inclusion then forcing with M introduces a perfect matching in G.

Lemma 5. Let G = (A, B, E) be a bipartite graph and assume there is a o -closed
forcing notion ‘P which adds a perfect matching in G. Then there is a o-closed
family M of countable partial matchings which has the extension property.

Proof. We shall prove this by induction on the size(G) = |A|+ | B|. First, note that
if size(G) < N then G has a perfect matching f and thus we can take for M the
family of all countable partial submatchings of f.

Assume now size(G) = «x > ¥ and fix a P-name f for a perfect matching.
For a given condition p € P let M, be the collection of all countable partial
matchings s such that there is a condition ¢ < p with g I s C f. Let us say that
a set of partial matchings is an antichain if the union of any two of them fails to
be a partial matching. Let A be the least cardinal such that for some p.M, has no
antichains of size A. If A = x* we can build a required family of partial matchings
as in the proof of Theorem 3. Now, assume A < « and fix a condition p such
that M, has no antichains of size A. Since P is o-closed we can easily show that
cof(r) > Ro. Let E, = [JM,, and let G, = (A, B, E,) be the resulting sub-
graph. Now note that the connected components of G, are of size < A. Therefore
we can find decompositions

A=|JAiand B={JB;
iel iel
and such that |A;| + |B;| < A, foreachi, and E, C Uie] A; X B;. Now let E; be
the restriction of E, to A; x B; and consider bipartite graphs G; = (A;, B;, E;),
fori € I.Each of them has size < A and p forces that f | A; is a perfect matching
of G;. We can therefore apply our induction hypothesis to find a family of count-
able partial matchings M; in G; which have the extension property. Finally, let
M consist of all partial matchings g of the form g = Uielo gi, where Ip C I is a
countable set, and g; € M;, for eachi € Iy. Then M is as required. O



24 J. Vididninen, B. Velickovié

Proof of Theorem 4. Let us fix a o-closed forcing notion P which forces 7y and
T} to be isomorphic and a PP-name for an isomorphism f. We shall define a rela-
tion R < To x Ty and for each (x,y) € R a condition py, € P such that
Dx,y IF f(x) = y. In particular, we will have that if (x, y) € R then x and y are of
the same height. Moreover, if x < x’, y < y’ and both (x, y) and (x’, y’) are in R
then we will have py/ v < px y.

To begin, assume for simplicity that Ty and 77 both have roots, say rg and ry.
Put (r9, r1) in R and let p,, ,, be any condition in P (which necessarily forces that
£ (ro) = r1.) Assume now, we have put (x, y) in R and let p, , be the associated
condition. Let Sy be the set of successors of x in Ty and S, the set of successors of
yin T7. Let

Evy={(x",y) €S xS, thereis ¢ < py,y suchthatg IF f(x') = y'}.

We put all elements of E y into R and for each x, y € E, ,» we pick Pxy <
Px,y such that py \/ I f(x') = y'. Finally, if x € Ty and y € Ty are elements of
the same height which is a limit ordinal and for every x” < x and y’ < y of the same
height (x’, y') € R then we put (x, y) into R and we define p, , to be any condition
extending the corresponding conditions p,- ,/. This completes the construction of
the relation R and the assignment of a condition to each pair (x, y) € R.

Notice now that since p, y IF f(x) = yand f is forced to be an isomorphism,
forcing with P below py , introduces a perfect matching in the graph G, , =
(Sx, Sy, Ex,y). By Lemma 5 we can find, for each (x, y) € R, a family of partial
matchings M , in the graph G, , with the extension property. We may, of course,
assume that M, , contains the empty set.

We now describe a o-closed family F of partial isomorphisms between Ty and
T1 which has the back and forth property. We put a countable partial function g into
JF if dom(g) is an initial segment of Tp, ran(g) is an initial segment of 77, g is a
partial isomorphism between the two, and whenever g(x) = ytheng [ S, € M, ,.
It is straightforward to check that F is as required. O

5. Models of the same cardinality: The decomposition property

In this section we consider models of size at most (2%0)*. If two models satisfy
(3)2}, it is always possible to express the models as unions of smaller submod-
els which again satisfy (3)2{. If these smaller submodels are of size 81, they are
actually pairwise isomorphic. We consider now a condition which states that such
smaller submodels can be chosen to be mutually disjoint. The models .4 and B are
said to satisfy the decomposition property, or (D), for short, if

D) [Al =Bl =«.
2 A=U Ao, B= U Ba.

o<K oa<K
3) |Aul <k, |By| <k fora < k.

