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THE EHRENFEUCHT-FRA~SSE-GAMEOF LENGTH ol 

ALAN MEKLER, SAHARON SHELAH, AND JOUKO V ~ N A N E N  

ABSTRACT. Let % and 13 be two first order structures of the same vocab- 
ulary. We shall consider the Ehrenfatcht-Fraiksbgame of length wl  of % 
and 13 which we denote by g,, (a, 13). This game is like the ordinary 
Ehrenfeucht-Fralssbgame of L,, 'except that there are wl moves. It is clear 
that F,',, is determined if 2l and 13 are of cardinality 5 N I  . We prove (2l,B) 
the following results: 

Theorem 1. I f  V = L , then there are models % and 13 of cardinality N2 such 
that the game g,, (% , 13) is nondetermined. 

Theorem 2. If i t  is consistent that there is a measurable cardinal, then it is con- 
sistent that g,',,(%, 13) is determined for all 2l and 13 of cardinality < N2 . 

Theorem 3. For any K 2 H 3  there are % and 13 of cardinality K such that 
the game g,',,(% , 13) is nondetermined. 

Let U and 23 be two first order structures of the same vocabulary L .  We 
denote the domains of U and 23 by A and B respectively. All vocabularies 
are assumed to be relational. 

The Ehrenfeucht-Fraissk-game of length y of U and 23 ,denoted by Fy(21,531, 
is defined as follows: There are two players called V and 3 .  First V plays xo 
and then 3 plays yo. After this V plays xl , and 3 plays yl , and so on. If 
( ( x ~ ,  a < y , then V plays x, after which 3yg):P < a )  has been played and 
plays y, . Eventually a sequence ((xB,yg):P < y )  has been played. The rules 
of the game say that both players have to play elements of A U B . Moreover, 
if V plays his xg in A (B), then 3 has to play his yg in B (A).Thus the 
sequence ((xg,yg):P < y )  determines a relation z A x B . Player 3 wins 
this round of the game if z is a partial isomorphism. Otherwise V wins. The 
notion of winning strategy is defined in the usual manner. We say that a player 
wins Fy(U,23) if he has a winning strategy in Fy(U,23). 
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Recall that 

U =,, 23 *Vn < o ( 3  wins Fn(2f,23)) 
a=,, 23 H 3 wins F,(U, 23). 

In particular, Fy(2f,23) is determined for y Io . The question, whether 
Fy(2f,23) is determined for y > a ,  is the subject of this paper. We shall 
concentrate on the case y = ol . 

The notion 

(1) 3 wins Fy(% , 23) 

can be viewed as a natural generalization of U =,, 23. The latter implies iso-
morphism for countable models. Likewise (1) implies isomorphism for models 
of cardinality 1 y 1 : 
Proposition 1. Suppose 2f and 23 have cardinality 5 K . Then FK(U,23) is 
determined: 3 wins if 2f Z 23, and V wins if U 23. 
Proof. If f :  2f 2 23 , then the winning strategy of 3 in FK(2f,23) is to play in 
such a way that the resulting n satisfies n 5 f . On the other hand, if 5% 23, 
then the winning strategy of V is to systematically enumerate A UB so that the 
final n will satisfy A = dom(n) and B = rng(n) . 

For models of arbitrary cardinality we have the following simple but useful 
criterion of (I) ,  namely in the terminology of [15] that they are "potentially 
isomorphic." We use Col(2, K )  to denote the notion of forcing which collapses 
1A1 to K (with conditions of cardinality less than K )  . 
Proposition 2. Suppose U and 23 have cardinality 5 A and K is regular. Player 
3 wins FK(U,23) i fand only i f  It-Col(l,K) U 2 23. 

Proof. Suppose z is a winning strategy of 3 in FK(2f,23) . Since Col(2, K )  is 
< K-closed, 

Il-col (A,  K )  ''7 is a winning strategy of 3 in GK(U, 23) ." 

Hence Il-col(A,K)U Z 23 by Proposition 1. Suppose then p Il- f : 5%2 23 for 
some p E Col(A, K )  . While the game FK(U,23) is played, 3 keeps extending 
the condition p further and further. Suppose he has extended p to q and V 
has played x E A.  Then 3 finds r Iq and y E B with r Il- f (x )  = y . Using 
this simple strategy 3 wins. 

Proposition 3. Suppose T is an o-stable first order theory with NDOP. Then 
F,, (U, 23) is determined for all models 2f of T and all models 23. 
Proof. Suppose 2f is a model of T . If 23 is not L,,, -equivalent to U, then 
V wins F,,(U, 23) easily. So let us suppose U =,,, 23. We may assume A 
and B are of cardinality > N1 . If we collapse IAl and IBI to N1 , T will 
remain o-stable with NDOP, and U and 23 will remain L,,,-equivalent. So 
U and 23 become isomorphic by [19, Chapter XIII, $11. Now Proposition 2 
implies that 3 wins F,, (U, 23) . 

