Jouko Väänänen · Boban Veličković

Games played on partial isomorphisms

Received: 5 September 2000 / Revised: 14 August 2002 / Published online: 6 August 2003 – © Springer-Verlag 2003

1. Introduction

Suppose \mathcal{A} and \mathcal{B} are structures for the same countable relational vocabulary. We denote the universe of \mathcal{A} by A and the universe of \mathcal{B} by B. A partial mapping $p: A \to B$ is a *partial isomorphism* (p.i.) $\mathcal{A} \to \mathcal{B}$ if p is an isomorphism between $\mathcal{A} \upharpoonright \text{dom}(p)$ and $\mathcal{B} \upharpoonright \text{rng}(p)$. Let

$$\mathcal{I}_{\kappa} = \{p : p \text{ is a p.i. } \mathcal{A} \to \mathcal{B} \text{ and } |p| < \kappa\}.$$

We study the poset $\langle \mathcal{I}_{\kappa}, \subseteq \rangle$ as a measure of how similar the structures \mathcal{A} and \mathcal{B} are to each other.

A subset *X* of \mathcal{I}_{κ} has the κ - *back-and-forth* property if for all $\lambda < \kappa$

$$\begin{aligned} \forall p \in X [\forall a \in {}^{\lambda}\!A \exists b \in {}^{\lambda}\!B \ (p \cup \{\langle a(i), b(i) \rangle : i < \lambda\} \in X) \\ & \land \forall b \in {}^{\lambda}\!B \exists a \in {}^{\lambda}\!A (p \cup \{\langle a(i), b(i) \rangle : i < \lambda\} \in X)]. \end{aligned}$$

It is obvious that there is a largest κ -back-and-forth set which we denote by \mathcal{I}_{κ}^* . The structures \mathcal{A} and \mathcal{B} are said to be *partially isomorphic*, $\mathcal{A} \simeq_p \mathcal{B}$, if $\mathcal{I}_2^* \neq \emptyset$. We get stronger criteria by demanding that \mathcal{I}_{κ}^* is not just non-empty but "large". This leads naturally to the condition:

 $(\sigma)_{\kappa}$ There is a set $D \subseteq \mathcal{I}_{\kappa}^*$ which has the κ -back-and-forth property and is σ -closed.

By *D* being σ - *closed* we mean that if $p_0 \subseteq p_1 \subseteq ... \subseteq p_n \subseteq \cdots (n < \omega)$ are elements of *D*, then $\bigcup_n p_n \in D$. Structures \mathcal{A} and \mathcal{B} satisfying $(\sigma)_{\aleph_1}$ are said in [1] to be strongly partially isomorphic $\mathcal{A} \simeq_p^s \mathcal{B}$. Kueker [5] mentions this concept, too. Not much is known about $(\sigma)_{\kappa}$. Just as the classical back-and-forth argument gives

$$(\mathcal{A} \simeq_n \mathcal{B} \& |A|, |B| \le \aleph_0) \Rightarrow \mathcal{A} \cong \mathcal{B}$$

J. Väänänen*: Department of Mathematics, University of Helsinki, Helsinki, Finland

B. Veličković: UFR de mathèmatiques, Université de Paris 7, Paris, France

^{*}Partially supported by the Academy of Finland grant #1011049.

we have

$$(\mathcal{A} \simeq_p^s \mathcal{B} \& |A|, |B| \le \aleph_1) \Rightarrow \mathcal{A} \cong \mathcal{B}.$$

If \mathcal{A} and \mathcal{B} are homogeneous, then $\mathcal{A} \simeq_p \mathcal{B}$ and $\mathcal{A} \simeq_p^s \mathcal{B}$ are both equivalent to $\mathcal{A} \equiv \mathcal{B}$. If \mathcal{A} and \mathcal{B} are η_1 -real closed fields, then $(\sigma)_{\aleph_1}$ holds.

The main open question concerning $(\sigma)_{\aleph_1}$ is whether it is transitive, that is, whether

$$(\mathcal{A} \simeq_p^s \mathcal{B} \& \mathcal{B} \simeq_p^s \mathcal{C}) \Rightarrow \mathcal{A} \simeq_p^s \mathcal{C}?$$

We get some partial answers to this problem. We show that $(\sigma)_{\aleph_1}$ is transitive in the class of structures of size $\leq 2^{\aleph_0}$ and in various classes of structures of size $\leq \aleph_2$, and that $(\sigma)_{\kappa^+}$ is transitive in the class of structures of size κ^+ .

The condition $\mathcal{A} \simeq_p \mathcal{B}$ can be characterized in terms of the Ehrenfeucht-Fraïssé game. It is natural to investigate connections between this game and $\mathcal{A} \simeq_p^s \mathcal{B}$. The game EF_{δ}^{κ} on \mathcal{A} and \mathcal{B} has two players \forall and \exists . The game has δ rounds. During round α player \forall picks $\lambda_{\alpha} < \kappa$, one of the models \mathcal{A} and \mathcal{B} , say \mathcal{A} , and a sequence $x_{\alpha} \in {}^{\lambda_{\alpha}}A$. Then player \exists picks $y_{\alpha} \in {}^{\lambda_{\alpha}}B$. In this case we denote x_{α} by a_{α} and y_{α} by b_{α} . If \forall picked \mathcal{B} instead of \mathcal{A} and $x_{\alpha} \in {}^{\lambda_{\alpha}}B$, then x_{α} would be denoted by b_{α} and the choice $y_{\alpha} \in {}^{\lambda_{\alpha}}A$ of \exists would be denoted by a_{α} . After δ rounds have been played we have

$$p = \{ \langle a_{\alpha}(i), b_{\alpha}(i) \rangle : i < \lambda_{\alpha}, \ \alpha < \delta \}.$$

If p is a partial isomorphism $\mathcal{A} \to \mathcal{B}$, then \exists won. Otherwise \forall won. We get the following criterion:

 $(\exists)_{\delta}^{\kappa}$ Player \exists has a winning strategy in the game EF_{δ}^{κ} on \mathcal{A} and \mathcal{B} .

