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THE EHRENFEUCHT-FRAISSE-GAME OF LENGTH

ALAN MEKLER, SAHARON SHELAH, AND JOUKO VAANANEN

ABSTRACT. Let 2 and B be two first order structures of the same vocab-
ulary. We shall consider the Ehrenfeucht-Fraissé-game of length w; of 2
and B which we denote by %, (2%, B). This game is like the ordinary
Ehrenfeucht-Fraissé-game of L. except that there are w; moves. It is clear
that %, (%,B) is determined if 2 and B are of cardinality < R; . We prove
the following results:

Theorem 1. If V = L, then there are models % and B of cardinality ¥, such
that the game %, (A, B) is nondetermined.

Theorem 2. If it is consistent that there is a measurable cardinal, then it is con-
sistent that S, (%, B) is determined for all % and B of cardinality <R, .

Theorem 3. For any k > N3 there are % and B of cardinality k such that
the game %y, (Y, B) is nondetermined.

1. INTRODUCTION

Let 20 and 9B be two first order structures of the same vocabulary L. We
denote the domains of % and B by 4 and B respectively. All vocabularies
are assumed to be relational.

The Ehrenfeucht-Fraissé-game of length y of 2 and B, denoted by Z,(2,B),
is defined as follows: There are two players called V and 3. First V plays X
and then 3 plays yg. After this V plays x;, and 3 plays y;, and so on. If
((xg,yp): B < ) has been played and o < y, then V plays x, after which 3
plays y,. Eventually a sequence ((xg, ¥g): B <) has been played. The rules
of the game say that both players have to play elements of 4 U B. Moreover,
if V plays his xg in A (B), then 3 has to play his yg in B (A). Thus the
sequence ((xg, yg): B < y) determines a relation 7 C 4 x B. Player 3 wins
this round of the game if 7 is a partial isomorphism. Otherwise V wins. The
notion of winning strategy is defined in the usual manner. We say that a player
wins Z,(A, B) if he has a winning strategy in &, (%, B).
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Recall that

A=y B & Vn < w(3 wins Z,(A, B))
A =00 B & I wins Z, (A, B).

In particular, Z,(%A, B) is determined for y < w. The question, whether
Z,(A, B) is determined for y > w, is the subject of this paper. We shall
concentrate on the case y = w; .

The notion

(1) 3 wins Z,(%, B)

can be viewed as a natural generalization of 2 =, B . The latter implies iso-
morphism for countable models. Likewise (1) implies isomorphism for models
of cardinality |y|:

Proposition 1. Suppose A and B have cardinality < k. Then (2, B) is
determined: 3 wins if A= B, and V wins if AZ B.

Proof. If f: 2= B, then the winning strategy of 3 in Z (2, B) is to play in
such a way that the resulting = satisfies # C f. On the other hand, if A% 9B,
then the winning strategy of V is to systematically enumerate AUB so that the
final 7 will satisfy 4 = dom(n) and B =rng(n). O

For models of arbitrary cardinality we have the following simple but useful
criterion of (1), namely in the terminology of [15] that they are “potentially
isomorphic.” We use Col(4, k) to denote the notion of forcing which collapses
|A| to x (with conditions of cardinality less than x).

Proposition 2. Suppose 2 and B have cardinality < A and x is regular. Player
3 wins S (A, B) if and only if Fcoia, ) A= B.

Proof. Suppose 7 is a winning strategy of 3 in % (2, B). Since Col(4, k) is
< k-closed,

IFcoia, ) “7 is a winning strategy of 3 in Gy (2, B).”

Hence IFcoi,x) 2 = B by Proposition 1. Suppose then p I f: 2 = B for
some p € Col(4, k). While the game Z, (2, ®B) is played, 3 keeps extending
the condition p further and further. Suppose he has extended p to ¢ and V
has played x € 4. Then 3 finds r < ¢q and y € B with r I+ f(x) = y. Using
this simple strategy 3 wins. O

Proposition 3. Suppose T is an w-stable first order theory with NDOP. Then
G, (AU, B) is determined for all models A of T and all models B .

Proof. Suppose 2 is a model of 7. If ®B is not L, -equivalent to A, then
V wins &, (2, B) easily. So let us suppose A =o, B. We may assume A
and B are of cardinality > X;. If we collapse |4| and |B| to ®;, T will
remain w-stable with NDOP, and 2 and B will remain L., -equivalent. So
A and B become isomorphic by [19, Chapter XIII, §1]. Now Proposition 2
implies that 3 wins £, (%, ®B). O

Hyttinen [10] showed that Z,(2, 8) may be nondetermined for all y with
o < y < w; and asked whether &, (%, ) may be nondetermined. Our results
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show that &, (%, 8) may be nondetermined for 2 and B of cardinality X3
(Theorem 17), but for models of cardinality X, the answer is more complicated.