Hyttinen [lo] showed that Fy(U,23) may be nondetermined for all y with 
w < y < ol and asked whether F , ,(U, 23) may be nondetermined. Our results 
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show that F,, (a, '23) may be nondetermined for U and '23 of cardinality Ng  
(Theorem 17), but for models of cardinality N2 the answer is more complicated. 

Let F(ol)be the free group of cardinality N 1 .  Using the combinatorial 
principle El,, we construct an abelian group G of cardinality N2 such that 
Fa,( F ( o 1 ) ,  G) is nondetermined (Theorem 4). On the other hand, we show 
that starting with a model with a measurable cardinal one can build a forc- 
ing extension in which F,, (U, '23) is determined for all models U and '23 of 
cardinality I N2 (Theorem 14). 

Thus the free abelian group F (wl )  has the remarkable property that the 
question 

Is FWl , G) determined for all G ?(F(ol) 

cannot be answered in ZFC alone. Proposition 3 shows that no model of an 
N1-categorial first order theory can have this property. 

We follow Jech [ l l ]  in set theoretic notation. We use S: to denote the set 
{a  < a,: cf(a) = a,). Closed and unbounded sets are called cub sets. A set 
of ordinals is A-closed if it is closed under supremums of ascending A-sequences 
(ai :  i < A) of its elements. A subset of a cardinal is A-stationary if it meets 
every I-closed unbounded subset of the cardinal. The closure of a set A of 
ordinals in the order topology of ordinals is denoted by 2.The free abelian 
group of cardinality K is denoted by F(K). 

2. A NONDETERMINED FWl , G) WITH(F(ol) G 
A GROUP OF CARDINALITY N2 

In this section we use OW, to construct a group G of cardinality N2 such 
that the game Fa,(F(ol), G) is nondetermined (Theorem 4). For background 
on almost free groups the reader is referred to [4]. However, our presentation 
does not depend on special knowledge of almost free groups. All groups below 
are assumed to be abelian. 

By OW,we mean the principle, which says that there is a sequence (C, : a < 
0 2  , a = U a) such that 

1. C, is a cub subset of a .  
2. If cf(a) = a ,  then IC,I = o. 
3. If y is a limit point of C, , then C, = C, n y . 
Recall that O,, follows from V = L by a result of R. Jensen [14]. For a 

sequence of sets C, as above we can let 

Ep = {a  E S: : the order type of C, is P) . 
For some p < ol the set Ep has to be stationary. Let us use E to denote this 
Ep . Then E is a so-called nonreflecting stationary set, i.e., if cf(y) > o then 
E n  y is nonstationary on y . Indeed, then some final segment D, of the set of 
limit points of C, is a cub subset of y disjoint from E . Moreover, cf(a) = o 
for all a E E . 
Theorem 4. Assuming O,, , there is a group G of cardinality N 2  such that the 
game Fa,(F(ol), G) is nondetermined. 
Proof. Let ZW2 denote the direct product of 0 2  copies of the additive group 
Z of the integers. Let x, be the element of ZW2which is 0 on coordinates # a 
and 1 on the coordinate a .  Let us fix for each 6 E Si an ascending cofinal 
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sequence 76 : w 4 6 . For such 6 ,  let 

Let (C,: a =  U a  < w2) ,  (D,: a =  U a  < w2), and E = E g  beobtainedfrom 
OW, as above. We are ready to define the groups we need for the proof: Let 
G be the smallest pure subgroup of ZW2 which contains x, for a < w2 and 
z6 for 6 E E ,let G, be the smallest pure subgroup of ZW2 which contains x, 
for y < a and z~ for 6 E E n a ,  let F (= F(w2)) be the subgroup of ZW2 
generated freely by x, for a < 0 2 ,  and finally, let F, be the subgroup of ZW2 
generated freely by x, for y < a .  

The properties we shall want of G, are standard but for the sake of com- 
pleteness we shall sketch proofs. We need that each G, is free and for any 
p $ E any free basis of Gg can be extended to a free basis of G, for all 
a > P .  

The proof is by induction on a .  For limit ordinals we use the fact that E is 
nonreflecting. The case of successors of ordinals not in E is also easy. Assume 
now that 6 E E and the induction hypothesis has been verified up to 6 .  By 
the induction hypothesis for any P < 6 such that P $ E , there is no so that 
G6 = Gg $ H $ K where K is the group freely generated by {x,(,) : no 5 n )  
and x,,(,) E Gg for all m < no. Then Gs+l = GB$H @ K' where K' is freely 
generated by {C:=, 2m-nx,,(,) : no 5 n )  . 

On the other hand, if 6 E E and {x,,(,).: n < w) g B ,  where B is a 
subgroup of G such that za $ B y  then GIB is nonfree, as za +B is infinitely 
divisible by 2 in GIB . 
Claim 1. 3 does not win FWl(F, G) . 

