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Abstract. In this paper (except in Section 5) all quantifiers are assumed to be so called simple unary
quantifiers, and all models are assumed to be finite. We give a necessary and sufficient condition for
a quantifier to be definable in terms of monotone quantifiers. For a monotone quantifier we give a
necessary and sufficient condition for being definable in terms of a given set of bounded monotone
quantifiers. Finally, we give a necessary and sufficient condition for a monotone quantifier to be
definable in terms of a given monotone quantifier. Our analysis shows that the quantifier “at least one
half” and its relatives behave differently than other monotone quantifiers.
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1. Introduction

A simple unary (or monadicuantifier, in this paper just quantifier, is a class
@ of structures(A, R), where R C A, which is closed under isomorphisms.
This concept was introduced by Mostowski (1996). A more general concept of a
guantifier was introduced by Lindémn (1966) and a vast literature has emerged
on the topic. We consider only quantifiers on finite models. The first to consider
quantifiers on finite models seems to have beéfek (1977), and recently most
new work seems to be in the finite context. Generalized quantifiers on finite models
have found applications in natural language semantics (see, e.g., Hellaet al., 1997;
Westersaihl, 1989) and descriptive complexity theory (see, e.g., Hella, 1996).

Here are some examples of quantifiers:

3={(A,R): R# 0}
HALF = {(A,R) : |R| > |A|/2}

EVEN = {(A, R) : |R| ever}

Q= {(A,R) : (|A| evenandr # 0) or
(|A] odd and k| > [A|/2)} 1)
* Partially supported by Grant 1011049 from the Academy of Finland. The final manuscript was
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Figure 1L Number-triangles of quantifiers.

Thecodeof a structureA = (A, R), whereR C A, is the pair
T(A) = (JAL,|R])
The point of coding is thaA = B < 7(A) = 7(B). If Q is a quantifier, let
7(Q) ={7(A): A c @}

Thus quantifiers correspond to subsets{0f,m) : m < n}. Following van
Benthem (1984) we may use this correspondence to visualize quantifiers and their
properties by means of thmimber triangle

(0,0)
(1,0) (1,1)
(2,0) (2,1) (2,2)
(3,0) (3.1) 3.2) (3.3)

The number-triangle of a quantifier is obtained by replaétngn) in the number-
triangle by+ if (n,m) € 7(Q) and by<-otherwise (Figure 1).

If (Q is a quantifier, we may define an extension of first order logic FO by
adding to the syntactic rules of FO the new rulep(k,y) is a formula, then so is
Qz¢(z,y). The semantics is defined by

AEQup(r,a) < (4,{be A:A =90 a)}) e
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Figure 2 A monotone quantifier and a boundedly oscillating quantifier.

where A is the universe ofA. The extension of FO by the new quantifier Q
is denoted by FQ@)). If Q is a set of quantifiers, the extension @D of FO
is defined analogously. We say that a quantifiers definablein terms of the
quantifiers inQ if @ is the class of models of a sentence of(EY). In such a
case we also say thétis definable inFO(Q). Note, that definability is transitive:
if @Q is definable in FQQ') and @’ is definable in FQQ"), thenQ is definable
in FO(Q"). If every quantifier inQ is definable in FQQ'), we say that FQOQ)
is asublogic of FO(Q') and write F@Q) < FO(Q'). If FO(Q) < FO(Q') and
FO(Q') < FO(Q), we say that FOQ) and FGQ') areequivalentin symbols
FO(Q) = FO(Q').

FO'(Q) denotes the fragment of KQ) consisting of formulas with quantifier-
rank < r. The quantifier-rank of @4(z,y) is the quantifier-rank op(z,y) plus
one. It is obvious how FGQ) for a setQ of quantifiers is defined.

A quantifierismonotoneif (A, R) € QandR C R’ C Aimply (4, R’) € Q.In
the number-triangle of a monotone quantifier each row consists of a homogeneous
block of minuses and a homogeneous block of pluses with the minuses before the
pluses (Figure 2). If) is monotone, we define

foln) = leastm such thain, m) € 7(Q), if suchm exists
QU= n+1, otherwise.

Onthe other hand, if : N — N suchthatf (n) < n+1foralln, we denote by)
the unigue monotone quantifi@with fo = f. Monotonicity is a very reasonable
assumption about a quantifier, especially if the quantifier is a formal counterpart
of “largeness.” On the other hand, in a database query language we may want to
ask if there are an even number of elements with some property, and the quantifier
EVEN is of course not monotone.

Logics of the form FQQ), whereQ is a set of monotone quantifiers, play an
important role in this paper. We denote the family of all such logicsiby.

We now introduce a weakening of the concept of monotonicity. A p@intn)
of the number-triangle is called ascillation pointof Q if m < n and

(n,m) € 7(Q) <= (n,m+1) &7(Q).

Thus there is on row: at point(n,m) a change fromt+ to < or from <to +. A
quantifier isboundedly oscillatingif there is a uniform bound for the number of
oscillation points on any row (Figure 2). In Section 2 we prove the following result:
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THEOREM 8. A quantifier is definable in terms of monotone quantifiers if and
only if it is boundedly oscillating.

Thus the family of boundedly oscillating quantifiers is the closure of the family of
monotone quantifiers under definability. To prove Theorem 8 we analyze in detail
definability among logics iMon.

In Section 3 we study the family of bounded monotone quantifiers. A function
f N — N with f(n) < n+ 1 for all n is called (herepoundedf there is a
ks € N suchthat foralh € N

f(n) <kgorf(n) >n<ky.

A monotone quantifief is bounded iff is bounded. So the only oscillation point
of @ on any row of the number-triangle is always wittii, of one of the sides
of the triangle. An example of a non-trivial bounded quantifier is the quandfier
such that

n<l ifn=1mod3
n+1 ifn=2mod3

1 if n =0mod 3
fQ(n):{

In this paper we often talk aboablorings By a coloring of a seK we simply
mean a mapping defined onX . A color classof . is then the set of elements with
a fixed color. Supposeandy’ are colorings olN. We say that: eventually refines
i, if there is anm such that elements m with the sameu-color have also the
samey/-color. This terminology comes from the idea that the color-classes form a
partition of the set. A coloring which generates a finer partition thas said to
refineu.

Suppos€) is afinite set of bounded monotone quantifiers. In Section 3 we show
how the sefQ gives rise to a canonical coloringy of N. For a single quantifier
(@ this coloring is denoted bgg. We prove:

THEOREM 14.Suppos®) is a finite set of bounded monotone quantifiers, @d
a monotone quantifier. Thep is definable inFO(Q) if and only ifQ’ is bounded
andgq eventually refinegy .

By means of this theorem we are able to describe completely the sublogic structure
of the familyMon below any FOQ), Q a set of bounded monotone quantifiers. A
similar result for a different class of quantifiers is in (Corredor, 1986).

The question, when a monotone quantifigy is definable in terms of another
monotone quantifie€) s, can be answered completely (Theorem 17). The result
looks a little complicated as there are many different cases to consider, but it is
simpler if we assume more than mere monotonicity. We prove in Section 4:
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THEOREM 21.Supposé); is a monotone quantifier such that

lim f(n)= lim (n<f(n)) = o

and
lim (f(n) &[n/2]) =o0 or lim (|n/2] &f(n)) = o.

Then amonotone quantifig), is definable ifFO(Q) ) ifand only ifQ), is first-order
definable or there is a constaate Z and a numbefn € N s.t.

Vn > m(g(n) = f(n)+a) or VYn>m(gn)=n<f(n)+a).

In Section 5 we consider the more general case of non-simple non-monotone unary
gquantifiers. We give a general criterion for the definability of a unary quantifier in
terms of a given set of unary quantifiers. The criterion is vastly more complicated
than in previous sections, which limits its applicability. However, we use it to prove
that the generalized Rescher quantifier

MORE;zPy(z) Py(z) <+ |P1| > f(|P2|)

is definable in terms of simple unary quantifiers if and only if there isnag N
suchthatf(n) < mforalln € N.This extends a result of (Kolaitis andi&ranen,
1995).