Let F(w;) be the free group of cardinality ®;. Using the combinatorial
principle O, we construct an abelian group G of cardinality X, such that
Zu,(F(w1), G) is nondetermined (Theorem 4). On the other hand, we show
that starting with a model with a measurable cardinal one can build a forc-
ing extension in which %, (%, 9B) is determined for all models % and B of
cardinality < R, (Theorem 14).

Thus the free abelian group F(w;) has the remarkable property that the
question

Is &,,(F(w1), G) determined for all G?

cannot be answered in ZFC alone. Proposition 3 shows that no model of an
N;-categorial first order theory can have this property.

We follow Jech [11] in set theoretic notation. We use S to denote the set
{a < 0y cf(a) = w,}. Closed and unbounded sets are called cub sets. A set
of ordinals is A-closed if it is closed under supremums of ascending A-sequences
(aj: i < A) of its elements. A subset of a cardinal is A-stationary if it meets
every A-closed unbounded subset of the cardinal. The closure of a set 4 of
ordinals in the order topology of ordinals is denoted by 4. The free abelian
group of cardinality x is denoted by F(x).

2. A NONDETERMINED %, (F(w;), G) WITH G
A GROUP OF CARDINALITY ¥;

In this section we use O, to construct a group G of cardinality X, such
that the game %, (F(w), G) is nondetermined (Theorem 4). For background
on almost free groups the reader is referred to [4]. However, our presentation
does not depend on special knowledge of almost free groups. All groups below
are assumed to be abelian.

By O,, we mean the principle, which says that there is a sequence (C,: a <
Wy, a=Ja) such that

1. C, is a cub subset of «.

2. If cf(a) = w, then |C,| = w.

3. If y is alimit point of C,, then C, =C,Ny.

Recall that O, follows from ¥V = L by a result of R. Jensen [14]. For a
sequence of sets C, as above we can let

Eg={a € S}: the order type of C, is B}.

For some f < w; the set Eg has to be stationary. Let us use E to denote this
Eg. Then E is a so-called nonreflecting stationary set, i.e., if cf(y) > @ then
Eny is nonstationary on y. Indeed, then some final segment D, of the set of
limit points of C, is a cub subset of y disjoint from E. Moreover, cf(a) =w
forall a € E.

Theorem 4. Assuming Oy, , there is a group G of cardinality R, such that the
game %, (F(w:), G) is nondetermined.

Proof. Let Z®2 denote the direct product of w, copies of the additive group
Z of the integers. Let x, be the element of Z%2 which is 0 on coordinates # a
and 1 on the coordinate a. Let us fix for each § € S2 an ascending cofinal
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sequence 75: @ — ¢ . For such J, let

oo
z5= 2" %py(m) -

n=0

Let (Co:a=Ua<wy), (Dy:a=Ja <wy),and E = Eg be obtained from
O,, as above. We are ready to define the groups we need for the proof: Let
G be the smallest pure subgroup of Z?2 which contains x, for a < w; and
zs for 6 € E, let G, be the smallest pure subgroup of Z“2 which contains x,
for y < a and z5; for d € ENa, let F (= F(w;)) be the subgroup of Z*:
generated freely by x, for a < w;, and finally, let F, be the subgroup of Z*2
generated freely by x, for y <a.

The properties we shall want of G, are standard but for the sake of com-
pleteness we shall sketch proofs. We need that each G, is free and for any
B ¢ E any free basis of Gy can be extended to a free basis of G, for all
a>f.

The proof is by induction on «. For limit ordinals we use the fact that E is
nonreflecting. The case of successors of ordinals not in E is also easy. Assume
now that § € E and the induction hypothesis has been verified up to J. By
the induction hypothesis for any # < J such that g ¢ E, there is ny so that
Gs = Gg ® H® K where K is the group freely generated by {x,,n): no < n}
and X,,(m) € Gg forall m < ng. Then Gs, = Gg® HSK' where K' is freely
generated by {3 -, 2" "Xy, (m): no < n}.

On the other hand, if 6 € E and {xyu:n < w} C B, where B is a
subgroup of G such that z; ¢ B, then G/B is nonfree, as zs+ B is infinitely
divisible by 2 in G/B.

Claim 1. 3 does not win &, (F, G).

