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1. Introduction

Suppose A and B are structures for the same countable relational vocabulary. We
denote the universe of A by A and the universe of B by B. A partial mapping
p : A→ B is a partial isomorphism (p.i.) A→ B if p is an isomorphism between
A � dom(p) and B � rng(p). Let

Iκ = {p : p is a p.i. A→ B and |p| < κ}.
We study the poset 〈Iκ ,⊆〉 as a measure of how similar the structures A and B are
to each other.

A subset X of Iκ has the κ - back-and-forth property if for all λ < κ

∀p ∈ X[∀a ∈ λA∃b ∈ λB (p ∪ {〈a(i), b(i)〉 : i < λ} ∈ X)

∧ ∀b ∈ λB∃a ∈ λA(p ∪ {〈a(i), b(i)〉 : i < λ} ∈ X)].

It is obvious that there is a largest κ-back-and-forth set which we denote by I∗κ .
The structures A and B are said to be partially isomorphic, A �p B, if I∗2 �= ∅.
We get stronger criteria by demanding that I∗κ is not just non-empty but “large”.
This leads naturally to the condition:

(σ )κ There is a set D ⊆ I∗κ which has the κ-back-and-forth property and is
σ -closed.

By D being σ - closed we mean that if p0 ⊆ p1 ⊆ ... ⊆ pn ⊆ · · · (n < ω) are
elements of D, then

⋃
n pn ∈ D. Structures A and B satisfying (σ )ℵ1 are said in

[1] to be strongly partially isomorphic A �s
p B. Kueker [5] mentions this concept,

too. Not much is known about (σ )κ . Just as the classical back-and-forth argument
gives

(A �p B & |A|, |B| ≤ ℵ0)⇒ A ∼= B
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we have
(A �s

p B & |A|, |B| ≤ ℵ1)⇒ A ∼= B.

If A and B are homogeneous, then A �p B and A �s
p B are both equivalent

to A ≡ B. If A and B are η1-real closed fields, then (σ )ℵ1 holds.
The main open question concerning (σ )ℵ1 is whether it is transitive, that is,

whether
(A �s

p B & B �s
p C)⇒ A �s

p C?

We get some partial answers to this problem. We show that (σ )ℵ1 is transitive in the
class of structures of size ≤ 2ℵ0 and in various classes of structures of size ≤ ℵ2,
and that (σ )κ+ is transitive in the class of structures of size κ+.

The condition A �p B can be characterized in terms of the Ehrenfeucht-Fraı̈ssé
game. It is natural to investigate connections between this game and A �s

p B. The
game EFκ

δ on A and B has two players ∀ and ∃. The game has δ rounds. During
round α player ∀ picks λα < κ , one of the models A and B, say A, and a sequence
xα ∈ λαA. Then player ∃ picks yα ∈ λαB. In this case we denote xα by aα and yα

by bα . If ∀ picked B instead of A and xα ∈ λαB, then xα would be denoted by bα

and the choice yα ∈ λαA of ∃ would be denoted by aα . After δ rounds have been
played we have

p = {〈aα(i), bα(i)〉 : i < λα, α < δ}.
If p is a partial isomorphism A → B, then ∃ won. Otherwise ∀ won. We get the
following criterion:

(∃)κδ Player ∃ has a winning strategy in the game EFκ
δ on A and B.

It is well-known that
I∗ω �= ∅ ⇔ (∃)2

ω,

and easy to see that
(σ )ℵ1 ⇒ (∃)ℵ1

ω1
.

The question whether
(σ )ℵ1 ⇔ (∃)ℵ1

ω1
?

is open. Note that a “yes” would imply that (σ )ℵ1 is transitive, as (∃)κδ is clearly

transitive. We establish (σ )ℵ1 ⇔ (∃)ℵ1
ω1 in the case that |A|, |B| ≤ 2ℵ0 as well as for

special classes of A and B of size ℵ2. Although we cannot prove (∃)ℵ0
ω1 ⇒ (σ )ℵ1

even for all models of size ℵ2 we can prove (∃)ℵ1
ω1·ω1 ⇒ (σ )ℵ2 and (∃)ℵ2

ω1 ⇔ (σ )ℵ2

for models of size ℵ2.
We can look at the largeness of I∗κ also in terms of the Banach-Mazur game

G(I∗κ ) on poset 〈I∗κ ,⊇〉. For this game, see [3], [2] and [6]. The game G(P ) has two
players called Empty and Nonempty. They alternately play descending sequence
of P :

Empty p0 p2 ...