Suppose z is a winning strategy of 3 . Let a E E such that the pair (G, ,F,) 
is closed under the first o moves of z ,  that is, if V plays his first w moves 
inside G, U F a ,  then z orders 3 to do the same. ( F ,  A) We shall play FW, 
pointing out the moves of V and letting z determine the moves of 3 .  On his 
move number 2n V plays the element x,~(,)of G, . On his move number 
2n + 1 'd plays some element of F, . Player V plays his moves in F, in such a 
way that during the first o moves eventually some countable direct summand 
K of F, as well as some countable B G G, are enumerated. Let J be the 
smallest pure subgroup of G containing B U {z,) . During the next w moves 
of FWl( F ,  A) player V enumerates J and 3 responds by enumerating some 
H gF . Since z is a winning strategy, H has to be a subgroup of F . But now 
HIK is free, whereas J I B  is nonfree, so V will win the game, a contradiction. 

Claim 2. 'd does not win FW,(F,G) . 
Suppose z is a winning strategy of V . If we were willing to use CH, we could 

just take a of cofinality wl such that (F, , G,) is closed under z , and derive 
a contradiction from the fact that F, E G, . However, since we do not want to 
assume CH, we have to appeal to a longer argument. 

Let K = ( 2 9 + + .  Let 93 be the expansion of (H(K) ,E) obtained by adding 
the following structure to it: 

(HI) The function 6 I+ 76. 
(H2) The function 6 I+ z~ . 
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(H3) The function a H C, . 
(H4) A well-ordering < of the universe. 
(H5) The winning strategy z . 
Let % = ( N ,  E , ...) be an elementary submodel of 93 such that ol G N 

and N n 0 2  is an ordinal a of cofinality wl . 
Let D, = {pi: i < wl ) in ascending order. Since Cpi= C, npi , every initial 

segment of C, is in N .  By elementaricity, Gp, E N for all i < wl . Let q5 
be an isomorphism G, -+ F, obtained as follows: 4 restricted to GPOis the 
<-least isomorphism between the free groups GPOand Fo. If q5 is defined on 
all Gp, , j < i , then q5 is defined on Gp, as the <-least extension of Uj,i 
to an isomorphism between GBi and Fi . Recall that by our choice of D, , 
GBi+l/GBiis free, so such extensions really exist. 

We derive a contradiction by showing that 3 can play 4 against z for the 
whole duration of the game gwl(U, 53) . To achieve this we have to show that 
when 3 plays his canonical strategy based on 4 ,  the strategy z of 'd directs 'd 
to go on playing elements which are in N ,  that is, elements of G, uF, . 

Suppose a sequence s = ((x,,y , ) :  y < p) , p < wl , has been played. It 
suffices to show that s E N .  Choose Pi so that the elements of s are in 
GpiUFBi. Now s is uniquely determined by 4 Gpi and z . Note that because 
Cpi = C, n p i ,  4 1 Gpi can be defined inside N similarly as q5 was defined 
above, using Cp, instead of C, . Thus s E N and we are done. 

We have proved that Fwl(F,G) is nondetermined. This clearly implies 
gal(F(wl),G) is nondetermined. 

Remark. R. Jensen [14, p. 2861 showed that if Owl fails, then w2 is Mahlo in 
L . Therefore, if Z',, (94,53) is determined for all almost free groups U and 23 
of cardinality N2,then 0 2  is Mahlo in L . If we start with 0, ,we get an almost 
free group A of cardinality K+ such that Fwl(F(w1) ,A)  is nondetermined. 

3. gwl( F ( u l ) ,G) CAN BE DETERMINED FOR ALL G 

In this section all groups are assumed to be abelian. It is easy to see that 3 
wins Z',,(F(wl), G) for any uncountable free group G ,  so in this exposition 
F (wl )  is a suitable representative of all free groups. In the study of determinacy 
of F',, (F(wl) ,U) for various U it suffices to study groups U, since for other 
M player V easily wins the game. 

Starting from a model with a Mahlo cardinal we construct a forcing extension 
in which g',,(F(ol),G) is determined, when G is any group of cardinality 
N 2 .  This can be extended to groups G of any cardinality, if we start with a 
supercompact cardinal. 

In the proof of the next results we shall make use of stationary logic L(aa) 
introduced in [17]. For the definition and basic facts about L(aa) the reader is 
referred to [I]. This logic has a new quantifier aa  s quantifying over variables 
s ranging over countable subsets of the universe. A cub set of such s is any set 
which contains a superset of any countable subset of the universe and which is 
closed under unions of countable chains. The semantics of aa s is defined as 
follows: 

aa sq5(s, ...) H #(s, .. .) holds for a cub set of s 



Note that a group of cardinality N1 is free if and only if it satisfies 

(+I aa s aa sl(s c s' + s is free and s l /s  is free). 

