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Unary Quantifiers on Finite Models
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Abstract. In this paper (except in Section 5) all quantifiers are assumed to be so called simple unary
quantifiers, and all models are assumed to be finite. We give a necessary and sufficient condition for
a quantifier to be definable in terms of monotone quantifiers. For a monotone quantifier we give a
necessary and sufficient condition for being definable in terms of a given set of bounded monotone
quantifiers. Finally, we give a necessary and sufficient condition for a monotone quantifier to be
definable in terms of a given monotone quantifier. Our analysis shows that the quantifier “at least one
half” and its relatives behave differently than other monotone quantifiers.
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1. Introduction

A simple unary (or monadic)quantifier, in this paper just aquantifier, is a class
Q of structures(A;R), whereR � A, which is closed under isomorphisms.
This concept was introduced by Mostowski (1996). A more general concept of a
quantifier was introduced by Lindström (1966) and a vast literature has emerged
on the topic. We consider only quantifiers on finite models. The first to consider
quantifiers on finite models seems to have been Hájek (1977), and recently most
new work seems to be in the finite context. Generalized quantifiers on finite models
have found applications in natural language semantics (see, e.g., Hella et al., 1997;
Westerst̊ahl, 1989) and descriptive complexity theory (see, e.g., Hella, 1996).

Here are some examples of quantifiers:

9 = f(A;R) : R 6= ;g

HALF = f(A;R) : jRj � jAj=2g

EVEN= f(A;R) : jRj eveng

Q = f(A;R) : (jAj even andR 6= ;) or

(jAj odd andjRj � jAj=2)g (1)

? Partially supported by Grant 1011049 from the Academy of Finland. The final manuscript was
written in the summer of 1995 while the author visited the University of Freiburg as a guest of the
Graduiertenkolleg “Menschliche und maschinelle Intelligenz.”
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Figure 1. Number-triangles of quantifiers.

Thecodeof a structureA = (A;R), whereR � A, is the pair

�(A) = (jAj; jRj):

The point of coding is thatA �= B () �(A) = �(B). If Q is a quantifier, let

�(Q) = f�(A) : A 2 Qg:

Thus quantifiers correspond to subsets off(n;m) : m � ng. Following van
Benthem (1984) we may use this correspondence to visualize quantifiers and their
properties by means of thenumber triangle:

(0,0)

(1,0) (1,1)

(2,0) (2,1) (2,2)

(3,0) (3,1) (3,2) (3,3)
...

...
...

...

The number-triangle of a quantifier is obtained by replacing(n;m) in the number-
triangle by+ if (n;m) 2 �(Q) and by� otherwise (Figure 1).

If Q is a quantifier, we may define an extension of first order logic FO by
adding to the syntactic rules of FO the new rule: if�(x; y) is a formula, then so is
Qx�(x; y). The semantics is defined by

A j= Qx�(x;a) () (A; fb 2 A : A j= �(b;a)g) 2 Q;
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Figure 2. A monotone quantifier and a boundedly oscillating quantifier.

whereA is the universe ofA. The extension of FO by the new quantifier Q
is denoted by FO(Q). If Q is a set of quantifiers, the extension FO(Q) of FO
is defined analogously. We say that a quantifierQ is definablein terms of the
quantifiers inQ if Q is the class of models of a sentence of FO(Q). In such a
case we also say thatQ is definable inFO(Q). Note, that definability is transitive:
if Q is definable in FO(Q0) andQ0 is definable in FO(Q00), thenQ is definable
in FO(Q00). If every quantifier inQ is definable in FO(Q0), we say that FO(Q)
is asublogic of FO(Q0) and write FO(Q) � FO(Q0). If FO(Q) � FO(Q0) and
FO(Q0) � FO(Q), we say that FO(Q) and FO(Q0) areequivalent, in symbols
FO(Q) � FO(Q0).

FOr(Q) denotes the fragment of FO(Q) consisting of formulas with quantifier-
rank� r. The quantifier-rank of Qx�(x; y) is the quantifier-rank of�(x; y) plus
one. It is obvious how FOr(Q) for a setQ of quantifiers is defined.

A quantifier ismonotone, if (A;R) 2 QandR � R0 � A imply (A;R0) 2 Q. In
the number-triangle of a monotone quantifier each row consists of a homogeneous
block of minuses and a homogeneous block of pluses with the minuses before the
pluses (Figure 2). IfQ is monotone, we define

fQ(n) =

�
leastm such that(n;m) 2 �(Q); if suchm exists
n+ 1; otherwise.

On the other hand, iff : N! N such thatf(n) � n+1 for alln, we denote byQf

the unique monotone quantifierQ with fQ = f . Monotonicity is a very reasonable
assumption about a quantifier, especially if the quantifier is a formal counterpart
of “largeness.” On the other hand, in a database query language we may want to
ask if there are an even number of elements with some property, and the quantifier
EVEN is of course not monotone.

Logics of the form FO(Q), whereQ is a set of monotone quantifiers, play an
important role in this paper. We denote the family of all such logics byMon.

We now introduce a weakening of the concept of monotonicity. A point(n;m)
of the number-triangle is called anoscillation pointof Q if m < n and

(n;m) 2 �(Q) () (n;m+ 1) 62 �(Q):
Thus there is on rown at point(n;m) a change from+ to � or from� to +. A
quantifier isboundedly oscillating, if there is a uniform bound for the number of
oscillation points on any row (Figure 2). In Section 2 we prove the following result:
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THEOREM 8.A quantifier is definable in terms of monotone quantifiers if and
only if it is boundedly oscillating.

Thus the family of boundedly oscillating quantifiers is the closure of the family of
monotone quantifiers under definability. To prove Theorem 8 we analyze in detail
definability among logics inMon.

In Section 3 we study the family of bounded monotone quantifiers. A function
f : N ! N with f(n) � n + 1 for all n is called (here)boundedif there is a
kf 2N such that for alln 2 N

f(n) � kf or f(n) � n� kf :

A monotone quantifierQ is bounded iffQ is bounded. So the only oscillation point
of Q on any row of the number-triangle is always withinkfQ of one of the sides
of the triangle. An example of a non-trivial bounded quantifier is the quantifierQ
such that

fQ(n) =

8<
:

1 if n � 0 mod 3
n� 1 if n � 1 mod 3
n+ 1 if n � 2 mod 3:

In this paper we often talk aboutcolorings. By a coloring of a setX we simply
mean a mapping� defined onX. A color classof � is then the set of elements with
a fixed color. Suppose� and�0 are colorings ofN. We say that� eventually refines
�0, if there is anm such that elements� m with the same�-color have also the
same�0-color. This terminology comes from the idea that the color-classes form a
partition of the set. A coloring which generates a finer partition than� is said to
refine�.

SupposeQ is a finite set of bounded monotone quantifiers. In Section 3 we show
how the setQ gives rise to a canonical coloring�Q of N. For a single quantifier
Q this coloring is denoted by�Q. We prove:

THEOREM 14.SupposeQ is a finite set of bounded monotone quantifiers, andQ0

a monotone quantifier. ThenQ0 is definable inFO(Q) if and only ifQ0 is bounded
and�Q eventually refines�Q0 .

By means of this theorem we are able to describe completely the sublogic structure
of the familyMon below any FO(Q),Q a set of bounded monotone quantifiers. A
similar result for a different class of quantifiers is in (Corredor, 1986).

The question, when a monotone quantifierQg is definable in terms of another
monotone quantifierQf , can be answered completely (Theorem 17). The result
looks a little complicated as there are many different cases to consider, but it is
simpler if we assume more than mere monotonicity. We prove in Section 4:
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THEOREM 21.SupposeQf is a monotone quantifier such that

lim
n!1

f(n) = lim
n!1

(n� f(n)) =1

and

lim
n!1

(f(n)� bn=2c) =1 or lim
n!1

(bn=2c � f(n)) =1:

Then a monotone quantifierQg is definable inFO(Qf ) if and only ifQg is first-order
definable or there is a constanta 2 Z and a numberm 2 N s.t.

8n � m(g(n) = f(n) + a) or 8n � m(g(n) = n� f(n) + a):

In Section 5 we consider the more general case of non-simple non-monotone unary
quantifiers. We give a general criterion for the definability of a unary quantifier in
terms of a given set of unary quantifiers. The criterion is vastly more complicated
than in previous sections, which limits its applicability. However, we use it to prove
that the generalized Rescher quantifier

MOREfxP1(x)P2(x)$ jP1j > f(jP2j)

is definable in terms of simple unary quantifiers if and only if there is anm 2 N
such thatf(n) � m for all n 2 N . This extends a result of (Kolaitis and Vään̈anen,
1995).