It is well-known that

$$\mathcal{I}^*_{\omega} \neq \emptyset \iff (\exists)^2_{\omega},$$

and easy to see that

 $(\sigma)_{\aleph_1} \Rightarrow (\exists)_{\omega_1}^{\aleph_1}.$

The question whether

$$(\sigma)_{\aleph_1} \Leftrightarrow (\exists)_{\omega_1}^{\aleph_1}?$$

is open. Note that a "yes" would imply that $(\sigma)_{\aleph_1}$ is transitive, as $(\exists)_{\delta}^{\aleph}$ is clearly transitive. We establish $(\sigma)_{\aleph_1} \Leftrightarrow (\exists)_{\omega_1}^{\aleph_1}$ in the case that $|A|, |B| \le 2^{\aleph_0}$ as well as for special classes of \mathcal{A} and \mathcal{B} of size \aleph_2 . Although we cannot prove $(\exists)_{\omega_1}^{\aleph_0} \Rightarrow (\sigma)_{\aleph_1}$ even for all models of size \aleph_2 we can prove $(\exists)_{\omega_1 \cdots \omega_1}^{\aleph_1} \Rightarrow (\sigma)_{\aleph_2}$ and $(\exists)_{\omega_1}^{\aleph_2} \Leftrightarrow (\sigma)_{\aleph_2}$ for models of size \aleph_2 .

We can look at the largeness of \mathcal{I}_{κ}^* also in terms of the Banach-Mazur game $\mathcal{G}(\mathcal{I}_{\kappa}^*)$ on poset $\langle \mathcal{I}_{\kappa}^*, \supseteq \rangle$. For this game, see [3], [2] and [6]. The game $\mathcal{G}(P)$ has two players called Empty and Nonempty. They alternately play descending sequence of *P*:

Empty
$$p_0$$
 p_2 ...Nonempty p_1 p_3 ...

Nonempty wins the run of the game if there is $p \in P$ such that $p \leq p_n$ for all $n < \omega$. We show that if Nonempty has a winning strategy in $\mathcal{G}(\mathcal{I}_{\aleph_1}^*)$ and either A

or *B* has cardinality $\langle \aleph_{\omega}$, then the poset $\langle \mathcal{I}_{\aleph_1}^*, \supseteq \rangle$ has a σ -closed dense set. Previously this was known for posets that are trees [6] and for posets whose regular-open algebra contains a dense subset of size $\leq 2^{\aleph_0}$ [2]. As an application of our result we can show that if Nonempty has a winning strategy in $\mathcal{G}(\mathcal{I}_{\aleph_1}^*)$, then $(\sigma)_{\aleph_1}$ holds.

2. Models of size 2^{ω}

One approach to getting $(\sigma)_{\aleph_1}$ from $(\exists)_{\omega_1}^{\aleph_1}$ is to organize the partial isomorphisms arising from positions in the Ehrenfeucht-Fraïssé -game in such a way that they uniquely determine the position they come from. In this section we use this approach to prove that $(\exists)_{\omega_1}^{\aleph_1}$ implies $(\sigma)_{\aleph_1}$ for models \mathcal{A} and \mathcal{B} of size $\leq 2^{\aleph_0}$. First we note a simple lemma:

Lemma 1. The following conditions are equivalent for any A and B:

- (1) \exists has a winning strategy in $EF_{\omega_1}^{\aleph_1}$ on \mathcal{A} and \mathcal{B} .
- (2) There is a countably closed notion of forcing P such that $\Vdash_P \check{A} \cong \check{B}$.

Theorem 2. Suppose \mathcal{A} and \mathcal{B} have size $\leq 2^{\aleph_0}$. Then $(\exists)_{\omega_1}^{\aleph_1} \Leftrightarrow (\sigma)_{\aleph_1}$.

Proof. Suppose $(\exists)_{\omega_1}^{\aleph_1}$. Let us assume for simplicity that $A = B = 2^{\omega}$. By Lemma 1 there is a countably closed notion of forcing P and a name \tilde{f} such that

$$\Vdash_P \tilde{f}: \check{\mathcal{A}} \cong \check{\mathcal{B}}$$

Case 1. There is a $p \in P$ such that for all α there is a unique β with $r \Vdash \tilde{f}(\check{\alpha}) = \check{\beta}$ for some $r \leq p$, and a unique β with $r \Vdash \tilde{f}(\check{\beta}) = (\check{\alpha})$ for some $r \leq p$. Let

$$g = \{ \langle \alpha, \beta \rangle \mid (\exists q \le p)(q \Vdash \tilde{f}(\check{\alpha}) = \check{\beta}) \}.$$

Now it is clear that $g : \mathcal{A} \cong \mathcal{B}$, so $(\sigma)_{\aleph_1}$ holds.

Case 2. For all $p \in P$ there is α such that for two different β we have $r \Vdash \tilde{f}(\check{\alpha}) = \check{\beta}$ for some $r \leq p$ or for two different β we have $r \Vdash \tilde{f}(\check{\beta}) = \check{\alpha}$ for some $r \leq p$.

Thus every $p \in P$ has continuum many incompatible extensions all deciding mutually contradictory things about \tilde{f} . These extensions can then be further extended to p_{α} , $\alpha < 2^{\omega}$, such that each p_{α} decides $\tilde{f}(\check{\alpha})$ and $\tilde{f}^{-1}(\check{\alpha})$ but for $\alpha \neq \beta p_{\alpha}$ and p_{β} differ on \tilde{f} . By iterating this ω_1 times we get sets

$$\{f_s : s \in {}^{<\omega_1}2\}$$
$$\{p_s : s \in {}^{<\omega_1}2\}$$

so that

(C1) $p_s \Vdash \check{f}_s \subseteq \tilde{f}$ (C2) $s \leq s' \Leftrightarrow p_{s'} \leq p_s$ (C3) $s \leq s' \Leftrightarrow f_s \subseteq f_{s'}$

- (C4) For every $s \in {}^{<\omega_1 2}$ and every $\alpha < 2^{\omega}$ there are $\beta < 2^{\omega}$ and $s' \in {}^{<\omega_1 2}$ such that $s \leq s'$ and $f_s \cup \{\langle \alpha, \beta \rangle\} \subseteq f_{s'}$.
- (C5) For every $s \in {}^{<\omega_1 2}$ and every $\beta < 2^{\omega}$ there are $\alpha < 2^{\omega}$ and $s' \in {}^{<\omega_1 2}$ such that $s \leq s'$ and $f_s \cup \{\langle \alpha, \beta \rangle\} \subseteq f_{s'}$.