Proposition 5. Let G be a group of cardinality at most N2. Then the following 
conditions are equivalent: 

( 1 )  3 wins Fml( F ( w l ),G). 
(2 )  G satisfies (+) . 
(3 )  G is the union of a continuous chain (G, : a < 02)offree subgroups with 

G,+l/G, N1-freefor all a < 0 2 .  

Proof. ( 1 )  implies (2):Suppose 3 wins Fa,( F(a l ), G). By Proposition 2 we 
have It-c,l(lcl, "G is free". Using the countable completeness of Col(lG1, w l )  
it is now easy to construct a cub set S of countable subgroups of G such that 
if A E S then for all B E S with A G B we have B / A  free. Thus G satisfies 
(+) . (2 )implies (3 )quite trivially. (3 )implies ( 1 ) :  Suppose a continuous chain 
as in ( 3 )exists. If we collapse IGl to N l  , then in the extension the chain has 
length < w2 . Now we use Theorem 1 of [S]: 

If a group A is the union of a continuous chain of < o 2  free 
subgroups {A,: a < y )  of cardinality 5 N1 such that each 
A,+l /A,  is N 1-free, then A is free. 

Thus G is free in the extension and ( I )  follows from Proposition 2. 

Remark. Conditions ( 1 )  and ( 2 )of Proposition 5 are equivalent for G of any 
size. 

Let us consider the following principle: 

For all stationary E c So2 and countable subsets a, of a E E 
such that a, is cofinal in a and of order type o there is a(*I closed C G o 2  of order type wl such that { a  E E :  a,\C is 
finite) is stationary in C . 

Lemma 6. The principle (*) implies that Fml( F ( o l ), G)  is determined for all 
groups G of cardinality N 2 .  
Proof. Suppose G is a group of cardinality N 2 .  We may assume the domain 
of G is 0 2 .  Let us assume G is N2-free, as otherwise V easily wins. We 
prove that G satisfies condition (3 )of Proposition 5 and thereby that 3 wins 
F m ,  ( F ( u 1 )Y G). 

To prove condition (3 )of Proposition 5, assume the contrary. Then G can be 
expressed as the union of a continuous chain (G,: a < 02)of free groups with 
G,+l /G, non-N1-free for a E E , E c o 2  stationary. By Fodor's Lemma, we 
may assume E c So2 or E C S f .  The latter case is much easier and therefore 
we assume E c So2 . Also we may assume that for all a ,  every ordinal in 
G,+l\G, is greater than every ordinal in G, . Finally by intersecting with a 
closed unbounded set we may assume that for all a E E the set underlying 
G, is a .  Choose for each a E E some countable subgroup b, of G,+l with 
b, + G,/G, nonfree. Let c, = b, n G, . We will choose a, so that any final 
segment generates a subgroup containing c, . Enumerate c, as { g , :  n < o )  
such that each element is enumerated infinitely often. Choose an increasing 
sequence ( a ,  : n < w )  cofinal in a so that for all n , g, E G,, . Finally, for 
each n , choose h, E G,,+l\G,, . Let a, = {h,  : n < o )  u {h,  + g, : n < o )  . It 
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is now easy to check that a, is a sequence of order type w which is cofinal in 
a and any subgroup of G which contains all but finitely many of the elements 
of a, contains c, . 

By (*) there is a continuous C of order type ol such that {a E C :  a,\C 
is finite) is stationary in C .  Let D = ( C  U C,,, b,) . Since ID1 < N1 , D is 
free. 

For any a E C , let 

Note that D = U,,, D, , each D, is countable and for limit point 6 of C ,  
DJ = U,,(,,,) D, . Hence there is an a E C nE such that a,\C is finite and 
DID, is free. Hence b, + D,/D, is free. But b, + D,/D, E b,/b, n D, = 
b,/b, nG, ,which is not free, a contradiction. 

For the next theorem we need a lemma from [6]. A proof is included for the 
convenience of the reader. 

Lemma 7 [6]. Suppose A is a regular cardinal and Q is a notion of forcing 
which satisfies the A-C.C. Suppose 3 is a normal A-complete ideal on A and 
Y+= { S  A: S @ 3 ) .  For all sets S E 3+and sequences of conditions 
(p , :  ~ E S ) ,thereisaset  C with A \ C E Y  sothatforall a~ C n S ,  

p, IFq " { P :  pp E 6) E Yf , where Y is the ideal generated by Y . "  
Proof. Suppose the lemma is false. So there is an 3-positive set S 1G S such 
that for all a E S 1  there is an extension r, of p, and a set I, E Y (note: I, 
is in the ground model) so that 

r , l F { / ? : p g ~ 6 ) ~ 1 , .  

Let I be the diagonal union of { I ,  : a E S t )  . -
Suppose now that a < P and a ,  P E (S1\I). Since P $ I ,  r, I t - pp $ G .  

