Jouko Väänänen • Boban Veličković

Games played on partial isomorphisms

Received: 5 September 2000 / Revised: 14 August 2002 /
Published online: 6 August 2003 - © Springer-Verlag 2003

1. Introduction

Suppose \mathcal{A} and \mathcal{B} are structures for the same countable relational vocabulary. We denote the universe of \mathcal{A} by A and the universe of \mathcal{B} by B. A partial mapping $p: A \rightarrow B$ is a partial isomorphism (p.i.) $\mathcal{A} \rightarrow \mathcal{B}$ if p is an isomorphism between $\mathcal{A} \upharpoonright \operatorname{dom}(p)$ and $\mathcal{B} \upharpoonright \operatorname{rng}(p)$. Let

$$
\mathcal{I}_{\kappa}=\{p: p \text { is a p.i. } \mathcal{A} \rightarrow \mathcal{B} \text { and }|p|<\kappa\} .
$$

We study the poset $\left\langle\mathcal{I}_{\kappa}, \subseteq\right\rangle$ as a measure of how similar the structures \mathcal{A} and \mathcal{B} are to each other.

A subset X of \mathcal{I}_{κ} has the κ-back-and-forth property if for all $\lambda<\kappa$

$$
\begin{aligned}
& \forall p \in X\left[\forall a \in{ }^{\lambda} A \exists b \in{ }^{\lambda} B(p \cup\{\langle a(i), b(i)\rangle: i<\lambda\} \in X)\right. \\
& \left.\wedge \forall b \in{ }^{\lambda} B \exists a \in{ }^{\lambda} A(p \cup\{\langle a(i), b(i)\rangle: i<\lambda\} \in X)\right] .
\end{aligned}
$$

It is obvious that there is a largest κ-back-and-forth set which we denote by \mathcal{I}_{κ}^{*}. The structures \mathcal{A} and \mathcal{B} are said to be partially isomorphic, $\mathcal{A} \simeq{ }_{p} \mathcal{B}$, if $\mathcal{I}_{2}^{*} \neq \emptyset$. We get stronger criteria by demanding that \mathcal{I}_{κ}^{*} is not just non-empty but "large". This leads naturally to the condition:
$(\sigma)_{\kappa}$ There is a set $D \subseteq \mathcal{I}_{\kappa}^{*}$ which has the κ-back-and-forth property and is σ-closed.

By D being σ - closed we mean that if $p_{0} \subseteq p_{1} \subseteq \ldots \subseteq p_{n} \subseteq \cdots(n<\omega)$ are elements of D, then $\bigcup_{n} p_{n} \in D$. Structures \mathcal{A} and \mathcal{B} satisfying $(\sigma)_{\aleph_{1}}$ are said in [1] to be strongly partially isomorphic $\mathcal{A} \simeq^{s}{ }_{p} \mathcal{B}$. Kueker [5] mentions this concept, too. Not much is known about $(\sigma)_{\kappa}$. Just as the classical back-and-forth argument gives

$$
\left(\mathcal{A} \simeq{ }_{p} \mathcal{B} \&|A|,|B| \leq \aleph_{0}\right) \Rightarrow \mathcal{A} \cong \mathcal{B}
$$

[^0]we have
$$
\left(\mathcal{A} \simeq_{p}^{s} \mathcal{B} \&|A|,|B| \leq \aleph_{1}\right) \Rightarrow \mathcal{A} \cong \mathcal{B}
$$

If \mathcal{A} and \mathcal{B} are homogeneous, then $\mathcal{A} \simeq{ }_{p} \mathcal{B}$ and $\mathcal{A} \simeq_{p}^{s} \mathcal{B}$ are both equivalent to $\mathcal{A} \equiv \mathcal{B}$. If \mathcal{A} and \mathcal{B} are η_{1}-real closed fields, then $(\sigma)_{\aleph_{1}}$ holds.

The main open question concerning $(\sigma)_{\aleph_{1}}$ is whether it is transitive, that is, whether

$$
\left(\mathcal{A} \simeq_{p}^{s} \mathcal{B} \& \mathcal{B} \simeq_{p}^{s} \mathcal{C}\right) \Rightarrow \mathcal{A} \simeq_{p}^{s} \mathcal{C} ?
$$

We get some partial answers to this problem. We show that $(\sigma)_{\aleph_{1}}$ is transitive in the class of structures of size $\leq 2^{\aleph_{0}}$ and in various classes of structures of size $\leq \aleph_{2}$, and that $(\sigma)_{\kappa^{+}}$is transitive in the class of structures of size κ^{+}.

The condition $\mathcal{A} \simeq{ }_{p} \mathcal{B}$ can be characterized in terms of the Ehrenfeucht-Fraïssé game. It is natural to investigate connections between this game and $\mathcal{A} \simeq_{p}^{s} \mathcal{B}$. The game $E F_{\delta}^{\kappa}$ on \mathcal{A} and \mathcal{B} has two players \forall and \exists. The game has δ rounds. During round α player \forall picks $\lambda_{\alpha}<\kappa$, one of the models \mathcal{A} and \mathcal{B}, say \mathcal{A}, and a sequence $x_{\alpha} \in{ }^{\lambda_{\alpha}} A$. Then player \exists picks $y_{\alpha} \in{ }^{\lambda_{\alpha}} B$. In this case we denote x_{α} by a_{α} and y_{α} by b_{α}. If \forall picked \mathcal{B} instead of \mathcal{A} and $x_{\alpha} \in{ }^{\lambda_{\alpha}} B$, then x_{α} would be denoted by b_{α} and the choice $y_{\alpha} \in{ }^{\lambda_{\alpha}} A$ of \exists would be denoted by a_{α}. After δ rounds have been played we have

$$
p=\left\{\left\langle a_{\alpha}(i), b_{\alpha}(i)\right\rangle: i<\lambda_{\alpha}, \alpha<\delta\right\} .
$$

If p is a partial isomorphism $\mathcal{A} \rightarrow \mathcal{B}$, then \exists won. Otherwise \forall won. We get the following criterion:

$$
(\exists)_{\delta}^{\kappa} \text { Player } \exists \text { has a winning strategy in the game } E F_{\delta}^{\kappa} \text { on } \mathcal{A} \text { and } \mathcal{B} \text {. }
$$

It is well-known that

$$
\mathcal{I}_{\omega}^{*} \neq \emptyset \Leftrightarrow(\exists)_{\omega}^{2},
$$

and easy to see that

$$
(\sigma)_{\aleph_{1}} \Rightarrow(\exists)_{\omega_{1}}^{\aleph_{1}}
$$

The question whether

$$
(\sigma)_{\aleph_{1}} \Leftrightarrow(\exists)_{\omega_{1}}^{\aleph_{1}} ?
$$

is open. Note that a "yes" would imply that $(\sigma)_{\aleph_{1}}$ is transitive, as $(\exists)_{\delta}^{K}$ is clearly transitive. We establish $(\sigma)_{\aleph_{1}} \Leftrightarrow(\exists)_{\omega_{1}}^{\aleph_{1}}$ in the case that $|A|,|B| \leq 2^{\aleph_{0}}$ as well as for special classes of \mathcal{A} and \mathcal{B} of size \aleph_{2}. Although we cannot prove $(\exists)_{\omega_{1}}^{\aleph_{0}} \Rightarrow(\sigma)_{\aleph_{1}}$ even for all models of size \aleph_{2} we can prove $(\exists)_{\omega_{1} \cdot \omega_{1}}^{\aleph_{1}} \Rightarrow(\sigma)_{\aleph_{2}}$ and $(\exists)_{\omega_{1}}^{\aleph_{2}} \Leftrightarrow(\sigma)_{\aleph_{2}}$ for models of size \aleph_{2}.