2. Monotone Quantifiers

We develop some methods for studying definability by monotone quantifiers, and
then use these to prove Theorem 8. LetF = (f0; : : : ; fu�1) be a sequence of
functions such thatfi(n) � n + 1 for 0 � i < u andn 2 N. When we study
definability in FO(F) =df FO(fQf0; : : : ; Qfu�1g), it is useful to assume thatF

satisfies some closure properties. Let thedual �f of a functionf be defined by

�f(n) = n� f(n) + 1:

ThenQ �f
is thedualof Qf in the sense that

(A;R) 2 Q �f
() (A;A�R) 62 Qf :

That is,

j= Q�f
xP (x)$ :Qfx:P (x):

ThusQ �fi
is definable in FO1(F) for all i = 0; : : : ; u � 1. Therefore, there is no

loss of generality from a definability point of view in assuming that all sequences
F that we consider satisfy:
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(F1) f 2 F) 8n 2 N(f(n) � n+ 1).

(F2) f 2 F) �f 2 F.

(F3) f9 2 F, wheref9(n) � 1.

We shall now define for eachF and eachr 2 N a coloring�r;F of the number-
triangle. The color�r;F(n;m) of the pair(n;m) is defined as follows:

�r;F(n;m) = f(0; i; j) : m � fi(n) + j; 0� i < u; �r < j < rg [
f(1; i; j) : fi(n) � j; 0� i < u; 0� j < rg:

The point of�r;F(n;m) is that it collects systematically the information about the
functions inF that we really need and nothing more. The following lemma is a
coherency feature that we need later.

LEMMA 1. Supposen;m1;m2;m3 2 N are such that

(i) �r;F(n;m1) = �r;F(n;m3).
(ii) m1 � m2 � m3.

Then�r;F(n;m2) = �r;F(n;m1).

Proof. Suppose first(0; i; j) 2 �r;F(n;m2). Thenm2 � fi(n) + j. Hence
m3 � fi(n) + j, whence(0; i; j) 2 �r;F(n;m3). Now (i) implies (0; i; j) 2
�r;F(n;m1). Conversely, suppose(0; i; j) 2 �r;F(n;m1). Thenm1 � fi(n) + j.
Hence(0; i; j) 2 �r;F(n;m2). 2

Lemma 1 tells us that�r;F divides the number-triangle into monochromatic areas
that are intervals on every row. Thus these areas look like strips. We call them
�r;F-strips. The following lemma is equally easy to prove:

LEMMA 2. If r 2 N and k 2 Z, then�r+k;F(n;m) = �r+k;F(n
0;m0) implies

�r;F(n;m+ k) = �r;F(n
0;m0 + k).

Next we shall show that every FOr(F)-definable quantifier is a union of�r;F-strips.

LEMMA 3. If �r;F(�(A)) = �r;F(�(B)), thenA �FOr
(F) B.

First we introduce a game and prove two auxiliary lemmas. Given two structures
A andB of the same vocabulary and a setF of functions satisfying conditions
(F1)–(F3), the(r;F)-Ehrenfeucht–Fräısśe gameonA andB is defined as follows:
The game has two players: I and II. The game starts with a move of Player I. He
chooses one of the models, sayA, one of the quantifiersQf , f 2 F, and a subset
X ofA. Then Player II chooses a subsetY ofB. Next Player I chooses an element
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y of Y . Finally, Player II chooses an elementx of X. This sequence of moves is
repeatedr times. The setsX � A played by I (or II) have to satisfyX � f(jAj)
and the setsY played by II (or I) have to satisfyY � f(jBj). Suppose the players
played an elementxi ofA and an elementyi ofB on roundi, i = 1; : : : ; r. Player II
wins if the relationf(xi; yi) : i = 1; : : : ; rg is a partial isomorphism betweenA
andB. Otherwise Player I wins. Games like this have been studied in detail, e.g.
in (Kolaitis and V̈aän̈anen, 1995). There it is also shown that if II has a winning
strategy in the modified game, where the sets chosen by Player I are invariant
under automorphisms of the model that fix the elements chosen so far, then he has
a winning strategy in the game itself. This fact is essential in applications.

LEMMA 4. If �r;F(�(A)) = �r;F(�(B)), then Player II has a winning strategy in
the(r;F)-Ehrenfeucht–Fräısśe game onA andB.

Proof. LetA = (A;R) andB = (B;S). Suppose distinct elementsa1; : : : ; at
of A and elementsb1; : : : ; bt of B have been played already, andai 7! bi is a
partial isomorphism betweenA andB. Suppose player I choosesfk 2 F and plays
a subsetX of, say,A so thatjXj � fk(jAj). We may assume thatX is invariant
under automorphisms that fixa1; : : : ; at.

Case 1. X � fa1; : : : ; atg. We let Player II chooseY = fbi : ai 2 X;1 �
i � tg. Let s = fk(jAj). Thens � jXj, so (1; k; jXj) 2 �r;F(�(A)). Since
�r;F(�(A)) = �r;F(�(B)); (1; k; jY j) 2 �r;F(�(B)), whencejY j � fk(jBj).
Next Player I chooses somey 2 Y , sayy = bj . The strategy of Player II is
obviously to playx = aj. Thenx 2 X by construction and triviallyai 7! bi
remains a partial isomorphism.

Case 2.A�X � fa1; : : : ; atg. We let Player II chooseY = B�fbi : ai 62 Xg.
Let s = fk(jAj); so jXj � s. Let fl = �fk. Then jA � Xj 6� fl(jAj), whence
(1; l; jA � Xj) 62 �r;F(�(A)). By assumption,(1; l; jA � Xj) 62 �r;F(�(B)),
whencejB � Y j = jA�Xj 6� fl(jBj) andjY j � fk(jBj) follows.

Case 3.X meetsR� fa1; : : : ; atg andA�X meetsA� (R [ fa1; : : : ; atg).
By an automorphism argument,X � fa1; : : : ; atg = R � fa1; : : : ; atg. Player II
chooses

Y = (S � fb1; : : : ; btg) [ fbi : ai 2 X;1� i � tg:

Lets 2 [�t; t] so thatjXj = jRj+s. ThusjRj+s � fk(jAj), whence(0; k;�s) 2
�r;F(�(A)). By assumption,(0; k;�s) 2 �r;F(�(B)), whencejSj+ s � fk(jBj)
and, therefore,jY j � fk(jBj). Suppose then Player I picksy 2 Y . If y 2 S �
fb1; : : : ; btg, we let Player II choose somex from R � fa1; : : : ; atg. (This set is
non-empty, by assumption.) Nowx 2 X and clearly

f(a1; b1); : : : ; (at; bt); (x; y)g

is a partial isomorphismA ! B. If, on the other hand,y = bi with ai 2 X, then
Player II can simply playx = ai.
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Case 4.X meetsA� (R [ fa1; : : : ; atg) andA�X meetsR� fa1; : : : ; atg.
This case is symmetrical to Case 3. 2

LEMMA 5. Player II has a winning strategy in the(r;F)-Ehrenfeucht–Fräısśe
game onA andB if and only ifA �FOr

(F) B.

Proof. This is essentially proved in (Kolaitis and Vään̈anen, 1995). The proof
of Lemma 31 below gives an idea of how to prove the direction of this lemma that
we actually use. 2

Lemma 3 now follows from Lemmas 4 and 5.

PROPOSITION 6.The following conditions are equivalent for any modelsA =
(A;R); R � A; andB = (B;S); S � B, for anyr 2 N and for anyF satisfying
(F1)–(F3):

(i) A �FOr
(F) B.

(ii) �r;F(�(A)) = �r;F(�(B)).

Proof. (ii) ! (i) by Lemma 3. For the converse, let(0; i; j) 2 �r;F(�(A)).
ThusjRj � fi(jAj) + j.

Case 1. j < 0: The modelA satisfies the following sentence of FOr(F) (we
useP as a name for the relationsR andS).

��
i;j

: 8x1 : : : 8xjjj

0
@
0
@ ^

1�s<s0�jjj

:xs = xs0 ^
^

1�s�jjj

:P (xs)
1
A!

Qfi
x

0
@P (x) _ _

1�s�jjj

x = xs

1
A
1
A :

By (i), B also satisfies��
i;j

, and, therefore,jSj � fi(jBj) + j, i.e. (0; i; j) 2
�r;F(�(B)).

