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Abstract

We show that, assuming the consistency of a supercompact cardi-
nal, the first (weakly) inaccessible cardinal can satisfy a strong form
of a Löwenheim-Skolem-Tarski theorem for the equicardinality logic
L(I), a logic introduced in [5] strictly between first order logic and sec-
ond order logic. On the other hand we show that in the light of present
day inner model technology, nothing short of a supercompact cardinal
suffices for this result. In particular, we show that the Löwenheim-
Skolem-Tarski theorem for the equicardinality logic at κ implies the
Singular Cardinals Hypothesis above κ as well as Projective Determi-
nacy.
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1 Introduction

The Löwenheim-Skolem Theorem is perhaps the most quoted result about
first order logic. It shows the “local” character of first order formulas. The
truth of a first order sentence depends only on a small part of the set the-
oretical universe. For many purposes first order logic is ideal, but there are
also interesting and useful extensions of first order logic.

Example 1 • Second order logic L2 extends first order logic with quanti-
fiers of the form ∃Rφ(R, x0, . . . , xn−1), where the second order variable
R ranges over n-ary relations on the universe for some fixed n.

• The logic L(Q1) extends first order logic with a new quantifier Q1 bind-
ing one variable. The formula Q1x0φ(x0, . . . , xn−1) has the meaning
“there are uncountably many elements x0 satisfying φ(x0, . . . , xn−1)”.

• The logic L(QMM
1 ) extends first order logic with a new quantifier QMM

1

binding two variables. The formula QMM
1 x0x1φ(x0, . . . , xn−1) has the

meaning “there is an uncountable set X such that any two elements x0

and x1 from X satisfy φ(x0, . . . , xn−1)”.

Second order logic is in a sense the opposite of first order logic. It is
powerful enough to capture exactly a large part of the set theoretical universe.
The logics L(Q1) and L(QMM

1 ) are more close to first order logic. The first is
axiomatizable and so is the second, if we assume 3. In this paper we study
the following two, in a sense intermediate, extensions of first order logic:

Example 2 • Equicardinality logic L(I) [5]. This logic extends first or-
der logic by formulas of the form

Ix0y0φ(x0, . . . , xn−1)ψ(y0, . . . , yn−1)

with the meaning: “for given a1, ..., an−1 and b1, ..., bn−1 the cardinality
of the set of elements x0 satisfying φ(x0, a1, ..., an−1) is the same as the
cardinality of the set of elements y0 satisfying ψ(y0, b1, ..., bn−1)”.

• Equicofinality logic L(Qec) [11]. This logic extends first order logic by
formulas of the form

Qecx0x1y0y1φ(x0, . . . , xn−1)ψ(y0, . . . , yn−1)
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with the meaning: “for given a2, ..., an−1 and b2, ..., bn−1, both the set of
pairs of elements x0 and x1 satisfying φ(x0, x1, a2, ..., an−1) and the set
of pairs of elements y0 and y1 satisfying φ(y0, y1, b2, ..., bn−1) are linear
orders, and moreover these linear orders have the same cofinality.”

The logics L(I) and L(Qec) are in a clear sense between first order logic
and second order logic. The results of this paper show that on the basis of
ZFC alone there is mixed information as to whether L(I) and L(Qec) are
closer to first order logic or to second order logic.

Very little is known about the logic L(Qec). Shelah [11] conjectures that
this logic is compact and axiomatizable. The hidden power of this logic is
revealed in models with a wellordering. There the quantifier Qec can be used
to pick elements of the well-ordering corresponding to regular cardinals. This
puts severe limitations e.g. to the existence of small elementary submodels.
In a sense, the stronger logic L(I,Qec) is better understood. At least we
know that this logic is very far from compact and axiomatizable, because
L(I) is.

There is a quite general concept of a logic, that the above examples are
special cases of. We define it as follows:1

Definition 3 Let τ be a fixed vocabulary. A logic L consists of

1. A set, also denoted by L, of “formulas” of L. If φ ∈ L, then there is a
natural number nφ, called the length of the sequence of free variables,

2. A relation
A |= φ[a0, . . . , anφ−1]

between models of vocabulary τ , sequences (a0, . . . , anφ−1) of elements
of A and formulas φ ∈ L. It is assumed that this relation satisfies the
isomorphism axiom, that is, if π : A ∼= B, then A |= φ[a0, . . . , anφ−1]
and B |= φ[πa0, . . . , πanφ−1] are equivalent.

We call τ the vocabulary of the logic L.

Note that no syntax is a priori assumed of a logic. The meaning of “φ has
a model”, and “the theory T ⊂ L has a model” is obvious. We write A ≡L B
if A |= φ and B |= φ are equivalent for all φ ∈ L with nφ = 0. We write

1This is a little different than usual (e.g. [1, 7]) in that our logics have a fixed vocabulary.
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A ≺L B if A |= φ[a0, . . . , anφ−1] and B |= φ[a0, . . . , anφ−1] are equivalent for
all φ ∈ L and all a0, . . . , anφ−1 ∈ A.

We now define two natural invariants for any logic L:

Definition 4 The Löwenheim-Skolem number LS(L) of L is the smallest
cardinal κ such that if a theory T ⊂ L has a model, it has a model of cardi-
nality < max(κ, |T |). The Löwenheim-Skolem-Tarski number LST(L) of L
is the smallest cardinal κ such that if A is any τ -structure, then there is a
substructure A′ of A of cardinality < κ such that A′ ≺L A.

Note that LS(L) always exists, because L is a set. In general there is no
guarantee that LST(L) exists, but if it exists, it is at least as big as LS(L).
We can think of the sizes of LS(L) and LST(L) as a “test” of how close the
logic is to being first order. For first order logic these numbers are both ℵ1,
and for L(Q1) and L(QMM

1 ) they are ℵ2. If κ is strongly inaccessible, then
LST(Lκκ) = κ.

The Löwenheim-Skolem numbers of L(I) and L(Qec) are quite high in the
hierarchy of cardinal numbers, certainly both cardinals are fixed points of the
function α 7→ ℵα. Whether the Löwenheim-Skolem number of L(I) can be
below the first weakly inaccessible, was asked in [16] and has been an open
question ever since, but will be settled positively in this paper (Theorem 21).
On the other hand, in the inner model Lµ it is easy to see that LS(L(I)) is
above the measurable cardinal.

For second order logic, LS(L2) is the supremum of Π2-definable ordi-
nals ([15]), which means that it exceeds the first measurable, the first κ+-
supercompact κ, and the first huge cardinal if they exist.

Theorem 5 ([8]) 1. Suppose κ is strong, then LS(L2) < κ.

2. LST(L2) exists if and only if supercompact cardinals exist, and then
LST(L2) is the first of them.

Proof. For the first claim, suppose T is a theory in L2 and T has a model
A. We may assume that the universe of A is an ordinal δ. Let i be an
embedding into M with critical point κ such that T,A,P(δ) ∈ M . It is
easy to prove by induction on formulas φ ∈ L2 that for all ~a ∈ An and
~X ∈ P(An1)× ...× P(Ank) we have

A |= φ(~a, ~X) ⇐⇒ M |= “A |= φ(~a, ~X)”.
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The point is that all subsets of A are in M . Thus M |= ∃x(x |= T and |x| <
i(κ)). Hence there is in V a model of T of cardinality < κ. For the second
claim we refer to [8] but give the following argument for LST(L2) ≤ κ for
supercompact κ since we will use it later: Suppose A is a model of cardinality
λ. Let i be an elementary embedding of V into a transitive M so that
λM ⊆ M and i(κ) > λ. Let B be the pointwise image of A under i. Since
λM ⊆ M , B ∈ M . It is easy to prove by induction on formulas φ ∈ L2 that
for all ~a ∈ An and ~X ∈ P(An1)× ...× P(Ank) we have

M |= “B |= φ(~a, ~X)” ⇐⇒ A |= φ(~a, ~X)

⇐⇒ M |= “i(A) |= φ( ~i(a), ~i(X))”.

Thus M |= ∃B(B ≺ A and |B| < i(κ)). Hence there is in V a model C ≺ A
of T of cardinality < κ. 2

So second order logic meets the test of being very far from first order in
terms of the size of its Löwenheim-Skolem numbers. We show that according
to this test, L(I) and L(Qec) can be close to second order logic but can also
be, relatively speaking, close to first order logic.

The strongest large cardinal axiom from the point of view of Löwenheim-
Skolem theorems is Vopenka’s Principle, which states that every proper class
of structures of the same vocabulary has two members one of which is isomor-
phic to an elementary substructure of the other. In [13] an equivalent condi-
tion is given: Suppose A is a class. Let us call a cardinal κ A-supercompact
if for all η > κ there is α < κ and an elementary embedding

j : (Vα,∈, A ∩ Vα)→ (Vη,∈, A ∩ Vη)

with a critical point γ such that j(γ) = κ. It is proved in [13] that Vopenka’s
Principle is equivalent to the statement that for every class A there is an
A-supercompact cardinal. From this and the proof of Theorem 5 we get the
following unpublished result of J. Stavi:

Theorem 6 Vopenka’s Principle holds if and only if every logic has a Löwen-
heim-Skolem-Tarski number.