Nonempty p1 p3 ...

Nonempty wins the run of the game if there is p ∈ P such that p ≤ pn for all
n < ω. We show that if Nonempty has a winning strategy in G(I∗ℵ1

) and either A
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or B has cardinality < ℵω, then the poset 〈I∗ℵ1
,⊇〉 has a σ -closed dense set. Previ-

ously this was known for posets that are trees [6] and for posets whose regular-open
algebra contains a dense subset of size ≤ 2ℵ0 [2]. As an application of our result
we can show that if Nonempty has a winning strategy in G(I∗ℵ1

), then (σ )ℵ1 holds.

2. Models of size 2ω

One approach to getting (σ )ℵ1 from (∃)ℵ1
ω1 is to organize the partial isomorphisms

arising from positions in the Ehrenfeucht-Fraı̈ssé -game in such a way that they
uniquely determine the position they come from. In this section we use this approach
to prove that (∃)ℵ1

ω1 implies (σ )ℵ1 for models A and B of size ≤ 2ℵ0 . First we note
a simple lemma:

Lemma 1. The following conditions are equivalent for any A and B:

(1) ∃ has a winning strategy in EF
ℵ1
ω1 on A and B.

(2) There is a countably closed notion of forcing P such that �P Ǎ ∼= B̌.

Theorem 2. Suppose A and B have size ≤ 2ℵ0 . Then (∃)ℵ1
ω1 ⇔ (σ )ℵ1 .

Proof. Suppose (∃)ℵ1
ω1 . Let us assume for simplicity that A = B = 2ω. By

Lemma 1 there is a countably closed notion of forcing P and a name f̃ such
that

�P f̃ : Ǎ ∼= B̌.

Case 1. There is a p ∈ P such that for all α there is a unique β with r � f̃ (α̌) = β̌

for some r ≤ p, and a unique β with r � f̃ (β̌) = (α̌) for some r ≤ p. Let

g = {〈α, β〉 | (∃q ≤ p)(q � f̃ (α̌) = β̌)}.
Now it is clear that g : A ∼= B, so (σ )ℵ1 holds.

Case 2. For all p ∈ P there is α such that for two different β we have r � f̃ (α̌) = β̌

for some r ≤ p or for two different β we have r � f̃ (β̌) = α̌ for some r ≤ p.
Thus every p ∈ P has continuum many incompatible extensions all decid-

ing mutually contradictory things about f̃ . These extensions can then be further
extended to pα , α < 2ω, such that each pα decides f̃ (α̌) and f̃−1(α̌) but for
α �= β pα and pβ differ on f̃ . By iterating this ω1 times we get sets

{fs : s ∈ <ω1 2}
{ps : s ∈ <ω1 2}

so that

(C1) ps � f̌s ⊆ f̃

(C2) s ≤ s′ ⇔ ps′ ≤ ps

(C3) s ≤ s′ ⇔ fs ⊆ fs′
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(C4) For every s ∈ <ω12 and every α< 2ω there are β < 2ω and s′ ∈ <ω12 such
that s ≤ s′ and fs ∪ {〈α, β〉} ⊆ fs′ .

(C5) For every s ∈ <ω12 and every β < 2ω there are α < 2ω and s′ ∈ <ω12 such
that s ≤ s′ and fs ∪ {〈α, β〉} ⊆ fs′ .

Now it is clear that D = {fs : s ∈ <ω12} is a σ -closed ℵ1-back-and-forth set. ��

3. Models of different cardinality

In this section we deduce (σ )ℵ1 from (∃)ℵ1
ω1 in all cases where the models are of

different cardinality.

Theorem 3. Suppose A and B have different cardinality. Then (∃)ℵ1
ω1 ⇔ (σ )ℵ1 .

Proof. Suppose (∃)ℵ1
ω1 . Pick a countably closed notion of forcing P and a name f̃

such that
�P f̃ : Ǎ ∼= B̌.