We can look at the largeness of \mathcal{I}_{κ}^{*} also in terms of the Banach-Mazur game $\mathcal{G}\left(\mathcal{I}_{\kappa}^{*}\right)$ on poset $\left\langle\mathcal{I}_{\kappa}^{*}, \supseteq\right\rangle$. For this game, see [3], [2] and [6]. The game $\mathcal{G}(P)$ has two players called Empty and Nonempty. They alternately play descending sequence of P :

$$
\begin{array}{l|cccc}
\text { Empty } & p_{0} & p_{2} & \ldots \\
\hline \text { Nonempty } & p_{1} & p_{3} & \ldots
\end{array}
$$

Nonempty wins the run of the game if there is $p \in P$ such that $p \leq p_{n}$ for all $n<\omega$. We show that if Nonempty has a winning strategy in $\mathcal{G}\left(\mathcal{I}_{\aleph_{1}}^{*}\right)$ and either A
or B has cardinality $<\aleph_{\omega}$, then the poset $\left\langle\mathcal{I}_{\aleph_{1}}^{*}, \supseteq\right\rangle$ has a σ-closed dense set. Previously this was known for posets that are trees [6] and for posets whose regular-open algebra contains a dense subset of size $\leq 2^{\aleph_{0}}$ [2]. As an application of our result we can show that if Nonempty has a winning strategy in $\mathcal{G}\left(\mathcal{I}_{\aleph_{1}}^{*}\right)$, then $(\sigma)_{\aleph_{1}}$ holds.

2. Models of size $\mathbf{2}^{\omega}$

One approach to getting $(\sigma)_{\aleph_{1}}$ from $(\exists)_{\omega_{1}}^{\aleph_{1}}$ is to organize the partial isomorphisms arising from positions in the Ehrenfeucht-Fraïssé -game in such a way that they uniquely determine the position they come from. In this section we use this approach to prove that $(\exists)_{\omega_{1}}^{\aleph_{1}}$ implies $(\sigma)_{\aleph_{1}}$ for models \mathcal{A} and \mathcal{B} of size $\leq 2^{\aleph_{0}}$. First we note a simple lemma:

Lemma 1. The following conditions are equivalent for any \mathcal{A} and \mathcal{B} :
(1) \exists has a winning strategy in $E F_{\omega_{1}}^{\aleph_{1}}$ on \mathcal{A} and \mathcal{B}.
(2) There is a countably closed notion of forcing P such that $\vdash_{P} \check{\mathcal{A}} \cong \check{\mathcal{B}}$.

Theorem 2. Suppose \mathcal{A} and \mathcal{B} have size $\leq 2^{\aleph_{0}}$. Then $(\exists)_{\omega_{1}}^{\aleph_{1}} \Leftrightarrow(\sigma)_{\aleph_{1}}$.
Proof. Suppose $(\exists)_{\omega_{1}}^{\aleph_{1}}$. Let us assume for simplicity that $A=B=2^{\omega}$. By Lemma 1 there is a countably closed notion of forcing P and a name \tilde{f} such that

$$
\Vdash_{P} \tilde{f}: \check{\mathcal{A}} \cong \check{\mathcal{B}}
$$

Case 1. There is a $p \in P$ such that for all α there is a unique β with $r \Vdash \tilde{f}(\check{\alpha})=\check{\beta}$ for some $r \leq p$, and a unique β with $r \Vdash \tilde{f}(\check{\beta})=(\check{\alpha})$ for some $r \leq p$. Let

$$
g=\{\langle\alpha, \beta\rangle \mid(\exists q \leq p)(q \Vdash \tilde{f}(\check{\alpha})=\check{\beta})\} .
$$

Now it is clear that $g: \mathcal{A} \cong \mathcal{B}$, so $(\sigma)_{\aleph_{1}}$ holds.
Case 2. For all $p \in P$ there is α such that for two different β we have $r \Vdash \tilde{f}(\check{\alpha})=\check{\beta}$ for some $r \leq p$ or for two different β we have $r \Vdash \tilde{f}(\check{\beta})=\check{\alpha}$ for some $r \leq p$.

Thus every $p \in P$ has continuum many incompatible extensions all deciding mutually contradictory things about \tilde{f}. These extensions can then be further extended to $p_{\alpha}, \alpha<2^{\omega}$, such that each p_{α} decides $\tilde{f}(\check{\alpha})$ and $\tilde{f}^{-1}(\check{\alpha})$ but for $\alpha \neq \beta p_{\alpha}$ and p_{β} differ on \tilde{f}. By iterating this ω_{1} times we get sets

$$
\begin{aligned}
& \left\{f_{s}: s \in \in^{<\omega_{1}} 2\right\} \\
& \left\{p_{s}: s \in{ }^{<\omega_{1}} 2\right\}
\end{aligned}
$$

so that
(C1) $p_{s} \Vdash \check{f}_{s} \subseteq \tilde{f}$
(C2) $s \leq s^{\prime} \Leftrightarrow p_{s^{\prime}} \leq p_{s}$
(C3) $s \leq s^{\prime} \Leftrightarrow f_{s} \subseteq f_{s^{\prime}}$
(C4) For every $s \in{ }^{<\omega_{1}} 2$ and every $\alpha<2^{\omega}$ there are $\beta<2^{\omega}$ and $s^{\prime} \in{ }^{<\omega_{1}} 2$ such that $s \leq s^{\prime}$ and $f_{s} \cup\{\langle\alpha, \beta\rangle\} \subseteq f_{s^{\prime}}$.
(C5) For every $s \in{ }^{<\omega_{1}} 2$ and every $\beta<2^{\omega}$ there are $\alpha<2^{\omega}$ and $s^{\prime} \in{ }^{<\omega_{1}} 2$ such that $s \leq s^{\prime}$ and $f_{s} \cup\{\langle\alpha, \beta\rangle\} \subseteq f_{s^{\prime}}$.