2. Monotone Quantifiers

We develop some methods for studying definability by monotone quantifiers, and
then use these to prove Theorem 8. Eet= (fo, ..., fu—1) be a sequence of
functions such thaf;(n) < n+1for 0 < i < u andn € N. When we study
definability in FQF) =g FO({Qy,,...,Qy, ,}), it is useful to assume thdt

satisfies some closure properties. Letdhnal f of a functionf be defined by
fn)=nef(n)+1

Thean is thedual of @ in the sense that
(A, R)€Qy <= (A, ASR) ZQy.

That is,
= Qfo(x) < =Qpz—P(x).

Thusti is definable in F&F) for all i = 0,...,u <1. Therefore, there is no
loss of generality from a definability point of view in assuming that all sequences
F that we consider satisfy:
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(F1) fe F=Vne N(f(n) <n+1).
(F2) feF= feF,
(F3) f3 € F, wherefs(n) = 1.

We shall now define for eadh and eachr € N a coloringy, y of the number-
triangle. The coloy:, g (n, m) of the pair(n, m) is defined as follows:

tep(n,m) = {(0,i,7) m > fi(n) +j, 0<i <u, &r <j<r}u
{(Lirg) < filn) <j, 0<i<u, 0<j<r}

The point ofu, g (n,m) is that it collects systematically the information about the
functions inF that we really need and nothing more. The following lemma is a
coherency feature that we need later.

LEMMA 1. Suppose, m1, m2, m3 € N are such that

() prp(n,m1) = prp(n,ms).
(i) m1 < mp < ma.

Thenu, g(n, m2) = prr(n,my).

Proof. Suppose first0,1, j) € p,p(n,m2). Thenmy > fi(n) + j. Hence
m3 > fi(n) + j, whence(0,i,j) € p,w(n,m3z). Now (i) implies (0,4,5) €
pr 7 (1, m1). Conversely, suppos®, i, j) € u, g(n,m1). Thenmy > fi(n) + ;.
Hence(0,4,5) € p, F(n,m2). O

Lemma 1 tells us that, g divides the number-triangle into monochromatic areas
that are intervals on every row. Thus these areas look like strips. We call them
. p-Strips. The following lemma is equally easy to prove:

LEMMA 2. If r € Nandk € Z, thenp, i r(n,m) = prype(n’,m') implies
:U‘T,F(na m+ k) = MT‘,F(nla m' + k)

Nextwe shall show that every F(F)-definable quantifier is a union pf g-strips.
LEMMA 3. If pi,g(7(A)) = prp(7(B)), thenA =ro (r) B.

First we introduce a game and prove two auxiliary lemmas. Given two structures
A andB of the same vocabulary and a $etof functions satisfying conditions
(F1)—(F3), thgr, F)-Ehrenfeucht—Fréise gameon A andB is defined as follows:

The game has two players: | and Il. The game starts with a move of Player |. He
chooses one of the models, sAy one of the quantifier®, f € F, and a subset

X of A. Then Player Il chooses a sub3eof B. Next Player | chooses an element
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y of Y. Finally, Player Il chooses an elemenbf X. This sequence of moves is
repeated- times. The setX C A played by | (or 1) have to satisfX > f(]A])

and the set¥” played by Il (or I) have to satisfy” > f(| B|). Suppose the players
played an element; of A and an elemeny; of Bonround,i = 1,...,r. Playerll

wins if the relation{(z;,y;) : i = 1,...,r} is a partial isomorphism betweet

andB. Otherwise Player | wins. Games like this have been studied in detail, e.g.
in (Kolaitis and Vaamnen, 1995). There it is also shown that if Il has a winning
strategy in the modified game, where the sets chosen by Player | are invariant
under automorphisms of the model that fix the elements chosen so far, then he has
a winning strategy in the game itself. This fact is essential in applications.

LEMMA 4. If p, g(7(A)) = prp(7(B)), then Player Il has a winning strategy in
the (r, F)-Ehrenfeucht—-Frés®e game orA andB.

Proof. LetA = (A, R) andB = (B, S). Suppose distinct elements, . .., a;
of A and element$,,...,b; of B have been played already, and+— b; is a
partial isomorphism betweek andB. Suppose player | choosés € F and plays
a subseiX of, say,A so that| X | > fx(|A]). We may assume tha& is invariant
under automorphisms that fix, . . . , a;.

Case 1 X C {a1,...,a;}. We let Player Il choos& = {b; : a; € X,1 <
i < t}. Lets = fi(|A]). Thens < |X], so(1,k,|X]|) € p,p(T(A)). Since
1 F(T(A) = 4, p(r(B)), (LE,|Y]) € pw(r(B)), whencelY| > fu(|B]).
Next Player | chooses somee Y, sayy = b;. The strategy of Player Il is
obviously to playz = a;. Thenz € X by construction and triviallyz; — b;
remains a partial isomorphism.

Case2A<X C{a1,...,a:}. We letPlayer Il choos¥ = B<{b; i a; & X }.
Let s = fx(|A]); so|X]| > s. Let f; = fi. Then|A < X| # fi(JA]), whence
(L1,JA ©X|) & pp(r(A)). By assumption(1,1,|A < X|) & p,r(r(B)),
whence B Y| = |A<X| # fi(|B]) and|Y| > fr(|B]) follows.

Case 3 X meetsR <{ay,...,a;} andA <X meetsd < (R U {a1,...,a}).
By an automorphism argumer, <{a1,...,a;} = R <{a1,...,a;}. Player Il
chooses

Y:(S@{bl,...,bt})U{bi:aiEX,lﬁiSt}.

Lets € [&f,t] sothal X | = |R|+ s. Thus|R|+s > fx(]A|), whencg0, k, <s) €

1w (7(A)). By assumption(0, k, <s) € 1, p(7(B)), whenceS| + s > fi(|B|)

and, thereforelY'| > fi(|B]). Suppose then Player | pickse Y. If y € S &
{b1,...,b}, we let Player Il choose somefrom R <{a1,...,a;}. (This setis
non-empty, by assumption.) Nawe X and clearly

{(alv bl)v KRR (atv bt)v (ZE,y)}

is a partial isomorphismd — B. If, on the other hand; = b; with a; € X, then
Player Il can simply play = a;.
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Case 4 X meetsd (R U{az,...,a;}) andA <X meetsR <{a1,...,a}.
This case is symmetrical to Case 3. O

LEMMA 5. Player Il has a winning strategy in the-, F)-Ehrenfeucht-Fréss
game orA andB if and only ifA =go (r) B.

Proof. This is essentially proved in (Kolaitis andd&anen, 1995). The proof
of Lemma 31 below gives an idea of how to prove the direction of this lemma that
we actually use. O
Lemma 3 now follows from Lemmas 4 and 5.

PROPOSITION 6.The following conditions are equivalent for any mod&ls=
(A,R),R C A, andB = (B, S),S C B, for anyr € N and for anyF satisfying
(F1)—(F3):

(l) A EFOT(F) B.
(i) pirp(T(A)) = prp(7(B)).

Proof. (i) — (i) by Lemma 3. For the converse, I,4, j) € p,w(7(A)).
Thus|R| > f;(JA]) + .

Case 15 < 0: The modelA satisfies the following sentence of F®') (we
useP as a name for the relatiodsandsS).