For the intermediate logics L(I) and L(I,Qec) the analogue of Theorem 5
(2) is the substantially less conclusive:

Theorem 7 ([14]) 1. LST(L(I)) exists only if inaccessible cardinals ex-
ist, and then LST(L(I)) is at least as large as the first of them.
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2. LST(L(I,Qec)) exists only if Mahlo cardinals exist, and then the cardi-
nal LST(L(I,Qec)) is at least as large as the first of them.

Proof. Let A = (R(κ+), ε), where κ = LST(L(I)). By the definition of
LST(L(I)) there is a transitive set M of power < κ and a monomorphism
i : (M, ε)→ A which preserves L(I)-truth. Moreover, every M -cardinal is a
real cardinal. Let λ be the largest cardinal in M . Clearly i(λ) = κ > λ. Let γ
be the first ordinal moved by i. Trivially, γ is a limit cardinal. Suppose f ∈M
is a cofinal δ-sequence in γ for some δ < γ. Now i(f) is a cofinal δ-sequence in
i(γ) whence i(f)(β) > γ for some β < δ. But i(f)(β) = i(f(β)) = f(β) < γ.
Thus γ is weakly inaccessible in M , and therefore, i(γ) is weakly inaccessible
in V . The second claim is proved similarly. 2

The results of this paper explain why Theorem 7 is weaker than The-
orem 5. The proof theoretic strength of the existence of either LST(L(I))
or LST(L(I,Qec)) exceeds substantially what follows from the mere size of
these cardinals. Accordingly, and unlike LST(L2), the numbers LST(L(I))
and LST(L(I,Qec)) do not have to be very high in the scale of large car-
dinals. We will show in this paper that LST(L(I)) can be the first weakly
inaccessible cardinal and LST(L(I,Qec)) can respectively be the first Mahlo
cardinal. Also they can be of continuum size:

Theorem 8 ([14]) Suppose κ is a supercompact cardinal and P is the notion
of forcing Cκ. Let L be a provably C-absolute logic which is provably a sublogic
of L2. Then

P LST(L(I, R)) ≤ 2ω.

Proof. We give an outline of the proof for completeness. Suppose A is
a name for a finitary structure with universe λ in the P-forcing language.
Let i : V → M be an elementary embedding of the universe such that
i(κ) > λ, λM ⊆ M and i“κ = κ. Let B be the point-wise image of A under
i. Using the fact that P preserve cardinals and cofinalities it is possible to
show

M |= “ i(P) i : B →L(I,R) i(A)”. (1)

It follows from this that

M |= “ i(P) i(A) has an L-elementary substructure of power < i(κ)”.

Therefore

P A has an L-elementary substructure of power < κ.
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To see some of the strength of the Löwenheim-Skolem-Tarski Theorem
for the equicardinality quantifier, let us recall the following observation from
[14]: Let A be the structure (R(κ+),∈). Let π : (M,∈) → (R(κ+,∈) be an
elementary embedding with M transitive and |M | < κ. If δ = M ∩On, then
π � Lδ : (Lδ,∈) → (Lκ+ ,∈). Thus 0# exists. Obviously this argument can
be considerably strengthened. We show in this paper that the existence of
LST(L(I)) has enough combinatorial power to imply, when combined with
current state of the inner model technology, Projective Determinacy.

2 The Failure of Squares

We have already alluded to the fact that the existence of LST(L(I)) has
non-trivial consistency strength, for example, it implies 0#. In this section
we show that the existence of LST(L(I)) has a much stronger consistency
strength, probably at the level of a supercompact cardinal.

We shall show that the existence of LST(L(I)) implies that the combina-
torial principle �λ fails for every λ above it. For λ singular of cofinality ω we
can do better than that and show that any reasonable version of �λ fails, in
particular a consequence of any reasonable weakening of �λ (for cof(λ) = ω)
fails globally above LST(L(I)). The consequence we allude to is the existence
of “good” scales.

We shall conclude this section by showing that assuming the consistency
of a supercompact cardinal it is consistent that the first LST(L(I)) cardinal
is the same as the first supercompact cardinal.

Definition 9 The square principle �λ says: There is a sequence 〈Cα : α <
λ+ a limit ordinal 〉, such that:

1. Cα is closed unbounded subset of α.

2. The order type of Cα is always ≤ λ.

3. If β is a limit point of Cα, then Cβ = Cα ∩ β.

Theorem 10 If κ is an LST(L(I)) number and λ ≥ κ, then �λ fails.

7



Proof. Suppose 〈Cα : α < λ+ a limit ordinal 〉 is a �λ sequence. Consider
the structure

A = 〈λ+, λ, T, C〉,
where T is a function defined on the limit ordinals in λ+ such that T (α) is
the order-type of Cα, and C is a ternary relation such that C(α, γ, η) holds
if and only if “η is the γ-th member of Cα”. Let B be an L(I)-elementary
substructure of A of cardinality < κ. It is easily verified that the order-type
of the universe B of B is a successor cardinal µ+, where µ is the order-
type of B ∩ λ. Let B∗ be the transitive collapse of B. It is easily seen
that B∗ has the form 〈µ+, µ, T ∗, C∗〉, where for some �µ-sequence 〈C∗α : α <
µ+ a limit ordinal 〉, T ∗ is a function defined on the limit ordinals in µ+ such
that T ∗(α) is the order-type of C∗α, and C∗ is a ternary relation such that
C∗(α, γ, η) holds if and only if “η is the γ-th member of C∗α”. Let π : B∗ → B
be the inverse of the transitive collapse of N . Let δ = sup(B) = sup(π′′B∗).
Note that δ < λ+ and cof(δ) = µ+. Cδ is a closed unbounded subset of δ,
B = {π(α) : α < µ+} = π′′B∗ is cofinal in δ. So the set

A′ = {η < δ : η limit point of Cδ and a limit point of B}

is closed unbounded in Bδ.
For η ∈ A′ let η̄ be the minimal element of B∗ such that π(η̄) ≥ η.

Obviously, η̄ is always defined because sup(A′) = supπ′′B∗ = δ. And if
η1 < η2 in A′, then η̄1 < η̄2.

Claim: For η ∈ A′, η is a limit point of Cπ(η̄).

Proof. Otherwise, let ρ be sup(Cπ(η̄) ∩ η). So our assumption is ρ < η. As
η ∈ A′, the range of π is cofinal in η, so there is ρ′ such that

ρ < π(ρ′) < η ≤ π(η̄).

By elementarity there is ρ′′ such that

π(ρ′) < π(ρ′′) ∈ Cπ(η̄).

But clearly π(ρ′′) < η, so we get a contradiction. � (Claim.)

Claim: If η1 < η2 are in A′, then η̄1 is a limit point of Cη̄2 .

Proof. Otherwise, let ρ be sup(C∗π(η̄2)∩ η̄1). We assume ρ < η̄1, which means

by definition of η̄1 that π(ρ) < η1. By the previous claim η2 is a limit point
of Cπ(η̄2). So by the definition of the square principle

Cη2 = Cπ(η̄2) ∩ η2.
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Note that η2 ≥ π(η̄1). By elementarity of π

π(ρ) = sup(Cπ(η̄2) ∩ π(η̄1)) = sup(Cη2 ∩ π(η̄1)). (2)

On the other hand η1 and η2 are in A′, hence they are limit points of Cδ, so
Cη2 = Cδ ∩ η2 , so η1 is a limit point of Cη2 . This contradicts (2). � (Claim.)

It follows from the previous claim that if η1, η2 ∈ A′, then the order-type
of C∗η̄2 exceeds the order-type of C∗η̄1 . So T ∗(η̄2) > T ∗(η̄1). The set A′ being
cofinal in δ, it has order-type at least µ+, so T ∗ is a monotone function from
a set of ordinals of order-type ≥ µ+ into µ, which is clearly a contradiction.
� (Theorem)

By varying κ we get the following list of weaker and weaker principles.

Definition 11 The weak square principle �κ,λ says: There is a sequence
〈Cα : α < κ a limit ordinal〉, such that:

1. Cα is a set of closed unbounded subsets of α.

2. |Cα| ≤ λ

3. The order type otp(C) of each member C of Cα is ≤ κ.

4. If C ∈ Cα and β ∈ lim(C), i.e. β is a limit point of C, then C ∩β ∈ Cβ.

The principle �λ,λ+ , the so-called “silly square” is actually provable (see
the proof of Lemma 17), so the weakest reasonable principle is �λ,λ. Our goal
is now to show that if λ is singular of cofinality ω and above LST(L(I)), then
�λ,λ fails. This fact by itself indicates that the assumption of the existence
of a LST(L(I)) cardinal has a large consistency strength. At the present it
is not known how to get a model in which �λ,λ fails even for a single singular
λ without assuming a supercompact cardinal.