4) AuNAg=B,NBg=Pfora < B <«.
(5) (o)y, holds for A, and B, for o < «,

A simple example of the failure of (D), is a pair (A, 5) where some definable
subset has cardinality < « in .4 but cardinality « in B.
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Theorem 6. If A and B have cardinality < @28t and satisfy (3)2{, then they
satisfy (o)x, or (D)(2N0)+.

Proof. Let P be a o-closed poset forcing that A and B are isomorphic and let
IFp f : A= B. For simplicity, assume A, B C u, where u = 280y,

Case 1. For every p one of the following holds:

(1.1) There is an a € A such that for arbitrarily large § < u we have § € B and
forsome g < p, g IF f@) = 8.

(1.2) There is an o € B such that for arbitrarily large 8 < u we have § € A and
forsome g < p, ¢ IF f(B) =a.

In particular, every p € P has a continuum of incompatible extensions all
deciding mutually contradictory things about f . These extensions can then be fur-
ther extended to py, o < 280, such that each p, decides f (yo) and f ~!(y,) for
some preassigned ordinals y,. On the other hand, every p € P has y incomparable
extensions pg each deciding a value f(ag) = B¢ for some fixed e with varying
B: > &. By iterating these two ways of extending a condition, we get conditions
Ds, s € ~“u, and functions fy, s € <“!u such that:

G pslFfic f

(G2)s <5" & py < py

GHs=s'& f; S fv

(G4) If s € =®yw and a € A, then there is B € B and s’ € ~“!it such that s
and f; U {{(a, B)} € [y

(G5 If s € =®lyand B € B thenthereisa € A and s’ € <!yt such that s < s
and f; U {{a, B)} C fy.

IA
h\

Let
D= {fs:5s € ~“lu}.

By construction, D is an 8;-back-and-forth set which is o-closed. So we have
(G)Nl .
Case 2. There is a p € P such that the following conditions both hold:

(2.1) For every « € A there is B, < ju such thatif g < pand g I+ f(&) = y, then

Y < Ba- B
(2.2) For every a € B thereis 8, < u suchthatifg < pandg I+ f(y) = &, then
Yy < 8q4.

Let C be the cub of @ < u closed under the functions § - Bg and & — J¢. Let
C = {cq : @ < pu} in ascending order and

Aqg = AN ey, Cat1)

By = BN [cy, Cat1)-

It is clear that (El)ff)} holds for A, and B,. Since |Ag|, |By| < 2% we have by
Theorem 2.2 that (a)ii holds for A, and B,. So we have (D) 230+ O
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Theorem 7. If A is an Ry-like dense linear order, and B has cardinality < R,
then (EI)Z)l implies (0)y,.

Proof. Suppose (EI)(ZDl but not (o')y, . Then also B is an X,-like dense linear order. In
the proof of Theorem 3.1 we way now choose the decompositions (A : o < w»)
and (By : o < wy) so that each A, is an interval of A and each B, an interval of 5.
Since the intervals are of cardinality < R and satisfy (3)3) ,» they are isomorphic.

Hence A = B and (0)y, after all. O

6. The Banach-Mazur game

The game Gs(P) is defined like G(P) except that there are § moves. Nonempty
moves first at limits and he has to play an extension of all previous moves. Non-
empty wins Gs(P) if he can play all § moves without breaking the rules. So G(P)
i8S Go+1(P). The following lemma is well-known.

Lemma 8. If Nonempty has a winning strategy in G(P), he has one in G, (P).

Lemma 9. [f Nonempty has a winning strategy in Gy, (Z') for some R-back-and-
forth set T' € T , then (3)q) holds.

Proof. We describe a winning strategy of 3in E F;ff . During the game E F:fl' player
3 maintains a sequence (pg : @ < 2v) in Z’ such that conditions (1) — (3) below
are satisfied. Let (7, : @ < w1) be a winning strategy of Nonempty in G, (Z).

() a < B < 2vimplies py < pg

(@) pop = Tau((pe & < 2u)), forall p < v

(3) If {a, be), & < 2v, is the game so far, pg (ag (i) = b: (i) fori < w.

Suppose we are at some stage v and V plays, say x € A®. Since 7’ is an 8-
back-and-forth set, there is p2,+1 2 p2, such that ran(x) € dom(pz,+1). Let
P42 = T2({pg 1§ = 2v +1)). Now I plays y = (p2y42(x(i)) 1 i < ) in
EF)/. O

It is known that the following conditions are equivalent: [3]

(1) Empty does not have a winning strategy in G(P).