®; ;1 Vry... V) (( /\ Ty = Ty N /\ —|P(3:s)> —

1<s<s' <5 1<s<lyl

Qyx (P(az) v \/ r = ws)> .
1<s<]j]

By (i), B also satisfiesp ., and, therefore|S| > f;(|B]) + 7, i.e. (0,4,7) €

(N
pirE (7(B)).
Case 25 > 0: The modelA satisfies the following sentence of F®'):

@Zj:Vxl...ij (( /\ Ty = Ty A /\ P(xs)>—>

1<s<s'<j 1<s<j

Qyx (P(w) A /\ T = $s>> .
1<s<j

By (i), B satisfiesd;";, and(0, 4, j) € ., p(7(B)) follows.
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Suppose thefd, i, j) € p, 7(7(A)). Thusf;(|A]) < j. The modelA satisfies
the following sentence of FQF):

\Ili,j ZVZE]_...V:E]' (( /\ anli ::1:5,) —)inl‘ \/ :1;:335> .

1<s<s'<j 1<s<j
By (i), also B satisfies this sentence and therefofg|B|) < j, whence
(1,4,5) € ppp(7(B)). We have proveg, g(7(A)) C , p(7(B)). By symmetry,
pr 7 (7(A)) = ppw(7(B)). O

COROLLARY 7. Suppose) is a quantifier and- satisfies (F1)—(F3). Then the
following conditions are equivalent:

() QisFO (F)-definable.
(i) @ is closed under the equivalence relation

A~B = ur(r(A) = pre(r(B)). )

(i) @ is definable by a Boolean combination of sentencé&Z®{F) of the form

VX(3h(x) = Qiyb(y, X)),

wherey(x) andé(y, X) are quantifier-free.

Proof. (i) — (ii) follows from Proposition 6. (ii)— (ii)): Let C,, , consist of
(0,i,j)for0< i < u,er < j<r,andof(l,i,5),for0<i <u,0<j <r.Let
¢p,D C C,,,, be the conjunction of

o/, for (0,i,5) € D,j >0

o, for (0,i,7) € D,j <0

\Ili,ja for (1,2,]) €D

ﬁ@j’j, for (0,4,7) € Cy, <D,j >0
-, for (0,%,4) € Cypr D, <0
ﬂ\I/Z',j, for (1,7,,]) S Cu,r &D.

Notice that for allA andD C C,,:

AkE¢p < p.p(r(A)) =D. ®3)
Let ¢ be the disjunction of all sentences), D C C,, ., for which there is some
A € Qwith p, v(7(A)) = D. Now ¢ is of the form required by (iii), so it suffices
to show thatp defines@. SupposeA € Q. By (3), A = ¢MT,F(T(A))’ whence
A = ¢. On the other hand, IA = ¢, thenA = ¢HT,F(T(B)) for someB € Q,
whenceu, p(7(A)) = p, 7 (7(B)) by (3), and finallyA € Q by (ii).
(>iif) — (i): This implication is trivial. O
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THEOREM 8. A quantifier is definable in terms of monotone quantifiers if and
only if it is boundedly oscillating.

Proof. Suppose) is FO (F)-definable, wher@ satisfies (w.l.0.g.) (F1)—(F3).
By Lemma 1, g divides rows of the number-triangle ¢f into monochromatic
intervals. On each row the set of plusesis, by Corollary 7, a union of these intervals.
Therefore,Q can oscillate only at the end-points of these intervals. There are at
most 2°«+| different setg., p(7(A)) and therefore at most2-+| + 1 oscillation
points on any row. Henc@ is boundedly oscillating.

For the other direction, suppoés the maximum number of oscillation points
on any row of the number-triangle &f. Let f1, ..., fx12 be functions so that

m < fi(n) = (n,m) € 7(Q)

fi(n) <m < fo(n) = (n,m) € 7(Q)
fa(n) <m < f3(n) = (n,m) € 7(Q)
) << = { () 790 e

fk+2(n) =n+1

The idea is that the functiong, . . ., frx+1 pick the oscillation points on each row
so thatf;(n) picks the first minus. If there are less thamscillation points on a
row, thenf;(n) reaches its maximum + 1 already for some < & + 2. It follows
that

(n,m) € 7(Q) <= m < fi(n) or
filn) <m < fiy1(n) for some even < k + 1.

From this it follows immediately, thap is closed under the equivalence relation
A~B = ur(7(A)) = pr(7(B)),

whereF isthe closure off1, . .., fr+1, f3) under duals. Nowp is FO(F)-definable
by Corollary 7. O

Example 9.For a rationak let |a]| be the largest integet a, and[a| the least
integer> a. Let f(n) = |n/2] andg(n) = [n/2]. Thenf(n) = g(n) + 1 and
g(n) = f(n) + 1, so the quantifier® ; and(@, are definable from each other. Let

hin) = n/2+1 ifniseven
"=\ |n/2) +5 ifnisodd.

It can be seen fairly easily thé};, is closed under the equivalence relation
A~B < usr(7(A)) = psp(7(B)),

whereF = (f3, f, f, f3). HenceQ, is FO(Q)-definable by Corollary 7.
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Example 10Let f(n) = [n/3] andg(n) = [n/3]. Now @, is not definable
in terms of Q;, which can be seen as follows. LBt = (f3, f, f, f3). If Q,
were FQ(Q r)-definable, there would be, by Corollary 7, are N such that?),
is closed under the equivalence relation (2). But a direct calculation shows that
pr 7 (3r,7) = pw(3r + 1,7), while (3r,r) € 7(Qy) and(3r + L,7) & 7(Q,).
Similarly, if

h(n) = n/3+1 if 3dividesn
"= |n/3| +5 otherwise

then@), is not closed under (2) and hence not definable itEQ.

Theorem 8 can be used to show that various quantifiers are not definable in terms
of monotone quantifiers. All we have to do is to show that no uniform bound can
be put on the number of oscillation points on an arbitrary but fixed row. The most
obvious example is EVEN.

3. Bounded Monotone Quantifiers

In this section we present a proof of Theorem 14. We start with a useful necessary
condition for definability:

LEMMA 11. Supposé satisfies (F1)—(F3) and), is FO'(F)-definable. Then for
alln € N:

gn)e{filn)+j:0<i<u,&r<j<r}

Proof. Note that if 0< g(n) < n, then(n, g(n) <1) is an oscillation point of
Qg, hence(n, g(n)) is the left endpoint of ., p-monochromatic interval. Such
left endpoints must have the fortwn, f;(n) + j), ©r < j < r. (This also holds
wheng(n) =0org(n) =n+1.) O

Example 12With the criterion of Lemma 11 itis easy to exhibit non-definability
results. Letf(n) = [n/2] andg(n) = |n/3]. Q is not definable in terms ap,
because for every € N, lettingn = 12r, we have

In/3] +r < |n/2] <n<|n/3| r

Similarly, for any other familiar functiong andg we can (try to) prove non-
definability of @ in terms ofQ, by simply writing down some inequalities and
then appealing to Lemma 11.

Supposér® satisfies (F1)—(F3) and every functionkhis bounded. Note that the
dual of a bounded function is bounded. Thus there israc N such that for
0<i<u

Vn € N(fi(n) <kp or fi(n)>n&kp).



286 J. VAANANEN

We define a finite coloring dN as follows:

Br(n) =A{(i,7) : filn) =j < kg}.

If Bp andSg. are two such colorings, we say thigt eventually refinesg: if there
is anm € N such that

Vn,n' > m(Bg(n) = Br(n') = Bp (n) = Bp (n')).

If Q is a set of monotone quantifiers, we [é be the coloringsg, whereF
consists off3, eachf with @y € Q, and the duals of these. The functigss and
. F both extractinformation out df, and they are obviously related to each other.
We cannot quite calculaje. y from gy alone but we can do the following:

LEMMA 13. Supposé- is a finite set of bounded functions which satisfies (F1)—
(F3),r > kg andn,n’ > kg + r. Then the following conditions are equivalent:

() Br(n) = Be(n').
(i) prp(n,0) = pre(n’,0).

Proof. (i) — (i) Suppose(0,4,j) € u, r(n,0), where 0< i < w ander <
j < r.Then 0> m' = fi(n) + j. Sincef; is bounded, eithef;(n) < kg or
n < fi(n) < kp.