Now it is clear that $D=\left\{f_{s}: s \in{ }^{<\omega_{1}} 2\right\}$ is a σ-closed \aleph_{1}-back-and-forth set.

3. Models of different cardinality

In this section we deduce $(\sigma)_{\aleph_{1}}$ from $(\exists)_{\omega_{1}}^{\aleph_{1}}$ in all cases where the models are of different cardinality.

Theorem 3. Suppose \mathcal{A} and \mathcal{B} have different cardinality. Then $(\exists)_{\omega_{1}}^{\aleph_{1}} \Leftrightarrow(\sigma)_{\aleph_{1}}$.
Proof. Suppose $(\exists)_{\omega_{1}}^{\aleph_{1}}$. Pick a countably closed notion of forcing P and a name \tilde{f} such that

$$
\Vdash_{P} \tilde{f}: \check{\mathcal{A}} \cong \check{\mathcal{B}}
$$

Suppose $|A|=\kappa$ and $|B|=\lambda>\kappa$. We may assume $\kappa>\omega$. We assume λ is singular. The regular case is similar but easier. Let $\lambda_{\xi}, \xi<c f(\lambda)$, be an increasing cofinal sequence in λ such that $c f(\lambda)<\lambda_{\xi}$ for all ξ. Let us call a set of partial functions $A \rightarrow B$ an antichain if the union of any two of them fails to be a partial function. Let T be the tree of sequences $s: \omega_{1} \rightarrow \lambda$ such that for all limit v and all $n<\omega$ we have

$$
s(v+3 n)<c f(\lambda), s(v+3 n+1)<\lambda_{s(v+3 n)}, s(v+3 n+2)<\kappa
$$

We will use repeatedly the following fact:
${ }^{(*)}$ If $\kappa<\mu^{+}<\lambda$ and $p \in P$ such that $p \Vdash \check{g} \subseteq \tilde{f}$, then there are extensions q_{ξ}, $\xi<\mu^{+}$, of p and extensions g_{ξ} of g such that $q_{\xi} \Vdash \check{g_{\xi}} \subseteq \tilde{f}$ and $\left\{g_{\xi}: \xi<\mu^{+}\right\}$ is an antichain.

By iterating this way of extending a condition, we get conditions $p_{s}, s \in T$, and functions $f_{s}, s \in T$ such that:
(D1) $p_{s} \Vdash \check{f}_{s} \subseteq \tilde{f}$
(D2) $s \leq s^{\prime} \Leftrightarrow p_{s^{\prime}} \leq p_{s}$
(D3) $s \leq s^{\prime} \Leftrightarrow f_{s} \subseteq f_{s^{\prime}}$
(D4) If $s \in T$ and $\alpha \in A$, then there is $\beta \in B$ and $s^{\prime} \in T$ such that $s \leq s^{\prime}$ and $f_{s} \cup\{\langle\alpha, \beta\rangle\} \subseteq f_{s^{\prime}}$
(D5) If $s \in T$ and $\beta \in B$ then there is $\alpha \in A$ and $s^{\prime} \in T$ such that $s \leq s^{\prime}$ and $f_{s} \cup\{\langle\alpha, \beta\rangle\} \subseteq f_{s^{\prime}}$.

Let

$$
D=\left\{f_{s}: s \in T\right\}
$$

By construction, D is an \aleph_{1}-back-and-forth set which is σ-closed. So we have $(\sigma)_{\aleph_{1}}$.

4. Models of the same cardinality: Trees

For models of the same size we do not have a general proof for the equivalence of $(\sigma)_{\aleph_{1}}$ and $(\exists)_{\omega_{1}}^{\aleph_{1}}$. However, we show now that for trees of height ω_{1} the condition $(\exists)_{\omega_{1}}^{\aleph_{1}}$ implies $(\sigma)_{\aleph_{1}}$.
Theorem 4. If the trees T_{0} and T_{1} are of height ω_{1} and satisfy $(\exists)_{\omega_{1}}^{2}$, then they satisfy $(\sigma)_{\aleph_{1}}$.

Before we start the proof we present a simple lemma about bipartite graphs which may have some interest in its own. Recall that a bipartite graph is a triple $G=(A, B, E)$ where A and B are nonempty sets and $E \subseteq A \times B$ is the set of edges between A and B. A matching is a (possibly partial) injective function f from A to B such that for every $x \in \operatorname{dom}(f)(x, f(x)) \in E$. A perfect matching is a bijection between A and B which is also a matching. Let \mathcal{M} be a family of partial matchings. We say that \mathcal{M} has the extension property if for every $f \in \mathcal{M}, x \in A$ and $y \in B$ there is $g \in \mathcal{M}$ with $f \subseteq g$ such that $x \in \operatorname{dom}(g)$ and $y \in \operatorname{ran}(g)$. Thus if \mathcal{M} has the extension property and we consider it as a forcing notion ordered by reverse inclusion then forcing with \mathcal{M} introduces a perfect matching in G.

Lemma 5. Let $G=(A, B, E)$ be a bipartite graph and assume there is a σ-closed forcing notion \mathcal{P} which adds a perfect matching in G. Then there is a σ-closed family \mathcal{M} of countable partial matchings which has the extension property.

Proof. We shall prove this by induction on the size $(G)=|A|+|B|$. First, note that if $\operatorname{size}(G) \leq \aleph_{1}$ then G has a perfect matching f and thus we can take for \mathcal{M} the family of all countable partial submatchings of f.

Assume now $\operatorname{size}(G)=\kappa>\aleph_{1}$ and fix a \mathcal{P}-name \dot{f} for a perfect matching. For a given condition $p \in \mathcal{P}$ let \mathcal{M}_{p} be the collection of all countable partial matchings s such that there is a condition $q \leq p$ with $q \Vdash s \subseteq \dot{f}$. Let us say that a set of partial matchings is an antichain if the union of any two of them fails to be a partial matching. Let λ be the least cardinal such that for some $p \mathcal{M}_{p}$ has no antichains of size λ. If $\lambda=\kappa^{+}$we can build a required family of partial matchings as in the proof of Theorem 3. Now, assume $\lambda \leq \kappa$ and fix a condition p such that \mathcal{M}_{p} has no antichains of size λ. Since \mathcal{P} is σ-closed we can easily show that $\operatorname{cof}(\lambda)>\aleph_{0}$. Let $E_{p}=\bigcup \mathcal{M}_{p}$ and let $G_{p}=\left(A, B, E_{p}\right)$ be the resulting subgraph. Now note that the connected components of G_{p} are of size $<\lambda$. Therefore we can find decompositions

$$
A=\bigcup_{i \in I} A_{i} \text { and } B=\bigcup_{i \in I} B_{i}
$$

and such that $\left|A_{i}\right|+\left|B_{i}\right|<\lambda$, for each i, and $E_{p} \subseteq \bigcup_{i \in I} A_{i} \times B_{i}$. Now let E_{i} be the restriction of E_{p} to $A_{i} \times B_{i}$ and consider bipartite graphs $G_{i}=\left(A_{i}, B_{i}, E_{i}\right)$, for $i \in I$. Each of them has size $<\lambda$ and p forces that $\dot{f} \upharpoonright A_{i}$ is a perfect matching of G_{i}. We can therefore apply our induction hypothesis to find a family of countable partial matchings \mathcal{M}_{i} in G_{i} which have the extension property. Finally, let \mathcal{M} consist of all partial matchings g of the form $g=\bigcup_{i \in I_{0}} g_{i}$, where $I_{0} \subseteq I$ is a countable set, and $g_{i} \in \mathcal{M}_{i}$, for each $i \in I_{0}$. Then \mathcal{M} is as required.