Now it is clear that $D = \{f_s : s \in {}^{<\omega_1 2}\}$ is a σ -closed \aleph_1 -back-and-forth set. \Box

3. Models of different cardinality

In this section we deduce $(\sigma)_{\aleph_1}$ from $(\exists)_{\omega_1}^{\aleph_1}$ in all cases where the models are of different cardinality.

Theorem 3. Suppose \mathcal{A} and \mathcal{B} have different cardinality. Then $(\exists)_{\omega_1}^{\aleph_1} \Leftrightarrow (\sigma)_{\aleph_1}$.

Proof. Suppose $(\exists)_{\omega_1}^{\aleph_1}$. Pick a countably closed notion of forcing *P* and a name \tilde{f} such that

$$\Vdash_P \tilde{f} : \check{\mathcal{A}} \cong \check{\mathcal{B}}.$$

Suppose $|A| = \kappa$ and $|B| = \lambda > \kappa$. We may assume $\kappa > \omega$. We assume λ is singular. The regular case is similar but easier. Let λ_{ξ} , $\xi < cf(\lambda)$, be an increasing cofinal sequence in λ such that $cf(\lambda) < \lambda_{\xi}$ for all ξ . Let us call a set of partial functions $A \rightarrow B$ an *antichain* if the union of any two of them fails to be a partial function. Let *T* be the tree of sequences $s : \omega_1 \rightarrow \lambda$ such that for all limit ν and all $n < \omega$ we have

$$s(\nu + 3n) < cf(\lambda), s(\nu + 3n + 1) < \lambda_{s(\nu+3n)}, s(\nu + 3n + 2) < \kappa.$$

We will use repeatedly the following fact:

(*) If $\kappa < \mu^+ < \lambda$ and $p \in P$ such that $p \Vdash \check{g} \subseteq \tilde{f}$, then there are extensions q_{ξ} , $\xi < \mu^+$, of p and extensions g_{ξ} of g such that $q_{\xi} \Vdash \check{g}_{\xi} \subseteq \tilde{f}$ and $\{g_{\xi} : \xi < \mu^+\}$ is an antichain.

By iterating this way of extending a condition, we get conditions $p_s, s \in T$, and functions $f_s, s \in T$ such that:

Let

$$D = \{f_s : s \in T\}.$$

By construction, D is an \aleph_1 -back-and-forth set which is σ -closed. So we have $(\sigma)_{\aleph_1}$.

4. Models of the same cardinality: Trees

For models of the same size we do not have a general proof for the equivalence of $(\sigma)_{\aleph_1}$ and $(\exists)_{\omega_1}^{\aleph_1}$. However, we show now that for trees of height ω_1 the condition $(\exists)_{\omega_1}^{\aleph_1}$ implies $(\sigma)_{\aleph_1}$.

Theorem 4. If the trees T_0 and T_1 are of height ω_1 and satisfy $(\exists)^2_{\omega_1}$, then they satisfy $(\sigma)_{\aleph_1}$.

Before we start the proof we present a simple lemma about bipartite graphs which may have some interest in its own. Recall that a bipartite graph is a triple G = (A, B, E) where A and B are nonempty sets and $E \subseteq A \times B$ is the set of edges between A and B. A matching is a (possibly partial) injective function f from A to B such that for every $x \in \text{dom}(f)$ $(x, f(x)) \in E$. A perfect matching is a bijection between A and B which is also a matching. Let \mathcal{M} be a family of partial matchings. We say that \mathcal{M} has the extension property if for every $f \in \mathcal{M}, x \in A$ and $y \in B$ there is $g \in \mathcal{M}$ with $f \subseteq g$ such that $x \in \text{dom}(g)$ and $y \in \text{ran}(g)$. Thus if \mathcal{M} has the extension property and we consider it as a forcing notion ordered by reverse inclusion then forcing with \mathcal{M} introduces a perfect matching in G.

Lemma 5. Let G = (A, B, E) be a bipartite graph and assume there is a σ -closed forcing notion \mathcal{P} which adds a perfect matching in G. Then there is a σ -closed family \mathcal{M} of countable partial matchings which has the extension property.

Proof. We shall prove this by induction on the size(G) = |A| + |B|. First, note that if size(G) $\leq \aleph_1$ then G has a perfect matching f and thus we can take for \mathcal{M} the family of all countable partial submatchings of f.

Assume now size $(G) = \kappa > \aleph_1$ and fix a \mathcal{P} -name f for a perfect matching. For a given condition $p \in \mathcal{P}$ let \mathcal{M}_p be the collection of all countable partial matchings s such that there is a condition $q \leq p$ with $q \Vdash s \subseteq \dot{f}$. Let us say that a set of partial matchings is an *antichain* if the union of any two of them fails to be a partial matching. Let λ be the least cardinal such that for some $p\mathcal{M}_p$ has no antichains of size λ . If $\lambda = \kappa^+$ we can build a required family of partial matchings as in the proof of Theorem 3. Now, assume $\lambda \leq \kappa$ and fix a condition p such that \mathcal{M}_p has no antichains of size λ . Since \mathcal{P} is σ -closed we can easily show that $\operatorname{cof}(\lambda) > \aleph_0$. Let $E_p = \bigcup \mathcal{M}_p$ and let $G_p = (A, B, E_p)$ be the resulting subgraph. Now note that the connected components of G_p are of size $< \lambda$. Therefore we can find decompositions