Hence r, lk rg $ 6 . So r, , rg are incompatible. Hence {r, : a E S1\I) is 
an antichain which, since S 1  is 3-positive, is of cardinality A. This is a 
contradiction. 

Remark. It is a well-known fact that the ideal 7of Lemma 7 is forced by Q 
to be A-complete and normal. 

Theorem 8. Assuming the consistency of a Mahlo cardinal, it is consistent that 
(*) holds and hence that Fw,( F ( o l ) ,G )  is determined for all groups G of 
cardinality N2 . 
Proof. By a result of Harrington and Shelah [7] we may start with a Mahlo 
cardinal K in which every stationary set of cofinality o reflects, that is, if 
S G K is stationary, and cf(a) = o for a E S , then S nA is stationary in A 
for some inaccessible A < K . 

For any inaccessible A let PAbe the Levy-forcing for collapsing A to 0 2 .  
The conditions of PAare countable functions f :  A x ol -t A such that f ( a ,  P )  
< a: for all a and p and each f is increasing and continuous in the second 
coordinate. It is well known that PAis countably closed and satisfies the A-chain 
condition [11, p. 1911. 
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Let B= P, . Suppose p E P and 

p It- "E G S: is stationary and 

V a  E E(ii, G a is cofinal in a and of order type a) ."  

Let 
S = {a  < K:  34 5 p(q It a E E) )  

For any a E S let p, 5 p such that p, It- a E E .  Since P is countably 
closed, we can additionally require that for some countable a, G a we have 
p, It- ii, = a,. 

The set S is stationary in rc , for if C G rc is cub, then p It- C nk # 0 ,  

whence C nS # 0.  Also cf(a) = o for a E S . Let A be inaccessible such 
that S nA is stationary in A .  We may choose A in such a way that a E S n A 
implies p, E PA. By Lemma 7 there is a 6 E S n A such that 

p~ It-pA"El = {a < A: p, E G )  is stationary." 

Let Q be the set of conditions f E P with dom(f) G (rc\A) x ol . Note 
that P E PA8Q.Let G be P-generic containing p~ and GI = G n PA for 
any inaccessible A 5 r c .  Then G, is PA-generic and o 2  of V[Gn] is A .  Let 
us work now in V[Gn]. Thus A is the current o 2 ,  E l  = {a < A: p, E GA) 
is stationary, and we have the countable sets a, G a for a E E l  . Since Q 
collapses A there is a name f such that 

It-q "1:ol +A is continuous and cofinal." 

More precisely f is the name for the function f defined by f (a)= P if and 
only if there is some g E G so that g(A, a) = P . Let 2; denote the range of 
f . We shall prove the following statement: 

Claim. It-q {a < A: a,\e is finite) is stationary in e . 
Suppose q E Q so that q It- ''5G ol is a cub." Let trJl be an appropriate 

expansion of (H(rc), E) and ('?Ii: i < A), Ti = (Ni,E , . . . ) , a sequence of 
elementary submodels of trJl such that 

(i) Everything relevant is in No. 
(ii) If ai = Ni nA, then ai < aj for i < j < A .  
(iii) Ni+l is closed under countable sequences. 
(iv) [Nil= 0 1 .  

(v) Ni = Uj<i N, for i a limit ordinal. 
Choose y = ai E E l  and let (in: n < o) be a sequence of successor ordinals 

such that y = sup{ai,: n < a). Let qo 5 q and Po E ol such that go, 
POE Nio , 

qo It- "Po E 5" 
and q0 decides the value of f"po (which will by elementaricity necessarily be 
a subset of aio). 

If q, and p, are defined we choose q,+l 5 q, and P,+l E ol such that 
qn+l, B n + l  E Ni,+l , 

qn+l 11- "P,+l E 5 and c f " ~ ~ + ~a, n (ain+,\ain) G ai,+lw 



EHRENFEUCHT-~SSE-GAME OF LENGTH wl 

and q,+l decides f l ' ~ , + ~. Finally, let 

q , = u { q , : n < w )  and ~ = u { ~ , : n < w ) .  

Then 
q, IF "P E 5 and a , \ f " ~is finite." 

The claim, and thereby the theorem, is proved. 

Corollary 9. The statement that F,, (U, 23) is determinedfor every structure U 
of cardinality N 2  and every uncountablefree group 23, is equiconsistent with the 
existence of a Mahlo cardinal. 

Remark. If F,, (A, F(wl) )  is determined for all groups A of cardinality rcf , 
rc singular, then 13, fails. This implies that the Covering Lemma fails for the 
Core Model, whence there is an inner model for a measurable cardinal. This 
shows that the conclusion of Theorem 8 cannot be strengthened to arbitrary G . 
However, by starting with a larger cardinal we can make this extension: 

Theorem 10. Assuming the consistency of a supercompact cardinal, it is consistent 
that F,, (F(col), G) is determinedfor all groups G . 
Proof. Let us assume that the stationary logic L,,,(aa) has the Lowenheim-
Skolem property down to N1 . This assumption is consistent relative to the 
consistency of a supercompact cardinal [2]. Let G be an arbitrary N2-free 
group. Let H be an L(aa)-elementary submodel of G of cardinality N 1 .  
Thus H is a free group. The group H satisfies the sentence (+) ,whence so 
does G . Now the claim follows from Proposition 5. 