Proof of Theorem 4. Let us fix a σ-closed forcing notion \mathcal{P} which forces T_{0} and T_{1} to be isomorphic and a \mathcal{P}-name for an isomorphism \dot{f}. We shall define a relation $R \subseteq T_{0} \times T_{1}$ and for each $(x, y) \in R$ a condition $p_{x, y} \in \mathcal{P}$ such that $p_{x, y} \Vdash \dot{f}(x)=y$. In particular, we will have that if $(x, y) \in R$ then x and y are of the same height. Moreover, if $x<x^{\prime}, y<y^{\prime}$ and both (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are in R then we will have $p_{x^{\prime}, y^{\prime}} \leq p_{x, y}$.

To begin, assume for simplicity that T_{0} and T_{1} both have roots, say r_{0} and r_{1}. Put $\left(r_{0}, r_{1}\right)$ in R and let $p_{r_{0}, r_{1}}$ be any condition in \mathcal{P} (which necessarily forces that $\dot{f}\left(r_{0}\right)=r_{1}$.) Assume now, we have put (x, y) in R and let $p_{x, y}$ be the associated condition. Let S_{x} be the set of successors of x in T_{0} and S_{y} the set of successors of y in T_{1}. Let

$$
E_{x, y}=\left\{\left(x^{\prime}, y^{\prime}\right) \in S_{x} \times S_{y}: \text { there is } q \leq p_{x, y} \text { such that } q \Vdash \dot{f}\left(x^{\prime}\right)=y^{\prime}\right\} .
$$

We put all elements of $E_{x, y}$ into R and for each $x, y \in E_{x^{\prime}, y^{\prime}}$ we pick $p_{x^{\prime}, y^{\prime}} \leq$ $p_{x, y}$ such that $p_{x^{\prime}, y^{\prime}} \Vdash \dot{f}\left(x^{\prime}\right)=y^{\prime}$. Finally, if $x \in T_{0}$ and $y \in T_{1}$ are elements of the same height which is a limit ordinal and for every $x^{\prime}<x$ and $y^{\prime}<y$ of the same height $\left(x^{\prime}, y^{\prime}\right) \in R$ then we put (x, y) into R and we define $p_{x, y}$ to be any condition extending the corresponding conditions $p_{x^{\prime}, y^{\prime}}$. This completes the construction of the relation R and the assignment of a condition to each pair $(x, y) \in R$.

Notice now that since $p_{x, y} \Vdash \dot{f}(x)=y$ and \dot{f} is forced to be an isomorphism, forcing with \mathcal{P} below $p_{x, y}$ introduces a perfect matching in the graph $G_{x, y}=$ $\left(S_{x}, S_{y}, E_{x, y}\right)$. By Lemma 5 we can find, for each $(x, y) \in R$, a family of partial matchings $\mathcal{M}_{x, y}$ in the graph $G_{x, y}$ with the extension property. We may, of course, assume that $\mathcal{M}_{x, y}$ contains the empty set.

We now describe a σ-closed family \mathcal{F} of partial isomorphisms between T_{0} and T_{1} which has the back and forth property. We put a countable partial function g into \mathcal{F} if $\operatorname{dom}(g)$ is an initial segment of $T_{0}, \operatorname{ran}(g)$ is an initial segment of T_{1}, g is a partial isomorphism between the two, and whenever $g(x)=y$ then $g \upharpoonright S_{x} \in \mathcal{M}_{x, y}$. It is straightforward to check that \mathcal{F} is as required.

5. Models of the same cardinality: The decomposition property

In this section we consider models of size at most $\left(2^{\aleph_{0}}\right)^{+}$. If two models satisfy ($\exists)_{\omega_{1}}^{\aleph_{1}}$, it is always possible to express the models as unions of smaller submodels which again satisfy $(\exists)_{\omega_{1}}^{\aleph_{1}}$. If these smaller submodels are of size \aleph_{1}, they are actually pairwise isomorphic. We consider now a condition which states that such smaller submodels can be chosen to be mutually disjoint. The models \mathcal{A} and \mathcal{B} are said to satisfy the decomposition property, or $(D)_{\kappa}$ for short, if
(1) $|A|=|B|=\kappa$.
(2) $A=\bigcup_{\alpha<\kappa} A_{\alpha}, B=\bigcup_{\alpha<\kappa} B_{\alpha}$.
(3) $\left|A_{\alpha}\right|<\kappa,\left|B_{\alpha}\right|<\kappa$ for $\alpha<\kappa$.
(4) $A_{\alpha} \cap A_{\beta}=B_{\alpha} \cap B_{\beta}=\emptyset$ for $\alpha<\beta<\kappa$.
(5) $(\sigma)_{\aleph_{1}}$ holds for \mathcal{A}_{α} and \mathcal{B}_{α} for $\alpha<\kappa$,

A simple example of the failure of $(D)_{\kappa}$ is a pair $(\mathcal{A}, \mathcal{B})$ where some definable subset has cardinality $<\kappa$ in \mathcal{A} but cardinality κ in \mathcal{B}.

Theorem 6. If \mathcal{A} and \mathcal{B} have cardinality $\leq\left(2^{\aleph_{0}}\right)^{+}$and satisfy $(\exists)_{\omega_{1}}^{\aleph_{1}}$, then they satisfy $(\sigma)_{\aleph_{1}}$ or $(D)_{\left(2^{N_{0}}\right)^{+}}$.

Proof. Let P be a σ-closed poset forcing that \mathcal{A} and \mathcal{B} are isomorphic and let $\vdash_{P} \tilde{f}: \tilde{\mathcal{A}} \cong \tilde{\mathcal{B}}$. For simplicity, assume $A, B \subseteq \mu$, where $\mu=\left(2^{\aleph_{0}}\right)^{+}$.