$$A = \bigcup_{i \in I} A_i \text{ and } B = \bigcup_{i \in I} B_i$$

and such that $|A_i| + |B_i| < \lambda$, for each *i*, and $E_p \subseteq \bigcup_{i \in I} A_i \times B_i$. Now let E_i be the restriction of E_p to $A_i \times B_i$ and consider bipartite graphs $G_i = (A_i, B_i, E_i)$, for $i \in I$. Each of them has size $< \lambda$ and *p* forces that $f \upharpoonright A_i$ is a perfect matching of G_i . We can therefore apply our induction hypothesis to find a family of countable partial matchings \mathcal{M}_i in G_i which have the extension property. Finally, let \mathcal{M} consist of all partial matchings *g* of the form $g = \bigcup_{i \in I_0} g_i$, where $I_0 \subseteq I$ is a countable set, and $g_i \in \mathcal{M}_i$, for each $i \in I_0$. Then \mathcal{M} is as required. \Box *Proof of Theorem 4.* Let us fix a σ -closed forcing notion \mathcal{P} which forces T_0 and T_1 to be isomorphic and a \mathcal{P} -name for an isomorphism \dot{f} . We shall define a relation $R \subseteq T_0 \times T_1$ and for each $(x, y) \in R$ a condition $p_{x,y} \in \mathcal{P}$ such that $p_{x,y} \Vdash \dot{f}(x) = y$. In particular, we will have that if $(x, y) \in R$ then x and y are of the same height. Moreover, if x < x', y < y' and both (x, y) and (x', y') are in R then we will have $p_{x',y'} \leq p_{x,y}$.

To begin, assume for simplicity that T_0 and T_1 both have roots, say r_0 and r_1 . Put (r_0, r_1) in R and let p_{r_0,r_1} be any condition in \mathcal{P} (which necessarily forces that $\dot{f}(r_0) = r_1$.) Assume now, we have put (x, y) in R and let $p_{x,y}$ be the associated condition. Let S_x be the set of successors of x in T_0 and S_y the set of successors of y in T_1 . Let

 $E_{x,y} = \{(x', y') \in S_x \times S_y : \text{ there is } q \le p_{x,y} \text{ such that } q \Vdash \dot{f}(x') = y'\}.$

We put all elements of $E_{x,y}$ into R and for each $x, y \in E_{x',y'}$ we pick $p_{x',y'} \le p_{x,y}$ such that $p_{x',y'} \Vdash \dot{f}(x') = y'$. Finally, if $x \in T_0$ and $y \in T_1$ are elements of the same height which is a limit ordinal and for every x' < x and y' < y of the same height $(x', y') \in R$ then we put (x, y) into R and we define $p_{x,y}$ to be any condition extending the corresponding conditions $p_{x',y'}$. This completes the construction of the relation R and the assignment of a condition to each pair $(x, y) \in R$.

Notice now that since $p_{x,y} \Vdash \hat{f}(x) = y$ and \hat{f} is forced to be an isomorphism, forcing with \mathcal{P} below $p_{x,y}$ introduces a perfect matching in the graph $G_{x,y} = (S_x, S_y, E_{x,y})$. By Lemma 5 we can find, for each $(x, y) \in R$, a family of partial matchings $\mathcal{M}_{x,y}$ in the graph $G_{x,y}$ with the extension property. We may, of course, assume that $\mathcal{M}_{x,y}$ contains the empty set.

We now describe a σ -closed family \mathcal{F} of partial isomorphisms between T_0 and T_1 which has the back and forth property. We put a countable partial function g into \mathcal{F} if dom(g) is an initial segment of T_0 , ran(g) is an initial segment of T_1 , g is a partial isomorphism between the two, and whenever g(x) = y then $g \upharpoonright S_x \in \mathcal{M}_{x,y}$. It is straightforward to check that \mathcal{F} is as required.

5. Models of the same cardinality: The decomposition property

In this section we consider models of size at most $(2^{\aleph_0})^+$. If two models satisfy $(\exists)_{\omega_1}^{\aleph_1}$, it is always possible to express the models as unions of smaller submodels which again satisfy $(\exists)_{\omega_1}^{\aleph_1}$. If these smaller submodels are of size \aleph_1 , they are actually pairwise isomorphic. We consider now a condition which states that such smaller submodels can be chosen to be mutually disjoint. The models \mathcal{A} and \mathcal{B} are said to satisfy the *decomposition property*, or $(D)_{\kappa}$ for short, if

(1)
$$|A| = |B| = \kappa$$
.

- (2) $A = \bigcup_{\alpha < \kappa} A_{\alpha}, \ B = \bigcup_{\alpha < \kappa} B_{\alpha}.$
- (3) $|A_{\alpha}| \stackrel{\alpha < \kappa}{<} B_{\alpha}| < \kappa$ for $\alpha < \kappa$.
- (4) $A_{\alpha} \cap A_{\beta} = B_{\alpha} \cap B_{\beta} = \emptyset$ for $\alpha < \beta < \kappa$.
- (5) $(\sigma)_{\aleph_1}$ holds for \mathcal{A}_{α} and \mathcal{B}_{α} for $\alpha < \kappa$,

A simple example of the failure of $(D)_{\kappa}$ is a pair $(\mathcal{A}, \mathcal{B})$ where some definable subset has cardinality $< \kappa$ in \mathcal{A} but cardinality κ in \mathcal{B} .

Theorem 6. If \mathcal{A} and \mathcal{B} have cardinality $\leq (2^{\aleph_0})^+$ and satisfy $(\exists)_{\omega_1}^{\aleph_1}$, then they satisfy $(\sigma)_{\aleph_1}$ or $(D)_{(2^{\aleph_0})^+}$.

Proof. Let *P* be a σ -closed poset forcing that \mathcal{A} and \mathcal{B} are isomorphic and let $\Vdash_P \tilde{f} : \tilde{\mathcal{A}} \cong \tilde{\mathcal{B}}$. For simplicity, assume $A, B \subseteq \mu$, where $\mu = (2^{\aleph_0})^+$.