Corollary 11. Assuming the consistency of a supercompact cardinal, it is consis-
tent that F,, (U, 23) is determinedfor every structure U and every uncountable 
free group 23. 

4. F,, ( a ,  23) CAN BE DETERMINED 

FOR ALL AND OF CARDINALITY N2 

We prove the consistency of the statement that F,, (U, !El) is determined for 
all U and 23 of cardinality 5 N2 assuming the consistency of a measurable 
cardinal. Actually we make use of an assumption that we call I*(o)concern-
ing stationary subsets of co2. This assumption is known to imply that co2 is 
measurable in an inner model. It follows from the previous section that some 
large cardinal axioms are needed to prove the stated determinacy. 

Let I*(co) be the following assumption about col-stationary subsets of 0 2  : 

I*(co): Let 4 be the col-nonstationary ideal NS,, on co2 . Then 4+has a 
o-closed dense subset K . 

Hodges and Shelah [9] define a principle I(co) , which is like I*(co) except 
that Y is not assumed to be the col-nonstationary ideal. They use I(o)to 
prove the determinacy of an Ehrenfeucht-Fraisse-game played on several boards 
simultaneously. 

Note that I*(w) implies 4 is precipitous, so the consistency of I*(o)im-
plies the consistency of a measurable cardinal [12]. For the proof of the follow-
ing result the reader is referred to [12]: 
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Theorem 12 (Laver). The assumption I*(o)is consistent relative to the consis-
tency of a measurable cardinal. 

We shall consider models Q, 93 of cardinality N2 ,SO we may as well assume 
they have 012 as universe. For such Q and a < 0 2  we let Q, denote the 
structure Q na . Similarly 93, . 
Lemma 13. Suppose Q and 93 are structures of cardinality N2. If V does not 
have a winning strategy in Fa,(Q, 93) , then S = {a: Q, E 93,) is ol-stationary. 
Proof. Let C c 0 2  be wl-closed and unbounded. Suppose S n C = 0 . We 
derive a contradiction by describing a winning strategy of V : Let n : ol x ol x 
2 + o l  beontowith a , p , d  < n ( a , P , d )  forall a , P  < wl and d < 2 .  If 
a < o 2 ,  let 8,: ol + a be onto. Suppose the sequence ((xi,yi) : i < a) has 
been played. Here xi denotes a move of V and yi a move of 3 .  During the 
game V has built an ascending sequence {ci : i < a) of elements of C . Now 
he lets c, be the smallest element of C greater than all the elements xi ,  yi ,  
i < a .  Suppose a = n(i , y , d)  . Now V will play 8 ,( y )  as an element of Q,  
if d = 0 ,  and as an element of 93 if d = 1 .  

After all wl moves of Fa,(%,93) have been played, some Q, and 93, , 
where a E C ,have been enumerated. Since a $ S ,  V has won the game. 

Theorem 14. Assume I*(o). The game Fa,(Q,93) is determinedfor all Q and 
93 of cardinality 5 N2. 
Proof. Suppose V does not have a winning strategy. By Lemma 13 the set 
S = {a: Q, E 93,) is ol-stationary. Let I and K be as in I*(o). If a E S ,  
let h,: Q, E 93,. We describe a winning strategy of 3 .  The idea of this 
strategy is that 3 lets the isomorphisms h, determine his moves. Of course, 
different h, may give different information to 3 ,  so he has to decide which h, 
to follow. The key point is that 3 lets some h, determine his move only if 
there are stationarily many other hg that agree with h, on this move. 

Suppose the sequence ((xi,yi): i < a) has been played. Again xi denotes 
a move of V and yi a move of 3 .  Suppose V plays next x, and this is (say) 
in A .  During the game 3 has built a descending sequence {Si: i < a )  of 
elements of K with Soc S. The point of the sets Si is that 3 has taken care 
that for all i < a and /? E Si we have yi = ha(xi) or xi = hp(yi) depending 
on whether V played xi in A or B . Now 3 lets SL c n,,, Si so that SL E K 
and Vi E SL (x, < i) . For each i E SA we have hi(xa) < i . By normality, 
there are an S, c SA in K and a y, such that hi(x,) = y, for all i E S, . 
This element y, is the next move of 3 .  Using this strategy 3 wins. 

5. A NONDETERMINED Fa,(Q, 93) 
WITH % AND 93 OF CARDINALITY N3 

We construct directly in ZFC two models Q and 93 of cardinality N j  with 
Fa,(Q, 93) nondetermined. It readily follows that such models exist in all car-
dinalities > N g  . The construction uses a square-like principle (Lemma 16), 
which is provable in ZFC. 