Case 1. For every p one of the following holds:
(1.1) There is an $\alpha \in A$ such that for arbitrarily large $\beta<\mu$ we have $\beta \in B$ and for some $q \leq p, q \Vdash \tilde{f}(\tilde{\alpha})=\tilde{\beta}$.
(1.2) There is an $\alpha \in B$ such that for arbitrarily large $\beta<\mu$ we have $\beta \in A$ and for some $q \leq p, q \Vdash \tilde{f}(\check{\beta})=\check{\alpha}$.

In particular, every $p \in P$ has a continuum of incompatible extensions all deciding mutually contradictory things about \tilde{f}. These extensions can then be further extended to $p_{\alpha}, \alpha<2^{\aleph_{0}}$, such that each p_{α} decides $\tilde{f}\left(\gamma_{\alpha}\right)$ and $\tilde{f}^{-1}\left(\gamma_{\alpha}\right)$ for some preassigned ordinals γ_{α}. On the other hand, every $p \in P$ has μ incomparable extensions p_{ξ} each deciding a value $\tilde{f}\left(\alpha_{\xi}\right)=\beta_{\xi}$ for some fixed α_{ξ} with varying $\beta_{\xi} \geq \xi$. By iterating these two ways of extending a condition, we get conditions $p_{s}, s \in{ }^{<\omega_{1}} \mu$, and functions $f_{s}, s \in{ }^{<\omega_{1}} \mu$ such that:
(G1) $p_{s} \Vdash \check{f}_{s} \subseteq \tilde{f}$
(G2) $s \leq s^{\prime} \Leftrightarrow p_{s^{\prime}} \leq p_{s}$
(G3) $s \leq s^{\prime} \Leftrightarrow f_{s} \subseteq f_{s^{\prime}}$
(G4) If $s \in{ }^{<\omega_{1}} \mu$ and $\alpha \in A$, then there is $\beta \in B$ and $s^{\prime} \in{ }^{<\omega_{1}} \mu$ such that $s \leq s^{\prime}$ and $f_{s} \cup\{\langle\alpha, \beta\rangle\} \subseteq f_{s^{\prime}}$
(G5) If $s \in{ }^{<\omega_{1}} \mu$ and $\beta \in B$ then there is $\alpha \in A$ and $s^{\prime} \in{ }^{<\omega_{1}} \mu$ such that $s \leq s^{\prime}$ and $f_{s} \cup\{\langle\alpha, \beta\rangle\} \subseteq f_{s^{\prime}}$.

Let

$$
D=\left\{f_{s}: s \in{ }^{<\omega_{1}} \mu\right\}
$$

By construction, D is an \aleph_{1}-back-and-forth set which is σ-closed. So we have $(\sigma)_{\aleph_{1}}$.

Case 2. There is a $p \in P$ such that the following conditions both hold:
(2.1) For every $\alpha \in A$ there is $\beta_{\alpha}<\mu$ such that if $q \leq p$ and $q \Vdash \tilde{f}(\check{\alpha})=\check{\gamma}$, then $\gamma<\beta_{\alpha}$.
(2.2) For every $\alpha \in B$ there is $\delta_{\alpha}<\mu$ such that if $q \leq p$ and $q \Vdash \tilde{f}(\check{\gamma})=\check{\alpha}$, then $\gamma<\delta_{\alpha}$.

Let C be the cub of $\alpha<\mu$ closed under the functions $\xi \mapsto \beta_{\xi}$ and $\xi \mapsto \delta_{\xi}$. Let $C=\left\{c_{\alpha}: \alpha<\mu\right\}$ in ascending order and

$$
\begin{aligned}
A_{\alpha} & =A \cap\left[c_{\alpha}, c_{\alpha+1}\right) \\
B_{\alpha} & =B \cap\left[c_{\alpha}, c_{\alpha+1}\right) .
\end{aligned}
$$

It is clear that $(\exists)_{\omega_{1}}^{\aleph_{1}}$ holds for \mathcal{A}_{α} and \mathcal{B}_{α}. Since $\left|A_{\alpha}\right|,\left|B_{\alpha}\right| \leq 2^{\aleph_{0}}$ we have by Theorem 2.2 that $(\sigma)_{\aleph_{1}}^{\aleph_{1}}$ holds for \mathcal{A}_{α} and \mathcal{B}_{α}. So we have $(D)_{\left(2^{\aleph_{0}}\right)^{+}}$.

Theorem 7. If \mathcal{A} is an \aleph_{2}-like dense linear order, and \mathcal{B} has cardinality $\leq \aleph_{2}$, then $(\exists)_{\omega_{1}}^{2}$ implies $(\sigma)_{\aleph_{1}}$.
Proof. Suppose $(\exists)_{\omega_{1}}^{2}$ but not $(\sigma)_{\aleph_{1}}$. Then also \mathcal{B} is an \aleph_{2}-like dense linear order. In the proof of Theorem 3.1 we way now choose the decompositions $\left\langle\mathcal{A}_{\alpha}: \alpha<\omega_{2}\right\rangle$ and $\left\langle\mathcal{B}_{\alpha}: \alpha<\omega_{2}\right\rangle$ so that each \mathcal{A}_{α} is an interval of \mathcal{A} and each \mathcal{B}_{α} an interval of \mathcal{B}. Since the intervals are of cardinality $\leq \aleph_{1}$ and satisfy $(\exists)_{\omega_{1}}^{2}$, they are isomorphic. Hence $\mathcal{A} \cong \mathcal{B}$ and $(\sigma)_{\aleph_{1}}$ after all.

6. The Banach-Mazur game

The game $\mathcal{G}_{\delta}(P)$ is defined like $\mathcal{G}(P)$ except that there are δ moves. Nonempty moves first at limits and he has to play an extension of all previous moves. Nonempty wins $\mathcal{G}_{\delta}(P)$ if he can play all δ moves without breaking the rules. So $\mathcal{G}(P)$ is $\mathcal{G}_{\omega+1}(P)$. The following lemma is well-known.
Lemma 8. If Nonempty has a winning strategy in $\mathcal{G}(P)$, he has one in $\mathcal{G}_{\omega_{1}}(P)$.
Lemma 9. If Nonempty has a winning strategy in $\mathcal{G}_{\omega_{1}}\left(\mathcal{I}^{\prime}\right)$ for some \aleph_{1}-back-andforth set $\mathcal{I}^{\prime} \subseteq \mathcal{I}_{\aleph_{1}}^{*}$, then $(\exists)_{\omega_{1}}^{\kappa_{1}}$ holds.
Proof. We describe a winning strategy of \exists in $E F_{\omega_{1}}^{\aleph_{1}}$. During the game $E F_{\omega_{1}}^{\aleph_{1}}$ player \exists maintains a sequence $\left\langle p_{\alpha}: \alpha \leq 2 v\right\rangle$ in \mathcal{I}^{\prime} such that conditions (1) - (3) below are satisfied. Let $\left\langle\tau_{\alpha}: \alpha<\omega_{1}\right\rangle$ be a winning strategy of Nonempty in $\mathcal{G}_{\omega_{1}}\left(\mathcal{I}^{\prime}\right)$.
(1) $\alpha<\beta<2 \nu$ implies $p_{\alpha} \leq p_{\beta}$
(2) $p_{2 \mu}=\tau_{2 \mu}\left(\left\langle p_{\xi}: \xi<2 \mu\right\rangle\right)$, for all $\mu \leq v$
(3) If $\left\langle a_{\xi}, b_{\xi}\right\rangle, \xi \leq 2 v$, is the game so far, $p_{\xi}\left(a_{\xi}(i)\right)=b_{\xi}(i)$ for $i<\omega$.