Case 1. For every *p* one of the following holds:

- (1.1) There is an $\alpha \in A$ such that for arbitrarily large $\beta < \mu$ we have $\beta \in B$ and for some $q \leq p$, $q \Vdash \tilde{f}(\tilde{\alpha}) = \tilde{\beta}$.
- (1.2) There is an $\alpha \in B$ such that for arbitrarily large $\beta < \mu$ we have $\beta \in A$ and for some $q \leq p$, $q \Vdash \tilde{f}(\check{\beta}) = \check{\alpha}$.

In particular, every $p \in P$ has a continuum of incompatible extensions all deciding mutually contradictory things about \tilde{f} . These extensions can then be further extended to p_{α} , $\alpha < 2^{\aleph_0}$, such that each p_{α} decides $\tilde{f}(\gamma_{\alpha})$ and $\tilde{f}^{-1}(\gamma_{\alpha})$ for some preassigned ordinals γ_{α} . On the other hand, every $p \in P$ has μ incomparable extensions p_{ξ} each deciding a value $\tilde{f}(\alpha_{\xi}) = \beta_{\xi}$ for some fixed α_{ξ} with varying $\beta_{\xi} \geq \xi$. By iterating these two ways of extending a condition, we get conditions $p_s, s \in {}^{<\omega_1}\mu$, and functions $f_s, s \in {}^{<\omega_1}\mu$ such that:

- (G1) $p_s \Vdash \check{f}_s \subseteq \tilde{f}$ (G2) $s \leq s' \Leftrightarrow p_{s'} \leq p_s$ (G3) $s \leq s' \Leftrightarrow f_s \subseteq f_{s'}$ (G4) If $s \in {}^{<\omega_1}\mu$ and $\alpha \in A$, then there is $\beta \in B$ and $s' \in {}^{<\omega_1}\mu$ such that $s \leq s'$ and $f_s \cup \{\langle \alpha, \beta \rangle\} \subseteq f_{s'}$
- (G5) If $s \in {}^{<\omega_1\mu}$ and $\beta \in B$ then there is $\alpha \in A$ and $s' \in {}^{<\omega_1\mu}$ such that $s \leq s'$ and $f_s \cup \{\langle \alpha, \beta \rangle\} \subseteq f_{s'}$.

Let

$$D = \{f_s : s \in {}^{<\omega_1}\mu\}.$$

By construction, D is an \aleph_1 -back-and-forth set which is σ -closed. So we have $(\sigma)_{\aleph_1}$.

Case 2. There is a $p \in P$ such that the following conditions both hold:

- (2.1) For every $\alpha \in A$ there is $\beta_{\alpha} < \mu$ such that if $q \leq p$ and $q \Vdash \tilde{f}(\check{\alpha}) = \check{\gamma}$, then $\gamma < \beta_{\alpha}$.
- (2.2) For every $\alpha \in B$ there is $\delta_{\alpha} < \mu$ such that if $q \leq p$ and $q \Vdash \tilde{f}(\check{\gamma}) = \check{\alpha}$, then $\gamma < \delta_{\alpha}$.

Let *C* be the cub of $\alpha < \mu$ closed under the functions $\xi \mapsto \beta_{\xi}$ and $\xi \mapsto \delta_{\xi}$. Let $C = \{c_{\alpha} : \alpha < \mu\}$ in ascending order and

$$A_{\alpha} = A \cap [c_{\alpha}, c_{\alpha+1})$$
$$B_{\alpha} = B \cap [c_{\alpha}, c_{\alpha+1}).$$

It is clear that $(\exists)_{\omega_1}^{\aleph_1}$ holds for \mathcal{A}_{α} and \mathcal{B}_{α} . Since $|A_{\alpha}|, |B_{\alpha}| \leq 2^{\aleph_0}$ we have by Theorem 2.2 that $(\sigma)_{\aleph_1}^{\aleph_1}$ holds for \mathcal{A}_{α} and \mathcal{B}_{α} . So we have $(D)_{(2^{\aleph_0})^+}$. \Box

Theorem 7. If \mathcal{A} is an \aleph_2 -like dense linear order, and \mathcal{B} has cardinality $\leq \aleph_2$, then $(\exists)_{\omega_1}^2$ implies $(\sigma)_{\aleph_1}$.

Proof. Suppose $(\exists)_{\omega_1}^2$ but not $(\sigma)_{\aleph_1}$. Then also \mathcal{B} is an \aleph_2 -like dense linear order. In the proof of Theorem 3.1 we way now choose the decompositions $\langle \mathcal{A}_{\alpha} : \alpha < \omega_2 \rangle$ and $\langle \mathcal{B}_{\alpha} : \alpha < \omega_2 \rangle$ so that each \mathcal{A}_{α} is an interval of \mathcal{A} and each \mathcal{B}_{α} an interval of \mathcal{B} . Since the intervals are of cardinality $\leq \aleph_1$ and satisfy $(\exists)_{\omega_1}^2$, they are isomorphic. Hence $\mathcal{A} \cong \mathcal{B}$ and $(\sigma)_{\aleph_1}$ after all.

6. The Banach-Mazur game

The game $\mathcal{G}_{\delta}(P)$ is defined like $\mathcal{G}(P)$ except that there are δ moves. Nonempty moves first at limits and he has to play an extension of all previous moves. Nonempty wins $\mathcal{G}_{\delta}(P)$ if he can play all δ moves without breaking the rules. So $\mathcal{G}(P)$ is $\mathcal{G}_{\omega+1}(P)$. The following lemma is well-known.

Lemma 8. If Nonempty has a winning strategy in $\mathcal{G}(P)$, he has one in $\mathcal{G}_{\omega_1}(P)$.

Lemma 9. If Nonempty has a winning strategy in $\mathcal{G}_{\omega_1}(\mathcal{I}')$ for some \aleph_1 -back-and-forth set $\mathcal{I}' \subseteq \mathcal{I}^*_{\aleph_1}$, then $(\exists)^{\aleph_1}_{\omega_1}$ holds.