Suppose 7 is a winning strategy of 3. Let o € E such that the pair (G,, F,)
is closed under the first @ moves of 7, that is, if V plays his first @ moves
inside G, U F,, then 7 orders 3 to do the same. We shall play %, (F, A)
pointing out the moves of V and letting 7 determine the moves of 3. On his
move number 2n V plays the element X, »y of G,. On his move number
2n+1 V plays some element of F,. Player V plays his moves in F, in such a
way that during the first @ moves eventually some countable direct summand
K of F, as well as some countable B C G, are enumerated. Let J be the
smallest pure subgroup of G containing B U {z,}. During the next w moves
of &, (F, A) player V enumerates J and 3 responds by enumerating some
H C F. Since 7 is a winning strategy, H has to be a subgroup of F . But now
H/K is free, whereas J/B is nonfree, so V will win the game, a contradiction.

Claim 2. ¥ does not win &, (F, G).

Suppose 7 is a winning strategy of V. If we were willing to use CH, we could
just take a of cofinality w; such that (F,, G,) is closed under 7, and derive
a contradiction from the fact that F, = G,. However, since we do not want to
assume CH, we have to appeal to a longer argument.

Let k = (2¢)**. Let 9M be the expansion of (H(k), €) obtained by adding
the following structure to it:

(H1) The function 6 — 7; .

(H2) The function J — z;.
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(H3) The function a — C,.

(H4) A well-ordering < of the universe.

(H5) The winning strategy 7.

Let M= (N, €,...) be an elementary submodel of 9 such that w; C N
and N Nw, is an ordinal a of cofinality w; .

Let D, = {Bi: i < w,} in ascending order. Since Cp, = C,N f;, every initial
segment of C, is in N. By elementaricity, Gg, € N forall i < w;. Let ¢
be an isomorphism G, — F, obtained as follows: ¢ restricted to Gg, is the
<-least isomorphism between the free groups Gy, and Fy. If ¢ is defined on
all Gg,, j<1i,then ¢ is defined on G, asthe <-least extension of UJ;_; ¢
to an isomorphism between G and F;. Recall that by our choice of D,,
G,/ Gp, is free, so such extensions really exist.

We derive a contradiction by showing that 3 can play ¢ against 7 for the
whole duration of the game %, (%, B). To achieve this we have to show that
when 3 plays his canonical strategy based on ¢, the strategy 7 of V directs V
to go on playing elements which are in N, that is, elements of G, U F, .

Suppose a sequence s = ((x,, yy): ¥ < u), u < w;, has been played. It
suffices to show that s € N. Choose f; so that the elements of s are in
G, UFp . Now s is uniquely determined by ¢ | G, and 7. Note that because
Cg = CoN Bi, ¢ | Gp can be defined inside N similarly as ¢ was defined
above, using Cp, instead of C,. Thus s € N and we are done.

We have proved that &, (F, G) is nondetermined. This clearly implies
G, (F(®1), G) is nondetermined. O

Remark. R. Jensen [14, p. 286] showed that if O, fails, then w, is Mahlo in
L. Therefore, if &, (A, B) is determined for all almost free groups 2 and B
of cardinality X, , then w, is Mahloin L. If we start with O, , we get an almost
free group A of cardinality x* such that %, (F(w;), 4) is nondetermined.

3. &,,(F(w1), G) CAN BE DETERMINED FOR ALL G

In this section all groups are assumed to be abelian. It is easy to see that 3
wins &, (F(w,), G) for any uncountable free group G, so in this exposition
F(w;) is a suitable representative of all free groups. In the study of determinacy
of &, (F(wy),A) for various A it suffices to study groups 2, since for other
A player V easily wins the game.

Starting from a model with a Mahlo cardinal we construct a forcing extension
in which %, (F(w;), G) is determined, when G is any group of cardinality
R, . This can be extended to groups G of any cardinality, if we start with a
supercompact cardinal.

In the proof of the next results we shall make use of stationary logic L(aa)
introduced in [17]. For the definition and basic facts about L(aa) the reader is
referred to [1]. This logic has a new quantifier aa s quantifying over variables
s ranging over countable subsets of the universe. A cub set of such s is any set
which contains a superset of any countable subset of the universe and which is
closed under unions of countable chains. The semantics of aa s is defined as
follows:

aa s¢(s,...) e ¢(s, ...) holds for a cub set of 5.
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Note that a group of cardinality X; is free if and only if it satisfies
(+) aa s aas'(s Cs' — sisfree and s'/s is free).

Proposition 5. Let G be a group of cardinality at most X, . Then the following
conditions are equivalent:

(1) 3 wins Z,,(F(wy), G).