Suppose we are at some stage ν and \forall plays, say $x \in A^{\omega}$. Since \mathcal{I}^{\prime} is an $\aleph_{1^{-}}$ back-and-forth set, there is $p_{2 v+1} \supseteq p_{2 v}$ such that $\operatorname{ran}(x) \subseteq \operatorname{dom}\left(p_{2 v+1}\right)$. Let $p_{2 v+2}=\tau_{2 v+2}\left(\left\langle p_{\xi}: \xi \leq 2 v+1\right\rangle\right)$. Now ヨ plays $y=\left\langle p_{2 v+2}(x(i)): i<\omega\right\rangle$ in $E F_{\omega_{1}}^{\kappa_{1}}$.

It is known that the following conditions are equivalent: [3]
(1) Empty does not have a winning strategy in $\mathcal{G}(P)$.
(2) P is Baire i.e. if $D_{n} \subseteq P$ are dense and open for $n<\omega$, then so is $\bigcap_{n<\omega} D_{n}$.

It is also known that $\mathcal{G}(P)$ can be nondetermined [3]. What is not known is whether the following conditions are equivalent:
(3) Nonempty has a winning strategy in $\mathcal{G}(P)$
(4) P contains a σ-closed dense subset.

Jech and Shelah [4] prove that it is consistent that (3) does not imply (4). We can settle the equivalence of (3) and (4) for the poset $\mathcal{I}_{\aleph_{1}}^{*}$:

Theorem 10. Suppose A and B are sets with $\operatorname{card}(A)<\aleph_{\omega}$ and \mathbb{P} is a poset of countable partial functions $A \rightarrow B$ ordered by \subseteq. Assume that \mathbb{P} is closed under restrictions and has the following extension property: for every $p \in \mathbb{P}$ and every countable $X \subset A$ there is $q \in \mathbb{P}$ extending p such that $X \subseteq \operatorname{dom}(q)$. Then the following conditions are equivalent:
(i) Nonempty has a winning strategy in $\mathcal{G}(\mathbb{P})$
(ii) \mathbb{P} contains a σ-closed dense subset.

Proof. Suppose $|A|=\aleph_{n}$. Let S be cofinal in $P^{<\omega_{1}}\left(\omega_{n}\right)$ with $\operatorname{card}(S)=\aleph_{n}$. Let $S=\left\{E_{\alpha}: \alpha<\omega_{n}\right\}$. Let $\pi\left(E_{0}\right)=\sup \left(E_{0}\right)+1$ and

$$
\begin{aligned}
\pi\left(E_{\alpha}\right) & =\sup \left\{\left\{\pi\left(E_{\beta}\right): \beta<\alpha\right\} \cup E_{\alpha}\right\}+1 \\
E_{\alpha}^{\prime} & =E_{\alpha} \cup\left\{\pi\left(E_{\alpha}\right)\right\} \\
S^{\prime} & =\left\{E_{\alpha}^{\prime}: \alpha<\omega_{n}\right\} .
\end{aligned}
$$

Now S^{\prime} is a "bursting family" $\subseteq P^{<\omega_{1}}\left(\omega_{n}\right)$ i.e. cofinal, of cardinality \aleph_{n} and $\left\{E \in S^{\prime}: E \subseteq x\right\}$ is countable for all $x \in P^{<\omega_{1}}\left(\omega_{n}\right)$. Moreover we have a function π such that π is one-one and $\pi(x) \in x$ for all $x \in S^{\prime}$. We may assume S^{\prime} is closed under finite unions. We use this family to prove $(i) \rightarrow(i i)$.

A mapping $p \in \mathbb{P}$ is called good if $\operatorname{dom}(p) \in S^{\prime}$. Suppose $\tau=\left\langle\tau_{n}: n<\omega\right\rangle$ is a winning strategy of Nonempty in $\mathcal{G}(\mathbb{P})$. A sequence $s=\left\langle p_{0}, \ldots, p_{2 n+1}\right\rangle$ is a partial τ-play if for all $i \in\{0, \ldots, n\}, p_{2 i} \in \mathbb{P}, p_{2 i+1}=\tau\left(\left\langle p_{0}, \ldots, p_{2 i}\right\rangle\right)$, and $p_{2 i+2} \supseteq p_{2 i+1}$ if $i<n$. A partial τ-play $\left\langle p_{0}, \ldots, p_{2 n+1}\right\rangle$ is good if the mappings $p_{2 i}, 0 \leq i \leq n$, are good. Let the set D consist of $f \in \mathbb{P}$ such that if $s=\left\langle p_{0}, \ldots, p_{2 n+1}\right\rangle$ is a good partial τ-play and $q \in \mathbb{P}$ is good with

$$
p_{2 n+1} \subseteq q \subsetneq f
$$

then s can be extended to a good partial τ-play $\left\langle p_{0}, \ldots, p_{2 n+1}, p_{2 n+2}, p_{2 n+3}\right\rangle$ so that $q \subseteq p_{2 n+3} \subseteq f$.

Claim 1. D is dense in \mathbb{P}.
Suppose $p_{0} \in \mathbb{P}$. Let \mathbb{P}^{\prime} be the poset of good $p \in \mathbb{P}$ such that $p_{0} \subseteq p$. Fix a sufficiently large regular cardinal λ and let $N \prec H(\lambda)$ be countable so that $p_{0}, S, \mathbb{P}^{\prime} \in N$. Let G be \mathbb{P}^{\prime}-generic over N and $f=\cup G$. If $g \in N$ is good and $g \subseteq f$, then there is $f^{\prime} \in G$ so that $g \subseteq f^{\prime}$, for $\left\{f^{\prime} \in \mathbb{P}^{\prime}: \operatorname{dom}(g) \subseteq \operatorname{dom}\left(f^{\prime}\right)\right\}$ is dense in \mathbb{P}^{\prime}. To prove that $f \in D$, suppose $g_{0} \subseteq \ldots \subseteq g_{2 n+1}$ is a good partial τ-play such that $g_{2 n+1} \subseteq f$ and $g_{2 n+1} \subseteq g$ is good with $g \subseteq f$. Let $f^{\prime} \in G$ with $g \subseteq f^{\prime}$. Any $h \in \mathbb{P}^{\prime}$ with $f^{\prime} \subseteq h$ can be extended to h^{\prime} such that $g_{0} \subseteq \ldots \subseteq g_{2 n+1} \subseteq h \subseteq h^{\prime}$ is a good partial τ-play. Hence there are $f^{\prime \prime} \in G$ and h such that we have a good partial τ-play $g_{0} \subseteq \ldots \subseteq g_{2 n+1} \subseteq h \subseteq f^{\prime \prime}$. Thus $f \in D$.