Case 2. j � 0 : The modelA satisfies the following sentence of FOr(F):

�+

i;j
: 8x1 : : : 8xj

0
@
0
@ ^

1�s<s0�j

:xs = xs0 ^
^

1�s�j

P (xs)

1
A!

Qfi
x

0
@P (x) ^ ^

1�s�j

:x = xs

1
A
1
A :

By (i), B satisfies�+

i;j
, and(0; i; j) 2 �r;F(�(B)) follows.
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Suppose then(1; i; j) 2 �r;F(�(A)). Thusfi(jAj) � j. The modelA satisfies
the following sentence of FOr(F):

	i;j : 8x1 : : : 8xj

0
@
0
@ ^

1�s<s0�j

:xs = xs0

1
A! Qfi

x
_

1�s�j

x = xs

1
A :

By (i), also B satisfies this sentence and thereforefi(jBj) � j, whence
(1; i; j) 2 �r;F(�(B)). We have proved�r;F(�(A)) � �r;F(�(B)). By symmetry,
�r;F(�(A)) = �r;F(�(B)). 2

COROLLARY 7. SupposeQ is a quantifier andF satisfies (F1)–(F3). Then the
following conditions are equivalent:

(i) Q is FOr(F)-definable.
(ii) Q is closed under the equivalence relation

A � B () �r;F(�(A)) = �r;F(�(B)): (2)

(iii) Q is definable by a Boolean combination of sentences ofFOr(F) of the form

8x( (x)! Qiy�(y; x));

where (x) and�(y; x) are quantifier-free.

Proof. (i) ! (ii) follows from Proposition 6. (ii)! (iii): Let Cu;r consist of
(0; i; j) for 0� i < u;�r < j < r, and of(1; i; j), for 0� i < u;0� j < r. Let
�D;D � Cu;r; be the conjunction of

�+

i;j
; for (0; i; j) 2 D; j � 0

��
i;j
; for (0; i; j) 2 D; j < 0

	i;j; for (1; i; j) 2 D
:�+

i;j
; for (0; i; j) 2 Cu;r �D; j � 0

:��
i;j
; for (0; i; j) 2 Cu;r �D; j < 0

:	i;j; for (1; i; j) 2 Cu;r �D:

Notice that for allA andD � Cu;r:

A j= �D () �r;F(�(A)) = D: (3)

Let � be the disjunction of all sentences�D;D � Cu;r, for which there is some
A 2 Q with �r;F(�(A)) = D. Now� is of the form required by (iii), so it suffices
to show that� definesQ. SupposeA 2 Q. By (3),A j= ��

r;F(�(A)), whence

A j= �. On the other hand, ifA j= �, thenA j= ��
r;F(�(B))

for someB 2 Q,

whence�r;F(�(A)) = �r;F(�(B)) by (3), and finallyA 2 Q by (ii).
(iii) ! (i): This implication is trivial. 2
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THEOREM 8.A quantifier is definable in terms of monotone quantifiers if and
only if it is boundedly oscillating.

Proof. SupposeQ is FOr(F)-definable, whereF satisfies (w.l.o.g.) (F1)–(F3).
By Lemma 1,�r;F divides rows of the number-triangle ofQ into monochromatic
intervals. On each row the set of pluses is, by Corollary 7, a union of these intervals.
Therefore,Q can oscillate only at the end-points of these intervals. There are at
most 2jCu;rj different sets�r;F(�(A)) and therefore at most 2jCu;rj + 1 oscillation
points on any row. HenceQ is boundedly oscillating.

For the other direction, supposek is the maximum number of oscillation points
on any row of the number-triangle ofQ. Let f1; : : : ; fk+2 be functions so that

m < f1(n)) (n;m) 2 �(Q)
f1(n) � m < f2(n)) (n;m) 62 �(Q)
f2(n) � m < f3(n)) (n;m) 2 �(Q)
: : :

fk+1(n) � m < fk+2(n))
�
(n;m) 62 �(Q) if k even
(n;m) 2 �(Q) if k odd

fk+2(n) = n+ 1:

The idea is that the functionsf1; : : : ; fk+1 pick the oscillation points on each row
so thatf1(n) picks the first minus. If there are less thank oscillation points on a
row, thenfi(n) reaches its maximumn+ 1 already for somei < k+ 2. It follows
that

(n;m) 2 �(Q) () m < f1(n) or

fi(n) � m < fi+1(n) for some eveni � k + 1:

From this it follows immediately, thatQ is closed under the equivalence relation

A � B () �1;F(�(A)) = �1;F(�(B));

whereF is the closure of(f1; : : : ; fk+1; f9)under duals. NowQ is FO(F)-definable
by Corollary 7. 2

Example 9.For a rationala let bac be the largest integer� a, anddae the least
integer� a. Let f(n) = bn=2c andg(n) = dn=2e. Then �f(n) = g(n) + 1 and
�g(n) = f(n) + 1, so the quantifiersQf andQg are definable from each other. Let

h(n) =

�
n=2+ 1 if n is even
bn=2c+ 5 if n is odd.

It can be seen fairly easily thatQh is closed under the equivalence relation

A � B () �5;F(�(A)) = �5;F(�(B));

whereF = (f9; f; �f; �f9). HenceQh is FO(Qf )-definable by Corollary 7.
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Example 10.Let f(n) = bn=3c andg(n) = dn=3e. NowQg is not definable
in terms ofQf , which can be seen as follows. LetF = (f9; f; �f; �f9). If Qg

were FO(Qf )-definable, there would be, by Corollary 7, anr 2 N such thatQg

is closed under the equivalence relation (2). But a direct calculation shows that
�r;F(3r; r) = �r;F(3r + 1; r), while (3r; r) 2 �(Qg) and(3r + 1; r) 62 �(Qg).
Similarly, if

h(n) =

�
n=3+ 1 if 3 dividesn
bn=3c+ 5 otherwise

thenQh is not closed under (2) and hence not definable in FO(Qf ).

Theorem 8 can be used to show that various quantifiers are not definable in terms
of monotone quantifiers. All we have to do is to show that no uniform bound can
be put on the number of oscillation points on an arbitrary but fixed row. The most
obvious example is EVEN.

3. Bounded Monotone Quantifiers

In this section we present a proof of Theorem 14. We start with a useful necessary
condition for definability:

LEMMA 11. SupposeF satisfies (F1)–(F3) andQg is FOr(F)-definable. Then for
all n 2 N:

g(n) 2 ffi(n) + j : 0� i < u;�r < j < rg:

Proof.Note that if 0< g(n) � n, then(n; g(n) � 1) is an oscillation point of
Qg, hence(n; g(n)) is the left endpoint of a�r;F-monochromatic interval. Such
left endpoints must have the form(n; fi(n) + j), �r < j < r. (This also holds
wheng(n) = 0 org(n) = n+ 1.) 2

Example 12.With the criterion of Lemma 11 it is easy to exhibit non-definability
results. Letf(n) = bn=2c andg(n) = bn=3c. Qf is not definable in terms ofQg

because for everyr 2 N, lettingn = 12r, we have

bn=3c+ r < bn=2c < n� bn=3c � r:

Similarly, for any other familiar functionsf and g we can (try to) prove non-
definability ofQf in terms ofQg by simply writing down some inequalities and
then appealing to Lemma 11.

SupposeF satisfies (F1)–(F3) and every function inF is bounded. Note that the
dual of a bounded function is bounded. Thus there is akF 2 N such that for
0� i < u:

8n 2 N(fi(n) � kF or fi(n) � n� kF):
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We define a finite coloring ofN as follows:

�F(n) = f(i; j) : fi(n) = j � kFg:

If �F and�F0 are two such colorings, we say that�F eventually refines�F0 if there
is anm 2N such that

8n; n0 �m(�F(n) = �F(n
0)! �F0(n) = �F0(n

0)):

If Q is a set of monotone quantifiers, we let�Q be the coloring�F, whereF
consists off9, eachf with Qf 2 Q, and the duals of these. The functions�F and
�r;F both extract information out ofF, and they are obviously related to each other.
We cannot quite calculate�r;F from �F alone but we can do the following:

LEMMA 13. SupposeF is a finite set of bounded functions which satisfies (F1)–
(F3), r > kF andn; n0 � kF + r. Then the following conditions are equivalent:

(i) �F(n) = �F(n
0).

(ii) �r;F(n;0) = �r;F(n
0;0).

Proof. (i) ! (ii) Suppose(0; i; j) 2 �r;F(n;0), where 0� i < u and�r <
j < r. Then 0� m0 = fi(n) + j. Sincefi is bounded, eitherfi(n) � kF or
n� fi(n) � kF.