Case 1 f;(n) < kp. Thus(i,m’ &) € Br(n). By (), (i, m' ©4) € fp(n),
whencef;(n') + j = m/. It follows that(0,4, j) € u, g(n',0).

Case 2n < fi(n) < kp. Nown < kg <j < kg +r contrary to the assumption
thatn > kp + .

Suppose thell, i, j) € p, r(n,0), where 0< i < wander < j < r. Now
fi(n) = 7' < 4. Again boundedness g¢f implies that one of the following cases
holds:

Case 1f;(n) < kg. Thus(s, j') € Br(n), whence by (i)(i,5') € Br(n’) and
thereforef;(n') = 5/ < j. It follows that(1, i, j) € p, p(n’,0).

Case 2n<fi(n) < kp.Nown < kg +r contrary to the assumption> kp+r.

We have provedu,y(n,0) C pu,p(n',0). By symmetry, u, p(n,0) =
Mr,F(n,ao)'

(i) — (i) Suppos€i, j) € Br(n), thatis,f;(n) = j < kp. Thenj < r and by
(ii),

]:f’t(n) (1727]) E/J’TF( 0)
) € My, F( 0)
i(
If 5 = 0, this impliesf;(n ’) = 0 < kyp and, therefore(, j) € Br(n’). Otherwise,
jel filn) = (Li,j 1) & pr(n,0)
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= (L,4,j 1) € p,w(n',0)
= jel ¥ fi(n),

whencef;(n') = j < kg, and(i,j) € Br(n’) follows. We have prove@g(n) C
Br(n'). By symmetrySg(n) = Bp(n'). O
THEOREM 14.Suppose) is a finite set of bounded monotone quantifiers, @d
a monotone quantifier. Thep is definable inFO(Q) if and only if Q" is bounded
and g eventually refinegy .

Proof. Suppos&)’ = Q,. We start by assuming th&k, is definable in FO(F).
By Lemma 11 we have for everye N

gn)e{filn)+j:0<i<u,&r<j<r}

Suppose nowy(n) = fi(n) + 7. If fi(n) < kg, theng(n) < kg +r 1. If
n < fi(n) < kg, theng(n) > n < (kg + 7). We have proved tha®’ is bounded.
To prove thasg eventually refinegg:, supposedg(n) = fg(n’) wheren,n’ >
kg + 2r. By Lemma 135, F(n,0) = po. p(n',0) (2r > ky can be assumed).
By Lemma 2., g (n,7) = p, g(n',r). Similarly, p, g(n,m) = p, gp(n',m) for
allm <. LetF' = (90391392a93) = (faagagafﬂ)'

Claim. y,, g (n,0) = p, g/ (n',0). Suppos€0,i,j) € u, g (n,0), thatis 0>
gi(n) + 7, wheresr < j <.

Case 1g; = f30rg; = fa. In the first case clearly & g¢;(n') + j whence
(0,4,7) € p, ¥ (n',0). The second case is impossible.

Case 2g; = g. Then(n, <j) € 7(Q') and 0< &5 < r. Sincep, p(n, <j) =
1w (n', <) andQ' is closed under the equivalence relation (2) of Corollary 7,
we know that(n’, <) € 7(Q'), whence 0> g;(n’) + j. It follows that(0, i, 5) €
Hr B (nla 0)

Case 3g; = g. If Qq is definable in FO(F), then so is();. Hence this case
follows from Case 2.

Similarly, one proves thdtl, i, j) € u, p(n,0) implies(1,i, ) € p, g (n',0).
By symmetry, the claim follows. From the claim and Lemma 13 wedgetn) =
B (n'), as desired.

To prove the other half of Theorem 14, supp@ége= @, is bounded and
Br eventually refinegg,, whereF’ = (fg,g,g,fg). Choosemn so thatm >

max kg, kg ) and
Vn,n' > m(Bp(n) = Bp(n') = Bp (n) = Bp (n')).

This means that ofin, o) every Gg/-class is a union offp-classes. Intuitively,
we can use F(F) to tell in a universe of size, whatgg: (n) is, and from this we
can read whag(n) is. We shall now see how this works in detail.
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Letr =m+ 1 andE = [0,u <1] x [0, kg]. For (i, j) € E let (cf. the proof of
Proposition 6)

Wi = ‘Ili,j A —|\Ilz-’j71 ifj >1
b \Iji,O if j = 0.

ThusA = v ; ifand only if f;(|A|) = j, andy; ; € FO'(F). If C C E, let
Oc= N vi;A N\ iy
(i.5)eC (i,j)eE-C

ThenA = O¢ if and only if Bg(|A]) = C. Since everyg.-class is a union of
Pr-classes otm, o0), we can use disjunctions of the sentenéesto write for
eachBg/-color D asentenc&p of FO'(F) suchthatforA| > m : A = Epifand
only if Bg:(JA]) = D. Furthermore, we can use disjunctions of the senteBges
to write for eachj < kg, sentences; andA; of FO'(F) such that foj A| > m:

AT = g(4]) =7,
AEA; = g(A]) = 4] &)
LetA; andY;, 5 < kp/, be sentences of FQvith one unary predicat® such that
(A, R) F Aj = |R| >,
(A,R) = T; <= [R| > |4 ;.
Finally, we can defin€), in FO' (F) in models of size> m:

FQuzP(z) & /\ ((Tj AA;) V(A AYY).
jSkF/
The models of size. m are all definable in FQ so the ones that are @, can be
listed separately. O

We can use Theorem 14 to describe completely the sublogics @ H@ Mon:
FO(F’) is a sublogic of FOF) <= B eventually refinegg..

Let p(n) denote the number of partitions of a setofelements. Thus e.g.
p(0) = 0,p(1) = 1, p(2) = 2, andp(3) = 5. The so called Hardy—Ramanujan
asymptotic formula says

L1 v2Rva
p(n) 4\/§ne .

Suppose now thdr satisfies (F1)—-(F3) and the functionslihare bounded, but
FO(F) is not first order logic. Then there arem € N such thatn > 2n > 2
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and By divides[m, o) into ¢ infinite classes. Lep, ..., 8, be the complete
list of colorings of[m, o) which are refined byg on [m, o). For eachg; it is
easy to define a bounded functignsuch that, ifF; = (f3, gi, i, fg), thenﬁFfi
partitions[m, co) exactly ag3; (here we usen > 2n). Thus, FGF}) is a sublogic
of FO(F) for eachi € [1,p(t)]. Moreover, FQF;) is not equivalent to FCF?),
for i # j, because; andg; are not eventually refinements of each other. On the
other hand, if FOF') is a sublogic of FOF), then eventuallyg refinesGg.. Thus,
eventuallySg and some3; refine each other. Then F®') = FO(F}). Thus, we
have a complete description of the sublogics of FD F a finite set of bounded
functions, in the familyMon.

Supposé is a finite set of bounded functions satisfying (F1)—(F3). We (&Y)#
denote the number of infiniteg-color classes.

COROLLARY 15. LetF be a finite set of bounded functions satisfying (F1)—(F3).
There are exactly(#(F)) different sublogics ofO(F) in Mon.

Note that there are continuum many pairwise noncomparable logi¢B F@ith
#(F) = n, for everyn > 1, because there are continuum many partitiorly afto
n sets, none of which is a refinement of another.

Example 16 Let

0 if n even
fm):{n+1ﬁnmm

andF = (fa, f, f, f3). Then #F) = 2 and FO(Q) has no proper sublogic in
Mon except FO. SupposE is infinite and co-infinite,

0 ifneX
f“m:{n+1wngx

andFy = (f3, fx, fx, /3). Then #F ) = 2. By choosing set& whose sym-
metric difference is infinite, we get a continuum of logics(FQ ) no two of which
are comparable to each other. Suppose

5 if n > 100 even
)7 if » > 100 odd
9(M) =14 1, 41 if0 < n < 100
0 if n=0

andF’ = (f3, ¢, §, f3). NowSp and3g eventually refine each other, so ED) =
FO(Qy).