Suppose |A| = κ and |B| = λ > κ . We may assume κ > ω. We assume λ is
singular. The regular case is similar but easier. Let λξ , ξ < cf (λ), be an increasing
cofinal sequence in λ such that cf (λ) < λξ for all ξ . Let us call a set of partial
functions A→ B an antichain if the union of any two of them fails to be a partial
function. Let T be the tree of sequences s : ω1 → λ such that for all limit ν and all
n < ω we have

s(ν + 3n) < cf (λ), s(ν + 3n+ 1) < λs(ν+3n), s(ν + 3n+ 2) < κ.

We will use repeatedly the following fact:

(*) If κ < µ+ < λ and p ∈ P such that p � ǧ ⊆ f̃ , then there are extensions qξ ,
ξ < µ+, of p and extensions gξ of g such that qξ � ǧξ ⊆ f̃ and {gξ : ξ < µ+}
is an antichain.

By iterating this way of extending a condition, we get conditions ps, s ∈ T , and
functions fs, s ∈ T such that:

(D1) ps � f̌s ⊆ f̃

(D2) s ≤ s′ ⇔ ps′ ≤ ps

(D3) s ≤ s′ ⇔ fs ⊆ fs′
(D4) If s ∈ T and α ∈ A, then there is β ∈ B and s′ ∈ T such that s ≤ s′ and

fs ∪ {〈α, β〉} ⊆ fs′
(D5) If s ∈ T and β ∈ B then there is α ∈ A and s′ ∈ T such that s ≤ s′ and

fs ∪ {〈α, β〉} ⊆ fs′ .

Let
D = {fs : s ∈ T }.

By construction, D is an ℵ1-back-and-forth set which is σ -closed. So we have
(σ )ℵ1 . ��
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4. Models of the same cardinality: Trees

For models of the same size we do not have a general proof for the equivalence of
(σ )ℵ1 and (∃)ℵ1

ω1 . However, we show now that for trees of height ω1 the condition
(∃)ℵ1

ω1 implies (σ )ℵ1 .

Theorem 4. If the trees T0 and T1 are of height ω1 and satisfy (∃)2
ω1

, then they
satisfy (σ )ℵ1 .

Before we start the proof we present a simple lemma about bipartite graphs
which may have some interest in its own. Recall that a bipartite graph is a triple
G = (A, B, E) where A and B are nonempty sets and E ⊆ A × B is the set of
edges between A and B. A matching is a (possibly partial) injective function f

from A to B such that for every x ∈ dom(f ) (x, f (x)) ∈ E. A perfect matching is
a bijection between A and B which is also a matching. Let M be a family of partial
matchings. We say that M has the extension property if for every f ∈M, x ∈ A

and y ∈ B there is g ∈M with f ⊆ g such that x ∈ dom(g) and y ∈ ran(g). Thus
if M has the extension property and we consider it as a forcing notion ordered by
reverse inclusion then forcing with M introduces a perfect matching in G.

Lemma 5. Let G = (A, B, E) be a bipartite graph and assume there is a σ -closed
forcing notion P which adds a perfect matching in G. Then there is a σ -closed
family M of countable partial matchings which has the extension property.

Proof. We shall prove this by induction on the size(G) = |A|+ |B|. First, note that
if size(G) ≤ ℵ1 then G has a perfect matching f and thus we can take for M the
family of all countable partial submatchings of f .

Assume now size(G) = κ > ℵ1 and fix a P-name ḟ for a perfect matching.
For a given condition p ∈ P let Mp be the collection of all countable partial
matchings s such that there is a condition q ≤ p with q � s ⊆ ḟ . Let us say that
a set of partial matchings is an antichain if the union of any two of them fails to
be a partial matching. Let λ be the least cardinal such that for some pMp has no
antichains of size λ. If λ = κ+ we can build a required family of partial matchings
as in the proof of Theorem 3. Now, assume λ ≤ κ and fix a condition p such
that Mp has no antichains of size λ. Since P is σ -closed we can easily show that
cof(λ) > ℵ0. Let Ep =

⋃ Mp and let Gp = (A, B, Ep) be the resulting sub-
graph. Now note that the connected components of Gp are of size < λ. Therefore
we can find decompositions