(2) G satisfies (+).

(3) G is the union of a continuous chain (G,: o < w;) of free subgroups with
Gor1/Go Ny-fiee for all a < w,.
Proof. (1) implies (2): Suppose 3 wins &, (F(w;), G). By Proposition 2 we
have IFcoy(j6],w) “G is free”. Using the countable completeness of Col(|G|, w;)
it is now easy to construct a cub set .S of countable subgroups of G such that
if 4 €S then forall B€ .S with 4 C B we have B/A free. Thus G satisfies
(+). (2) implies (3) quite trivially. (3) implies (1): Suppose a continuous chain
as in (3) exists. If we collapse |G| to X;, then in the extension the chain has
length < w,. Now we use Theorem 1 of [8]:

If a group A is the union of a continuous chain of < w; free
subgroups {A4,: a < y} of cardinality < ®; such that each
As+1/As is Ny-free, then A is free.

Thus G is free in the extension and (1) follows from Proposition 2. O

Remark. Conditions (1) and (2) of Proposition 5 are equivalent for G of any
size.
Let us consider the following principle:

For all stationary E C sg and countable subsets a, of a € E

) such that a, is cofinal in o and of order type w there is a
closed C C w; of order type w; such that {a € E: a,\C is
finite} is stationary in C.

Lemma 6. The principle () implies that &, (F(w:), G) is determined for all
groups G of cardinality R, .

Proof. Suppose G is a group of cardinality ;. We may assume the domain
of G is w,. Let us assume G is N,-free, as otherwise V easily wins. We
prove that G satisfies condition (3) of Proposition 5 and thereby that 3 wins
G (F(wy), G).

To prove condition (3) of Proposition 5, assume the contrary. Then G can be
expressed as the union of a continuous chain (G,: a < w;) of free groups with
Gyo11/Gy non-R-free for o € E, E C w, stationary. By Fodor’s Lemma, we
may assume E C S} or E C S?. The latter case is much easier and therefore
we assume E C Sg. Also we may assume that for all «, every ordinal in
G.+1\G, is greater than every ordinal in G,. Finally by intersecting with a
closed unbounded set we may assume that for all o € E the set underlying
G, is a. Choose for each o € E some countable subgroup b, of G,,; with
bs + Go/G, nonfree. Let ¢, = b, N G,. We will choose g, so that any final
segment generates a subgroup containing ¢,. Enumerate ¢, as {g,: n < w}
such that each element is enumerated infinitely often. Choose an increasing
sequence (ay: n < @) cofinal in o so that for all n, g, € G,, . Finally, for
each n, choose A, € Gy, +1\Gs, - Let gy ={hp:n<w}U{h,+g:n<w}. It
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is now easy to check that a, is a sequence of order type @ which is cofinal in
a and any subgroup of G which contains all but finitely many of the elements
of a, contains ¢, .

By (*) there is a continuous C of order type w; such that {a € C: a,\C
is finite} is stationary in C. Let D =(CUY .- bo). Since |D| <Ry, D is
free.

For any a € C, let

Da=<(Cna)U( > bﬂ)>.
BE(CNa)

Note that D = (J,c¢ Da, €ach D, is countable and for limit point 6 of C,
D5 = U,e(cns) Do - Hence there is an a € CN E such that a,\C is finite and
D/D, is free. Hence b, + D,/D, is free. But b, + D,/Dy = by/by N D, =
b,/b, N G, , which is not free, a contradiction. O

For the next theorem we need a lemma from [6]. A proof is included for the
convenience of the reader.

Lemma 7 [6]. Suppose A is a regular cardinal and Q is a notion of forcing
which satisfies the A-c.c. Suppose ¥ is a normal A-complete ideal on A and
Ft={SCAS ¢ F}. Forall sets S € F* and sequences of conditions
(Do: @ €S), there is a set C with A\C € . sothat forall a € CNS,

Polrq “{B:pp € é} €I+, where T is the ideal generated by .#.”

Proof. Suppose the lemma is false. So there is an #-positive set .S’ C S such
that for all o« € S’ there is an extension r, of p, and a set I, € .# (note: I,
is in the ground model) so that

rol-{B:pg € é} cl,.
Let I be the diagonal union of {I,: a € S'}. _
Suppose now that o < f and a, f € (S'\I). Since B ¢ I, r,lk-pg ¢ G.
Hence r,I-rg ¢ G. So r,,rg are incompatible. Hence {r,: a € S'\I} is

an antichain which, since S’ is .#-positive, is of cardinality A. This is a
contradiction. 0O

Remark. 1t is a well-known fact that the ideal .7~ of Lemma 7 is forced by Q
to be A-complete and normal.