4. Definability by One Monotone Quantifier

The main result of this section is Theorem 17 in which we describe completely
which monotone quantifiers are definable from a given monotone quantifier. The
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result emphasizes the role @f 2 in definability by a monotone quantifier. As an
application we present the proof of Theorem 22.

Intuitively, it is clear that we can list the monotone quantifiers definable by
a givenQ; by simply going through all possible defining formulas. In view of
Corollary 7 it suffices to examine formulas of a particularly simple form. Still a lot
of different possibilities remain. The point of Theorem 17 below is that we classify
these numerous possibilities to just five different categories. After the theorem we
consider specific examples in which many of these five categories are irrelevant.
Then it is possible to get a clearer picture of the situation.

THEOREM 17.Supposég andg are functions oN such thatf(n) < n + 1 and

g(n) < n+1forall n.LetF = (f3, £, f, /3) = (fo, f1, f2, f3). Then the following
conditions are equivalent:

(i) Qqis FO(Q)-definable.
(iiy There is anr € N such that for alln > 4r:
1

)
2

el e

!

(n) +al if f(n)=iorf(n)=n&i,el<i<r
(n) +a? ifr < f(n) < |n/2] &r
g(n) = S(n) +a? ifnisevenf(n) =n/2+i,er <i<r
4(n) +af ifnisodd,f(n) = [n/2] +i,&er <i<r
°(n) +a® if [n/2] +r < f(n) <ner,

!

where B}, F2 F3 F} F° € F, a},a? a3,a},a® € (&r,r), and if one of

y gy Uy

F2,F3 FA FS is in {f3, f5}, then they are all equal and the constants

a?, a3, a?, a® are also equal.

y Wy Yo

Proof. (i)= (ii) Suppose), is FO’(Qr)-definable. Let = 2s 1. By Lem-
ma 11 there aré,, € F anda,, € (<r,r) such that for alk: g(n) = h,(n) + ap.
Supposer,m > 4r. If f(n) = f(m) =14 < r, then

Vi e {07 17 27 S}VJ € (42)7’, T)(:U‘T,F(na fl(n) + ]) = Mr,F(ma fl(m) + ])) (4)
Hence by (2) of Corollary 7,
VI € {0,1,2,3}Vj € (er,7)(9(n) = filn) +j <= g(m) = fi(m) + j).(5)

Thus, we can assunig, = h,, = F} anda,, = a,, = a} for suchn andm. The
inference that leads to a definitioniof = F! and ana} for f(n) = n <i,i < r,
is similar. If r < f(n) < |[n/2] ©r andr < f(m) < |m/2| <r, then (4)
holds. Thus, (5) holds and we may defifiéanda? as the common,, anda,, for
which bothh,, (n) + a,, = g(n) andh,,(m) + a, = g(m) hold. F2, F*F° a3, a}

anda® are defined similarly. In each case we have a set of numbés which
prw (1, fi(n) + ) is constant for all € {0,1,2,3} andj € («r,r). Sinceg(n)
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is one of the numberg;(n) + j, we know how to define the desired function
(F2, F, F®) and the desired constaft, af, a®). One has to distinguish the case
thatn is even from the case thais odd, because forexamplefifn) = |n/2]+1,
thenf(n) = f(n) if and only if n is odd. So we could not have (4) for functions
nearn/2 without separating evem from oddn. Finally, if one of F2, F3, F}, F®

is f3, then it is easy to use (2) of Corollary 7 to show that they allfarand that
a? = a3 = a} = as, independently of. The same happensif one®Bf, F2, F}, F°

is f3.

(i) = (i) Let |A| =n > 4r andR C A. We consider first several cases to see
how to make use of (ii).

Case 1|R| = n < for some: € [0,r). In this casgR| > ¢(n) if and only
if (f(n) =jorf(n) =n<«jforsomej € [<1,r) and|R| > Fjl(n) + ajl-), or
(r < f(n) < ner,andF2 e {fs, f3} implies|R| > F2(n) + da?).

Case 2max{f(n) +r, f(n) +r} < |R| < n &r. In this casdR| > g(n) if
andonly if F2 £ f5, f(n) =i implies F! € {f3, f}, andf(n) = n < implies
F}e{fs [} (i € [&L,7)).

Case 3 f(n) = n/2+i,nevenandR| = n/2+ j, (i,j € (&r,7)). Now
|R| > g(n) if and only if F3 # f5, F? = f impliesa® < j <, andF3 = f
impliesa? < j +i 1.

Case 4 f(n) = |n/2] +i,nodd andR| = |n/2] + j (i,j € (&r,r)). This
case is analogous to Case 3.

Case 5 < |R| < min{f(n) <r, f(n) <r}. In this caséR| > g(n) if and
only if F2 = f5. ;

Case6|R| = f(n)+1i,i € (er,r), f(n) <|n/2| € (<r,r) andr < f( ) <
|R|. Sor < f(n) < |n/2] <r.Now|R| > g(n) ifand only if F2 = f anda? < 4,
or F? € {f1, }.

Case 7|R| = f(n) +i,i € (&r,r), f(n) &|n/2] € (r,r) andr < f(n) <
|R|. Analogous to Case 6.

Case 8f(n)+r < |R| < f(n)er.Now|R| > g(n)ifandonlyif F2 € {f3, f}.

Case 9f(n)+r < |R| < f(n)er.Now|R| > g(n)ifand onlyif F° € {f3, f}.

Case 10|R| < r. Now |R| > g(n) ifand only if (f(n) =i or f(n) = n <1
for somei € [<1,r) and|R| > Fl(n) +a}), or (r < f(n) < ner, F? = f3, and
|R| > 1+ a?).

Note that these cases are exhaustive and mutually exclusive. The point of the
above analysis is that for eagh= 1, ..., 10 we can find a sentenggof FO(Q)
so that

(A,R) = ¢, < Rfallsinto Casegy and|R| > g(n),
whereR C A,n = |A|. Letus do Case 3 as an example. First, under the assumptions
of this case we have(n) = F3(n) + a3, and so|R| > g(n) if and only if
n/2+j > F3(n) + a3, from which we easily get the conditions stated in Case 3
above. Next, we can observe that
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nisevenandR| =n/2+ jandf(n) =n/2+1

is equivalent to
|R| <j +1i= f(n)andn &|R| +j +1i= f(n).

Also, using ideas of the proof of Proposition 6 it is easy to write a sentgnae
FO(Q ) such that

(A,R) E0;; < |R|<j+i= f(n)and
|JASR|+j+i=f(n).

It follows that the sentence

=V b

(i,7)eX

whereX = {(i,§) : i,j € (er,r), andF3 # f5, andF? = f impliesa? < j <4,
andF? = f impliesa? < j + i <1}, characterizes Case 3 as we wanted.
After the sentence§, ¢ = 1,..., 10, are found, we can defirg,:

10
(A,R) € Q, < (A,R)E \/ (.
q=1

|

Theorem 17 provides an explicit method for exhibiting quantifiers definable by
means of a givel)) ;. One just has to make decisions how to choose the functions
FY F?2F2 FAF® from F, the numbersi}, a2, a3, o, a® from Z, and what the
parameter is. On the other hand, Theorem 17 provides an effective method for
showing that certain monotone quantifiers are not definable in terms of another
monotone quantifier.

Example 18 Supposef : N — N such thatf(n) < n + 1foralln € N, and

_[nef(n)+1 if f(n) < |n/2]
o ={ o i f(n) > [n/2].