A =
⋃

i∈I
Ai and B =

⋃

i∈I
Bi

and such that |Ai | + |Bi | < λ, for each i, and Ep ⊆
⋃

i∈I Ai × Bi . Now let Ei be
the restriction of Ep to Ai × Bi and consider bipartite graphs Gi = (Ai, Bi, Ei),
for i ∈ I . Each of them has size < λ and p forces that ḟ � Ai is a perfect matching
of Gi . We can therefore apply our induction hypothesis to find a family of count-
able partial matchings Mi in Gi which have the extension property. Finally, let
M consist of all partial matchings g of the form g = ⋃

i∈I0
gi , where I0 ⊆ I is a

countable set, and gi ∈Mi , for each i ∈ I0. Then M is as required. ��
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Proof of Theorem 4. Let us fix a σ -closed forcing notion P which forces T0 and
T1 to be isomorphic and a P-name for an isomorphism ḟ . We shall define a rela-
tion R ⊆ T0 × T1 and for each (x, y) ∈ R a condition px,y ∈ P such that
px,y � ḟ (x) = y. In particular, we will have that if (x, y) ∈ R then x and y are of
the same height. Moreover, if x < x′, y < y′ and both (x, y) and (x′, y′) are in R

then we will have px′,y′ ≤ px,y .
To begin, assume for simplicity that T0 and T1 both have roots, say r0 and r1.

Put (r0, r1) in R and let pr0,r1 be any condition in P (which necessarily forces that
ḟ (r0) = r1.) Assume now, we have put (x, y) in R and let px,y be the associated
condition. Let Sx be the set of successors of x in T0 and Sy the set of successors of
y in T1. Let

Ex,y = {(x′, y′) ∈ Sx × Sy : there is q ≤ px,y such that q � ḟ (x′) = y′}.
We put all elements of Ex,y into R and for each x, y ∈ Ex′,y′ we pick px′,y′ ≤

px,y such that px′,y′ � ḟ (x′) = y′. Finally, if x ∈ T0 and y ∈ T1 are elements of
the same height which is a limit ordinal and for every x′ < x and y′ < y of the same
height (x′, y′) ∈ R then we put (x, y) into R and we define px,y to be any condition
extending the corresponding conditions px′,y′ . This completes the construction of
the relation R and the assignment of a condition to each pair (x, y) ∈ R.

Notice now that since px,y � ḟ (x) = y and ḟ is forced to be an isomorphism,
forcing with P below px,y introduces a perfect matching in the graph Gx,y =
(Sx, Sy, Ex,y). By Lemma 5 we can find, for each (x, y) ∈ R, a family of partial
matchings Mx,y in the graph Gx,y with the extension property. We may, of course,
assume that Mx,y contains the empty set.

We now describe a σ -closed family F of partial isomorphisms between T0 and
T1 which has the back and forth property. We put a countable partial function g into
F if dom(g) is an initial segment of T0, ran(g) is an initial segment of T1, g is a
partial isomorphism between the two, and whenever g(x) = y then g � Sx ∈Mx,y .
It is straightforward to check that F is as required. ��

5. Models of the same cardinality: The decomposition property

In this section we consider models of size at most (2ℵ0)+. If two models satisfy
(∃)ℵ1

ω1 , it is always possible to express the models as unions of smaller submod-
els which again satisfy (∃)ℵ1

ω1 . If these smaller submodels are of size ℵ1, they are
actually pairwise isomorphic. We consider now a condition which states that such
smaller submodels can be chosen to be mutually disjoint. The models A and B are
said to satisfy the decomposition property, or (D)κ for short, if

(1) |A| = |B| = κ .
(2) A = ⋃

α<κ

Aα, B = ⋃

α<κ

Bα .

(3) |Aα| < κ, |Bα| < κ for α < κ .
(4) Aα ∩ Aβ = Bα ∩ Bβ = ∅ for α < β < κ .
(5) (σ )ℵ1 holds for Aα and Bα for α < κ ,

A simple example of the failure of (D)κ is a pair (A, B) where some definable
subset has cardinality < κ in A but cardinality κ in B.
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Theorem 6. If A and B have cardinality ≤ (2ℵ0)+ and satisfy (∃)ℵ1
ω1 , then they

satisfy (σ )ℵ1 or (D)(2ℵ0 )+ .