Theorem 8. Assuming the consistency of a Mahlo cardinal, it is consistent that
(%) holds and hence that Z, (F(w:), G) is determined for all groups G of
cardinality X, .

Proof. By a result of Harrington and Shelah [7] we may start with a Mahlo
cardinal x in which every stationary set of cofinality w reflects, that is, if
S C k is stationary, and cf(a) = @ for a € S, then SN A is stationary in 4
for some inaccessible 4 < k.

For any inaccessible 4 let P; be the Levy-forcing for collapsing 4 to w;.
The conditions of P, are countable functions f: Ax w; — A such that f(a, B)
< a forall o and B and each f is increasing and continuous in the second
coordinate. It is well known that P, is countably closed and satisfies the A-chain
condition [11, p. 191].
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Let P =P, . Suppose p € P and

plF  “E C S? is stationary and
Va € E(a, C a is cofinal in o and of order type w).”

Let 5
S={a<x:3g<pl@Fa€ckE)}.

For any a € S let p, < p such that p, IF @ € E. Since P is countably
closed, we can additionally require that for some countable a, C a we have
DolFay=a,. B

The set S is stationary in k, forif C C k iscub, then plIF CNE # o,
whence C NS # @. Also cf(a) = w for a € §. Let 4 be inaccessible such
that SN A is stationary in 4. We may choose A in such a way that a € SN 4
implies p, € P;. By Lemma 7 there is a J € SN A such that

Ds IFp, “FE, = {a<d:ip, € é} is stationary.”

Let Q be the set of conditions f € P with dom(f) C (x\A) x w;. Note
that P = P, ® Q. Let G be P-generic containing ps and G, = GNP, for
any inaccessible 4 < k. Then G, is P,-generic and w, of V[G;] is 4. Let
us work now in V[G;]. Thus A is the current w,, E; = {a < A: p, € G}
is stationary, and we have the countable sets a, C o for a € E;. Since Q
collapses A there is a name f such that

kg “ f : w1 — A is continuous and cofinal.”

More precisely f is the name for the function f defined by f(a) = B if and
only if there is some g € G so that g(4, a) = f. Let C denote the range of
f . We shall prove the following statement:

Claim. Irq {a <A: a,\C is finite} is stationary in C.

Suppose g € Q so that g IF “D C w; is a cub.” Let 9 be an appropriate
expansion of (H(x), €) and (9;: i < 4), N; = (N;, €,...), a sequence of
elementary submodels of 9 such that

(i) Everything relevant is in Ny .

(ii) If a; =N;NA, then a;<aj for i< j<A.

(iii) MNj4p is closed under countable sequences.

iv) |Nil = 1.

(v) Ni=U,; N; for i alimit ordinal.

Choose y = a; € E;| and let (i,: n < w) be a sequence of successor ordinals
such that y = sup{e;,: n < w}. Let gy < q¢ and Sy € w; such that g,
ﬂo € Ivio ) _

Q- “Bo € D”
and qo decides the value of "B, (which will by elementaricity necessarily be
a subset of «;,).

If g, and B, are defined we choose g,,1 < g, and B,,; € w; such that
dn+1> Bnr1 € Ny, »

qns1 F “ﬂ,,.,_l €D and a, N (a,-n“\ai") - f"ﬂ,,.,_l - a,-m”
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and g, decides f" Bni1 . Finally, let

go=|J{gn:n<w} and B=J{Bu:n<w}

Then B N
do'F “B€D and a,\f"p is finite.”

The claim, and thereby the theorem, is proved. O

Corollary 9. The statement that Z,, (A, B) is determined for every structure 2
of cardinality R, and every uncountable free group B, is equiconsistent with the
existence of a Mahlo cardinal.

Remark. If &, (A, F(w,)) is determined for all groups 4 of cardinality x™*,
k singular, then O, fails. This implies that the Covering Lemma fails for the
Core Model, whence there is an inner model for a measurable cardinal. This
shows that the conclusion of Theorem 8 cannot be strengthened to arbitrary G .
However, by starting with a larger cardinal we can make this extension:

Theorem 10. Assuming the consistency of a supercompact cardinal, it is consistent
that &, (F(w,), G) is determined for all groups G .