The way we shall prove the failure of �λ,λ is by refuting an even weaker
property: “The existence of a good sequence in λω/FIN of length λ+”. The
definitions and facts about “good sequences in λω/FIN” are due to Shelah
and based on his pcf theory ([12]). Since we shall need a much simpler
version of the notions and the basic lemmas, we include them for the sake of
completeness.

We consider elements of Onω ordered by eventual domination, i.e. for
f, g ∈ Onω

f <∗ g if f(n) < g(n) for all but finitely many n < ω.
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Definition 12 Suppose 〈fα : α < µ〉 is a <∗-increasing sequence in Onω.

(i) A point δ ∈ µ is called a good point for the sequence if there is a cofinal
set C ⊆ δ and a function α 7→ nα from C to ω such that if α < β in C
and k > max(nα, nβ), then fα(k) < fβ(k).

(ii) The sequence is good, if there is a closed unbounded subset D of µ such
that δ ∈ D implies that δ is a good point of the sequence.

Lemma 13 Suppose δ is a good point for the sequence 〈fα : α < µ〉 and D
is any cofinal subset of δ. Then there is E ⊆ D witnessing the goodness of δ.

Proof. Let C and α 7→ nα witness the goodness of δ. W.l.o.g. otp(C) =
otp(D) = cof(δ). Let E ⊆ D be chosen so that for every γ ∈ E there are
γ−, γ+ ∈ C in such a way that γ− < γ < γ+ and if γ < η ∈ E, then γ+ ≤ η−.
Let mγ ∈ ω (for γ ∈ E) be such that if i > mγ, then fγ−(i) < fγ(i) < fγ+(i).
Let n∗γ = max(nγ− , nγ+ ,mγ). Now, if i ≥ max(n∗γ, n

∗
η), then

fγ(i) < fγ+(i) ≤ fη−(i) < fη(i).

� (Lemma)

Theorem 14 (Shelah [12], see also [2] p.18) If cof(λ) = ω and �λ,λ holds,
then there is a good sequence in λω of length λ+.

Proof. Fix a sequence of regular cardinals λn cofinal in λ. We shall actually
get our sequence in

∏
n<ω λn ⊆ λω. Note that every sequence of functions in∏

n<ω λn of size λ has a <∗-upper bound in
∏

n<ω λn (By taking g(n) = the
supremum of fn(n) for the first λn−1 of our functions).

Fix a �λ,λ-sequence 〈Cα : α < κ a limit ordinal〉. Without loss of general-
ity we can assume that otp(C) < λ for each C ∈ Cα. (Indeed, if otp(C) = λ
when C ∈ Cα, then cof(α) = ω and we can replace C by an ω-sequence
cofinal in α. Note that this C is never used as an initial segment of D ∈ Cβ
for α < β because it would imply otp(D) > λ).

We define the <∗-increasing sequence 〈fα : α < λ+〉 in
∏

n<ω λn by in-
duction. The successor stage is trivial: fα+1(n) = fα(n). Suppose then α is
limit. For each C ∈ Cα we define a function in

∏
n λn as follows:

gC(i) =

{
supβ∈C gβ(i), if otp(C) < λi,
0, otherwise.
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Since Cα ≤ λ, we can find fα ∈
∏

n λn such that gC <
∗ fα for every C ∈ Cα.

Clearly fβ <
∗ fα for every β < α. We claim that 〈fα : α < λ+〉 is a good

sequence. Actually the claim is that every limit δ < λ+ is a good point of
the sequence. If cof(δ) = ω, then we pick a cofinal sequence 〈δn : n < ω〉 in
δ. Let n(δn) be such that for i ≥ n(δn) we have

fδn−1(i) < fδn(i) < fδn+1(i).

Clearly the set {δn : n < ω} and the map δn 7→ n(δn) witness the goodness of
δ. If cof(δ) > ω, pick C ∈ Cδ and let C∗ be the set of limit points of C. Let
n be such that otp(C) < λn and also gC(i) ≤ fα(i) for i ≥ n. If β < β′ ∈ C∗
and if i ≥ max(nβ, nβ′), we get fβ(i) < gC∩β′(i) < fβ′(i) (because β ∈ C∩β′).
So the set C∗ and the map β 7→ nβ witnesses the goodness of δ. � (Theorem)

The result for the existence of LST(L(I)) number follows from

Theorem 15 Suppose κ = LST(L(I)) and λ ≥ κ with cof(λ) = ω. Then
there is no no good sequence in λω of length λ+.

Proof. Suppose cof(λ) = ω. Suppose that 〈fα : α < λ+〉 is a good sequence
in λω. Suppose D is a cub on λ+ such that all points of D of cofinality > ω
are good. Let

F = {(α, β, γ) ∈ λ+ × ω × λ : fα(β) = γ},

and
A = 〈λ+, λ,<, F,D〉.

Since κ = LST (L(I)) there is

B = 〈B,B ∩ λ,<, F ∩B3, D ∩B〉 ≺L(I) A

such that |B| < κ. Of course, ω ⊂ B. Since

∀x¬Iyz(y < x)(z = z)

∀x(x < λ→ ¬Iyz(y < x)(z < λ))

∀y(λ < y → Iuv(u < λ)(v < y))

are true in A, they are true in B and it follows that for some cardinal µ < κ,
otp(B) is µ+ and otp(B ∩ λ) = µ. Let δ = sup(B). Note that δ is a limit
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point of D, and hence δ ∈ D. Since B is cofinal in δ, cof(δ) = µ+. By
elementarity, each function fα, α ∈ B, maps ω into B ∩ λ. We now argue
that δ cannot be a good point of 〈fα : α < λ+〉. Assume otherwise. Then
there is a cofinal set C ⊆ δ and a function α 7→ nα from C to ω such that if
α < β in C and k ≥ max(nα, nβ), then fa(k) < fβ(k). By Lemma 13 we may
assume C ⊆ B. Let C ′ be cofinal in C such that nα is a fixed integer N for
all α ∈ C ′. Now {fα(N) : α ∈ C ′} is a subset of B ∩ λ which is of order-type
µ+, a contradiction. � (Theorem)

Corollary 16 If κ = LST(L(I)), then �λ,λ fails for every singular λ ≥ κ of
cofinality ω. Hence, in particular, PD holds.

The existence of LST(L(I)) also implies the Singular Cardinals Hypoth-
esis above κ, i.e. if λ is singular ≥ κ, then

(SCH) λcof(λ) = max(λ+, 2cof(λ)).

It follows from Silver’s singular cardinals theorem that if λ violates the
SCH and cof(λ) > ω, then λ is a limit of cardinals that violate the SCH.

Lemma 17 ([12]) If λ is a singular cardinal of cofinality ω and λ violates
the SCH, then there is a good sequence in λω of length λ+.

Proof. By Shelah [12], if λ violates SCH and cof(λ) = ω, then there is a
sequence 〈λn : n < ω〉 cofinal in λ such that

∏
n λn/FIN has true cofinality

λ++, which implies that every set of functions in
∏

n λn of cardinality λ+

has a <∗-upper bound in
∏

n λn. Now one can repeat the proof Theorem 14
by replacing in that proof the �λ,λ-sequence by a �λ,λ+-sequence (the “Silly
Square”) and getting the good sequence in

∏
n λn. The silly square is always

true, for if Cα is a cub subset of α of order type cof(α), we can let Cα =
{Cβ ∩ α : β < λ+, α limit point of Cβ} and then 〈Cα : α < λ+〉 witnesses
�λ,λ+ . The proof works as before using the fact that for every α < λ+

|Cα| ≤ λ+ and that every set of functions in
∏

n λn of cardinality λ+ has a
<∗-upper bound. � (Lemma)

Corollary 18 If κ = LST(L(I)), then SCH holds above κ.

Theorem 19 If it is consistent to assume the existence of a supercompact
cardinal, then it is its consistent to assume that LST(L(I)) is the first super-
compact cardinal.
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Proof. We refer to Magidor [9]. In this paper, assuming the existence of a
supercompact cardinal, a model is constructed in which the first supercom-
pact is the first strongly compact. It is achieved by forcing over a model in
which κ is supercompact and arranging for SCH to fail for unboundedly many
λ’s below κ, while preserving the supercompactness of κ. In the resulting
model κ ≥ LST(L(I)) (even κ ≥ LST(L2)). If µ < κ and µ ≥ LST(L(I)),
then pick µ < λ < κ violating SCH to get a contradiction with Corollary 18.
So κ = LST(L(I)) cardinal. � (Theorem)

In the next section we shall show that LST(L(I)) can be much smaller
than the first supercompact cardinal, namely it can be the first inaccessible,
so we are in a true “identity crisis” situation.

3 The First Mahlo Cardinal

As we pointed out in Theorem 7, LST(L(I,Qec)) is, if it exists at all, at
least as big as the first Mahlo cardinal. We now prove the consistency of
LST(L(I,Qec)) being actually equal to the first Mahlo cardinal. As Corol-
lary 16 shows, we have to start from a cardinal substantially larger than a
Mahlo, even a strong cardinal is not enough. So we start from a supercom-
pact cardinal.