Lemma 15 [18]. There is a stationary X c S: and a sequence (D,: a E X )  
such that 

1. D, is a cub subset of a for all a E X .  



EHRENFEUCHT-~SSE-GAMEOF LENGTH w ,  577 

2. The order type of D, is ol . 
3. If a ,  p E X and y < min{a , p)  is a limit of both D, and Dg , then 

D , n y = D g n y .  
4. If y E D, , then y is a limit point of D, ifand only if y is a limit ordinal. 

Proof. See [ I S ,  Theorem 4.11 or [3,Lemma 7.71. 

Lemma 16. There are sets S , T ,  and C, for a E S such that the following 
hold: 

1 .  S g S,3 u S: and S n S: is stationary. 
2. T g S,3 is stationary and S n T = 0 .  

3. If a E S ,  then C, G a n S is closed and of order-type 5 ol . 
4. If a E S and p E C, , then Cg = C, n j3 . 
5. fa E S n S : ,  then C, is cub on a .  

Proof. Let X and (D, : a E X )  be as in Lemma 15. Let St = X uY ,where Y 
consists of ordinals which are limit points < a of some D, , a E X . If a E X , 
we let C, be the set of limit points < a of D, . If a E Y,  we let C, be the 
set of limit points < a of Dg na ,  where P > a is chosen arbitrarily from X . 

Now claims 1 ,  3, 4 and 6 are clearly satisfied. 
Let S; = Ui<,2 Ti where the T, are disjoint stationary sets. Since GI 5 wl , 

there is i, < such that i 2 i, implies n Ti = 0 .  Let S" G St be 
stationary such that a E S" implies i, is constant i . Let T = Tj . Finally, let 
S = S" uU{C,: a E S") . Claim 2 is satisfied, and the lemma is proved. 

Theorem 17. There are structures and 23 of cardinality N3 with one binary 
predicate such that the game F,, (a,23) is nondetermined. 
Proof. Let S , T , and (C, : a E S )  be as in Lemma 16. We shall construct a 
sequence {M,  : a < 0 3 )  of sets and a sequence {G, : a E S )  of functions such 
that the conditions (MI)-(M5)below hold. Let W, be the set of all mappings 
G$' ...G;; ,where y o ,  ... , y, E S na ,  di E {- 1 , 1) , G: means G, and G;' 
means the inverse of G, . Let W = W,, . (Note that W consists of a set of 
partial functions.) 

The conditions on the M,'s and the Go's are 
( M I )  M,GMg if a < P , a n d  M,cM,+l if a E S .  
(M2) M, = U,,, M, for limit v . 
(M3) G, is a bijection of for a E S . 
(M4)If P E S and a E Cg , then G, G Gg . 
(M5) If for some P ,  Gg(a) = b and for some w E W , w ( a )  = b , then 

there is some y so that w G G, . Furthermore if P is the minimum ordinal 
so that Gg(a)= b then y = j? or /3 E C, . 

In order to construct the set M = Uai0, Ma and the mappings G, we define 
an oriented graph with M as the set of vertices. We use the terminology of 
Serre [16]for graph-theoretic notions. If x is an edge, the origin of x is 
denoted by o ( x )  and the terminus by t ( x ). Our graph has an inverse edge F 
for each edge x . Thus o(X) = t ( x )  and t (X)= o ( x ). Some edges are called 
positive, the rest are called negative. An edge is positive if and only if its inverse 
is negative. For each edge x of M there is a set L ( x )  of labels. The set of 
possible labels for positive edges is {g,  : a < u s ). The negative edges can have 
elements of {g;' : a < 0 3 )  as labels. The labels are assumed to be given in 
such a way that a positive edge gets g, as a label if and only if its inverse gets 
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the label g;l . During the construction the sets of labels will be extended step 
by step. 

The construction is analogous to building an acyclic graph on which a group 
acts freely. The graph then turns out to be the Cayley graph of the group. The 
labelled graph we will build will be the "Cayley graph" of W which will be 
as free as possible given (M1)-(M4). Condition (M5) is a consequence of the 
freeness of the construction. 

Let us suppose the sets Mp , P < a ,  of vertices have been defined. Let 
M,, = Up<, Mg . Some vertices in M,, have edges between them and a set 
L(x) of labels has been assigned to each such edge x . 

If a is a limit ordinal, we let M, = M,, . So let us assume a = P + 1. 
If p $ S ,  M, = Mp . So let us assume /3 E S .  Let y = sup(Cp). Notice 
that since S consists entirely of limit ordinals and Cp c S ,  either y = P or 
y + l < P .  

Case 1. y = /?: We extend Mg to M, by adding new vertices {P, : z E Z} 
and for each z E Z a positive edge x? with o(x2)  = PZ and t (x2)  = Pzfl. 
We also let L (x2 )  = {gg) u {gs :P E Cs) . 