Claim 2. D is σ-closed.
Suppose $f_{0} \subseteq \ldots \subseteq f_{n} \subseteq \ldots$ are in D. Let $\operatorname{dom}\left(f_{n}\right)=\bigcup_{i<\omega} E_{i}^{n}$ where $E_{i}^{n} \in S$. let

$$
E_{n}^{*}=\bigcup_{i=0}^{n} \bigcup_{j=0}^{n} E_{j}^{i}
$$

Since $f_{1} \in D$, there is a good partial τ-play $\left\langle g_{0}, g_{1}\right\rangle$ such that $f_{0} \upharpoonright E_{0}^{*} \subseteq g_{1} \subseteq f_{1}$. Since $f_{2} \in D$, there is a good partial τ-play $\left\langle g_{0}, g_{1}, g_{2}, g_{3}\right\rangle$ with $f_{1} \upharpoonright E_{1}^{*} \subseteq g_{3} \subseteq$ f_{2}, and so on. We get a τ-play $\left\langle g_{0}, g_{1}, \ldots\right\rangle$ such that

$$
f_{n} \upharpoonright E_{n}^{*} \subseteq g_{2 n+1}
$$

Since τ is a winning strategy, $\bigcup_{n} g_{n} \in \mathbb{P}^{\prime}$. By Claim 1 there is $g \supseteq \bigcup_{n} g_{n}$ with $g \in D$.

Corollary 11. If one of the models \mathcal{A}, \mathcal{B} is of size $<\aleph_{\omega}$, then Nonempty has winning strategy in $G\left(\mathcal{I}_{\aleph_{1}}^{*}\right)$ if and only if $\mathcal{I}_{\aleph_{1}}^{*}$ contains a σ-closed dense subset.
Corollary 12. If Nonempty has a winning strategy in $\mathcal{G}\left(\mathcal{I}_{\aleph_{1}}^{*}\right)$, then $(\sigma)_{\aleph_{2}}$ holds.
However, it is by no means the case that if $(\sigma)_{\aleph_{2}}$ holds (or even $\mathcal{A} \cong \mathcal{B}$), then Nonempty has a winning strategy in $\mathcal{G}\left(\mathcal{I}_{\aleph_{1}}^{*}\right)$.

7. Uncountable partial isomorphisms

In this section we study models of cardinality κ^{+}. It turns out that for $\kappa>\omega$ some new ideas can be used if we consider $\mathcal{I}_{\kappa^{+}}$rather than $\mathcal{I}_{\aleph_{1}}$. Likewise, the game $\mathrm{EF}_{\omega_{1},}^{\kappa}$ is in some sense easier to deal with than $\mathrm{EF}_{\omega_{1}}^{\aleph_{1}}$, when models of size κ^{+}are considered.

Indeed, we can now prove $(\exists)_{\omega_{1}}^{\aleph_{2}} \leftrightarrow(\sigma)_{\aleph_{2}}$:
Theorem 13. The following conditions are equivalent for models \mathcal{A} and \mathcal{B} of cardinality κ^{+}:
(i) Player \exists has a winning strategy in the game $E F_{\omega_{1}}^{\kappa^{+}}$on \mathcal{A} and \mathcal{B}.
(ii) There is a set $D \subseteq \mathcal{I}_{\kappa^{+}}^{*}$ which has the κ^{+}-back-and-forth property and is σ-closed.

Proof. Suppose \exists has a winning strategy τ in $\mathrm{EF}_{\omega_{1}}^{\kappa^{+}}$on \mathcal{A} and \mathcal{B}. We assume that $A=B=\kappa^{+}$. A partial τ-play is a sequence

$$
s=\left\langle\left\langle x_{\alpha}, y_{\alpha}\right\rangle: \alpha<\delta\right\rangle
$$

of moves x_{α} of \forall and responses y_{α} of \exists in $\mathrm{EF}_{\omega_{1}}^{\kappa_{1}^{+}}, \exists$ playing τ. Each partial τ-play s determines a partial isomorphism $p(s)$ of cardinality $\leq \kappa$. Let T be the tree of all partial τ-plays s such that the domain and range of $p(s)$ are equal and are an initial segment of κ^{+}. Let $s \leq_{T} s^{\prime}$ if the partial τ-play s^{\prime} is obtained by continuing the partial τ-play s. Let P be the set of all $p(s)$, where $s \in T$ is a partial τ-play. Then P is a tree under inclusion. If $s \in T$, let

$$
P_{s}=\left\{p\left(s^{\prime}\right): s^{\prime} \in T, s \leq_{T} s^{\prime}\right\}
$$

Note that P_{s} may be a proper subset of $\{p \in P: p(s) \subseteq p\}$.
Case 1. There is an $s \in T$ such that if $A \subseteq P_{s}$ is an antichain in P_{s}, then $\sup \{\operatorname{dom}(p): p \in A\}<\kappa^{+}$. This means that P_{s} is a κ^{+}-Souslin tree. We construct a σ-closed dense back-and-forth set $D \subseteq \mathcal{I}_{\kappa^{+}}^{*}$. Let us consider the following persistency game on P_{s} :

$$
\begin{array}{c|ccc}
\mathrm{I} & \alpha_{0} & \alpha_{1} & \ldots \\
\hline \mathrm{II} & p_{0} & p_{1} & \cdots
\end{array}
$$

There are two players, I and II, and ω moves. Player I starts by choosing $\alpha_{0}<\kappa^{+}$. Then player II chooses $p_{0} \in P_{s}$ with $\operatorname{dom}\left(p_{0}\right) \geq \alpha_{0}$. Then I chooses $\alpha_{1}<\kappa^{+}$and

II chooses $p_{1} \in P_{s}$ with $\operatorname{dom}\left(P_{1}\right) \geq \alpha_{1}$ and $p_{0} \leq p_{1}$, and so on. Player II wins if he can play ω moves $p_{n}, n<\omega$ so that eventually $\cup_{n} p_{n} \subseteq p_{\omega}$ for some $p_{\omega} \in P_{s}$. Now it is clear that II has a winning strategy in this persistency game. All he has to do is to continue the partial τ-play s in an obvious way. Let P_{s}^{\prime} be the downward closure in P_{s} of the set of first moves of II against all possible first moves of I.