Proof. Let P be a σ -closed poset forcing that A and B are isomorphic and let
�P f̃ : Ã ∼= B̃. For simplicity, assume A, B ⊆ µ, where µ = (2ℵ0)+.

Case 1. For every p one of the following holds:

(1.1) There is an α ∈ A such that for arbitrarily large β < µ we have β ∈ B and
for some q ≤ p, q � f̃ (α̃) = β̃.

(1.2) There is an α ∈ B such that for arbitrarily large β < µ we have β ∈ A and
for some q ≤ p, q � f̃ (β̌) = α̌.

In particular, every p ∈ P has a continuum of incompatible extensions all
deciding mutually contradictory things about f̃ . These extensions can then be fur-
ther extended to pα, α < 2ℵ0 , such that each pα decides f̃ (γα) and f̃−1(γα) for
some preassigned ordinals γα . On the other hand, every p ∈ P has µ incomparable
extensions pξ each deciding a value f̃ (αξ ) = βξ for some fixed αξ with varying
βξ ≥ ξ . By iterating these two ways of extending a condition, we get conditions
ps, s ∈ <ω1µ, and functions fs, s ∈ <ω1µ such that:

(G1) ps � f̌s ⊆ f̃

(G2) s ≤ s′ ⇔ ps′ ≤ ps

(G3) s ≤ s′ ⇔ fs ⊆ fs′
(G4) If s ∈ <ω1µ and α ∈ A, then there is β ∈ B and s′ ∈ <ω1µ such that s ≤ s′

and fs ∪ {〈α, β〉} ⊆ fs′
(G5) If s ∈ <ω1µ and β ∈ B then there is α ∈ A and s′ ∈ <ω1µ such that s ≤ s′

and fs ∪ {〈α, β〉} ⊆ fs′ .

Let
D = {fs : s ∈ <ω1µ}.

By construction, D is an ℵ1-back-and-forth set which is σ -closed. So we have
(σ )ℵ1 .

Case 2. There is a p ∈ P such that the following conditions both hold:

(2.1) For every α ∈ A there is βα < µ such that if q ≤ p and q � f̃ (α̌) = γ̌ , then
γ < βα .

(2.2) For every α ∈ B there is δα < µ such that if q ≤ p and q � f̃ (γ̌ ) = α̌, then
γ < δα .

Let C be the cub of α < µ closed under the functions ξ �→ βξ and ξ �→ δξ . Let
C = {cα : α < µ} in ascending order and

Aα = A ∩ [cα, cα+1)

Bα = B ∩ [cα, cα+1).

It is clear that (∃)ℵ1
ω1 holds for Aα and Bα . Since |Aα|, |Bα| ≤ 2ℵ0 we have by

Theorem 2.2 that (σ )
ℵ1
ℵ1

holds for Aα and Bα . So we have (D)(2ℵ0 )+ . ��
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Theorem 7. If A is an ℵ2-like dense linear order, and B has cardinality ≤ ℵ2,
then (∃)2

ω1
implies (σ )ℵ1 .

Proof. Suppose (∃)2
ω1

but not (σ )ℵ1 . Then also B is anℵ2-like dense linear order. In
the proof of Theorem 3.1 we way now choose the decompositions 〈Aα : α < ω2〉
and 〈Bα : α < ω2〉 so that each Aα is an interval of A and each Bα an interval of B.
Since the intervals are of cardinality ≤ ℵ1 and satisfy (∃)2

ω1
, they are isomorphic.

Hence A ∼= B and (σ )ℵ1 after all. ��

6. The Banach-Mazur game

The game Gδ(P ) is defined like G(P ) except that there are δ moves. Nonempty
moves first at limits and he has to play an extension of all previous moves. Non-
empty wins Gδ(P ) if he can play all δ moves without breaking the rules. So G(P )

is Gω+1(P ). The following lemma is well-known.

Lemma 8. If Nonempty has a winning strategy in G(P ), he has one in Gω1(P ).