Theorem 20 It is consistent, relative to the consistency of a supercompact
cardinal, that LST(L(I,Qec)) is the first Mahlo cardinal.

Proof. Suppose κ is supercompact. We then make every ρ < κ non-Mahlo.
Suppose ρ is Mahlo. Let Pρ be the set of closed bounded sets of singular
cardinals < ρ inversely ordered by end-extension, i.e. a weaker condition is
an initial segment of a stronger condition. For every regular λ < ρ the forcing
notions Pρ contains a λ-closed dense set {C : max(C) > λ}. Therefore Pρ
cannot collapse cardinals < ρ or change their cofinality. Moreover, Pρ does
not add new bounded subsets to ρ. On the other hand, |Pρ| = ρ, so Pρ
preserves all cardinals and cofinalities. In particular Pρ kills the Mahloness
of ρ but preserves inaccessibility of ρ. Now we iterate this forcing. Suppose
µα, α < δ, is an increasing sequence of Mahlo cardinals. Let R0 = Pµ0 .
Suppose Pα has been defined. Let Pα  Q̃α = Pµα and Rα+1 = Rα ? Q̃α. For
limit α let Rα be the direct limit of the previous stages, if α is inaccessible,
and inverse limit otherwise. This will ensure that each Rα, α inaccessible,
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will have the α-c.c. and will therefore preserve the Mahloness of each µβ,
β ≥ α. Let R = Rκ. Now V R |= κ = LST(L(I,Qec). To see why, suppose A
is a structure with universe λ, where λ ≥ κ. Since κ is supercompact, there
is j : V → M , M transitive, such that λM ⊆ M and j(κ) > λ. Note that
j(R) = R?Pκ?R>κ, where R>κ contains a κ-closed dense set. Since R has the
κ-c.c. and R>κ is sufficiently closed, j can be extended to j∗ : V R → M j(R).
Now we can continue as in the proof of Theorem 8. 2

4 The First Inaccessible Cardinal

In this section we prove the main result of this paper:

Theorem 21 If ZFC+“There is a supercompact cardinal” is consistent, so is
ZFC+“There is an inaccessible cardinal”+“LST(L(I)) is the first inaccessible
cardinal”.

The assumption of the consistency of a supercompact cardinal seems, on
the basis of present technology, almost unavoidable. By Theorem 15 above,
we know that the existence of LST(L(I)) implies the negation of �λ,λ for
every large enough λ. The only known way to get a model in which this
holds is to start from a strongly compact cardinal. But the definition of strong
compactness is not sufficient for getting reflection principles which seem to
be necessary for getting the existence of LST(L(I)), so the assumption of a
supercompact cardinal seems natural enough.

4.1 Outline of the Proof

We start with a supercompact cardinal κ. In our final model κ will be the
first inaccessible cardinal, while preserving enough of the reflection properties
of a supercompact cardinal, so that in the model κ will be LST(L(I)).

In the process of achieving this we force a closed unbounded set C of
singular cardinals below κ. This will make κ non-Mahlo. We then collapse
cardinals between consecutive elements of C so that none of them can be
inaccessible. Thus κ has become the first inaccessible. But we have to be
careful about the way in which we collapse cardinals in order to maintain
enough reflection properties of κ, so that κ will be LST(L(I)). The argument
that LST(L(I)) = κ in the final model is similar to the argument of Theorem
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4. Namely, suppose P is the forcing used to get our final model and A is
a name for a finitary structure in V P with domain λ. Let i : V → M be
an elementary embedding of the universe such that i(κ) > λ and λM ⊆ M ,
where κ is the critical point of i (V is our ground model). P will be a forcing
such that P as a forcing notion is a regular subforcing of i(P). In V i(P) we
can define an embedding i∗ : V P → M i(P) extending i. By our assumption
i∗ � A ∈ V P , and i∗ � A is an embedding of A into i∗(A). We would like i∗

to preserve formulas of L(I). Given that we are done because

M i(P) |= “i∗(A) has an L(I)-elementary substructure

of cardinality λ < i∗(κ)”.

By elementarity,

V P |= “A has an L(I)-elementary substructure of cardinality < κ”.

To get i∗ to preserve formulas of L(I) we need that i(P)/P collapses no
cardinals ≤ λ.

Suppose that when we collapsed cardinals between consecutive members
of C we had some function f : κ → κ such that for a member δ of C
no cardinal was collapsed between δ and f(δ). Let us also assume that
λ < i(f)(κ). (Note that κ is a limit point of i∗(C).) So no cardinal between
κ and i(f)(κ) will be collapsed. In particular, all cardinals between κ and λ
are preserved by i(P)/P .

Another issue is that κ is supposed to be a limit point of i∗(C) hence
in M i(P) it is supposed to be singular. In V P it is supposed to be regular,
indeed inaccessible. So we need i(P)/P to make some regular cardinals
singular. Since i(P) “looks like P”, we need P to make enough regular
cardinals singular, so that M i(P) |= “κ is singular”.

The standard way of making a regular cardinal singular is by forcing with
Prikry forcing on a measurable cardinal. Since we shall have to do it for many
cardinals below κ, we shall have to iterate Prikry type forcings for somewhat
supercompact cardinals below κ.

So the forcing notion we shall use will be an iteration of several steps:

(a) Iterated Prikry type forcing for every λ+-supercompact λ < κ, where
besides changing the cofinality of λ to ω we do some preparatory forcing
for the additional steps, which will be relevant only to κ. We denote
this forcing by Qλ and the iteration up to κ by Pκ.
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(b) On κ we force a closed unbounded set C such that every limit point of
C is singular. We denote this forcing by NM(κ) (From “Non-Mahlo”).

(c) We collapse cardinals between consecutive members of C making sure
that if β ∈ C, then no cardinals are collapsed between β and f(β) for
an appropriate function f : κ→ κ. (We denote this forcing Col(C)).

The challenge will be to make sure that NM(κ)∗Col(C) embeds nicely into
Qκ ∗Col(C) so that if R = Pκ ∗ NM(κ) ∗ Col(C), then R embeds nicely into
i∗(R). This will be achieved by embedding NM(κ)∗Col(C) into Qκ ∗Col(C).
Note that Qκ is the κ-th stage in the iteration of i∗(Pκ) = Pi∗(κ). We hope
that these remarks make the following definition of the forcing notion some-
what less frightening.

4.2 The Forcing Construction

Our first step is to define the function f : κ→ κ that will determine intervals
where all the cardinals will be preserved. We assume that our ground model
satisfies G.C.H. and that there is no inaccessible above κ. A classical lemma
of Laver [6] proves the following:

Lemma 22 Let κ be supercompact. Then there exists a function h : κ→ Vκ
such that for every x and every µ ≥ κ there is a µ-supercompact embedding
j : V → M (i.e. Mµ ⊆ M , j(κ) > µ, j(α) = α for α < κ), such that
j(h)(κ) = x.

An easy corollary of Laver’s lemma is the following:

Lemma 23 Let κ be supercompact such that there is no inaccessible cardinal
above κ. Then there is a function f : κ → κ such that for all α < κ, α <
f(α), f(α) is regular, there is no inaccessible cardinal λ with α < λ ≤ f(α),
and for all µ ≥ κ there is a µ-supercompact embedding j : V → M with
µ < j(f)(κ).

Proof Let h be the Laver-function from Lemma 22. Let f(α) = (h(α))+

if h(α) is an ordinal > α such that there is no inaccessible cardinal λ with
α < λ ≤ h(α). Define f(α) = α+ otherwise. Apply Lemma 22 for µ and
x = µ. Note that in M there is no inaccessible cardinal λ with κ < λ ≤
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j(h)(κ) = µ+ so for j(f)(κ) the first possibility of the definition of f holds
and hence j(f)(κ) = µ+ > µ. �

So from now on we fix such a function f . Note that the first inaccessible
cardinal is closed under f . The cardinals that we shall be interested in will
be cardinals λ ≤ κ such that λ is λ+-supercompact and λ is closed under the
function f . For such λ we define the forcing notion NM(λ), which is intended
to make λ non-Mahlo by forcing a closed unbounded set C of cardinals such
that every limit point of C is singular. For technical simplicity it will be
convenient to assume that if β ∈ C and β′ is the minimal member of C
above β, then β′ is inaccessible and f(β) < β′.

Definition 24 Suppose λ is a λ+-supercompact cardinal. Then NM(λ) is
the set of all closed bounded subsets C of λ such that

(a) Every member of C is a cardinal.

(b) If β is a limit point of C, then β is singular.

(c) If β ∈ C, and β′ is the first point of C above β, then β′ is inaccessible.

The partial order ≤ on NM(λ) is defined by D ≤ C iff D,C ∈ NM(λ) and
D is an end-extension of C.