Case 1. fi(n) � kF. Thus(i;m0 � j) 2 �F(n). By (i), (i;m0 � j) 2 �F(n
0),

whencefi(n0) + j = m0. It follows that(0; i; j) 2 �r;F(n0;0).
Case 2. n�fi(n) � kF. Nown � kF� j < kF+ r contrary to the assumption

thatn � kF + r.
Suppose then(1; i; j) 2 �r;F(n;0), where 0� i < u and�r < j < r. Now

fi(n) = j0 � j. Again boundedness offi implies that one of the following cases
holds:

Case 1. fi(n) � kF. Thus(i; j0) 2 �F(n), whence by (i),(i; j0) 2 �F(n0) and
thereforefi(n0) = j0 � j. It follows that(1; i; j) 2 �r;F(n0;0).

Case 2.n�fi(n) � kF. Nown < kF+r contrary to the assumptionn � kF+r.
We have proved�r;F(n;0) � �r;F(n

0;0). By symmetry, �r;F(n;0) =
�r;F(n

0;0).
(ii) ! (i) Suppose(i; j) 2 �F(n), that is,fi(n) = j � kF. Thenj < r and by

(ii),

j = fi(n) ) (1; i; j) 2 �r;F(n;0)
) (1; i; j) 2 �r;F(n0;0)
) j � fi(n

0):

If j = 0, this impliesfi(n0) = 0� kF and, therefore,(i; j) 2 �F(n0). Otherwise,

j � 1 6� fi(n) ) (1; i; j � 1) 62 �r;F(n;0)
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) (1; i; j � 1) 62 �r;F(n0;0)
) j � 1 6� fi(n

0);

whencefi(n0) = j � kF, and(i; j) 2 �F(n0) follows. We have proved�F(n) �
�F(n

0). By symmetry,�F(n) = �F(n
0). 2

THEOREM 14.SupposeQ is a finite set of bounded monotone quantifiers, andQ0

a monotone quantifier. ThenQ0 is definable inFO(Q) if and only ifQ0 is bounded
and�Q eventually refines�Q0 .

Proof. SupposeQ0 = Qg. We start by assuming thatQg is definable in FOr(F).
By Lemma 11 we have for everyn 2N

g(n) 2 ffi(n) + j : 0� i < u;�r < j < rg:

Suppose nowg(n) = fi(n) + j. If fi(n) � kF, theng(n) < kF + r � 1. If
n� fi(n) � kF, theng(n) � n� (kF + r). We have proved thatQ0 is bounded.
To prove that�F eventually refines�Q0 , suppose�F(n) = �F(n

0) wheren; n0 �
kF + 2r. By Lemma 13,�2r;F(n;0) = �2r;F(n

0;0) (2r > kF can be assumed).
By Lemma 2,�r;F(n; r) = �r;F(n

0; r). Similarly, �r;F(n;m) = �r;F(n
0;m) for

all m � r. LetF0 = (g0; g1; g2; g3) = (f9; g; �g; �f9).
Claim. �r;F0(n;0) = �r;F0(n

0;0). Suppose(0; i; j) 2 �r;F0(n;0), that is 0�
gi(n) + j, where�r < j < r.

Case 1. gi = f9 or gi = �f9. In the first case clearly 0� gi(n
0) + j whence

(0; i; j) 2 �r;F0(n0;0). The second case is impossible.
Case 2. gi = g. Then(n;�j) 2 �(Q0) and 0� �j < r. Since�r;F(n;�j) =

�r;F(n
0;�j) andQ0 is closed under the equivalence relation (2) of Corollary 7,

we know that(n0;�j) 2 �(Q0), whence 0� gi(n
0) + j. It follows that(0; i; j) 2

�r;F0(n
0;0).

Case 3. gi = �g. If Qg is definable in FOr(F), then so isQ�g. Hence this case
follows from Case 2.

Similarly, one proves that(1; i; j) 2 �r;F0(n;0) implies(1; i; j) 2 �r;F0(n0;0).
By symmetry, the claim follows. From the claim and Lemma 13 we get�F0(n) =
�F0(n

0), as desired.
To prove the other half of Theorem 14, supposeQ0 = Qg is bounded and

�F eventually refines�F0 , whereF0 = (f9; g; �g; �f9). Choosem so thatm �
max(kF; kF0) and

8n; n0 �m(�F(n) = �F(n
0)) �F0(n) = �F0(n

0)):

This means that on[m;1) every�F0-class is a union of�F-classes. Intuitively,
we can use FO(F) to tell in a universe of sizen, what�F0(n) is, and from this we
can read whatg(n) is. We shall now see how this works in detail.
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Let r = m+ 1 andE = [0; u� 1]� [0; kF]. For(i; j) 2 E let (cf. the proof of
Proposition 6)

 i;j =

�
	i;j ^ :	i;j�1 if j � 1
	i;0 if j = 0:

ThusA j=  i;j if and only if fi(jAj) = j, and i;j 2 FOr(F). If C � E, let

�C =
^

(i;j)2C

 i;j ^
^

(i;j)2E�C

: i;j:

ThenA j= �C if and only if �F(jAj) = C. Since every�F0-class is a union of
�F-classes on[m;1), we can use disjunctions of the sentences�C to write for
each�F0-colorD a sentence�D of FOr(F) such that forjAj � m : A j= �D if and
only if �F0(jAj) = D. Furthermore, we can use disjunctions of the sentences�D
to write for eachj � kF0 sentences�j and�j of FOr(F) such that forjAj � m:

A j= �j () g(jAj) = j;

A j= �j () g(jAj) = jAj � j:

Let�j and�j, j � kF0 , be sentences of FOr with one unary predicateP such that

(A;R) j= �j () jRj � j;

(A;R) j= �j () jRj � jAj � j:

Finally, we can defineQg in FOr(F) in models of size� m:

j= QgxP (x),
^

j�kF0

((�j ^ �j) _ (�j ^�j)):

The models of size< m are all definable in FOr, so the ones that are inQg can be
listed separately. 2

We can use Theorem 14 to describe completely the sublogics of FO(F) in Mon:

FO(F0) is a sublogic of FO(F) () �F eventually refines�F0 :

Let p(n) denote the number of partitions of a set ofn elements. Thus e.g.
p(0) = 0, p(1) = 1, p(2) = 2, andp(3) = 5. The so called Hardy–Ramanujan
asymptotic formula says

p(n) � 1

4
p

3n
e�
p

2=3
p
n:

Suppose now thatF satisfies (F1)–(F3) and the functions inF are bounded, but
FO(F) is not first order logic. Then there aren;m 2 N such thatm > 2n > 2
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and�F divides [m;1) into t infinite classes. Let�1; : : : ; �p(t) be the complete
list of colorings of[m;1) which are refined by�F on [m;1). For each�i it is
easy to define a bounded functiongi such that, ifF0

i
= (f9; gi; �gi; �f9), then�F0

i

partitions[m;1) exactly as�i (here we usem > 2n). Thus, FO(F0
i
) is a sublogic

of FO(F) for eachi 2 [1; p(t)]. Moreover, FO(F0
i
) is not equivalent to FO(F0

j
),

for i 6= j, because�i and�j are not eventually refinements of each other. On the
other hand, if FO(F0) is a sublogic of FO(F), then eventually�F refines�F0 . Thus,
eventually�F0 and some�i refine each other. Then FO(F0) � FO(F0

i
). Thus, we

have a complete description of the sublogics of FO(F), F a finite set of bounded
functions, in the familyMon.

SupposeF is a finite set of bounded functions satisfying (F1)–(F3). We let #(F)
denote the number of infinite�F-color classes.

COROLLARY 15. LetF be a finite set of bounded functions satisfying (F1)–(F3).
There are exactlyp(#(F)) different sublogics ofFO(F) in Mon.

Note that there are continuum many pairwise noncomparable logics FO(F) with
#(F) = n, for everyn > 1, because there are continuum many partitions ofN into
n sets, none of which is a refinement of another.

Example 16.Let

f(n) =

�
0 if n even
n+ 1 if n odd

andF = (f9; f; �f; �f9). Then #(F) = 2 andFO(Qf ) has no proper sublogic in
Mon except FO. SupposeX is infinite and co-infinite,

fX(n) =

�
0 if n 2 X
n+ 1 if n 62 X

andFX = (f9; fX ; �fX ; �f9). Then #(FX) = 2. By choosing setsX whose sym-
metric difference is infinite, we get a continuum of logics FO(FX) no two of which
are comparable to each other. Suppose

g(n) =

8>><
>>:

5 if n � 100 even
7 if n � 100 odd
n� 1 if 0 < n < 100
0 if n=0

andF0 = (f9; g; �g; �f9). Now�F and�F0 eventually refine each other, so FO(Qf ) �
FO(Qg).