Lemma 9. If Nonempty has a winning strategy in Gω1(I ′) for some ℵ1-back-and-
forth set I ′ ⊆ I∗ℵ1

, then (∃)ℵ1
ω1 holds.

Proof. We describe a winning strategy of ∃ in EF
ℵ1
ω1 . During the game EF

ℵ1
ω1 player

∃ maintains a sequence 〈pα : α ≤ 2ν〉 in I ′ such that conditions (1) − (3) below
are satisfied. Let 〈τα : α < ω1〉 be a winning strategy of Nonempty in Gω1(I ′).

(1) α < β < 2ν implies pα ≤ pβ

(2) p2µ = τ2µ(〈pξ : ξ < 2µ〉), for all µ ≤ ν

(3) If 〈aξ , bξ 〉, ξ ≤ 2ν, is the game so far, pξ (aξ (i)) = bξ (i) for i < ω.

Suppose we are at some stage ν and ∀ plays, say x ∈ Aω. Since I ′ is an ℵ1-
back-and-forth set, there is p2ν+1 ⊇ p2ν such that ran(x) ⊆ dom(p2ν+1). Let
p2ν+2 = τ2ν+2(〈pξ : ξ ≤ 2ν + 1〉). Now ∃ plays y = 〈p2ν+2(x(i)) : i < ω〉 in
EF
ℵ1
ω1 . ��
It is known that the following conditions are equivalent: [3]

(1) Empty does not have a winning strategy in G(P ).
(2) P is Baire i.e. if Dn ⊆ P are dense and open for n < ω, then so is

⋂

n<ω

Dn.

It is also known that G(P ) can be nondetermined [3]. What is not known is
whether the following conditions are equivalent:

(3) Nonempty has a winning strategy in G(P )

(4) P contains a σ -closed dense subset.

Jech and Shelah [4] prove that it is consistent that (3) does not imply (4). We
can settle the equivalence of (3) and (4) for the poset I∗ℵ1

:

Theorem 10. Suppose A and B are sets with card(A) < ℵω and P is a poset of
countable partial functions A→ B ordered by ⊆. Assume that P is closed under
restrictions and has the following extension property: for every p ∈ P and every
countable X ⊂ A there is q ∈ P extending p such that X ⊆ dom(q). Then the
following conditions are equivalent:
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(i) Nonempty has a winning strategy in G(P)

(ii) P contains a σ -closed dense subset.

Proof. Suppose |A| = ℵn. Let S be cofinal in P <ω1(ωn) with card(S) = ℵn. Let
S = {Eα : α < ωn}. Let π(E0) = sup(E0)+ 1 and

π(Eα) = sup{{π(Eβ) : β < α} ∪ Eα} + 1

E′α = Eα ∪ {π(Eα)}
S′ = {E′α : α < ωn}.

Now S′ is a “bursting family” ⊆ P <ω1(ωn) i.e. cofinal, of cardinality ℵn and
{E ∈ S′ : E ⊆ x} is countable for all x ∈ P <ω1(ωn). Moreover we have a function
π such that π is one-one and π(x) ∈ x for all x ∈ S′. We may assume S′ is closed
under finite unions. We use this family to prove (i)→ (ii).

A mapping p ∈ P is called good if dom(p) ∈ S′. Suppose τ = 〈τn : n < ω〉
is a winning strategy of Nonempty in G(P). A sequence s = 〈p0, . . . , p2n+1〉 is
a partial τ -play if for all i ∈ {0, . . . , n}, p2i ∈ P, p2i+1 = τ(〈p0, . . . , p2i〉),
and p2i+2 ⊇ p2i+1 if i < n. A partial τ -play 〈p0, . . . , p2n+1〉 is good if the
mappings p2i , 0 ≤ i ≤ n, are good. Let the set D consist of f ∈ P such that if
s = 〈p0, . . . , p2n+1〉 is a good partial τ -play and q ∈ P is good with

p2n+1 ⊆ q � f,

then s can be extended to a good partial τ -play 〈p0, . . . , p2n+1, p2n+2, p2n+3〉 so
that q ⊆ p2n+3 ⊆ f .