Proof. Let us assume that the stationary logic L,,»(aa) has the Loéwenheim-
Skolem property down to X;. This assumption is consistent relative to the
consistency of a supercompact cardinal [2]. Let G be an arbitrary X,-free
group. Let H be an L(aa)-elementary submodel of G of cardinality ®;.
Thus H is a free group. The group H satisfies the sentence (+), whence so
does G. Now the claim follows from Proposition 5. O

Corollary 11. Assuming the consistency of a supercompact cardinal, it is consis-
tent that &, (A, B) is determined for every structure A and every uncountable
free group B.

4. Z,, (4, *B) CAN BE DETERMINED
FOR ALL 24 AND ‘B OF CARDINALITY ¥;

We prove the consistency of the statement that &, (2, B) is determined for
all & and B of cardinality < R, assuming the consistency of a measurable
cardinal. Actually we make use of an assumption that we call /*(w) concern-
ing stationary subsets of w,. This assumption is known to imply that w, is
measurable in an inner model. It follows from the previous section that some
large cardinal axioms are needed to prove the stated determinacy.

Let I*(w) be the following assumption about w;-stationary subsets of w;:

I'(w): Let .7 be the w;-nonstationary ideal NS,, on w,. Then .#* hasa
o-closed dense subset K .

Hodges and Shelah [9] define a principle I(w), which is like I*(w) except
that .# is not assumed to be the w-nonstationary ideal. They use I(w) to
prove the determinacy of an Ehrenfeucht-Fraissé-game played on several boards
simultaneously.

Note that I*(w) implies .# is precipitous, so the consistency of I'*(w) im-
plies the consistency of a measurable cardinal [12]. For the proof of the follow-
ing result the reader is referred to [12]:
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Theorem 12 (Laver). The assumption I*(w) is consistent relative to the consis-
tency of a measurable cardinal.

We shall consider models 2, 9B of cardinality R, , so we may as well assume
they have @, as universe. For such 2l and o < w; we let 2, denote the
structure AN «. Similarly B, .

Lemma 13. Suppose 2 and B are structures of cardinality ¥,. If V does not
have a winning strategy in &, (%, B), then S = {a: U, = B,} is w;-stationary.
Proof. Let C C w; be w;-closed and unbounded. Suppose SNC = 2. We
derive a contradiction by describing a winning strategy of V: Let 7: w; x w; x
2 — w; be onto with a, f,d <7m(a, f,d) forall o, B <w; and d <2. If
a< w,let 6,: w; — a be onto. Suppose the sequence ((x;, y;):i < a) has
been played. Here x; denotes a move of V and y; a move of 3. During the
game V has built an ascending sequence {c; : i < a} of elements of C. Now
he lets ¢, be the smallest element of C greater than all the elements x;, y;,
i < a. Suppose a =n(i,y,d). Now V will play 6.,(y) as an element of 2,
if d =0,and as an element of B if d=1.

After all w; moves of &, (A, B) have been played, some A, and B,,
where a € C, have been enumerated. Since a ¢ S, V has won the game. O

Theorem 14. Assume I*(w). The game Z, (A, B) is determined for all 4 and
B of cardinality < ;.
Proof. Suppose V does not have a winning strategy. By Lemma 13 the set
S = {a: A, =B, } is w;-stationary. Let I and K be asin I*(w). If a €S,
let A,: A, = B,. We describe a winning strategy of 3. The idea of this
strategy is that 3 lets the isomorphisms /4, determine his moves. Of course,
different A, may give different information to 3, so he has to decide which #,
to follow. The key point is that 3 lets some /4, determine his move only if
there are stationarily many other 4y that agree with A, on this move.
Suppose the sequence {((x;, y;): i < a) has been played. Again x; denotes
amove of V and y; a move of 3. Suppose V plays next x, and this is (say)
in A. During the game 3 has built a descending sequence {S;: i < a} of
elements of K with Sy C S. The point of the sets S; is that 3 has taken care
that for all i < a and B € S; we have y; = hg(x;) or x; = hg(y;) depending
on whether V played x; in 4 or B. Now 3 lets S}, C();.,Si sothat S}, € K
and Vi € S, (x, < i). For each i € S/, we have h;(x,) < i. By normality,
there are an S, C S’ in K and a y, such that A;(x,) = y, forall i € S,.
This element y, is the next move of 3. Using this strategy 3 wins. O

5. A NONDETERMINED %, (2, B)
WITH 2 AND ‘B OF CARDINALITY Nj;

We construct directly in ZFC two models 2 and B of cardinality N3 with
Zu, (™, B) nondetermined. It readily follows that such models exist in all car-
dinalities > ¥3. The construction uses a square-like principle (Lemma 16),
which is provable in ZFC.