(2) P is Bairei.e.if D, C P are dense and open for n < w, thensois (| Dj.
n<w

It is also known that G(P) can be nondetermined [3]. What is not known is
whether the following conditions are equivalent:

(3) Nonempty has a winning strategy in G(P)
(4) P contains a o-closed dense subset.

Jech and Shelah [4] prove that it is consistent that (3) does not imply (4). We
can settle the equivalence of (3) and (4) for the poset I;l :

Theorem 10. Suppose A and B are sets with card(A) < ¥, and P is a poset of
countable partial functions A — B ordered by C. Assume that P is closed under
restrictions and has the following extension property: for every p € P and every
countable X C A there is q € P extending p such that X C dom(q). Then the
following conditions are equivalent:
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(i) Nonempty has a winning strategy in G(IP)
(ii) P contains a o-closed dense subset.

Proof. Suppose |A| = R,,. Let S be cofinal in P <“!(w,) with card(S) = 8,,. Let
S={Ey:a < w,}. Let m(Ep) = sup(Ep) + 1 and

m(Eq) = sup{{n(Ep) : p <a}UE.}+1
E, = E, U {7 (Ey))

S"={E, :a < wy}.

Now S’ is a “bursting family” < P~“!(w,) i.e. cofinal, of cardinality ¥, and
{E € §' : E C x}is countable for all x € P=%!(w,). Moreover we have a function
7 such that 7 is one-one and 7 (x) € x for all x € S’. We may assume S is closed
under finite unions. We use this family to prove (i) — (i7).

A mapping p € P is called good if dom(p) € S'. Suppose T = (1, : n < )
is a winning strategy of Nonempty in G(P). A sequence s = (po, ..., Pan+t1) 1S
a partial t-play if foralli € {0,...,n}, ps € P, priv1 = t({po, ..., P2i)),
and poiy2 2 paiy1 if i < n. A partial T-play (po, ..., pont1) 1S good if the
mappings p2;, 0 < i < n, are good. Let the set D consist of f € PP such that if
s = (po, --., Pan+1) 1s a good partial T-play and g € P is good with

P11 Sq C f,

then s can be extended to a good partial t-play (po, ..., P2n+1, P2n+2, P2n+3) SO
thatg C pony3 S f.

Claim 1. D is dense in P.

Suppose pog € P. Let P’ be the poset of good p € P such that pg C p. Fix
a sufficiently large regular cardinal A and let N < H(A) be countable so that
po, S, P’ € N. Let G be P'-generic over N and f = UG. If g € N is good and
g C f,thenthereis f’ € G sothat g C f/, for {f' € P’ : dom(g) C dom(f”)}is
dense in ”’. To prove that f € D, suppose go < ... C gou+1 is a good partial 7-play
such that gp,+1 € f and g2,+1 C g is good with g C f.Let f' € G with g C f'.
Any i € P’ with f’ C hcanbe extended to 2’ suchthatgy € ... C gopy1 Ch C
is a good partial t-play. Hence there are f” € G and h such that we have a good
partial T-play go € ... C gons1 € h C f”.Thus f € D.

Claim 2. D is o-closed.
Suppose fo S ... S f, € ...arein D.Letdom(f,) = |J E[ where EI € S.

1<w

let
n n
Er=JUJ E.
i=0j=0
Since fi € D, there is a good partial T-play (go, g1) such that fo [ E§ C g1 € f1.

Since f> € D, there is a good partial 7-play (go, g1, g2, g3) with f1 [ Ef € g3 C
f>, and so on. We get a t-play (go, g1, - . .) such that

fa TE) C gont1
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Since t is a winning strategy, | Jg, € P’. By Claim 1 there is g 2 J g, with
n n
geD. O

Corollary 11. If one of the models A, B is of size < N, then Nonempty has win-
ning strategy in G(I;;l) if and only if I§| contains a o-closed dense subset.

Corollary 12. If Nonempty has a winning strategy in G (I§l ), then (0)n, holds. O

However, it is by no means the case that if (o)x, holds (or even A = B), then
Nonempty has a winning strategy in g(I;l ).

7. Uncountable partial isomorphisms

In this section we study models of cardinality « . It turns out that for ¥ > @ some
new ideas can be used if we consider Z,+ rather than Zy,. Likewise, the game
EF’L‘U1 is in some sense easier to deal with than EFff)l1 , when models of size kT are
considered.