Claim 1. D is dense in P.
Suppose p0 ∈ P. Let P

′ be the poset of good p ∈ P such that p0 ⊆ p. Fix
a sufficiently large regular cardinal λ and let N ≺ H(λ) be countable so that
p0, S, P

′ ∈ N . Let G be P
′-generic over N and f = ∪G. If g ∈ N is good and

g ⊆ f , then there is f ′ ∈ G so that g ⊆ f ′, for {f ′ ∈ P
′ : dom(g) ⊆ dom(f ′)} is

dense in P
′. To prove that f ∈ D, suppose g0 ⊆ . . . ⊆ g2n+1 is a good partial τ -play

such that g2n+1 ⊆ f and g2n+1 ⊆ g is good with g ⊆ f . Let f ′ ∈ G with g ⊆ f ′.
Any h ∈ P

′with f ′ ⊆ h can be extended to h′ such that g0 ⊆ . . . ⊆ g2n+1 ⊆ h ⊆ h′
is a good partial τ -play. Hence there are f ′′ ∈ G and h such that we have a good
partial τ -play g0 ⊆ . . . ⊆ g2n+1 ⊆ h ⊆ f ′′. Thus f ∈ D.

Claim 2. D is σ -closed.
Suppose f0 ⊆ . . . ⊆ fn ⊆ . . . are in D. Let dom(fn) =

⋃

i<ω

En
i where En

i ∈ S.

let

E∗n =
n⋃

i=0

n⋃

j=0

Ei
j .

Since f1 ∈ D, there is a good partial τ -play 〈g0, g1〉 such that f0 � E∗0 ⊆ g1 ⊆ f1.
Since f2 ∈ D, there is a good partial τ -play 〈g0, g1, g2, g3〉 with f1 � E∗1 ⊆ g3 ⊆
f2, and so on. We get a τ -play 〈g0, g1, . . .〉 such that

fn � E∗n ⊆ g2n+1
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Since τ is a winning strategy,
⋃

n

gn ∈ P
′. By Claim 1 there is g ⊇ ⋃

n

gn with

g ∈ D. ��
Corollary 11. If one of the models A, B is of size < ℵω, then Nonempty has win-
ning strategy in G(I∗ℵ1

) if and only if I∗ℵ1
contains a σ -closed dense subset.

Corollary 12. If Nonempty has a winning strategy in G(I∗ℵ1
), then (σ )ℵ2 holds. ��

However, it is by no means the case that if (σ )ℵ2 holds (or even A ∼= B), then
Nonempty has a winning strategy in G(I∗ℵ1

).

7. Uncountable partial isomorphisms

In this section we study models of cardinality κ+. It turns out that for κ > ω some
new ideas can be used if we consider Iκ+ rather than Iℵ1 . Likewise, the game
EFκ

ω1
is in some sense easier to deal with than EFℵ1

ω1
, when models of size κ+ are

considered.
Indeed, we can now prove (∃)ℵ2

ω1 ↔ (σ )ℵ2 :

Theorem 13. The following conditions are equivalent for models A and B of
cardinality κ+:

(i) Player ∃ has a winning strategy in the game EFκ+
ω1

on A and B.
(ii) There is a set D ⊆ I∗

κ+ which has the κ+-back-and-forth property and is
σ -closed.

Proof. Suppose ∃ has a winning strategy τ in EFκ+
ω1

on A and B. We assume that
A = B = κ+. A partial τ -play is a sequence

s = 〈〈xα, yα〉 : α < δ〉
of moves xα of ∀ and responses yα of ∃ in EFκ+

ω1
, ∃ playing τ . Each partial τ -play s

determines a partial isomorphism p(s) of cardinality ≤ κ . Let T be the tree of all
partial τ -plays s such that the domain and range of p(s) are equal and are an initial
segment of κ+. Let s ≤T s′ if the partial τ -play s′ is obtained by continuing the
partial τ -play s. Let P be the set of all p(s), where s ∈ T is a partial τ -play. Then
P is a tree under inclusion. If s ∈ T , let

Ps = {p(s′) : s′ ∈ T , s ≤T s′}
Note that Ps may be a proper subset of {p ∈ P : p(s) ⊆ p}.
Case 1. There is an s ∈ T such that if A ⊆ Ps is an antichain in Ps , then
sup{dom(p) : p ∈ A} < κ+. This means that Ps is a κ+-Souslin tree. We con-
struct a σ -closed dense back-and-forth set D ⊆ I∗

κ+ . Let us consider the following
persistency game on Ps :

I α0 α1 . . .