Then Theorem 17 implies thak, is FO(Q f)-definable.
Example 19Let f(n) = |n/2| and

[ |n/2] if n even
g(n) = { 2] +5 ifnodd

Then Theorem 17 implies th&, and (), are definable from each other. Thus
FO(Q,) and FQQs) are equivalent. The only sublogics of &) in Mon are
FO and FQQ);) itself. To see why this is the case, supposé®Q, ..., Qy, ) is

a sublogic of FQQ ¢). Then eaclt), is definable in FQQ ). Suppose som@ y,

is not first order definable. Then, as above,(8Q) = FO(Q), and therefore

FO(Qfl,. .. ,ka) = FO(Qf)
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Example 20Let

[ |n/2] if 3 dividesn
f(n) = { |n/2] +5 if 3 does not divide:

and
|n/2] if 3 dividesn andn is even
(n) = In/2] +6 if 3dividesn andn is odd
g\n) = |n/2| +17 if 3 does not divide: andn is even
In/2| +2 if 3 does not divide: andn is odd.

Then FQQ,) = FO(Qy), since, and (), are definable from each other. The
only non-trivial sublogic of FQQ ) in Mon is FO(Q},), whereh(n) = [n/2].
Example 21L et

f(n)=<¢ |n/2] +4 ifnisoftheform3n+1

{ |n/2] if n is of the form 3n
In/2] <1 if nis of the form 3n + 2.

The FQ Q) has six sublogics iMon. They arise from the trivial sublogic FO and
thep(3) = 5 partitions that the partition of the definition pfrefines.

The previous examples demonstrate how one can analyze the sublogic structure of
logics FQQy), where f(n) oscillates between some values closexf@, in the
same way as we analyzed the sublogic structure of logidg€XPwith bounded

f.

We are ready to prove Theorem 22. It represents the special case of Theorem 17
where the functiorf (n) stays away from both @,/2 andn, and either stays below
n/2 or above it. Examples of functions like this dre/3|, |7n/8], |/n]| and

|logn|.

THEOREM 22.Supposé); is a monotone quantifier such that

lim_f(n) = lim (n<f(n)) = oo
and
lim (f(n) «[n/2]) = ccor lim (|n/2] & f(n)) = .

Then a monotone quantifig}, is definable irFO(Q ;) ifand only ifQ,, is first-order
definable or there is a constaate Z and a numbern € N s.t.

Vn > m(g(n) = f(n) +a)orVn > m(g(n) =n<f(n)+a). (6)
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Proof. Supposé), is definable in FQQ ;) and lim,_,(f(n) <|n/2]) = oo.
Theng can be recovered frorhas in (ii) of Theorem 17. Since lip, o, f(n) = oo,
the casef(n) = 1 disappears eventually. The same happendt) = n <, as
iMoo (n<f(n)) = co. The case (n) = |n/2| +1i, n even, (or odd) disappears
since lim,,»(f(n) < |n/2]) = oo. For the same reason the case f(n) <
|n/2| <r disappears. All we have left far > m, m a constant, ig(n) = F°(n)+
a®. HereF® e {f, f}, so the claim follows. The case lim .. (|1/2] <f (n)) = oo
is similar. a

Theorem 22 shows that jf satisfies the conditions of the Theorem, then &Q)
has no non-trivial sublogics iMon, for (6) implies thatQ, is definable from
Q4. We may conclude that whenever a monotone quantfieis given, the more
numberg: there are such thgt(n) < k, f(n) < n<k, or|f(n) <|n/2|| <k for
infinitely manyn, the more sublogics FH@ ;) has inMon, while in the extreme
opposite case represented by Theorem 22, the logi@FPhas no non-trivial
sublogics inMon what so ever.

The following example demonstrates the difficulties in generalizing Theorem 17
for definability in FQF) with a more generdr.

Example 23Let f1(n) = |/n] andg(n) = |/n]| + [n/2] < |n/2|. Now
g(n) = fi(n) + a,, Whereq,, is 0 or 1 depending on whethetlis even or odd. Let
F= (fla fZa f3)’ where

fa(n) = [Vn] +[n/2] [n/2]
fa(n) = [Vn].

We can detect whetheris even or odd by comparing(n) and f3(n). Hencea,,
depends only on the mutual order of the function'jrand yetq), is not FQF)-
definable. To see this, suppaggwere definable in FQ Q). Letn be even and so
large thatu, g(n, [vn]) = pw(n+ 1, [vVn +1]) and|/n] = [Vn + 1]. Then
by Corollary 7,[\/n| > g(n) ifand only if [v/n + 1] > g(n+ 1), a contradiction.

5. A More General Setting

In this section we develop the ideas of the preceding sections in the framework of
non-monotone and non-simple unary quantifiers. The definability criteria that we
get are rather complicated and their applicability may be questioned. However, it
turns out that even with quite elementary counting methods some non-definability
results can be proved (Theorems 34 and 35). More sophisticated combinatorial
methods have been used in this setting in (Kolaitis addrinen, 1995; Luosto,
1997).



UNARY QUANTIFIERS ON FINITE MODELS 295

Supposet is a natural number. Lek, be the vocabularyR;, ..., R} of k
unary predicates. Ainary quantifier of typél; k) is any class) of L,-structures
A = (A, P,..., P) satisfying thesomorphism condition

A=B=(AcQ < BecQ). (7)

These quantifiers are callemhary or monadicbecause their vocabulary is unary.
For k = 1 these quantifiers are callstmple The type(1;k) is often written as
(1,...,1) but this notation hides the numberTherefore we usél; k).

Examples of non-simple unary quantifiers aregkeeralized Hrtig quantifier

Iy ={(A, P, ) : [P = f(|P2])} (8)
and thegeneralized Rescher quantifier
MORE; = {(A, P1, P>) : |P1| > f(|P2])}, 9)

wheref : N — N is arbitrary.

The isomorphism condition (7) permits an algebraic formulation, because iso-
morphism of two unary structures can be checked by simply counting cardinalities
of sets. To this end, we fix some notation. [gtdenote the seftl,. .., k}. Every
i € [2¥] has a unique representation

k
i=1+ bin(i,j)2 1,
j=1

wherebin(i, j) € {0, 1}. This is the standard way of using number§fi to code

subsets ofk]. Thecodeof an Ly-structureA = (A, P4, ..., Py) is the sequence
a(A) = (W5l 95 al);
where

va ={P; 1 bin(i,5) = 0y N[ {A &Pt bin(i,j) = 1}.
Now A 2 B < o¢(A) = o(B) and we may identify a quantifi€p with the
seto(Q) = {o(A) : A € Q} of codes of its elements. In this way the study of
quantifiers of typd1; k) becomes a study of subsetsht' .
Example 24 Suppose? is of type (1; 1). Thus@Q consists of some structures
A = (A,R), whereR C A. Then
o(A) = (IR],|A <R]).
Example 25Suppose) is of type (1;2). Then(@ consists of some structures
A = (A, R1, Ry), whereR; C A andR; C A. In this case
U(A) = (|R1 N R2|, |R2 <:>R1|, |R1 <:>R2|, |A <:>(R1 U R2)|).

For examplea(lf) = {(n2,n3,n4,n1) : 11+ n3z = f(n1+nz))}.
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The non-simple quantifiers are obviously more challenging than the simple ones.
We cannot in general visualize non-simple quantifiers by means of the number-
triangle. It is much more difficult to find useful invariants like g and Sy for
deciding definability issues. However, interesting quantifiers tend to be non-simple,
especially in the area of natural language semantics (see, e.g., Hella et al., 1997).