Lemma 15 [18]. There is a stationary X C S} and a sequence (D,: a € X)
such that
1. D, is a cub subset of a forall a € X .
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2. The order type of D, is w;.

3. If a, B € X and y < min{e, B} is a limit of both D, and Dg, then
D,Nny=Dgny.

4. If y € D, then v is a limit point of D, if and only if y is a limit ordinal.
Proof. See [18, Theorem 4.1] or [3, Lemma 7.7]. O

Lemma 16. There are sets S, T, and C, for a € S such that the following
hold:

1. SCS3US} and SNS} is stationary.

2. T C S} isstationary and SNT =2.

3.If a €S, then C, Cans is closed and of order-type < w, .

4. If aeS and peC,, then Cg=C,Np.

5. If a€SNS}, then C, is cubon .

Proof. Let X and (D,: a € X) be as in Lemma 15. Let S’ =XUY , where Y
consists of ordinals which are limit points < a of some D,, a € X. If a € X,
we let C, be the set of limit points < a of D,. If a € Y, we let C, be the
set of limit points < a of DgNa, where B > o is chosen arbitrarily from X .

Now claims 1, 3, 4 and 6 are clearly satisfied. L

Let Sg =; <o, T; where the T; are disjoint stationary sets. Since |C,| < wq,
there is i, < @, such that i > i, implies C;NT; = @. Let S” C S’ be
stationary such that o € $” implies i, is constant i. Let T = T7;. Finally, let
S=8"UU{C,: a € §"}. Claim 2 is satisfied, and the lemma is proved. O

Theorem 17. There are structures % and B of cardinality R3 with one binary
predicate such that the game %, (A, B) is nondetermined.

Proof. Let S, T, and (C,: o € S) be as in Lemma 16. We shall construct a
sequence {M,: a < w3} of sets and a sequence {G,: a € S} of functions such
that the conditions (M1)-(M5) below hold. Let W, be the set of all mappings
Gfgu-Gf,;', where 7o,...,m €SNa, die{-1,1}, G} means G, and G;!
means the inverse of G,. Let W = W,,,. (Note that W consists of a set of
partial functions.)

The conditions on the AM,’s and the G,’s are

Ml1) M, C Mg if a<f,and M, C M,y if a€S.

M2) M, =U,., M, forlimit v.

(M3) G, is a bijection of M, for a € S.

(M4)If €S and a € Cg, then G, C Gg.

(MS5) If for some B, Gg(a) = b and for some w € W, w(a) = b, then
there is some y so that w C G,. Furthermore if # is the minimum ordinal
so that Gg(a)=0b then y=f or € C,.

In order to construct the set M =, <wy Mo and the mappings G, we define
an oriented graph with M as the set of vertices. We use the terminology of
Serre [16] for graph-theoretic notions. If x is an edge, the origin of x is
denoted by o(x) and the terminus by #(x). Our graph has an inverse edge X
for each edge x. Thus o(X) = t(x) and #(X) = o(x). Some edges are called
positive, the rest are called negative. An edge is positive if and only if its inverse
is negative. For each edge x of M there is a set L(x) of labels. The set of
possible labels for positive edges is {g,: @ < w3} . The negative edges can have
elements of {g;!: a < w;} as labels. The labels are assumed to be given in
such a way that a positive edge gets g, as a label if and only if its inverse gets
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the label g;!. During the construction the sets of labels will be extended step
by step.

The construction is analogous to building an acyclic graph on which a group
acts freely. The graph then turns out to be the Cayley graph of the group. The
labelled graph we will build will be the “Cayley graph” of W which will be
as free as possible given (M1)-(M4). Condition (M5) is a consequence of the
freeness of the construction.

Let us suppose the sets Mg, B < a, of vertices have been defined. Let
Mo,=U p<a Mp . Some vertices in M, have edges between them and a set
L(x) of labels has been assigned to each such edge x.

If a is a limit ordinal, we let M, = M_,. So let us assume o = 8 + 1.
If B ¢S, M,=Mg. Solet usassume g € S. Let y = sup(Cg). Notice
that since S consists entirely of limit ordinals and Cg C S, either y = § or
y+1<p.

Case 1. y = B: We extend Mg to M, by adding new vertices {P; : z € Z}
and for each z € Z a positive edge x> with o(xf:) = P, and t(xf*) = P,,,.
We also let L(x:) = {gg}uU{gs: B € Cs}.