II p0 p1 . . .

There are two players, I and II, and ω moves. Player I starts by choosing α0 < κ+.
Then player II chooses p0 ∈ Ps with dom(p0) ≥ α0. Then I chooses α1 < κ+ and
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II chooses p1 ∈ Ps with dom(P1) ≥ α1 and p0 ≤ p1, and so on. Player II wins if
he can play ω moves pn, n < ω so that eventually ∪npn ⊆ pω for some pω ∈ Ps .
Now it is clear that II has a winning strategy in this persistency game. All he has to
do is to continue the partial τ -play s in an obvious way. Let P ′s be the downward
closure in Ps of the set of first moves of II against all possible first moves of I.

Let us then consider the game G∞(P ′s , a) from [6]: This game is like G(P ′s )
except that Empty plays antichains A0, A1, . . . and Nonempty plays an ∈ An. The
game starts with Empty choosing a ∈ P ′s and maximal antichain A0 of extensions
of a. Later, Empty has to choose An+1 so that it is a maximal antichain of exten-
sions of an. Again, Nonempty wins if he can play all of his ω moves and then
have aω ∈ Ps with

⋃

n

an ⊆ aω. Nonempty has the following winning strategy in

G∞(P ′s , a). Suppose Empty plays a maximal antichain A0 in {p ∈ P ′s : a ⊆ p}. By
assumption, there is α0 < κ+ so that sup(dom(p)) < α0 for p ∈ A0. Now II uses
his winning strategy in the persistency game to get p0 ∈ Ps of height α0. Since
�A0 = a, there is a0 ∈ A0 such that a0 ⊆ p0. This is the first move of Nonempty.
It is clear that he can go on like this for ω moves and win.

It follows from a result in [6] that Nonempty wins G(P ′s ). Since P ′s is a tree,
by another result from [6] it has a σ -closed dense subset D. Now in fact D is a
σ -closed back-and-forth subset of I∗

κ+ .

Case 2. For every s ∈ T , Ps has an antichain As such that sup{dom(p) : p ∈
As} = κ+. We define a mapping π : <ω1κ+ → T such that

(1) π(f � α) <T π(f ) if f ∈ <ω1κ+ and α ∈ dom(f )

(2) {p(π(f ∪ {〈β, ξ〉})) : ξ < κ+} is an antichain in P if f ∈ <ω1κ+ and β =
dom(f ).

Suppose π(g) is defined for dom(g) < α, where α < ω1, and dom(f ) = α. If
α = ∪α, the sequence

〈π(f � β) : β < α〉
is an ascending chain in T and has therefore a limit which we denote by π(f ). If
α = β + 1, we let Aπ(f �β) = {aξ : ξ < κ+} and let

π(f ∪ {〈β, ξ〉}) = aξ

for ξ < κ+. This ends the construction. Now let

D = {p(π(f )) : f ∈ <ω1κ+}.
We prove that D is an κ+-back-and-forth set. Let p(π(f )) ∈ D and, say x ∈ κA.
Let dom(f ) = β. We can choose ξ < κ+ so that

sup{x(i) : i < κ} < dom(π(f ∪ 〈β, ξ〉)).
Thus rng(x) ⊆ dom(π(f ∪ 〈β, ξ〉)) and π(f ∪ {〈β, ξ〉}) ∈ D.

Finally, we show that D is σ -closed. Suppose p0 � p1 � . . . in D. Let pn =
p(π(fn)). By construction, there is fω ∈ <ω1κ+ such that fn = fω � dom(fn).
Now pn ⊆ p(π(fω)) for all n < ω. ��
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Corollary 14. (∃)ℵ1
κ·κ → (σ )κ+ on models of cardinality κ+.

Corollary 15. (σ )κ+ is transitive on models of cardinality κ+.

Open problems:

1. Is (σ )ℵ1 transitive?
2. Is (σ )κ+ transitive on all models?
3. (∃)ℵ1

ω1 ↔ (σ )ℵ1 ?
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