4. Definability by One Monotone Quantifier

The main result of this section is Theorem 17 in which we describe completely
which monotone quantifiers are definable from a given monotone quantifier. The
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result emphasizes the role ofn=2 in definability by a monotone quantifier. As an
application we present the proof of Theorem 22.

Intuitively, it is clear that we can list the monotone quantifiers definable by
a givenQf by simply going through all possible defining formulas. In view of
Corollary 7 it suffices to examine formulas of a particularly simple form. Still a lot
of different possibilities remain. The point of Theorem 17 below is that we classify
these numerous possibilities to just five different categories. After the theorem we
consider specific examples in which many of these five categories are irrelevant.
Then it is possible to get a clearer picture of the situation.

THEOREM 17.Supposef andg are functions onN such thatf(n) � n+ 1 and
g(n) � n+1 for all n. LetF = (f9; f; �f; �f9) = (f0; f1; f2; f3). Then the following
conditions are equivalent:

(i) Qg is FO(Qf )-definable.
(ii) There is anr 2 N such that for alln > 4r:

g(n) =

8>>>>><
>>>>>:

F 1
i
(n) + a1

i
if f(n) = i or f(n) = n� i;�1� i < r

F 2(n) + a2 if r � f(n) � bn=2c � r

F 3
i
(n) + a3

i
if n is even,f(n) = n=2+ i;�r < i < r

F 4
i
(n) + a4

i
if n is odd,f(n) = bn=2c+ i;�r < i < r

F 5(n) + a5 if bn=2c+ r � f(n) � n� r;

whereF 1
i
; F 2; F 3

i
; F 4

i
; F 5 2 F, a1

i
; a2; a3

i
; a4

i
; a5 2 (�r; r), and if one of

F 2; F 3
i
; F 4

i
; F 5 is in ff9; �f9g, then they are all equal and the constants

a2; a3
i
; a4

i
; a5 are also equal.

Proof. (i)) (ii) SupposeQg is FOs(Qf )-definable. Letr = 2s� 1. By Lem-
ma 11 there arehn 2 F andan 2 (�r; r) such that for alln: g(n) = hn(n) + an.
Supposen;m > 4r. If f(n) = f(m) = i < r, then

8l 2 f0;1;2;3g8j 2 (�r; r)(�r;F(n; fl(n) + j) = �r;F(m; fl(m) + j)): (4)

Hence by (2) of Corollary 7,

8l 2 f0;1;2;3g8j 2 (�r; r)(g(n) = fl(n) + j () g(m) = fl(m) + j):(5)

Thus, we can assumehn = hm = F 1
i

andan = am = a1
i

for suchn andm. The
inference that leads to a definition ofhn = F 1

i
and ana1

i
for f(n) = n� i; i < r,

is similar. If r � f(n) < bn=2c � r and r � f(m) < bm=2c � r, then (4)
holds. Thus, (5) holds and we may defineF 2 anda2 as the commonhn andan for
which bothhn(n) + an = g(n) andhn(m) + an = g(m) hold.F 3

i
; F 4

i
,F 5; a3

i
; a4

i

anda5 are defined similarly. In each case we have a set of numbersn for which
�r;F(n; fl(n) + j) is constant for alll 2 f0;1;2;3g andj 2 (�r; r). Sinceg(n)
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is one of the numbersfl(n) + j, we know how to define the desired function
(F 3

k
; F 4

k
; F 5) and the desired constant(a3

k
; a4

k
; a5). One has to distinguish the case

thatn is even from the case thatn is odd, because for example, iff(n) = bn=2c+1,
thenf(n) = �f(n) if and only if n is odd. So we could not have (4) for functions
nearn=2 without separating evenn from oddn. Finally, if one ofF 2; F 3

i
; F 4

i
,F 5

is f9, then it is easy to use (2) of Corollary 7 to show that they all aref9 and that
a2 = a3

i
= a4

i
= a5, independently ofi. The same happens if one ofF 2; F 3

i
; F 4

i
,F 5

is �f9.
(ii) ) (i) Let jAj = n > 4r andR � A. We consider first several cases to see

how to make use of (ii).
Case 1. jRj = n � i for somei 2 [0; r). In this casejRj � g(n) if and only

if (f(n) = j or f(n) = n � j for somej 2 [�1; r) andjRj � F 1
j
(n) + a1

j
), or

(r � f(n) � n� r, andF 2 2 ff9; �f9g impliesjRj � F 2(n) + a2).
Case 2. maxff(n) + r; �f(n) + rg � jRj � n � r. In this casejRj � g(n) if

and only ifF 2 6= �f9, f(n) = i impliesF 1
i
2 ff9; fg, andf(n) = n � i implies

F 1
i
2 ff9; �fg (i 2 [�1; r)).
Case 3. f(n) = n=2+ i, n even andjRj = n=2+ j, (i; j 2 (�r; r)). Now

jRj � g(n) if and only if F 3
i
6= �f9, F 3

i
= f implies a3

i
� j � i, andF 3

i
= �f

impliesa3
i
� j + i� 1.

Case 4. f(n) = bn=2c + i, n odd andjRj = bn=2c + j (i; j 2 (�r; r)). This
case is analogous to Case 3.

Case 5. r � jRj � minff(n) � r; �f(n) � rg. In this casejRj � g(n) if and
only if F 2 = f9.

Case 6. jRj = �f(n) + i, i 2 (�r; r), f(n)� bn=2c 62 (�r; r) andr � f(n) �
jRj. Sor � f(n) � bn=2c� r. Now jRj � g(n) if and only ifF 2 = �f anda2 � i,
orF 2 2 ff9; fg.

Case 7. jRj = f(n) + i, i 2 (�r; r), �f(n)� bn=2c 62 (�r; r) andr � �f(n) �
jRj. Analogous to Case 6.

Case 8.f(n)+r � jRj � �f(n)�r. NowjRj � g(n) if and only ifF 2 2 ff9; fg.
Case 9. �f(n)+r � jRj � f(n)�r. NowjRj � g(n) if and only ifF 5 2 ff9; �fg.
Case 10. jRj < r. Now jRj � g(n) if and only if (f(n) = i or f(n) = n � i

for somei 2 [�1; r) andjRj � F 1
i
(n) + a1

i
), or (r � f(n) � n� r, F 2 = f9, and

jRj � 1+ a2).
Note that these cases are exhaustive and mutually exclusive. The point of the

above analysis is that for eachq = 1; : : : ;10 we can find a sentence�q of FO(Qf )
so that

(A;R) j= �q () R falls into Caseq andjRj � g(n);

whereR � A,n = jAj. Let us do Case 3 as an example. First, under the assumptions
of this case we haveg(n) = F 3

i
(n) + a3

i
, and sojRj � g(n) if and only if

n=2+ j � F 3
i
(n) + a3

i
, from which we easily get the conditions stated in Case 3

above. Next, we can observe that
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n is even andjRj = n=2+ j andf(n) = n=2+ i

is equivalent to

jRj � j + i = f(n) andn� jRj+ j + i = f(n):

Also, using ideas of the proof of Proposition 6 it is easy to write a sentence�ij in
FO(Qf ) such that

(A;R) j= �ij () jRj � j + i = f(n) and

jA�Rj+ j + i = f(n):

It follows that the sentence

�3 =
_

(i;j)2X

�ij;

whereX = f(i; j) : i; j 2 (�r; r), andF 3
i
6= �f9, andF 3

i
= f impliesa3

i
� j � i,

andF 3
i
= �f impliesa3

i
� j + i� 1g, characterizes Case 3 as we wanted.

After the sentences�q, q = 1; : : : ;10, are found, we can defineQg:

(A;R) 2 Qg () (A;R) j=
10_
q=1

�q:

2

Theorem 17 provides an explicit method for exhibiting quantifiers definable by
means of a givenQf . One just has to make decisions how to choose the functions
F 1
i
; F 2,F 3

i
; F 4

i
,F 5 from F, the numbersa1

i
; a2; a3

i
; a4

i
; a5 from Z, and what the

parameterr is. On the other hand, Theorem 17 provides an effective method for
showing that certain monotone quantifiers are not definable in terms of another
monotone quantifier.