So the successor members of C are all regular, and limit points of C are
closed under f . It is easy to see that if C ∈ NM(λ), and C contains a point
above µ < λ, then {D : D ≤ C} is µ− closed. Hence it follows that forcing
with NM(λ) introduces no new µ-sequences of ordinals when µ < λ. So λ
remains regular, and since no new bounded subsets of λ are introduced, λ
remains strongly inaccessible. Also, it is easy to see that if G ⊆ NM(λ) is a
generic filter, then

⋃
G is a closed unbounded subset of λ. Every limit point

of
⋃
G is singular, so in the generic extension λ is a non-Mahlo inaccessible

cardinal.
Since we are going to define many partial orders, we shall denote each

of the relevant partial orders by ≤. Only in case of a possible confusion we
shall add the subscript indicating the forcing notion (≤P for the partial order
of P). Also in some cases it will be convenient to define a preorder on the
forcing notion (so we may write p ≤ q and q ≤ p), so that we really mean the
forcing notion is the equivalence classes of the relation “p ≤ q and q ≤ p”.
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Given two regular cardinals µ < ρ, Col(µ,< ρ) is the usual Levy collapse
of all the cardinals δ with µ < δ < ρ to µ. It is a µ-closed forcing notion and
if ρ is inaccessible or the successor of a cardinal ν such that ν<ν = ν, the
forcing notion Col(µ,< ρ) satisfies the ρ-c.c.

Let C be a closed set of cardinals. For β ∈ C ∩ sup(C) let β′ be the next
point of C after β. We assume that if β ∈ C, then β′ is inaccessible and
f(β) < β′. The forcing notion

Col(C)

is defined to be the Easton product of Col(f(β), < β′) for β ∈ C ∩ sup(C).
(Easton product means that it is the collection of all functions g defined
on C ∩ sup(C) such that g(β) ∈ Col(f(β), < β′) and for regular δ the set
{β < δ : g(β) 6= ∅} is bounded in δ.) Note that for our case, if C ⊆ λ is
the closed unbounded set introduced by NM(λ), then the Easton condition
simply means that if g ∈ Col(C) then the cardinality of {β : g(β) 6= ∅} is
less than λ.

It is easy to see that if C is NM(λ)-generic and the first member of C is
below the first inaccessible, then if we force with Col(C), then λ will be the
first inaccessible.

4.2.1 Atomic Step

Let λ be a λ+-supercompact cardinal ≤ κ. We shall describe a variation Qλ

of Prikry forcing for making λ singular of cofinality ω, while at the same time
introducing a generic object over V to NM(λ). Like Prikry forcing, Qλ will
introduce no new unbounded subsets of λ. Qλ has an additional role which
we shall explain below. Note that we have

V ⊆ V NM(λ) ⊆ V Qλ .

(Note also that in V NM(λ) the cardinal λ is still regular.)
Like Prikry-forcing, Qλ will introduce no new bounded subsets of λ. The

final stage of our iteration will be forcing with NM(κ) followed by Col(D),
where D is the closed unbounded set introduced by NM(κ). We shall need to

embed the forcing NM(κ)∗ColV
NM(κ)

(D) into Qκ ∗ColV
Qκ

(D). Unfortunately,

ColV
Qκ

(D) in V Qκ is different from ColV
NM(κ)

(because, for instance, in V of
NM(κ) the cardinal κ is regular, but in V Qκ it is singular of cofinality ω, so
the meaning of the Easton Product used in the definition of Col(D) is very
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different). But note that because V NM(κ) and V Qκ have the same bounded

subsets of κ, ColV
NM(κ)

(D) is a sub-partial order of ColV
Qκ

(D). Also, if

G ⊆ ColV
Qκ

(D) is a filter, G ∩ V is a filter in ColV
NM(κ)

(D). The issue is
the genericity of G ∩ V over V NM(κ). In general, G ∩ V does not have to
be generic over V NM(κ). The additional role of Qλ (for all λ ≤ κ) will be to

introduce a condition in h ∈ ColV
Qκ

(D) such that if h ∈ G ⊆ ColV
Qκ

(D) is
a generic filter on V Qκ , then G ∩ V is generic over V NM(λ).

Let Rβ
λ be the set of triples (c, h, γ), where c ∈ NM(λ), min(c) > β,

h ∈ Col(c), and sup(c) < γ < λ. We can treat Rβ
λ as a forcing notion by

ordering it as follows (c′, h′, γ′) ≤ (c, h, γ) iff c′ is an end-extension of c, h′ is
an end-extension of h, namely h = h′ � c, and γ < γ′.

For the next definition we fix a λ-complete ultrafilter Uβ on Rβ
λ extending

the λ-complete filter of dense open subsets of Rβ
λ. The ultrafilter Uβ exists

because the intersection of less than λ dense open subsets of Rβ
λ contains a

dense open subset and |Rβ
λ| = λ. Note that since λ is λ+-supercompact every

λ-complete filter on a set of size λ can be extended to λ-complete ultrafilter.

Definition 25 Let Xλ be the set of all sequences

〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1)〉, (3)

where

(i) (ci, hi, αi), 0 ≤ i < n, is strictly increasing in R0
λ.

(ii) Each αi is closed under f .

(iii) (ci+1, hi+1, αi+1) ∈ Rαi
λ for 0 ≤ i < n− 1.

(iv) c0 contains some point below the first inaccessible.

Let Qλ be the set of all sets p of the form

〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1), T 〉, (4)

where

(i) (c0, h0, α0), ..., (cn−1, hn−1, αn−1) ∈ Xλ.
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(iii) T is a tree consisting of sequences

〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1), ..., ((ck, hk), αk)〉 ∈ Xλ

where n ≤ k < ω such that

{(c, h, γ) : 〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1), ...
..., (ck−1, hk−1, αk−1), (c, h, γ)〉 ∈ T} ∈ Uαk−1

.

The intuitive meaning of the forcing is rather clear. The finite sequence
α0, ..., αn−1 in the “stem” (3) of a condition (4) is an initial segment of the
ω-sequence that will be cofinal in λ. The tree T is the tree of possible
candidates for extending the stem (3). As usual for Prikry type forcings,
we require to have a large set of possible candidates to be members of the
ω-sequence leading up to λ. The sets ci are initial segments of the generic
object in NM(λ) that will be introduced by Qλ, hi is a partial information

about an object that will eventually be a condition in ColV
Qλ

(D), where
D will be the club introduced by the NM(λ) generic filter. These remarks
motivate the definition of the partial order in Qλ:

Definition 26 (The partial order of Qλ). Suppose

p = 〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1), T 〉,

and
q = 〈(c∗0, h∗0, α∗0), ..., (c∗k−1, h

∗
k−1, α

∗
k−1), T ∗〉,

are in Qλ. We say that q extends p, in symbols q ≤ p, if

(i) n ≤ k and 〈(c∗0, h∗0, α∗0), ..., (c∗k−1, h
∗
k−1, α

∗
k−1)〉 ∈ T .

(ii) T ∗ ⊆ T .

If n = k above, we say that q is a direct extension of p, in symbols q ≤∗ p.

Notation: If p = 〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1), T 〉 is in Qλ we call n the
length of p and denote it by n(p). Similarly

α(p) = 〈α0, ..., αn−1〉 the α-part of p
c(p) = c0 ∪ ... ∪ cn−1 the c-part of p
h(p) = h0 ∪ ... ∪ hn−1 the h-part of p.
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Note that if µ < λ and min(A) > µ, then every decreasing sequence of
direct extension of length ≤ µ has a lower bound which is a direct extension
of all the members of the sequence. To see this one uses the fact that the
ultrafilters Uγ that are used in the definition of Qλ are all λ-complete.

The following lemma is a typical one for Prikry type forcing. Its proof is a
straightforward generalization of similar lemmas proved before (e.g. Magidor
[10], [4]):

Lemma 27 Let Φ be a statement in the forcing language for Qλ and p ∈ Qλ.
Then there exists a direct extension q of p such that q decides Φ.

As usual, it follows from the lemma that Qλ introduces no new bounded
subsets of λ.

Lemma 28 Let G ⊆ Qλ be generic over V . Let DG = {c(p) : p ∈ G}. Then
DG ⊆ NM(λ) generates a generic filter of NM(λ) over V .

Proof: It is immediate that for p, p′ ∈ G either c(p) ≤ c(p′) or c(p′) ≤ c(p), so
DG generates a filter. We just have to prove its genericity. Let E ⊆ NM(λ),
E ∈ V , be dense open in NM(λ). We have to show that E ∩DG 6= ∅. Let

p = 〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1), T 〉 ∈ Qλ.

We show that an extension of p forces that E ∩ DG 6= ∅. Let us look at
the set D̄ of all conditions (c, h, γ) ∈ R

αn−1

λ such that αn−1 < min(c) and
c(p) ∪ c ∈ E. Clearly D̄ is dense open in R

αn−1

λ and hence belongs to Uαn−1 .
Hence p has an extension q which forces E ∩DG 6= ∅.