Proof. We describe a winning strategy of \exists in $EF_{\omega_1}^{\aleph_1}$. During the game $EF_{\omega_1}^{\aleph_1}$ player \exists maintains a sequence $\langle p_{\alpha} : \alpha \leq 2\nu \rangle$ in \mathcal{I}' such that conditions (1) – (3) below are satisfied. Let $\langle \tau_{\alpha} : \alpha < \omega_1 \rangle$ be a winning strategy of Nonempty in $\mathcal{G}_{\omega_1}(\mathcal{I}')$.

(1) $\alpha < \beta < 2\nu$ implies $p_{\alpha} \leq p_{\beta}$

(2) $p_{2\mu} = \tau_{2\mu}(\langle p_{\xi} : \xi < 2\mu \rangle)$, for all $\mu \le \nu$

(3) If $\langle a_{\xi}, b_{\xi} \rangle, \xi \leq 2\nu$, is the game so far, $p_{\xi}(a_{\xi}(i)) = b_{\xi}(i)$ for $i < \omega$.

Suppose we are at some stage ν and \forall plays, say $x \in A^{\omega}$. Since \mathcal{I}' is an \aleph_1 -back-and-forth set, there is $p_{2\nu+1} \supseteq p_{2\nu}$ such that $\operatorname{ran}(x) \subseteq \operatorname{dom}(p_{2\nu+1})$. Let $p_{2\nu+2} = \tau_{2\nu+2}(\langle p_{\xi} : \xi \leq 2\nu + 1 \rangle)$. Now \exists plays $y = \langle p_{2\nu+2}(x(i)) : i < \omega \rangle$ in $EF_{\omega_1}^{\aleph_1}$.

It is known that the following conditions are equivalent: [3]

- (1) Empty does not have a winning strategy in $\mathcal{G}(P)$.
- (2) *P* is *Baire* i.e. if $D_n \subseteq P$ are dense and open for $n < \omega$, then so is $\bigcap D_n$.

It is also known that $\mathcal{G}(P)$ can be nondetermined [3]. What is not known is whether the following conditions are equivalent:

- (3) Nonempty has a winning strategy in $\mathcal{G}(P)$
- (4) *P* contains a σ -closed dense subset.

Jech and Shelah [4] prove that it is consistent that (3) does not imply (4). We can settle the equivalence of (3) and (4) for the poset $\mathcal{I}_{\aleph_1}^*$:

Theorem 10. Suppose A and B are sets with $card(A) < \aleph_{\omega}$ and \mathbb{P} is a poset of countable partial functions $A \to B$ ordered by \subseteq . Assume that \mathbb{P} is closed under restrictions and has the following extension property: for every $p \in \mathbb{P}$ and every countable $X \subset A$ there is $q \in \mathbb{P}$ extending p such that $X \subseteq dom(q)$. Then the following conditions are equivalent:

(i) Nonempty has a winning strategy in $\mathcal{G}(\mathbb{P})$

(ii) \mathbb{P} contains a σ -closed dense subset.

Proof. Suppose $|A| = \aleph_n$. Let *S* be cofinal in $P^{<\omega_1}(\omega_n)$ with $card(S) = \aleph_n$. Let $S = \{E_\alpha : \alpha < \omega_n\}$. Let $\pi(E_0) = \sup(E_0) + 1$ and

$$\pi(E_{\alpha}) = \sup\{\{\pi(E_{\beta}) : \beta < \alpha\} \cup E_{\alpha}\} + 1$$
$$E'_{\alpha} = E_{\alpha} \cup \{\pi(E_{\alpha})\}$$
$$S' = \{E'_{\alpha} : \alpha < \omega_n\}.$$

Now S' is a "bursting family" $\subseteq P^{<\omega_1}(\omega_n)$ i.e. cofinal, of cardinality \aleph_n and $\{E \in S' : E \subseteq x\}$ is countable for all $x \in P^{<\omega_1}(\omega_n)$. Moreover we have a function π such that π is one-one and $\pi(x) \in x$ for all $x \in S'$. We may assume S' is closed under finite unions. We use this family to prove $(i) \rightarrow (ii)$.

A mapping $p \in \mathbb{P}$ is called *good* if dom $(p) \in S'$. Suppose $\tau = \langle \tau_n : n < \omega \rangle$ is a winning strategy of Nonempty in $\mathcal{G}(\mathbb{P})$. A sequence $s = \langle p_0, \ldots, p_{2n+1} \rangle$ is a *partial* τ -*play* if for all $i \in \{0, \ldots, n\}$, $p_{2i} \in \mathbb{P}$, $p_{2i+1} = \tau(\langle p_0, \ldots, p_{2i} \rangle)$, and $p_{2i+2} \supseteq p_{2i+1}$ if i < n. A partial τ -play $\langle p_0, \ldots, p_{2n+1} \rangle$ is *good* if the mappings $p_{2i}, 0 \le i \le n$, are good. Let the set D consist of $f \in \mathbb{P}$ such that if $s = \langle p_0, \ldots, p_{2n+1} \rangle$ is a good partial τ -play and $q \in \mathbb{P}$ is good with

$$p_{2n+1} \subseteq q \subsetneq f,$$

then s can be extended to a good partial τ -play $\langle p_0, \ldots, p_{2n+1}, p_{2n+2}, p_{2n+3} \rangle$ so that $q \subseteq p_{2n+3} \subseteq f$.

Claim 1. D is dense in \mathbb{P} .