Example 18.Supposef :N! N such thatf(n) � n+ 1 for all n 2 N, and

g(n) =

�
n� f(n) + 1 if f(n) < bn=2c
f(n) if f(n) � bn=2c:

Then Theorem 17 implies thatQg is FO(Qf )-definable.
Example 19.Let f(n) = bn=2c and

g(n) =

� bn=2c if n even
bn=2c+ 5 if n odd:

Then Theorem 17 implies thatQg andQf are definable from each other. Thus
FO(Qg) and FO(Qf ) are equivalent. The only sublogics of FO(Qf ) in Mon are
FO and FO(Qf ) itself. To see why this is the case, suppose FO(Qf1; : : : ; Qfk

) is
a sublogic of FO(Qf ). Then eachQfi

is definable in FO(Qf ). Suppose someQfi

is not first order definable. Then, as above, FO(Qfi
) � FO(Qf ), and therefore

FO(Qf1; : : : ; Qfk
) � FO(Qf ).
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Example 20.Let

f(n) =

� bn=2c if 3 dividesn
bn=2c+ 5 if 3 does not dividen

and

g(n) =

8>><
>>:

bn=2c if 3 dividesn andn is even
bn=2c+ 6 if 3 dividesn andn is odd
bn=2c+ 17 if 3 does not dividen andn is even
bn=2c+ 2 if 3 does not dividen andn is odd.

Then FO(Qg) � FO(Qf ), sinceQg andQf are definable from each other. The
only non-trivial sublogic of FO(Qf ) in Mon is FO(Qh), whereh(n) = bn=2c.

Example 21.Let

f(n) =

8<
:
bn=2c if n is of the form 3m
bn=2c+ 4 if n is of the form 3m+ 1
bn=2c � 1 if n is of the form 3m+ 2:

The FO(Qf ) has six sublogics inMon. They arise from the trivial sublogic FO and
thep(3) = 5 partitions that the partition of the definition off refines.

The previous examples demonstrate how one can analyze the sublogic structure of
logics FO(Qf ), wheref(n) oscillates between some values close ton=2, in the
same way as we analyzed the sublogic structure of logics FO(Qf ) with bounded
f .

We are ready to prove Theorem 22. It represents the special case of Theorem 17
where the functionf(n) stays away from both 0,n=2 andn, and either stays below
n=2 or above it. Examples of functions like this arebn=3c, b7n=8c, bpnc and
blognc.

THEOREM 22.SupposeQf is a monotone quantifier such that

lim
n!1

f(n) = lim
n!1

(n� f(n)) =1

and

lim
n!1

(f(n)� bn=2c) =1 or lim
n!1

(bn=2c � f(n)) =1:

Then a monotone quantifierQg is definable inFO(Qf ) if and only ifQg is first-order
definable or there is a constanta 2 Z and a numberm 2 N s.t.

8n � m(g(n) = f(n) + a) or 8n � m(g(n) = n� f(n) + a): (6)
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Proof. SupposeQg is definable in FO(Qf ) and limn!1(f(n)� bn=2c) =1.
Theng can be recovered fromf as in (ii) of Theorem 17. Since limn!1 f(n) =1,
the casef(n) = i disappears eventually. The same happens tof(n) = n � i, as
limn!1(n�f(n)) =1. The casef(n) = bn=2c+ i, n even, (or odd) disappears
since limn!1(f(n) � bn=2c) = 1. For the same reason the caser � f(n) �
bn=2c�r disappears. All we have left forn � m,m a constant, isg(n) = F 5(n)+

a5. HereF 5 2 ff; �fg, so the claim follows. The case limn!1(bn=2c�f(n)) =1
is similar. 2

Theorem 22 shows that iff satisfies the conditions of the Theorem, then FO(Qf )
has no non-trivial sublogics inMon, for (6) implies thatQf is definable from
Qg. We may conclude that whenever a monotone quantifierQf is given, the more
numbersk there are such thatf(n) � k, f(n) � n� k, or jf(n)�bn=2cj � k for
infinitely manyn, the more sublogics FO(Qf ) has inMon, while in the extreme
opposite case represented by Theorem 22, the logic FO(Qf ) has no non-trivial
sublogics inMon what so ever.

The following example demonstrates the difficulties in generalizing Theorem 17
for definability in FO(F) with a more generalF.

Example 23.Let f1(n) = bpnc andg(n) = bpnc + dn=2e � bn=2c. Now
g(n) = f1(n) + an, wherean is 0 or 1 depending on whethern is even or odd. Let
F = (f1; f2; f3), where

f2(n) = b 3
p
nc+ dn=2e � bn=2c

f3(n) = b 3
p
nc:

We can detect whethern is even or odd by comparingf2(n) andf3(n). Hencean
depends only on the mutual order of the functions inF, and yetQg is not FO(F)-
definable. To see this, supposeQg were definable in FOr(Qf ). Letn be even and so
large that�r;F(n; b

p
nc) = �r;F(n+ 1; b

p
n+ 1c) andbpnc = b

p
n+ 1c. Then

by Corollary 7,bpnc � g(n) if and only if b
p
n+ 1c � g(n+1), a contradiction.

5. A More General Setting

In this section we develop the ideas of the preceding sections in the framework of
non-monotone and non-simple unary quantifiers. The definability criteria that we
get are rather complicated and their applicability may be questioned. However, it
turns out that even with quite elementary counting methods some non-definability
results can be proved (Theorems 34 and 35). More sophisticated combinatorial
methods have been used in this setting in (Kolaitis and Vään̈anen, 1995; Luosto,
1997).
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Supposek is a natural number. LetLk be the vocabularyfR1; : : : ; Rkg of k
unary predicates. Aunary quantifier of type(1;k) is any classQ of Lk-structures
A = (A;P1; : : : ; Pk) satisfying theisomorphism condition:

A �= B) (A 2 Q () B 2 Q): (7)

These quantifiers are calledunaryor monadicbecause their vocabulary is unary.
For k = 1 these quantifiers are calledsimple. The type(1;k) is often written as
(1; : : : ;1) but this notation hides the numberk. Therefore we use(1;k).

Examples of non-simple unary quantifiers are thegeneralized Ḧartig quantifier

If = f(A;P1; P2) : jP1j = f(jP2j)g (8)

and thegeneralized Rescher quantifier

MOREf = f(A;P1; P2) : jP1j > f(jP2j)g; (9)

wheref : N! N is arbitrary.
The isomorphism condition (7) permits an algebraic formulation, because iso-

morphism of two unary structures can be checked by simply counting cardinalities
of sets. To this end, we fix some notation. Let[k] denote the setf1; : : : ; kg. Every
i 2 [2k] has a unique representation

i = 1+
kX

j=1

bin(i; j)2j�1;

wherebin(i; j) 2 f0;1g. This is the standard way of using numbers in[2k] to code
subsets of[k]. Thecodeof anLk-structureA = (A;P1; : : : ; Pk) is the sequence

�(A) = (j k1;Aj; : : : ; j k2k ;Aj);
where

 k
i;A =

\
fPj : bin(i; j) = 0g \

\
fA� Pj : bin(i; j) = 1g:

NowA �= B () �(A) = �(B) and we may identify a quantifierQ with the
set�(Q) = f�(A) : A 2 Qg of codes of its elements. In this way the study of
quantifiers of type(1;k) becomes a study of subsets ofN2k .

Example 24.SupposeQ is of type(1; 1). ThusQ consists of some structures
A = (A;R), whereR � A. Then

�(A) = (jRj; jA �Rj):
Example 25.SupposeQ is of type(1; 2). ThenQ consists of some structures

A = (A;R1; R2), whereR1 � A andR2 � A. In this case

�(A) = (jR1 \R2j; jR2 �R1j; jR1 �R2j; jA� (R1 [R2)j):
For example,�(If ) = f(n2; n3; n4; n1) : n1 + n3 = f(n1 + n2))g.
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The non-simple quantifiers are obviously more challenging than the simple ones.
We cannot in general visualize non-simple quantifiers by means of the number-
triangle. It is much more difficult to find useful invariants like�r;F and�F for
deciding definability issues. However, interesting quantifiers tend to be non-simple,
especially in the area of natural language semantics (see, e.g., Hella et al., 1997).

The extension FO(Q) of first-order logic by the quantifierQ of type (1;k) is
obtained by adding to FO the new logical operation

(�1(x; y); : : : ; �k(x; y)) 7! Qx�1(x; y); : : : ; �k(x; y)

with

A j= Qx�1(x;a); : : : ; �k(x;a) () (A;�A1 (�;a) : : : �Ak (�;a)) 2 Q:
The extension of FO by a setQ of quantifiers is denoted by FO(Q).