� (Lemma)

We abuse notation by denoting also ∪DG by DG. It is a club in λ in which
limit points are all singulars. Its minimal point is below the first inaccessible
cardinal. (Recall clause (iii) of Definition 25.) As usual,

⋃
{α(p) : p ∈ G} is

an ω-sequence cofinal in λ, so λ has cofinality ω in V [G].
Now let us consider the h-parts of conditions in G. Let HG =

⋃
{h(p) :

p ∈ G}.

Lemma 29 V [G] |= HG ∈ Col(DG).
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Proof: HG is clearly a partial function defined on β ∈ DG. Note that if p, q
are in G, each of them with stem length > n, then if αn is the n-th coordinate
(in both of them) of their α-part, then h(p) � αn = h(q) � αn. It means that

HG � αn = h(p) for any p of stem length > n belonging to G. (5)

Now h(p) ∈ Col(c(p)), so for every β′ ∈ dom(HG) we have

HG(β) ∈ Col(f(β), < β′),

where β′ is the first member of DG above β. By (5) also HG � αn has Easton
support, but since λ = supn<ω αn is singular, it follows that the support

constraint in ColV [G](D) is satisfied by HG and hence HG ∈ Col(DG). �
(Lemma 29)

The next lemma explains the role of the h part of the conditions in Qλ.

Lemma 30 Let G ⊆ Qλ be generic over V and DG, HG as above. Let
G∗ ⊆ ColV [G](DG) be generic over V [G] such that HG ∈ G∗. Let G∗∗ =
ColV [DG](DG)∩G∗. Then G∗∗ is a generic filter in ColV [DG](DG) over V [DG].
(Note that ColV [DG](DG) ⊆ ColV [G](DG).)

Proof: G∗∗ is obviously a filter. We have to verify genericity. So let E̊ be
an NM(λ)-term, which is forced to be a dense open subset of ColV [DG](DG)
and let EG be its realization in V [DG]. Let p ∈ Qλ. We shall extend p to
a condition q such that q  G∗ ∩ E̊ 6= ∅. Then, since EG ∈ V [DG], q ∈ G
implies

G∗∗ ∩ EG = G∗ ∩ V [DG] ∩ EG 6= ∅.
Assume

p = 〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1), T 〉.
Consider a condition c∪ c̄ in NM(λ) with β = min(c̄) > αn−1, and h∪ h̄ ∈

Col(c∪ c̄). Assume for a while that c∪ c̄ ∈ DG. Note that in V [DG], Col(DG)
can be represented as the cartesian product Col(c ∪ {β}) × Col(DG − β).
Since w.l.o.g. β is inaccessible, Col(c ∪ {β}) has cardinality β. Col(DG − β)
is β+-closed. So by standard arguments the following set is dense open subset
of Col(DG − β) in V [DG]:

E∗ = {g : g ∈ Col(DG − β),

{g′ : g′ ∈ Col(c ∪ {β}), g ∪ g′ ∈ E}
is dense open in Col(c ∪ {β})}.
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So there is an extension c∗β of c ∪ c̄ in NM(λ) such that some g̊β satisfies

c∗β  g̊β ∈ Col(DG − β) ∧ g̊β ∈ E∗ ∧ g̊β ≤ h̄.

(Note that since c∗β ≤ c∪ c̄ and h̄ ∈ Col(c̄), c∗β  h̄ ∈ Col(DG− β).) Without
loss of generality we can assume g̊β is essentially a bounded subset of λ and
since forcing with NM(λ) does not add bounded subsets of λ, we can assume
that we have a particular gβ which we can assume to be in Col(c∗β) such that

c∗β  ǧβ ∈ Col(DG − β) ∧ ǧβ ∈ E∗ ∧ ǧβ ≤ h̄.

The condition c∗β must be of the form c ∪ c∗∗β where c∗∗β is an end extension
of c̄.

We have shown that the set D of (cn, hn, αn) ∈ Rβ
λ such that

cn  hn ∈ Col(DG− β), h ∈ E∗, hn ≤ h̄

is dense open in Rβ
λ

Let ((cn, hn), αn) ∈ D such that

〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1), (cn, hn, αn))〉 (6)

extends 〈(c0, h0, α0), ..., (cn−1, hn−1, αn−1)〉 in T , and let T ′ be the set of se-
quences extending (6) in T . Finally, let q be the condition consisting of (6)
followed by T ′. Now q extends p in Qλ.

Assume q ∈ G. The c part of q extends c∪c∗∗αn . The h part extends h∪gαn .
Now DG is an end extension of c∪c∗∗αn . In V [G] we can also represent Col(DG)
as Col(c∪{αn})×Col(DG−αn). Note that HG extends h∪gαn and HG ∈ G∗,
so gαn ∈ G∗ ∩ V [DG] = G∗∗. Hence in V [DG] the set

E ′ = {g′ : g′ ∈ Col(c ∪ {α}), (g′, gαn) ∈ EG}

is dense open.
But Col(c ∪ {αn}) is the same in V [DG] and in V [G]. (Because it is a

set of bounded subsets of λ and all bounded subsets of λ in V [DG] and in
V [G] are also in V .) The filter G∗ ∩Col(c∪{αn}) is generic in Col(c∪{αn})
over V [G], so G∗ ∩ E ′ 6= ∅. Let g′ ∈ G∗ ∩ E ′, (g′, gαn) ∈ EG, (g′, gαn) ∈ G∗,
(g′, gαn) ∈ V [DG]. So (g′, gβ) ∈ EG ∩ G∗ ∩ V [DG] = EG ∩ G∗∗ 6= ∅. �
(Lemma 30).
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We also want to show that Qλ collapses no cardinals. By Lemma 27
forcing with Qλ introduces no new bounded subsets of λ, so no cardinals < λ
are collapsed.

We assume G.C.H., Qλ has cardinality 2λ = λ+ so no cardinals above λ+

are collapsed. So the only cardinal we have to consider is λ+.

Lemma 31 In V Qλ the cardinal λ+ is still a cardinal.

Proof: If two conditions in Qλ are incompatible, they must have a different
stem. There are only λ stems. So Qλ satisfies the λ+-chain condition. Hence
λ+ is preserved. � (Lemma 31)

The forcing Col(DG) of course collapses cardinals but the following lemma
will be useful:

Lemma 32 Let G,G∗, G∗∗ be as in Lemma 30. Then:

(a) The only V -cardinals collapsed in V [G][G∗] are the cardinals in the
interval (f(β), β′), where β ∈ DG and β′ is the next member of DG

above β.

(b) The only V -cardinals collapsed in V [DG][G∗∗] are the cardinals in the
interval (f(β), β′), where β ∈ DG and β′ is the next member of DG

above β.

(c) V [G][G∗] and V [DG][G∗∗] have the same cardinals.

(d) V [G][G∗] and V [DG][G∗∗] have the same bounded subsets of λ.

Proof: (a) is standard, after we have Lemma 31. The only possible problem
is again λ+, but if it collapsed, it becomes singular of cofinality < λ. The
forcing Col(DG) is such that every µ-sequence of ordinals is introduced by
Col(DG � ρ) for some ρ < λ, so it is of cardinality < λ. So λ+ is not collapsed.

(b) follows from (a) for cardinals < λ. G∗ is generic over V [DG] with
respect to a forcing notion of size λ, so no cardinal above λ is collapsed.

(c) follows immediately from (a) and (b).
(d) follows from the fact that a bounded subset of λ introduced by

Col(DG) is introduced by Col(DG ∩ β) for some β < λ. This is true for
both V [DG] and V [G]. Col(DG ∩ β) is the same in V [DG] and V [G], and
G∗∗ ∩ Col(DG ∩ β) = G∗ ∩ Col(DG ∩ β). So (d) follows. � (Lemma 32)
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4.2.2 Iteration

We would like to iterate the forcing Qλ for all λ+-supercompact λ < κ. The
scheme of iteration we shall use is the scheme introduced by Gitik [3]. Our
terminology follows (with minor changes) the terminology of [3].

Definition 33 Suppose λ is a regular cardinal. A forcing notion 〈P,≤〉 is
said to be λ-Prikry if there is a partial order ≤∗ ⊆ ≤ on P such that

(a) Every ≤∗-decreasing sequence of length less than λ has a ≤∗-lower bound.

(b) For every statement Φ in the forcing language for for P and for every
p ∈ P there is q ∈ P such that q ≤∗ p and q decides Φ.

We call ≤∗ the direct extension relation.

Note that we do not assume that any two strict extensions of p are nec-
essarily compatible. The remarks above show that if λ is λ+-supercompact
and U is a normal ultrafilter on Pλ(λ+), then Qλ is a λ-Prikry forcing notion.

When we refer to Prikry forcing notions in the sequel we assume that
they are given with ≤∗, that is, they are of the form 〈P,≤,≤∗〉. We shall
also assume that each forcing notion P is given with its maximal element 1P .