Suppose $p_0 \in \mathbb{P}$. Let \mathbb{P}' be the poset of good $p \in \mathbb{P}$ such that $p_0 \subseteq p$. Fix a sufficiently large regular cardinal λ and let $N \prec H(\lambda)$ be countable so that $p_0, S, \mathbb{P}' \in N$. Let G be \mathbb{P}' -generic over N and $f = \bigcup G$. If $g \in N$ is good and $g \subseteq f$, then there is $f' \in G$ so that $g \subseteq f'$, for $\{f' \in \mathbb{P}' : \operatorname{dom}(g) \subseteq \operatorname{dom}(f')\}$ is dense in \mathbb{P}' . To prove that $f \in D$, suppose $g_0 \subseteq \ldots \subseteq g_{2n+1}$ is a good partial τ -play such that $g_{2n+1} \subseteq f$ and $g_{2n+1} \subseteq g$ is good with $g \subseteq f$. Let $f' \in G$ with $g \subseteq f'$. Any $h \in \mathbb{P}'$ with $f' \subseteq h$ can be extended to h' such that $g_0 \subseteq \ldots \subseteq g_{2n+1} \subseteq h \subseteq h'$ is a good partial τ -play. Hence there are $f'' \in G$ and h such that we have a good partial τ -play $g_0 \subseteq \ldots \subseteq g_{2n+1} \subseteq h \subseteq f''$. Thus $f \in D$.

Claim 2. D is σ -closed.

Suppose $f_0 \subseteq \ldots \subseteq f_n \subseteq \ldots$ are in *D*. Let dom $(f_n) = \bigcup_{i < \omega} E_i^n$ where $E_i^n \in S$. let

$$E_n^* = \bigcup_{i=0}^n \bigcup_{j=0}^n E_j^i.$$

Since $f_1 \in D$, there is a good partial τ -play $\langle g_0, g_1 \rangle$ such that $f_0 \upharpoonright E_0^* \subseteq g_1 \subseteq f_1$. Since $f_2 \in D$, there is a good partial τ -play $\langle g_0, g_1, g_2, g_3 \rangle$ with $f_1 \upharpoonright E_1^* \subseteq g_3 \subseteq f_2$, and so on. We get a τ -play $\langle g_0, g_1, \ldots \rangle$ such that

$$f_n \upharpoonright E_n^* \subseteq g_{2n+1}$$

Since τ is a winning strategy, $\bigcup_n g_n \in \mathbb{P}'$. By Claim 1 there is $g \supseteq \bigcup_n g_n$ with $g \in D$.

Corollary 11. If one of the models \mathcal{A}, \mathcal{B} is of size $\langle \aleph_{\omega}$, then Nonempty has winning strategy in $G(\mathcal{I}^*_{\aleph_1})$ if and only if $\mathcal{I}^*_{\aleph_1}$ contains a σ -closed dense subset.

Corollary 12. If Nonempty has a winning strategy in $\mathcal{G}(\mathcal{I}^*_{\aleph_1})$, then $(\sigma)_{\aleph_2}$ holds. \Box

However, it is by no means the case that if $(\sigma)_{\aleph_2}$ holds (or even $\mathcal{A} \cong \mathcal{B}$), then Nonempty has a winning strategy in $\mathcal{G}(\mathcal{I}^*_{\aleph_1})$.

7. Uncountable partial isomorphisms

In this section we study models of cardinality κ^+ . It turns out that for $\kappa > \omega$ some new ideas can be used if we consider \mathcal{I}_{κ^+} rather than \mathcal{I}_{\aleph_1} . Likewise, the game $EF_{\omega_1}^{\kappa}$ is in some sense easier to deal with than $EF_{\omega_1}^{\aleph_1}$, when models of size κ^+ are considered.

 $(\exists)_{\omega_1}^{\aleph_2} \leftrightarrow (\sigma)_{\aleph_2}$: Indeed, we can now prove

Theorem 13. The following conditions are equivalent for models \mathcal{A} and \mathcal{B} of cardinality κ^+ :

- (i) Player \exists has a winning strategy in the game $EF_{\omega_1}^{\kappa^+}$ on \mathcal{A} and \mathcal{B} . (ii) There is a set $D \subseteq \mathcal{I}_{\kappa^+}^*$ which has the κ^+ -back-and-forth property and is σ -closed.

Proof. Suppose \exists has a winning strategy τ in $EF_{\omega_1}^{\kappa^+}$ on \mathcal{A} and \mathcal{B} . We assume that $A = B = \kappa^+$. A partial τ -play is a sequence

$$s = \langle \langle x_{\alpha}, y_{\alpha} \rangle : \alpha < \delta \rangle$$

of moves x_{α} of \forall and responses y_{α} of \exists in $EF_{\omega_1}^{\kappa^+}$, \exists playing τ . Each partial τ -play s determines a partial isomorphism p(s) of cardinality $< \kappa$. Let T be the tree of all partial τ -plays s such that the domain and range of p(s) are equal and are an initial segment of κ^+ . Let $s \leq_T s'$ if the partial τ -play s' is obtained by continuing the partial τ -play s. Let P be the set of all p(s), where $s \in T$ is a partial τ -play. Then *P* is a tree under inclusion. If $s \in T$, let

$$P_s = \{p(s') : s' \in T, s \leq_T s'\}$$

Note that P_s may be a proper subset of $\{p \in P : p(s) \subseteq p\}$.

Case 1. There is an $s \in T$ such that if $A \subseteq P_s$ is an antichain in P_s , then $\sup\{\operatorname{dom}(p): p \in A\} < \kappa^+$. This means that P_s is a κ^+ -Souslin tree. We construct a σ -closed dense back-and-forth set $D \subseteq \mathcal{I}_{\nu^+}^*$. Let us consider the following persistency game on P_s :

$$\frac{\mathbf{I}}{\mathbf{II}} \begin{array}{c} \alpha_0 & \alpha_1 & \dots \\ p_0 & p_1 & \dots \end{array}$$

There are two players, I and II, and ω moves. Player I starts by choosing $\alpha_0 < \kappa^+$. Then player II chooses $p_0 \in P_s$ with dom $(p_0) \ge \alpha_0$. Then I chooses $\alpha_1 < \kappa^+$ and II chooses $p_1 \in P_s$ with dom $(P_1) \ge \alpha_1$ and $p_0 \le p_1$, and so on. Player II wins if he can play ω moves $p_n, n < \omega$ so that eventually $\bigcup_n p_n \subseteq p_\omega$ for some $p_\omega \in P_s$. Now it is clear that II has a winning strategy in this persistency game. All he has to do is to continue the partial τ -play *s* in an obvious way. Let P'_s be the downward closure in P_s of the set of first moves of II against all possible first moves of I.