Let us then consider the game $\mathcal{G}_{\infty}\left(P_{s}^{\prime}, a\right)$ from [6]: This game is like $\mathcal{G}\left(P_{s}^{\prime}\right)$ except that Empty plays antichains A_{0}, A_{1}, \ldots and Nonempty plays $a_{n} \in A_{n}$. The game starts with Empty choosing $a \in P_{s}^{\prime}$ and maximal antichain A_{0} of extensions of a. Later, Empty has to choose A_{n+1} so that it is a maximal antichain of extensions of a_{n}. Again, Nonempty wins if he can play all of his ω moves and then have $a_{\omega} \in P_{s}$ with $\bigcup_{n} a_{n} \subseteq a_{\omega}$. Nonempty has the following winning strategy in $\mathcal{G}_{\infty}\left(P_{s}^{\prime}, a\right)$. Suppose Empty plays a maximal antichain A_{0} in $\left\{p \in P_{s}^{\prime}: a \subseteq p\right\}$. By assumption, there is $\alpha_{0}<\kappa^{+}$so that $\sup (\operatorname{dom}(p))<\alpha_{0}$ for $p \in A_{0}$. Now II uses his winning strategy in the persistency game to get $p_{0} \in P_{s}$ of height α_{0}. Since $\Sigma A_{0}=a$, there is $a_{0} \in A_{0}$ such that $a_{0} \subseteq p_{0}$. This is the first move of Nonempty. It is clear that he can go on like this for ω moves and win.

It follows from a result in [6] that Nonempty wins $\mathcal{G}\left(P_{s}^{\prime}\right)$. Since P_{s}^{\prime} is a tree, by another result from [6] it has a σ-closed dense subset D. Now in fact D is a σ-closed back-and-forth subset of $\mathcal{I}_{\kappa^{+}}^{*}$.

Case 2. For every $s \in T, P_{s}$ has an antichain A_{s} such that $\sup \{\operatorname{dom}(p): p \in$ $\left.A_{s}\right\}=\kappa^{+}$. We define a mapping $\pi:{ }^{<\omega_{1}} \kappa^{+} \rightarrow T$ such that
(1) $\pi(f \upharpoonright \alpha)<_{T} \pi(f)$ if $f \in{ }^{<\omega_{1}} \kappa^{+}$and $\alpha \in \operatorname{dom}(f)$
(2) $\left\{p(\pi(f \cup\{\langle\beta, \xi\rangle\})): \xi<\kappa^{+}\right\}$is an antichain in P if $f \in{ }^{<\omega_{1}} \kappa^{+}$and $\beta=$ $\operatorname{dom}(f)$.

Suppose $\pi(g)$ is defined for $\operatorname{dom}(g)<\alpha$, where $\alpha<\omega_{1}$, and $\operatorname{dom}(f)=\alpha$. If $\alpha=\cup \alpha$, the sequence

$$
\langle\pi(f \upharpoonright \beta): \beta<\alpha\rangle
$$

is an ascending chain in T and has therefore a limit which we denote by $\pi(f)$. If $\alpha=\beta+1$, we let $A_{\pi(f \upharpoonright \beta)}=\left\{a_{\xi}: \xi<\kappa^{+}\right\}$and let

$$
\pi(f \cup\{\langle\beta, \xi\rangle\})=a_{\xi}
$$

for $\xi<\kappa^{+}$. This ends the construction. Now let

$$
D=\left\{p(\pi(f)): f \in^{<\omega_{1}} \kappa^{+}\right\}
$$

We prove that D is an κ^{+}-back-and-forth set. Let $p(\pi(f)) \in D$ and, say $x \in{ }^{\kappa} A$. Let $\operatorname{dom}(f)=\beta$. We can choose $\xi<\kappa^{+}$so that

$$
\sup \{x(i): i<\kappa\}<\operatorname{dom}(\pi(f \cup\langle\beta, \xi\rangle)) .
$$

Thus $\operatorname{rng}(x) \subseteq \operatorname{dom}(\pi(f \cup\langle\beta, \xi\rangle))$ and $\pi(f \cup\{\langle\beta, \xi\rangle\}) \in D$.
Finally, we show that D is σ-closed. Suppose $p_{0} \subsetneq p_{1} \subsetneq \ldots$ in D. Let $p_{n}=$ $p\left(\pi\left(f_{n}\right)\right)$. By construction, there is $f_{\omega} \in{ }^{<\omega_{1}} \kappa^{+}$such that $f_{n}=f_{\omega} \upharpoonright \operatorname{dom}\left(f_{n}\right)$. Now $p_{n} \subseteq p\left(\pi\left(f_{\omega}\right)\right)$ for all $n<\omega$.

Corollary 14. ($\exists)_{\kappa^{\aleph_{1}}}^{\aleph_{1}} \rightarrow(\sigma)_{\kappa^{+}}$on models of cardinality κ^{+}.
Corollary 15. $(\sigma)_{\kappa^{+}}$is transitive on models of cardinality κ^{+}.

Open problems:

1. Is $(\sigma)_{\aleph_{1}}$ transitive?
2. Is $(\sigma)_{\kappa^{+}}$transitive on all models?
3. $(\exists)_{\omega_{1}}^{\aleph_{1}} \leftrightarrow(\sigma)_{\aleph_{1}}$?

References

[1] Dickmann, M.A.: Large infinitary languages. Model theory. Studies in Logic and the Foundations of Mathematics, Vol. 83. North-Holland Publishing Co., AmsterdamOxford; American Elsevier Publishing Co., Inc., New York, xv+464 pp 1975
[2] Foreman, M.: Games played on Boolean algebras. J. Symbolic Logic 48, 714-723 (1983)
[3] Jech, T.: A game theoretic property of Boolean algebras. Logic Colloquium 77 (Proc. Conf., Wroclaw, 1977), pp. 135-144, Stud. Logic Foundations Math., 96, NorthHolland, Amsterdam-New York, 1978
[4] Jech, T., Shelah, S.: On countably closed complete Boolean algebras. J. Symbolic Logic, 1996
[5] Kueker, David W.: Back-and-forth arguments and infinitary logics. Infinitary logic: in memoriam Carol Karp, pp. 17-71. Lecture Notes in Math., Vol. 492, Springer, Berlin, 1975
[6] Veličković, B.: Playful Boolean algebras. Trans. Amer. Math. Soc. 296, 727-740 (1986)

[^0]: J. Väänänen*: Department of Mathematics, University of Helsinki, Helsinki, Finland
 B. Veličković: UFR de mathèmatiques, Université de Paris 7, Paris, France
 *Partially supported by the Academy of Finland grant \#1011049.