The extension F@) of first-order logic by the quantifiep of type (1;%) is
obtained by adding to FO the new logical operation

(¢1(5E,Y), s ,Qbk(flf,y)) = Q$¢1($,y), Tt a¢k(xay)
with
A ): Q$¢l($7a)7' . 7¢k($7a) — (Aa ¢i&(7a) s ¢kA(7a)) € Q

The extension of FO by a s& of quantifiers is denoted by RQ).
Let Q be a unary quantifier of type; k) and@’ a quantifier of type1, £’). We
say thatQ sums overY’ if there is a functionf : [2¢] — [2¥'] such that

(n1,...,n) € 0(Q) = Z Miynens Z n; | € o(Q")
f(i)=1 fli)=2+'

forallng,...,ny. Hereitis thoughtthat a sum over the empty setis© dfN and
k = k', we say that) is anr-translateof Q' provided thatthere ai, ... ,a,. € Z
so that

ok

ok
Zai:O, Z|a,~|<27"
i=1

i=1
and
(n1,...,nx) €0(Q) < (n1+aq,...,nu +ax) € o(Q')

for all n1,...,nx. The point of summing and translates is that they represent in
arithmetic form two basic methods of defining one quantifier from another. As it

turns out, even these basic methods are very powerful.
Example 26.Summing over is related to definability by Boolean operations. If

E QzPy(z)Pa(z) < Qz(Pi(z) V Pa(x)),
then@ sums over)’ since
(nl, n2, N3, n4) € U(Q) = (nl + n2 + n3, n4) € U(QI).

Example 27 Translates are related to definability with the help of first-order
quantifiersd andV. If

= QzP(z) < Vy(=P(y) = Qu(P(z) Vr =1y)),
then( is a 2-translate of)’ since
(n1,n2) €0(Q) & (n1+Lnxel) € U(Q’).
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LEMMA 28. Let @ be a quantifier of typél; k) that sums over an-translate of
a quantifierQ’ of type(1;%’). ThenQ is definable iFFO" (Q’).
Proof. Suppose first) is anr-translate ofQ’. Let us first consider a special
case. Assume that= k' = 2,r = 3 and
(n1,n2,n3,n4) € 0(Q) & (n1+2,n2 &1,n3 &1, n4) € 0(Q').

Thus QcPi(z) P>(z) says that if we modify the partition generated Byand P,

by taking one element fron?; < P, and one element fron?, < P, and putting

the two elements into the intersection, then the new partition is the partition of a
model in@’. Let us use the universal quantifieto formalize this:

= QzPy(7) P2(7) + Yy1Vy2((Pi(y1) A ~P2(y1) A Pa(y2) A =Pi(y2)) —
— Qz(Pi(z) Vo =y2)(Paz) VE =y1).

In the general case there arg . .., axx € Z sothaty a; =0, |a;| < 2r and
(N1, ,np) €0(Q) & (n1+a,...,nx +ax) € o(Q").

Note that}" |a;| is necessarily even, sayx2wherea < r. To define the sen-
tence QPi(x) ... Py(z) in terms ofQ’ one universally quantifies ovei, . . . , ya,
distributes these elements into the partition generategby. ., P, builds new
predicatesk,, . . . , R which generate the new partition, and finally demands that
QzRi(z) ... Ri(x). We leave the details to the reader.

Let then@ be a quantifier of typ€l; k) that sums over a quantifi€}’ of type
(1;K"). Letfirstk = 2, k' =1 and

(nl,nz,ng,n4) € U(Q) = (n1 + ng,n2 + ng) € U(Q').

Looking at the definition of coding, we see that B (z)P»(z) is equivalent to
(Z,j) € U(Q’),Whel’ei = |(P1ﬁP2)U(A<=>(P1UP2))| andj = |P2<=>P1|+|P1<:>P2|.
Thus,

E QuPyi(x)Pa(z) < Qz((PL(z) A Pa(z)) V ~(Pi(z) V Pa(z))).
We leave the general case to the reader. O

We define
Ur,k(Q)

as the (finite) set of codes of unary quantifiers of tyfiek) that sum overr-
translates of elements @ U {3}. The coloringy, ;. q is defined now as follows:
LetA = (A, P1,..., Py) be anLg-structure. Thér, k, Q)-color of A is the set

Xrk,Q(A) ={S € 0r(Q) 1 0(A) € S}

Sinceo, ;(Q) is finite, there are for any fixedandk only finitely many(r, £, Q)-
colors. Let this finite set of colors &, ,(Q).
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LEMMA 29. For eache € C; ;,(Q) there is a sentencg. of FO'(Q) of vocabulary
L, so that for all L-structuresA:

A |: QSC < Xr,k,Q(A) = C.

Proof. The claim follows from Lemma 28. O
The sentenceg. of Lemma 29, characterizing, ;(Q)-color classes, have the
property offlatnessthat is, nonestingof the quantifiers ifQ occurs. In fact, the
sentenceg,. are Boolean combinations of sentences of the form

HX(Zﬁ(X) A ngl(ya X) cee gk’ (ya X))a
wherey(x), 01(y, X), . . ., Ok (y, X) are quantifier-free an@ € Q U {3}.

LEMMA 30. Supposé andB are L;-structures. Then the following conditions
are equivalent:

(l) A EFOT(Q) B,
(") Xr,k,Q(A) = Xr,k,Q(B)'

Proof. Lemma 29 gives (i} (ii). So we have to prove (ii}> (i). To this end
we have to modify the concept ¢f, F)-Ehrenfeucht—Fiia$ game from Section 2
S0 as to make it appropriate for non-simple quantifiers.

Given two structured andB of the same vocabulary, thie, Q)-Ehrenfeucht—
Frais® gameon A andB is defined as follows: The game has two players: | and
Il. The game starts with a move of Player |. He chooses one of the modela, say
one of the quantifiers o U {3}, say the typd1; k) quantifierQ, andk subsets
X1,..., X of A. Then Player Il choosdssubsetd7, ..., Y} of B. Next, Player |
chooses an elemepgtof B. Finally, Player Il chooses an elementof A. This
sequence of moves is repeatetiimes. The element played by Il has to satisfy

r€EX; < yey;
foralli =1,...,k. Itis also required that
(A,Xl,...,Xk) S Qand(B,Yl,...Yk) € Q.

Suppose the players have played the elementsf A andy; of B on round:.
Player Il wins if the relation{(z;,y;) : ¢ = 1,...,r} is a partial isomorphism
betweenA and B. Otherwise Player | wins. Again, it makes no difference to
Player II's chances for winning the game, if Player | is required to play sets that are
invariant under automorphisms of the model that fix the elements that have been
chosen so far.

LEMMA 31. If Player Il has a winning strategy in thig-, Q)-Ehrenfeucht-Fréss
game orA andB, thenA =gy () B.
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Proof. We use induction on the quantifier-rarnk ¢ < s) of ¢(z1,...,zs) to
prove that
A):¢(a17"'7as) — B|: ¢(b17"'7bs) (10)

whenever the sequenee= {(a1,b1) ..., (as,bs)} (s < r) represents a position
of pairs of chosen elements in the Q)-Ehrenfeucht—Fiia® game omA andB,
when Player Il is playing his winning strategy.

If the quantifier-rank ofp(z1, ..., z,) is 0, then (10) follows from the rules of
the game. Let us then assuges, . .., z5) is the formula

QzVi(2,2) ... Uy(x,2)
of quantifier-rank; + 1 < r <5, where@ € Q U {3}. Suppose
™= {(0’17 bl) SRR (a’sa bs)}

(s < r) represents a position of pairs of chosen elements in the game, when Player Il
is playing his winning strategy. For eagle [k], let

A]:{QEAA|: \I/]'(Cl,al,---’as)}

AssumeA = ¢(aq,...,as). Sinces < r, we can let Player | playy, ..., A as
his next move after position. The winning strategy of Player Il gives him subsets
Y1,...,Y, of B. We claim thatY; = B; for j € [k]. Take anyb € B and let
Player | choose elemetit The winning strategy of Player Il gives him an element
a of A. By the rules of the game,

a€Aj < bey,.
and by the induction hypothesis
a€Aj < bec Bj.