Indeed, we can now prove (a)ﬁf < (0)n,:

Theorem 13. The following conditions are equivalent for models A and B of
cardinality kT :

(i) Player 3 has a winning strategy in the game EFa’jIJr on A and B.
(ii) There is a set D C I*, which has the kt-back-and-forth property and is
o-closed.

Proof. Suppose 3 has a winning strategy t in EFZ)T on A and B. We assume that
A = B = «™. A partial t-play is a sequence

s = {({xq, Ya) 1 ¢ < §)

of moves x, of V and responses y, of 3 in EF@T, d playing t. Each partial t-play s
determines a partial isomorphism p(s) of cardinality < k. Let T be the tree of all
partial t-plays s such that the domain and range of p(s) are equal and are an initial
segment of k1. Let s <7 s’ if the partial T-play s’ is obtained by continuing the
partial t-play s. Let P be the set of all p(s), where s € T is a partial t-play. Then

P is a tree under inclusion. If s € T, let
Pi={pi):s'eT, s <rs')
Note that Py may be a proper subset of {p € P : p(s) C p}.

Case 1. There is an s € T such that if A C P is an antichain in Py, then
sup{dom(p) : p € A} < «*. This means that P is a k T-Souslin tree. We con-
struct a o -closed dense back-and-forth set D C I;Z,. Let us consider the following
persistency game on Pg:

I ‘Ot() (03} .

o po pi

There are two players, I and II, and @ moves. Player I starts by choosing g < « .
Then player II chooses pg € Ps; with dom(pg) > ap. Then I chooses «; < xkT and
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IT chooses p1 € Ps with dom(P;) > a1 and pg < pi, and so on. Player II wins if
he can play w moves p,, n < w so that eventually U, p, < p,, for some p,, € P;.
Now it is clear that IT has a winning strategy in this persistency game. All he has to
do is to continue the partial t-play s in an obvious way. Let P] be the downward
closure in Py of the set of first moves of II against all possible first moves of 1.
Let us then consider the game Goo(Py, a) from [6]: This game is like G(P;)
except that Empty plays antichains Ag, Aj, ... and Nonempty plays a, € A,. The
game starts with Empty choosing a € P] and maximal antichain A of extensions
of a. Later, Empty has to choose A, so that it is a maximal antichain of exten-
sions of a,. Again, Nonempty wins if he can play all of his @ moves and then
have a,, € Ps with | Ja, € a,. Nonempty has the following winning strategy in

n

Goo(P/, a). Suppose Empty plays a maximal antichain Ag in {p € P, : a C p}.By
assumption, there is a9 < kT so that sup(dom(p)) < ag for p € Ag. Now II uses
his winning strategy in the persistency game to get po € P; of height «. Since
Y Ag = a, there is ap € Ag such that ag € pg. This is the first move of Nonempty.
It is clear that he can go on like this for « moves and win.

It follows from a result in [6] that Nonempty wins G(P;). Since P| is a tree,
by another result from [6] it has a o-closed dense subset D. Now in fact D is a
o -closed back-and-forth subset of I:+.

Case 2. For every s € T, P; has an antichain A; such that sup{dom(p) : p €
Ag} = k. We define a mapping 7w : <“'«™ — T such that

D a(f la) <r n(f) if f € <@«kT and o € dom(f)
Q) {p((f U{(B,E)}) : & < kT}is an antichain in P if f € ~“Ik* and B =
dom(f).

Suppose 7 (g) is defined for dom(g) < «, where @ < w1, and dom(f) = «. If
o = Ua, the sequence
(T(f 1B :B<a)
is an ascending chain in 7 and has therefore a limit which we denote by 7 (f). If
a=p+1,welet Ayrip) ={as : & < «t}andlet

n(fU{(B.€)}) = ae

for & < . This ends the construction. Now let

D={pm(f): fe“«kT}

We prove that D is an « T-back-and-forth set. Let p(w(f)) € D and, say x € “A.
Let dom( f) = B. We can choose £ < ™ so that

sup{x(@) : i <k} <dom(zw(f U (B,E))).

Thus rng(x) € dom(w(f U (B,§))) and w(f U {(B.§)}) € D.
Finally, we show that D is o-closed. Suppose po C p1 & ...in D. Let p, =

p(m(fy)). By construction, there is f,, € <®'« T such that f, = f,, | dom(f,).
Now p, C p(r(fy)) foralln < w. O
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Corollary 14. (3)?.‘,( — (0)+ on models of cardinality k™.

Corollary 15. (0),+ is transitive on models of cardinality k™.

Open problems:

1.
2.
3.

Is (o)x, transitive?

Is (0),+ transitive on all models?
R

@y < @)y,?
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