Let us then consider the game $\mathcal{G}_{\infty}(P'_s, a)$ from [6]: This game is like $\mathcal{G}(P'_s)$ except that Empty plays antichains A_0, A_1, \ldots and Nonempty plays $a_n \in A_n$. The game starts with Empty choosing $a \in P'_s$ and maximal antichain A_0 of extensions of a. Later, Empty has to choose A_{n+1} so that it is a maximal antichain of extensions of a_n . Again, Nonempty wins if he can play all of his ω moves and then have $a_\omega \in P_s$ with $\bigcup_n a_n \subseteq a_\omega$. Nonempty has the following winning strategy in $\mathcal{G}_{\infty}(P'_s, a)$. Suppose Empty plays a maximal antichain A_0 in $\{p \in P'_s : a \subseteq p\}$. By assumption, there is $\alpha_0 < \kappa^+$ so that $\sup(\operatorname{dom}(p)) < \alpha_0$ for $p \in A_0$. Now II uses his winning strategy in the persistency game to get $p_0 \in P_s$ of height α_0 . Since $\Sigma A_0 = a$, there is $a_0 \in A_0$ such that $a_0 \subseteq p_0$. This is the first move of Nonempty. It is clear that he can go on like this for ω moves and win.

It follows from a result in [6] that Nonempty wins $\mathcal{G}(P'_s)$. Since P'_s is a tree, by another result from [6] it has a σ -closed dense subset D. Now in fact D is a σ -closed back-and-forth subset of $\mathcal{I}^*_{\nu^+}$.

Case 2. For every $s \in T$, P_s has an antichain A_s such that $\sup\{\operatorname{dom}(p) : p \in A_s\} = \kappa^+$. We define a mapping $\pi : {}^{<\omega_1}\kappa^+ \to T$ such that

(1) $\pi(f \upharpoonright \alpha) <_T \pi(f)$ if $f \in {}^{<\omega_1}\kappa^+$ and $\alpha \in \text{dom}(f)$ (2) $\{p(\pi(f \cup \{\langle \beta, \xi \rangle\})) : \xi < \kappa^+\}$ is an antichain in *P* if $f \in {}^{<\omega_1}\kappa^+$ and $\beta = \text{dom}(f)$.

Suppose $\pi(g)$ is defined for dom $(g) < \alpha$, where $\alpha < \omega_1$, and dom $(f) = \alpha$. If $\alpha = \bigcup \alpha$, the sequence

$$\langle \pi(f \mid \beta) : \beta < \alpha \rangle$$

is an ascending chain in T and has therefore a limit which we denote by $\pi(f)$. If $\alpha = \beta + 1$, we let $A_{\pi(f \upharpoonright \beta)} = \{a_{\xi} : \xi < \kappa^+\}$ and let

$$\pi(f \cup \{\langle \beta, \xi \rangle\}) = a_{\xi}$$

for $\xi < \kappa^+$. This ends the construction. Now let

$$D = \{ p(\pi(f)) : f \in {}^{<\omega_1} \kappa^+ \}.$$

We prove that *D* is an κ^+ -back-and-forth set. Let $p(\pi(f)) \in D$ and, say $x \in {}^{\kappa}A$. Let dom $(f) = \beta$. We can choose $\xi < \kappa^+$ so that

$$\sup\{x(i): i < \kappa\} < \operatorname{dom}(\pi(f \cup \langle \beta, \xi \rangle)).$$

Thus $\operatorname{rng}(x) \subseteq \operatorname{dom}(\pi(f \cup \langle \beta, \xi \rangle))$ and $\pi(f \cup \{\langle \beta, \xi \rangle\}) \in D$.

Finally, we show that *D* is σ -closed. Suppose $p_0 \subsetneq p_1 \subsetneq \ldots$ in *D*. Let $p_n = p(\pi(f_n))$. By construction, there is $f_\omega \in {}^{<\omega_1}\kappa^+$ such that $f_n = f_\omega \upharpoonright \text{dom}(f_n)$. Now $p_n \subseteq p(\pi(f_\omega))$ for all $n < \omega$. **Corollary 14.** $(\exists)_{\kappa\cdot\kappa}^{\aleph_1} \to (\sigma)_{\kappa^+}$ on models of cardinality κ^+ .

Corollary 15. $(\sigma)_{\kappa^+}$ is transitive on models of cardinality κ^+ .

Open problems:

- 1. Is $(\sigma)_{\aleph_1}$ transitive?
- 2. Is $(\sigma)_{\kappa^+}$ transitive on all models?
- 3. $(\exists)_{\omega_1}^{\aleph_1} \leftrightarrow (\sigma)_{\aleph_1}$?

References

- Dickmann, M.A.: Large infinitary languages. Model theory. Studies in Logic and the Foundations of Mathematics, Vol. 83. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, xv+464 pp 1975
- [2] Foreman, M.: Games played on Boolean algebras. J. Symbolic Logic 48, 714–723 (1983)
- [3] Jech, T.: A game theoretic property of Boolean algebras. Logic Colloquium 77 (Proc. Conf., Wroclaw, 1977), pp. 135–144, Stud. Logic Foundations Math., 96, North-Holland, Amsterdam-New York, 1978
- [4] Jech, T., Shelah, S.: On countably closed complete Boolean algebras. J. Symbolic Logic, 1996
- [5] Kueker, David W.: Back-and-forth arguments and infinitary logics. Infinitary logic: in memoriam Carol Karp, pp. 17–71. Lecture Notes in Math., Vol. 492, Springer, Berlin, 1975
- [6] Veličković, B.: Playful Boolean algebras. Trans. Amer. Math. Soc. 296, 727–740 (1986)