Definition 34 An iteration

〈〈Pα : α ≤ µ〉, 〈Qα : α < µ〉〉

is called a Gitik iteration of Prikry forcings if the following holds: Each Pα
is a forcing notion of sequences of length α such that

(i) If p = 〈τβ : β < α〉 ∈ Pα and γ < α, then p � γ = 〈τβ : β < γ〉 ∈ Pγ.

(ii) If p = 〈τβ : β < α〉 ∈ Pα and γ < α then p � γ Pγ τγ ∈ Qγ, where Qγ is
a Pγ-name forced over Pγ to denote a γ-Prikry forcing with the partial
orders ≤γ,≤∗γ.

(iii) The sequence has Easton support, namely for every regular γ ≤ α the
set {β < γ : τβ 6= 1Qβ} has cardinality < γ.

(iv) Qγ is the trivial forcing notion unless both γ is Mahlo and Pβ |Qβ| < γ
for every β < γ.
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The partial order on Pα is defined as follows: Suppose q = 〈τ ∗β : β < α〉 and
p = 〈τβ : β < α〉. Then q ≤ p if there is a finite set B ⊆ {β < α : τβ 6= 1Qβ}
such that:

(a) If β /∈ B such that τβ 6= 1Qβ , then q � β  τ ∗β ≤∗β τβ.

(b) If β ∈ B or τβ = 1Qβ , then q � β  τ ∗β ≤β τβ.

(Namely, we can take a non-direct extension of any point β in which τβ = 1Qβ
and only at finitely many points β in which τβ 6= 1Qβ .) The direct extension
for Pα is defined as q ≤∗ p if in the above definition we can take B = ∅.

Let us fix now a Gitik iteration 〈〈Pα : α ≤ µ〉, 〈Qα : α < µ〉〉 of Prikry
forcings. Now Lemma 1.3 of Gitik [3] is essentially:

Lemma 35 Let α be Mahlo such that Pγ |Qγ| < α for all γ < α. Then Pα
has cardinality ≤ α and it satisfies the α− c.c..

Lemma 1.4 of Gitik [3] is essentially:

Lemma 36 Let Φ be a statement for the forcing language for Pµ and p ∈ Pµ.
Then there is q ≤∗ p such that q  Φ or q  ¬Φ.

It follows that if α is the first such that Qα is not the trivial forcing notion,
then Pµ is α-Prikry. Also, if α is a Mahlo cardinal such that Pγ |Qγ| < α
for all γ < α, then in V Pα we can consider

〈〈Pβ/Pα : α ≤ β ≤ µ〉, 〈Qβ : α ≤ β < µ〉〉

to be a Gitik iteration of Prikry forcing notions, so in particular we get:

Lemma 37 If α < µ is a Mahlo cardinal such that Pγ |Qγ| < α for all
γ < α, then

(i) Pµ/Pα is an α-Prikry forcing notion.

(ii) Every bounded subset of α in V Pµ belongs already to V Pα. (So, in par-
ticular, no α satisfying the above requirement is collapsed.)

The next lemma is a variation of Lemma 1.5 in Gitik [3] and it deals with
the preservation of λ+-supercompact cardinals λ by the Gitik iterations:
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Lemma 38 Assume GCH. Let α ≤ µ be α+-supercompact such that Pβ

|Qβ| < α for all β < α. Let

A = {β < α : Pβ“Qβ is the trivial forcing notion”}.

Let U be a normal ultrafilter on Pα(α+) such that {p : p∩α ∈ A} ∈ U . Then
in V Pα the filter U can be extended to a normal ultrafilter on Pα(α+). In
particular, α remains α+-supercompact.

Proof: Let j be the ultrapower embedding j : V → M ∼= V Pα(α+)/U .
Note that j(〈〈Pβ : β ≤ α〉, 〈Qβ : β < α〉〉) is in M a Gitik iteration of
Prikry forcings of length j(α). Let us denote the new iteration 〈〈P ∗β : β ≤
j(α)〉, 〈Q∗β : β < j(α)〉〉. Since Pβ |Qβ| < α for all β < α, we get that for all
β < α |Pβ| < α, Q∗β = Qβ, P ∗β = Pβ and also P ∗α = Pα. Our assumption that
{p : p ∩ α ∈ A} ∈ U translates into

Pα “Qα is the trivial forcing notion.”

So
MPα |= “Pj(α)/Pα is an α++-Prikry forcing notion.”

The forcing Pα satisfies the α-c.c. and has cardinality α and we assume
GCH, so we can enumerate in V in a sequence of length α++ all Pα-terms
forced to denote subsets of Pα(α+). Let this list be 〈Åδ : δ < α++〉. Note
that since M is closed under α+-sequences, initial segments of the sequence
〈j(Åδ) : δ < α++〉 are in M . Now we argue in V Pα . By induction define
a ≤∗-decreasing sequence 〈pδ : δ < α++〉 in Pj(α)/Pα such that for each

δ < α++ the condition pδ+1 decides the statement ‘j′′α+ ∈ j(Aδ)’. (j(Åδ)
is a P ∗j(α) = j(Pα) -term, but in MPα we can consider it to be a P ∗j(α)/Pα
-term. By P ∗j(α)/Pα being a Prikry type forcing we can find such a condition

pδ+1 ≤∗-extending pδ. Every initial segment of the sequence 〈pδ : δ < α++〉
is in M , so at limit stages δ we can take pδ to be a ≤∗-lower bound for
〈pη : η < δ〉.) Now in V Pα define the ultrafilter U∗ extending U by

Aδ ∈ U∗ ⇐⇒ pδ+1  j′′α+ ∈ j(Åδ).

It is easy to check that U∗ is well-defined and that it is a normal ultrafilter
in V Pα extending U . � (Lemma 38)
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4.3 The Final Model

We are now ready to define our final model in which the first inaccessible
will be a LST(L(I)). Let us fix a supercompact cardinal κ. Recall that we
assume G.C.H. to hold in V . We start the construction by defining a Gitik
iteration 〈〈Pα : α ≤ κ〉, 〈Qα : α < κ〉〉) of Prikry forcings. of length κ. The
iteration will be defined if we inductively define Qα. By induction it will be
clear that for α < γ, γ Mahlo, we have  |Qα| < γ. So we define:

(i) If α is not α+-supercompact in V then Qα is the trivial forcing notion.

(ii) If α is α+-supercompact in V , then we pick a normal ultrafilter U on
Pα(α+) such that A = {p : p ∩ α non-(p ∩ α)+-supercompact} ∈ U .

Then α and U satisfy the assumptions of Lemma 38. So in V Pα the cardinal
α is still α+-supercompact with a normal ultrafilter extending U . Define Qα

to be the Qα as defined in Section 4.2.1. It is an α-Prikry forcing and its
cardinality is 2α which is less that the next Mahlo cardinal. So the iteration
is defined. Since Pκ is of cardinality κ and satisfies the κ-c.c., the cardinal κ
is still Mahlo in V Pκ . (In fact, by Lemma 38 it is still κ+-supercompact.) So
now we force over V Pκ with NM(κ) to get a closed unbounded subset D of
κ such that each of the limit points of D is singular, and then we force with
Col(D). So our final forcing notion is

Pκ ? NM(κ) ? Col(D).

Forcing with Col(D) makes sure that there are no inaccessible cardinals <
κ. Forcing with NM(κ) keeps κ inaccessible, similarly for Col(D), so in
V Pκ?NM(κ)?Col(D) the cardinal κ is the first inaccessible. Our goal will be
achieved when we show:

Theorem 39 In V Pκ?NM(κ)?Col(D) the cardinal κ is LST(L(I)).

Proof: Denote V ∗ = V Pκ . In V ∗ the cardinal κ is still κ+-supercompact, so
we can define the forcing Qκ and force with it over V ∗. Let G be the generic
filter in Qκ. By Lemma 28 we can define from G an NM(κ) filter DG which
is going to be generic over V ∗. We can force further with Col(DG). Let G∗

be the generic filter, where we can assume that HG ∈ G∗. By Lemma 30
G∗∗ = G∗∩V ∗[DG] is generic over V ∗[DG] with respect to ColV

∗[DG](DG). So
V ∗[DG][G∗∗] is a Pκ ?NM(κ) ?Col(D) generic extension of V . By Lemma 32
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V ∗[DG][G∗∗] has the same bounded sequences of elements of κ and the same
cardinals as V ∗[G][G∗].

It is now easily seen that given any generic D ? H over V ∗ with respect
to NM(κ) ? Col(D), we can (by doing further forcing) assume that D = DG

and H = G∗∗, where G ⊆ Qκ is generic over V ∗. Assume otherwise. Let
(c, h) ∈ NM(κ) ? Col(D) force the negation of our claim. Without loss of
generality h ∈ Col(c). Pick a condition p in Qλ where the c-part is c and
its h-part is h. Assume G is Qκ-generic (over V ∗) such that p ∈ G. Note
that c ∈ DG and HG extends h. Pick a generic G∗ in Col(DG) such that
HG ∈ G∗. Obviously h ∈ G∗ ∩ V ∗[DG] = G∗∗. So if we consider the generic
pair DG ? G

∗∗, (c, h) belongs to it, but this is a contradiction. So we proved
(Using also Lemma 32):

Lemma 40 V1 = V Pκ?NM(κ)?Col(D) has a forcing extension which is of the
form V2 = V Pκ?Qκ?Col(DG), where V1 and V2 have the same cardinals and the
same bounded sequences of elements of κ.