Case 2. y + 1 < p : We extend Mp to M, by adding new vertices {PL : z E 
Z\{O)) for each P E MB\Myfl. For notational convenience let Pi = P . Now 
we add for each P E MB\M,+1 new edges as follows. For each z E Z we add 
a positive edge x: with 

This determines completely the inverse of x 5  . 
This ends the construction of the graph. In the construction each vertex P 

in M,+l , a E S ,  is made the origin of a unique edge x: with g, E L(x:). 
We define G,(P) = t(x:) . 

The construction of the sets M, and the mappings G, is now completed. It 
follows immediately from the construction that each G, , a E S, is a bijection 
of M,+l . So (M1)-(M3) hold. (M4) holds, because g, is added to the labels 
of any edge with gp ,where P E C, , as a label. Finally, (M5) is a consequence 
of the fact that the graph is circuit-free. 

Let us fix a0 E Ml and bo = Gg,(ao), where Po E C, for all a E S .  Note 
that we may assume, without loss of generality, the existence of such a Po. 

If ao, a1 E M ,  let 

R(a,,al)= {(ah, a',) E M ~ :3w E W(w(ao)= ah A w(al) = a',)). 

We let 

and show that gm,(a,%) is nondetermined. 
The reduction of the language of !2l and % to one binary predicate is easy. 

One just adds a copy of 0 3 ,together with its ordering, and a copy of M x M to 
the structures with the projection maps. Then fix a bijection 6 from 0 3 to M2  . 
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Add a new binary predicate R to the language and interpret R to be contained 
in 0 3  x M 2  such that R(P , ( a ,b ) )  holds if and only if R$(p)(a,b )  holds. 
We can now dispense with the old binary predicates. We have replaced our 
structure by one in a finite language without making any difference to who wins 
the game F,, ( U ,93) . The extra step of reducing to a single binary predicate is 
standard. 

An important property of these models is that if a E S n S: , then G, I M, 
is an automorphism of the restriction of 'Jn to M, and takes a0 to bo . 
Claim 3. Q does not win gml(a ,23) . 

Suppose Q has a winning strategy z . Again, there is a quick argument which 
uses CH: Find a E S such that M, is closed under z and c f (a )= wl . Now 
C, is cub on a ,  whence G, maps M, onto itself. Using G, player 3 can 
easily beat z ,a contradiction. 

In the following longer argument we need not assume CH. Let K be a large 
regular cardinal. Let 4 be the expansion of ( H ( K ), E )  obtained by adding the 
following structure to it: 

(H1 )  The function a HM, . 
(H2)The function a I-+ G, . 
(H3)The function a H C, . 
(H4)A well-ordering <* of the universe. 
(H5)The winning strategy z . 
(H6)The sets S and T . 
Let '32 = ( N ,  E , ...) be an elementary submodel of 4 of cardinality N 2  

such that a =  N n o 3  ESnS: .  
Now C, is a cub of order-type wl on a and G, maps M, onto M,. 

Moreover, G, is a partial isomorphism from U into 93 . Provided that z does 
not lead Q to play his moves outside M, , 3 has an obvious strategy: he lets 
G, determine his moves. So let us assume a sequence ( (x t,yy)  :5 < y )  has 
been played inside M, and y < ol . Let P E C, such that Mp contains the 
elements xt ,yt for 5 < y . The sequence (yt :5 < y )  is totally determined by 
Gp and 2 .  Since Gp E N,  (yt : < y )  E N ,and we are done. 

Claim 4. 3 does not win Fm,( U ,  93) . 
Suppose 3 has a winning strategy z . Let 4 be defined as above and '32= 

(N,  E , ...) be an elementary submodel of 4 of cardinality N 2  such that a = 
N n o 3  E T . We let Q play during the first o moves of F,, (a,23) a sequence 
(a, : n < o) in U such that if a,  is the least a ,  with a, E M,, , then the 
sequence ( a ,: n < o) is ascending and sup{a, : n < o )  = a .  Let 3 respond 
following z with (b, :n < w )  . As his move number o player Q plays some 
element a, E M\M, in U and 3 answers according to z with b, . 

For all i 5 o , R(,, (ao,ai) holds. Hence R(, ,,i) (bo, bi) holds. So there 
is wi such that wi(ao)= bo and wi(ai)= b i .  Since Gpo(ao)= bo ,  by (M5),  
for each i there is pi so that Gp,(ai)= bi . We can assume that pi is chosen 
to be minimal. Notice that for all i ,  pi > ai and for i < o ,  pi E '32. So 
Sup{pi: i < w )  = a .  

Also, by the same reasoning as above, for each i < o , R(,,,aw)(bi,b,) holds. 
Applying (M5),we get that Gpw(ai)= bi . Using (M5) again and the minimality 
of p i ,  for all i < o ,  pi E Cgw. Thus a is a limit of elements of CBo, 
contradicting a E T . 
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