ThusY; = B,. Since |l plays a winning strategy, we ha\@, By, ..., B;) € Q,
whenceB = ¢(by,. .., bs). O

Proof of Lemma 3@ontinued. To prove (ii}= (i) it now suffices to use (ii) to
describe a winning strategy of Player Il in tlie Q)-Ehrenfeucht-Fiig® game

on A andB. Let us assume we are in the middle of the game with the chosen
elements, ..., a; Of A and the corresponding elements. .., b; of B, where

t < r. Suppose Player | has chosgre Q U {3} of type(1;%’) and plays subsets
X1,..., Xy of, say,AsothatA’ = (A4, X1,...,Xp) € Q and the subset¥; are
invariant under automorphisms that i . .. , a;. Let 4; = 9 5 fori € [2*] and

Al = zpf'A, fori e [2’“']. By automorphism invariance, eadi is a union of some
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setsA;, up to some elements ifug, . .., a;}. Thus there isf : 2] — [2¥'] and
ai, ...,y SOthat

Zaz-:o, Z|ai|<2r

and

[4il= > 14+ .
1G)=i

Let S consist of(n, ..., nu ) So that
(n1+0a,... ;o + o) € 0(Q)

and letS; consist of all(n1, . . ., nox ) so that

Z Mjyenn,s Z n;| €8.

f)=1 F)=2+

Thuso(A) € S1. Sincex, ;.qQ(A) = xrr,q(B) andS1 € 0,1(Q), we have
o(B) € S1. We let Player Il play such subséts, ..., Y, of B that if we denote
(B,Yl, e Yk/) byBl, then

Yip = (U{fp 1 f() =i} U{b; 1 a; € AL}) &{b; 1a; & Al}.
Since Il has not lost yet, we may assume that

’
ajEA; <~ bjE@bf,B/

and
a; = aj <= bj =bj.
Thus,
Wil = Y. Wigl+ai
f(G)=i

Sinces(B) € S1, we may conclude th@' € . Now comes the part of the game
where Player | chooses an elemguof B and Player Il responds with an element

of A so that the partial isomorphism is preserved. This part is trivial in view of the
way Player Il has chosen the s&tsThe non-emptiness of the sets, where Player II
has to choose, follows from the fact that theget  contains codes of quantifiers
that sum ovef 3}, too. We have described the requwed winning strategy. O

THEOREM 32.Supposd) is a finite set of unary quantifiers angd is a unary
quantifier of typg1; k). Then the following conditions are equivalent:
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() QisFO'(Q)-definable,
(i) @ is closed under the equivalence relation

A~B <= xrk0(A) =xrk0o(B),

(iii) There arecy, ..., ¢, € C,;(Q) so that

E QzPi(z)... Pp(r) ¢ (¢ey V...V e,),

(iv) @ is definable by a Boolean combinationkf)’ (Q))-sentences of the form

X(h(X) A Qybr(y,X) ... O (y,X))
wherey(x), 61(y, X), . . ., Ok (y, X) are quantifier-free and) € Q U {3}.
Proof. We omit the proof as it is similar to the proof of Corollary 7. O

We can formulate Theorem 32 in a more algebraic manner as follows: It is clear,
in view of the above, what it means f6rC N2* to be an--translate ofs’ € N2,

and what it means fo§ C N2° to sum overS’ C N2 SupposeS is a set of

sets each of which is a subsetNFf' for somel. We can think of’P(NZk) as a
Boolean algebra with the usual set-theoretic operationsand<: Let B, (S) be

the subalgebra OP(NZk) generated by sets N2' that sum over-translates of
elements ofS U {o(3)} for somer > 0.

COROLLARY 33. Suppos®) is a finite set of unary quantifiers containiagand
Q' is a unary quantifier of typél;k). ThenQ' is FO(Q)-definable iffo(Q’) €
B (0(Q)), where

o(Q) ={0(Q): Q € Q}.

We shall now apply the general framework to prove the undefinability of the
generalized Rescher quantifier in terms of simple unary quantifiers, except in
trivial cases. To this end, |€); denote the family of all simple unary quantifiers,
that is, the quantifiers of typd; 1).

THEOREM 34.Supposef : N — N. Then the following conditions are equiva-
lent:

() MORE;y is FO(Q1)-definable.
(i) ImVYn(f(n) < m).
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Proof. (ii) = (i). Let m be given by (ii). Let for eachh < m: Q; = {(A, P) :
f(|P|) = i}. Now (A, P1, P,) € MORE; if and only if | P1| > f(|P>|) if and only
if

(A, P, P) = \/ [QizP(z) A Jzg. .. 3x; /\ (:Ej #xp A P]_(QS]))]

i<m 0<j<k<i

(i) = (ii). Suppose MORE is FO'(Q)-definable, wher& C Q; is finite.
Let @« = |C;1(Q)| + 1. Towards a contradiction, we assuivte:3n(f(n) >
m). Letzy < ... < z, SO thatz; 1 > max(f(z1),..., f(z;)) and f(z;y1) >
maxz1,...,z;). Leti < j < a sothat

Xr,l,Q((Aa [1‘,])) = Xr,l,Q((Aa [ZE]])), (11)
whereA = [n] andn = 2z,. Let A = (A, P1, P») andB = (A, P,, P1), where

P = [:E]] andP, = {,’L‘j +1,... , X5 + :Ez} Note thatA ¢ MOREf, butB ¢
MORE;. Thus we get a contradiction with Theorem 32 if we show that

XT,Z,Q(A') = XT,Z,Q(B)' (12)
We haveo(A) = (0,z;,z;,n ©x; ©x;) ando(B) = (0,2, 75, n Sx; Sxj).
Supposé € 0,2(Q). By looking at the definition of of, »(Q) and applying (11)
systematically in different cases, it is not hard to see that

oc(A)e S < o(B)€S.

Thus (12) follows. O
A closely related quantifier is

MOST; = {(4, P1, P2) : [P N P| > f(|A])} (13)
In fact

MOSTzR1(z)Ro(x) <+ MOREsz(R1(z) A Ro(z))Ra(x).
THEOREM 35.Supposg : N — N.

(i) If ImVYn(f(n) <mV f(n) > n<m), thenMOST; is FO(Q1)-definable.
(i) If Vm3an(m < f(n) < n<m) andVnVm(n < m = f(n) < f(m)), then
MOST; is notFO(Q1)-definable.

Proof. (i) Let m be such thaf(n) < mV f(n) > n <m holds for alln. For
7 < 1mlet

Qi={(A4,P): f(|P|) =14} and Q;={(4,P): f(|P])=|P| i}
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Then
(A, Pl,Pz) € MOSTf <~
|P1 N P2| > f(|P1|) =

(4, P, Pp) = \/ [QizPi(z)A

i<m

Azo. .. Jz;( /\ z; # A Pi(zj) A Pa(z5))] v
0<j<k<i

\/ [QzPi(z) A Jxy... Iz Ya(Pi(z) —

i<m
(Po(z) Ve =z2V...V2=u1))]

(i) Suppose MOSFis FO' (Q)-definable withQ C Qq finite. Leta = |C.1(Q) |+
1. Using the first assumption concernifigwe can construct a sequence

y1 < flyr+y2) <y2 < fly2+y3) <y3... < Ya-

Choosgy; < y; so that

xr1,Q((4; [4i]) = xr1,Q((4; [y51));

whereA = [n] andn = 2y,. Let A = (A, P, ) andB = (A, P, P3) where
Py = [y; + y;], P> = [y;] and Pz = [y;]. Then by the second assumptioh, e
MOST; butB € MOST;. Now the proof proceeds as in Theorem 34. O

Conjecture 36 Supposef : N — N. Then MOST; is FO(Q1)-definable iff
ImVn(f(n) <mV f(n) >nsm).

The case of the generalizedHig quantifier (8) seems more difficult. We mention
without proof some rather special casesiivn(f(n) < m), then | is FO(Qu)-
definable, and ingVn > no(f(n) = a - n + b), wherea,b € N, then I is
FO(Q1)-definable if and only it: = 0.

Conjecture 37 Supposef : N — N. Then I is FO(Q1)-definable if and only
if IAmYn(f(n) < m).

Strong hierarchy results for unary quantifiers have been obtained by Luosto (1996).
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