LetQ be a unary quantifier of type(1;k) andQ0 a quantifier of type(1; k0). We
say thatQ sums overQ0 if there is a functionf : [2k]! [2k

0

] such that

(n1; : : : ; n2k) 2 �(Q) ()

0
B@ X
f(i)=1

ni; : : : ;
X

f(i)=2k0
ni

1
CA 2 �(Q0)

for alln1; : : : ; n2k . Here it is thought that a sum over the empty set is 0. Ifr 2 N and
k = k0, we say thatQ is anr-translateofQ0 provided that there area1; : : : ; a2k 2 Z
so that

2kX
i=1

ai = 0;
2kX
i=1

jaij < 2r

and

(n1; : : : ; n2k) 2 �(Q) () (n1 + a1; : : : ; n2k + a2k) 2 �(Q0)
for all n1; : : : ; n2k . The point of summing and translates is that they represent in
arithmetic form two basic methods of defining one quantifier from another. As it
turns out, even these basic methods are very powerful.

Example 26.Summing over is related to definability by Boolean operations. If

j= QxP1(x)P2(x)$ Q0x(P1(x) _ P2(x));

thenQ sums overQ0 since

(n1; n2; n3; n4) 2 �(Q) () (n1 + n2 + n3; n4) 2 �(Q0):
Example 27.Translates are related to definability with the help of first-order

quantifiers9 and8. If

j= QxP (x)$ 8y(:P (y)! Q0x(P (x) _ x = y));

thenQ is a 2-translate ofQ0 since

(n1; n2) 2 �(Q), (n1 + 1; n2� 1) 2 �(Q0):
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LEMMA 28. LetQ be a quantifier of type(1;k) that sums over anr-translate of
a quantifierQ0 of type(1;k0). ThenQ is definable inFOr(Q0).

Proof. Suppose firstQ is anr-translate ofQ0. Let us first consider a special
case. Assume thatk = k0 = 2; r = 3 and

(n1; n2; n3; n4) 2 �(Q), (n1 + 2; n2� 1; n3 � 1; n4) 2 �(Q0):
Thus QxP1(x)P2(x) says that if we modify the partition generated byP1 andP2

by taking one element fromP1 � P2 and one element fromP2 � P1 and putting
the two elements into the intersection, then the new partition is the partition of a
model inQ0. Let us use the universal quantifier8 to formalize this:

j= QxP1(x)P2(x)$ 8y18y2((P1(y1) ^ :P2(y1) ^ P2(y2) ^ :P1(y2))!

! Q0x(P1(x) _ x = y2)(P2(x) _ x = y1):

In the general case there area1; : : : ; a2k 2 Z so that
P
ai = 0;

P jaij < 2r and

(n1; : : : ; n2k) 2 �(Q), (n1 + a1; : : : ; n2k + a2k) 2 �(Q0):
Note that

P jaij is necessarily even, say 2�, where� < r. To define the sen-
tence QxP1(x) : : : Pk(x) in terms ofQ0 one universally quantifies overy1; : : : ; y�,
distributes these elements into the partition generated byP1; : : : ; Pk, builds new
predicatesR1; : : : ; Rk which generate the new partition, and finally demands that
Q0xR1(x) : : : Rk(x). We leave the details to the reader.

Let thenQ be a quantifier of type(1;k) that sums over a quantifierQ0 of type
(1;k0). Let firstk = 2; k0 = 1 and

(n1; n2; n3; n4) 2 �(Q), (n1 + n4; n2 + n3) 2 �(Q0):
Looking at the definition of coding, we see that QxP1(x)P2(x) is equivalent to
(i; j) 2 �(Q0), wherei = j(P1\P2)[(A�(P1[P2))jandj = jP2�P1j+jP1�P2j.
Thus,

j= QxP1(x)P2(x)$ Q0x((P1(x) ^ P2(x)) _ :(P1(x) _ P2(x))):

We leave the general case to the reader. 2

We define

�r;k(Q)

as the (finite) set of codes of unary quantifiers of type(1;k) that sum overr-
translates of elements ofQ [ f9g. The coloring�r;k;Q is defined now as follows:
LetA = (A;P1; : : : ; Pk) be anLk-structure. The(r; k;Q)-color ofA is the set

�r;k;Q(A) = fS 2 �r;k(Q) : �(A) 2 Sg:
Since�r;k(Q) is finite, there are for any fixedr andk only finitely many(r; k;Q)-
colors. Let this finite set of colors beCr;k(Q).
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LEMMA 29. For eachc 2 Cr;k(Q) there is a sentence�c ofFOr(Q) of vocabulary
Lk so that for allLk-structuresA:

A j= �c () �r;k;Q(A) = c:

Proof. The claim follows from Lemma 28. 2

The sentences�c of Lemma 29, characterizing�r;k(Q)-color classes, have the
property offlatness, that is, nonestingof the quantifiers inQ occurs. In fact, the
sentences�c are Boolean combinations of sentences of the form

9x( (x) ^Qy�1(y; x) : : : �k0(y; x));

where (x); �1(y; x); : : : ; �k0(y; x) are quantifier-free andQ 2 Q [ f9g.

LEMMA 30. SupposeA andB areLk-structures. Then the following conditions
are equivalent:

(i) A �FOr
(Q) B,

(ii) �r;k;Q(A) = �r;k;Q(B).

Proof. Lemma 29 gives (i)) (ii). So we have to prove (ii)) (i). To this end
we have to modify the concept of(r;F)-Ehrenfeucht–Fräısśe game from Section 2
so as to make it appropriate for non-simple quantifiers.

Given two structuresA andB of the same vocabulary, the(r;Q)-Ehrenfeucht–
Fraı̈sśe gameonA andB is defined as follows: The game has two players: I and
II. The game starts with a move of Player I. He chooses one of the models, sayA,
one of the quantifiers ofQ [ f9g, say the type(1;k) quantifierQ, andk subsets
X1; : : : ;Xk ofA. Then Player II choosesk subsetsY1; : : : ; Yk ofB. Next, Player I
chooses an elementy of B. Finally, Player II chooses an elementx of A. This
sequence of moves is repeatedr times. The elementx played by II has to satisfy

x 2 Xi () y 2 Yi
for all i = 1; : : : ; k. It is also required that

(A;X1; : : : ;Xk) 2 Q and(B;Y1; : : : Yk) 2 Q:

Suppose the players have played the elementsxi of A andyi of B on roundi.
Player II wins if the relationf(xi; yi) : i = 1; : : : ; rg is a partial isomorphism
betweenA andB. Otherwise Player I wins. Again, it makes no difference to
Player II’s chances for winning the game, if Player I is required to play sets that are
invariant under automorphisms of the model that fix the elements that have been
chosen so far.

LEMMA 31. If Player II has a winning strategy in the(r;Q)-Ehrenfeucht-Fräısśe
game onA andB, thenA �FOr

(Q) B.
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Proof. We use induction on the quantifier-rank (� r � s) of �(z1; : : : ; zs) to
prove that

A j= �(a1; : : : ; as) () B j= �(b1; : : : ; bs) (10)

whenever the sequence� = f(a1; b1) : : : ; (as; bs)g (s � r) represents a position
of pairs of chosen elements in the(r;Q)-Ehrenfeucht–Fräısśe game onA andB,
when Player II is playing his winning strategy.

If the quantifier-rank of�(z1; : : : ; zs) is 0, then (10) follows from the rules of
the game. Let us then assume�(z1; : : : ; zs) is the formula

Qx	1(x; z) : : :	k(x; z)

of quantifier-rankq + 1� r � s, whereQ 2 Q [ f9g. Suppose

� = f(a1; b1) : : : ; (as; bs)g

(s � r) represents a position of pairs of chosen elements in the game, when Player II
is playing his winning strategy. For eachj 2 [k], let

Aj = fa 2 A : A j= 	j(a; a1; : : : ; as)g

Bj = fb 2 B : B j= 	j(b; b1; : : : ; bs)g:

AssumeA j= �(a1; : : : ; as). Sinces < r, we can let Player I playA1; : : : ; Ak as
his next move after position�. The winning strategy of Player II gives him subsets
Y1; : : : ; Yk of B. We claim thatYj = Bj for j 2 [k]. Take anyb 2 B and let
Player I choose elementb. The winning strategy of Player II gives him an element
a of A. By the rules of the game,

a 2 Aj () b 2 Yj:

and by the induction hypothesis

a 2 Aj () b 2 Bj:

ThusYj = Bj . Since II plays a winning strategy, we have(B;B1; : : : ; Bk) 2 Q,
whenceB j= �(b1; : : : ; bs). 2