Case 2. y+1 < B: We extend My to M, by adding new vertices {P,: z €
Z\{0}} for each P € Mg\M,,, . For notational convenience let Pj = P. Now
we add for each P € Mg\ M,,; new edges as follows. For each z € Z we add

a positive edge xfz' with
P, ’ P\ _ pr P\ .
o(xa*) =P;, Hxa*)=P;, L(xa")={gp}tU{8g:h €Cs}.

This determines completely the inverse of xf" .

This ends the construction of the graph. In the construction each vertex P
in My, @ €S, is made the origin of a unique edge xf with g, € L(x?F).
We define G,(P) = t(xF).

The construction of the sets M, and the mappings G, is now completed. It
follows immediately from the construction that each G,, a € S, is a bijection
of M,.;. So (M1)-(M3) hold. (M4) holds, because g, is added to the labels
of any edge with gz, where B € C,, as a label. Finally, (MS5) is a consequence
of the fact that the graph is circuit-free.

Let us fix ap € M; and by = Gg,(ao) , where By € C, for all @ € S. Note
that we may assume, without loss of generality, the existence of such a f;.

If ap, a1 € M, let

Ry, a) = {(a), a}) € M?*: 3w € W(w(ao) = ag Aw(ay) = a})}.
We let
M= (M’ (R(ao,al))(ao,al)GM2> , A= (m’ aO) , B= (93'(, b0>a

and show that &, (2, ) is nondetermined.

The reduction of the language of 20 and B to one binary predicate is easy.
One just adds a copy of w;, together with its ordering, and a copy of M xM to
the structures with the projection maps. Then fix a bijection ¢ from w; to M?2.
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Add a new binary predicate R to the language and interpret R to be contained
in w3 x M? such that R(B, (a, b)) holds if and only if Ryp(a, b) holds.
We can now dispense with the old binary predicates. We have replaced our
structure by one in a finite language without making any difference to who wins
the game &, (2, B). The extra step of reducing to a single binary predicate is
standard.

An important property of these models is that if & € SN S}, then G, [ M,
is an automorphism of the restriction of 9 to M, and takes ap to by.

Claim 3. ¥ does not win &, (A, B).

Suppose V has a winning strategy 7. Again, there is a quick argument which
uses CH: Find o € S such that M, is closed under 7 and cf(a) = @, . Now
C, is cub on «, whence G, maps M, onto itself. Using G, player 3 can
easily beat 7, a contradiction.

In the following longer argument we need not assume CH. Let x be a large
regular cardinal. Let $ be the expansion of (H(x), €) obtained by adding the
following structure to it:

(H1) The function a — M, .

(H2) The function a — G, .

(H3) The function a — C,.

(H4) A well-ordering <* of the universe.

(HS) The winning strategy 7.

(H6) The sets .S and T'.

Let t = (N, €,...) be an elementary submodel of $ of cardinality X,
such that a = NNw3; € SNS3.

Now C, is a cub of order-type w; on a and G, maps M, onto M,.
Moreover, G, is a partial isomorphism from 2 into B . Provided that 7 does
not lead V to play his moves outside M,, 3 has an obvious strategy: he lets
G, determine his moves. So let us assume a sequence ((xg, ye) : & < y) has
been played inside M, and y < w;. Let B € C, such that My contains the
elements x;, y; for £ < y. The sequence (y:: & < y) is totally determined by
Gp and 7. Since Gg € N, (y¢: £ <y) € N, and we are done.

Claim 4. 3 does not win &, (2, B).

Suppose 3 has a winning strategy 7. Let § be defined as above and 9t =
(N, €,...) be an elementary submodel of § of cardinality X, such that a =
Nnws € T. Welet V play during the first @ moves of &, (2, B) a sequence
(an: n < w) in A such that if a, is the least «, with a, € M,,, then the
sequence (an,: n < w) is ascending and sup{a,: n < w} =a. Let 3 respond
following 7 with (b, : n < w). As his move number w player V plays some
element a, € M\M, in A and 3 answers according to T with b, .

Forall i <®, R(g,q)(a0, a;) holds. Hence R4, 4,)(bo, b;) holds. So there
is w; such that w;(ag) = by and w;(a;) = b;. Since Gg,(ag) = by, by (M5),
for each i there is B; so that Gg,(a;) = b;. We can assume that f; is chosen
to be minimal. Notice that for all i, 8; > «a; and for i < w, B; € 9. So
sup{firi< w}=qa.

Also, by the same reasoning as above, for each i < @, R4 4,)(bi, by) holds.
Applying (M5), we get that Gy, (a;) = b; . Using (MS5) again and the minimality
of B;, forall i < w, Bi € Cg,. Thus a is a limit of elements of Cp, ,
contradicting € T. 0O
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