Proof of Lemma 30continued. To prove (ii)) (i) it now suffices to use (ii) to
describe a winning strategy of Player II in the(r;Q)-Ehrenfeucht–Fräısśe game
onA andB. Let us assume we are in the middle of the game with the chosen
elementsa1; : : : ; at of A and the corresponding elementsb1; : : : ; bt of B, where
t < r. Suppose Player I has chosenQ 2 Q[ f9g of type(1;k0) and plays subsets
X1; : : : ;Xk0 of, say,A so thatA0 = (A;X1; : : : ;Xk0) 2 Q and the subsetsXj are
invariant under automorphisms that fixa1; : : : ; at. LetAi =  k

i;A for i 2 [2k] and

A0
i
=  k

0

i;A0
for i 2 [2k

0

]. By automorphism invariance, eachA0
i

is a union of some
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setsAj, up to some elements infa1; : : : ; atg. Thus there isf : [2k] ! [2k
0

] and
�1; : : : ; �2k0 so that

X
�i = 0;

X
j�ij < 2r

and

jA0ij =
X

f(j)=i

jAjj+ �i:

LetS consist of(n1; : : : ; n2k0 ) so that

(n1 + �1; : : : ; n2k0 + �2k0 ) 2 �(Q)

and letS1 consist of all(n1; : : : ; n2k) so that
0
B@ X
f(j)=1

nj; : : : ;
X

f(j)=2k0
nj

1
CA 2 S:

Thus�(A) 2 S1. Since�r;k;Q(A) = �r;k;Q(B) andS1 2 �r;k(Q), we have
�(B) 2 S1. We let Player II play such subsetsY1; : : : ; Yk0 of B that if we denote
(B;Y1; : : : ; Yk0) byB0, then

 k
0

i;B0
= ([f k

j;B : f(j) = ig [ fbj : aj 2 A0ig)� fbj : aj 62 A0ig:

Since II has not lost yet, we may assume that

aj 2 A0i () bj 2  k
0

i;B0

and

aj = aj0 () bj = bj0 :

Thus,

j k0
i;B0

j =
X

f(j)=i

j k
j;Bj+ �i:

Since�(B) 2 S1, we may conclude thatB0 2 Q. Now comes the part of the game
where Player I chooses an elementy ofB and Player II responds with an elementx
of A so that the partial isomorphism is preserved. This part is trivial in view of the
way Player II has chosen the setsYi. The non-emptiness of the sets, where Player II
has to choose, follows from the fact that the set�r;k;Q contains codes of quantifiers
that sum overf9g, too. We have described the required winning strategy. 2

THEOREM 32.SupposeQ is a finite set of unary quantifiers andQ is a unary
quantifier of type(1;k). Then the following conditions are equivalent:



UNARY QUANTIFIERS ON FINITE MODELS 301

(i) Q is FOr(Q)-definable,
(ii) Q is closed under the equivalence relation

A � B () �r;k;Q(A) = �r;k;Q(B);

(iii) There arec1; : : : ; cn 2 Cr;k(Q) so that

j= QxP1(x) : : : Pk(x)$ (�c1 _ : : : _ �cn);

(iv) Q is definable by a Boolean combination ofFOr(Q)-sentences of the form

9x( (x) ^Qy�1(y; x) : : : �k0(y; x))

where (x); �1(y; x); : : : ; �k0(y; x) are quantifier-free andQ 2 Q [ f9g.

Proof. We omit the proof as it is similar to the proof of Corollary 7. 2

We can formulate Theorem 32 in a more algebraic manner as follows: It is clear,
in view of the above, what it means forS � N2k to be anr-translate ofS0 � N2k ,
and what it means forS � N2k to sum overS0 � N2k

0

. SupposeS is a set of
sets each of which is a subset ofN2l for somel. We can think ofP(N2k) as a
Boolean algebra with the usual set-theoretic operations\;[ and�. LetBk(S) be
the subalgebra ofP(N2k ) generated by sets� N2k that sum overr-translates of
elements ofS [ f�(9)g for somer � 0.

COROLLARY 33. SupposeQ is a finite set of unary quantifiers containing9, and
Q0 is a unary quantifier of type(1;k). ThenQ0 is FO(Q)-definable iff�(Q0) 2
Bk(�(Q)), where

�(Q) = f�(Q) : Q 2 Qg:

We shall now apply the general framework to prove the undefinability of the
generalized Rescher quantifier in terms of simple unary quantifiers, except in
trivial cases. To this end, letQ1 denote the family of all simple unary quantifiers,
that is, the quantifiers of type(1; 1).

THEOREM 34.Supposef : N ! N. Then the following conditions are equiva-
lent:

(i) MOREf is FO(Q1)-definable.
(ii) 9m8n(f(n) � m).
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Proof. (ii) ) (i). Let m be given by (ii). Let for eachi � m: Qi = f(A;P ) :
f(jP j) = ig. Now (A;P1; P2) 2 MOREf if and only if jP1j > f(jP2j) if and only
if

(A;P1; P2) j=
_
i�m

[QixP2(x) ^ 9x0 : : : 9xi
^

0�j<k�i

(xj 6= xk ^ P1(xj))]:

(i) ) (ii). Suppose MOREf is FOr(Q)-definable, whereQ � Q1 is finite.
Let � = jCr;1(Q)j + 1. Towards a contradiction, we assume8m9n(f(n) >
m). Let x1 < : : : < x� so thatxi+1 > max(f(x1); : : : ; f(xi)) andf(xi+1) >
max(x1; : : : ; xi). Let i < j � � so that

�r;1;Q((A; [xi])) = �r;1;Q((A; [xj ])); (11)

whereA = [n] andn = 2x�. LetA = (A;P1; P2) andB = (A;P2; P1); where
P1 = [xj] andP2 = fxj + 1; : : : ; xj + xig. Note thatA 2 MOREf , butB 62
MOREf . Thus we get a contradiction with Theorem 32 if we show that

�r;2;Q(A) = �r;2;Q(B): (12)

We have�(A) = (0; xi; xj ; n � xi � xj) and�(B) = (0; xj ; xi; n � xi � xj).
SupposeS 2 �r;2(Q). By looking at the definition of of�r;2(Q) and applying (11)
systematically in different cases, it is not hard to see that

�(A) 2 S () �(B) 2 S:

Thus (12) follows. 2

A closely related quantifier is

MOSTf = f(A;P1; P2) : jP1 \ P2j > f(jP1j)g: (13)

In fact

MOSTfxR1(x)R2(x)$ MOREfx(R1(x) ^R2(x))R1(x):

THEOREM 35.Supposef : N ! N.

(i) If 9m8n(f(n) � m _ f(n) � n�m), thenMOSTf is FO(Q1)-definable.
(ii) If 8m9n(m < f(n) < n �m) and8n8m(n � m ) f(n) � f(m)), then

MOSTf is notFO(Q1)-definable.

Proof. (i) Let m be such thatf(n) � m _ f(n) � n�m holds for alln. For
i � m let

Qi = f(A;P ) : f(jP j) = ig and Q0i = f(A;P ) : f(jP j) = jP j � ig:
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Then

(A;P1; P2) 2 MOSTf ()
jP1 \ P2j > f(jP1j) ()

(A;P1; P2) j=
_
i�m

[QixP1(x)^

9x0 : : : 9xi(
^

0�j<k�i

xj 6= xk ^ P1(xj) ^ P2(xj))] _

_
i�m

[Q0ixP1(x) ^ 9x2 : : : 9xi8x(P1(x)!

(P2(x) _ x = x2 _ : : : _ x = xi))]:

(ii) Suppose MOSTf is FOr(Q)-definable withQ � Q1 finite. Let� = jCr;1(Q)j+
1. Using the first assumption concerningf , we can construct a sequence

y1 < f(y1 + y2) < y2 < f(y2 + y3) < y3 : : : < y�:

Chooseyi < yj so that

�r;1;Q((A; [yi])) = �r;1;Q((A; [yj ]));

whereA = [n] andn = 2y�. LetA = (A;P1; P2) andB = (A;P1; P3) where
P1 = [yi + yj]; P2 = [yj] andP3 = [yi]. Then by the second assumption,A 2
MOSTf butB 62 MOSTf . Now the proof proceeds as in Theorem 34. 2

Conjecture 36.Supposef : N ! N. Then MOSTf is FO(Q1)-definable iff
9m8n(f(n) � m _ f(n) � n�m).

The case of the generalized Härtig quantifier (8) seems more difficult. We mention
without proof some rather special cases: If9m8n(f(n) � m), then If is FO(Q1)-
definable, and if9n08n � n0(f(n) = a � n + b), wherea; b 2 N, then If is
FO(Q1)-definable if and only ifa = 0.

Conjecture 37.Supposef : N! N. Then If is FO(Q1)-definable if and only
if 9m8n(f(n) � m).

Strong hierarchy results for unary quantifiers have been obtained by Luosto (1996).
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