Of course, the extension we describe in Lemma 40 does not preserve
cofinalities because in V1 = V Pκ?NM(κ)?Col(D) the cardinal κ is regular while
in V2 = V Pκ?Qκ?Col(DG) it has cofinality ω.

We resume the proof of Theorem 39. So we are given in V1 = V Pκ?NM(κ)?Col(D)

a structureA = 〈λ,R1, R2, ...〉 (without loss of generality we may assume that
the universe of the structure is an ordinal λ). We have to get a substructure
A′ of A such that A′ ≺L(I) A and |A′| < κ. Without loss of generality we
may assume that κ+ ≤ λ.

In V the cardinal κ is supercompact, so we fix in V an embedding j :
V →M such that κ is the critical point of j, j(κ) > λ, Mλ ⊆M and by our
definition of the function f we can assume that j(f)(κ) > λ. The structure A
is the realization of a term Å in the forcing language for Pκ?NM(κ)?Col(D).
We can assume Å ∈M because |Pκ ? NM(κ) ? Col(D)| = κ.

Consider in M the forcing notion j(Pκ) ? j(NM(κ)) ? j(Col(D)). The
forcing notion j(Pκ) is (in M) an iteration of length j(κ). Its first κ steps
are exactly like in V (They are defined in Vκ which is the same as in M).
The κ-th step of the iteration is Qκ, so j(Pκ) = Pκ ? Qκ ? T , where T is the
iteration in M between κ and j(κ).

Lemma 41 One can force over V1 to get a generic filter in the forcing j(Pκ)?
j(Qκ) ? j(Col(D)) such that in the resulting model there is an embedding

j∗ : V1 →M j(Pκ)?j(Qκ)?j(Col(D))
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extending j such that V1 and M j(Pκ)?j(Qκ)?j(Col(D)) have the same cardinals
≤ λ.

Proof: By Lemma 40, we can force over V1, not collapsing any cardinals, to
get a model V2 of the form V Pκ?Qκ?Col(D), where the generic filter for Col(D)
over V Pκ?NM(κ) is of the form G∗∗ = G∗ ∩ V Pκ?NM(κ), and where furthermore
G∗ is the generic filter in Col(D) over V Qκ . The generic filter for Pκ ? Qκ

provides the generic filter for the first κ + 1 steps of the iteration of j(Pκ)
over M . (Note that Qκ is the same in the sense of MPκ and V Pκ). Follow this
forcing by forcing with T . So we get a generic filter for Pκ ? Qκ ? T = j(Pκ).
Recall that we assumed that κ is the last inaccessible in V so there are no
inaccessibles (and hence no α+-supercompact α) between κ and λ. Since
Mλ ⊆ M , the same is true in M . So the iteration of j(Pκ) between κ and
λ+ is the trivial iteration, so T is a Gitik iteration of µ-Prikry forcings for
λ+ ≤ µ. It means that

P(λ) ∩ V Pκ?Qκ = P(λ) ∩MPκ?Qκ = P(λ) ∩ V j(Pκ).

Hence no cardinals ≤ λ are collapsed in M j(Pκ). We now have to force with
j(NM(κ)) which is NM(j(κ)) in the sense of M j(Pκ). The club D introduced
by NM(κ) is in V Pκ?Qκ so it belongs to MPκ?Qκ ⊆ M j(Pκ). In MPκ?Qκ the
cardinal κ is singular of cofinality ω. So D∪{κ} is a condition in NM(j(κ)).
(It is a closed subset of j(κ), every limit point, including κ, is singular. The
other conditions are easily verified.) So we can pick a generic filter D∗ in
NM(j(κ)) such that D∪{κ} is an initial segment of it. Forcing with NM(j(κ))
over M j(Pκ) does not add any bounded subsets of j(κ), so again no cardinals
≤ λ are collapsed.

Now we have to pick a generic filter for Col(D∗). The set D ∪ {κ} is an
initial segment of D∗ so

Col(D∗) = Col(D) ? Col(D∗ − κ).

(The collapses are not in the sense of M j(Pκ) but since M j(Pκ) agrees with
V Pκ?Qκ on Pκ, Col(D) is the same in the sense of V Pκ?Qκ and M j(Pκ)). The
filter G∗ is generic in Col(D), so we pick a generic filter for Col(D∗) such
that its restriction to Col(D ∪ {κ}) is exactly G∗. Now we reach a crucial
point for which we introduced the function f .

We defined Col(D) such that if β ∈ D, then Col(D) does not collapse any
cardinals between β and f(β). Since κ ∈ D∗, the forcing Col(D∗) does not
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collapse any cardinals between κ and j(f)(κ). But j(f)(κ) > λ, so Col(D∗)
collapses below λ only cardinals collapsed by Col(D∗ ∩ κ) = Col(D). So it
means that below λ the models M j(Pκ?NM(κ)?Col(D)) and V Pκ?NM(κ)?Col(D) have
the same cardinals.

Denote by H the generic filter over V in Pκ ? NM(κ) ? Col(D). We have
defined a generic filter in j(Pκ ?NM(κ) ?Col(D)). Let us denote this by H∗.
We claim that the particular way we have defined H∗ guarantees that H∗

satisfies a condition which is known as “the master condition” i.e.

Claim: If p ∈ H, then j(p) ∈ H∗.
Proof: The condition p ∈ H is of the form (q, s, t) where q ∈ Pκ, s is a term
denoting an element of NM(κ) in V Pκ and t is a term denoting a member
of Col(D) in V Pκ?NM(κ). The generic filter we picked for j(Pκ) extends the
generic filter for Pκ, so q ∈ H implies that q = j(q) ∈ H∗.

The generic filter we picked for NM(j(κ)) is an end extension of the
generic filter picked for NM(κ), so since s denotes a bounded subset of κ
introduced by Pκ, j(s) = s and s ∈ H implies j(s) ∈ H∗. The generic
filter for Col(D) is G∗∗ = G∗ ∩ V Pκ?NM(κ). The way we picked the generic
filter for Col(D∗) was such that G∗∗ ⊆ H∗. Note that t denotes a subset
of V Pκ

κ of cardinality < κ in V Pκ , so j(t) = t. But t ∈ G∗ so t ∈ G∗∗, so
j(t) = t ∈ H∗. (We abuse notation by denoting a term and its realization
by the same symbol.) So we have actually showed that for p ∈ H we have
j(p) = (j(q), j(s), j(t)) ∈ H∗. � (Claim)

Once we have the master condition we can as usual define the extension
j∗ of j by defining j∗ in the realization [t]H of an Pκ ? NM(κ) ? Col(κ)-term
t as

j∗([t]H) = [j(t)]H∗ .

It is a standard argument that given the assumptions of the claim, j∗ is
well-defined and it is elementary.

When we described the construction of H∗ we argued that the cardinals ≤
λ in V [H] are the same as in M [H∗]. So the lemma is verified. � (Lemma 41)

So we have two universes V [H] and M [H∗] which agree on cardinals ≤ λ.
Moreover, we have j ⊆ j∗ which is elementary

j∗ : V [H]→M [H∗].

The structure A is in V [H] and because Mλ ⊆ M we have A ∈ M [H∗] and
j � A = j � λ ∈M ⊆M [H∗].
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Suppose Φ(x1, ..., xn) is a formula in the logic L(I) and suppose a1, ..., an ∈
A. Now:

M [H∗] |= “A |= Φ(a1, ..., an)” iff V [H] |= “A |= Φ(a1, ..., an)”. (7)

This is because M [H∗] agrees with V [H] on the cardinals ≤ λ which are all
the cardinals relevant for evaluating the truth of Φ(a1, .., an). On the other
hand, from j∗ being elementary we get:

V [H] |= “A |= Φ(a1, ..., an)” iff M [H∗] |= “j∗(A) |= Φ(j∗(a1), ..., j∗(an))”.

Hence

M [H∗] |= “A |= Φ(a1, ..., an)” iff M [H∗] |= “j∗(A) |= Φ(j∗(a1), ..., j∗(an))”.

So

M [H∗] |= j∗ � A = j � A is an L(I)-elementary embedding of A into j∗(A).

Since M [H∗] |= |A| ≤ λ < j∗(κ), we get

M [H∗] |= “There is an L(I)-elementary substructure of j∗(A) of cardinality < j∗(κ).

By j∗ being elementary,

V [H] |= “There is an L(I)-elementary substructure of A of cardinality < κ.

� (Theorem 39)

This ends the proof of Theorem 21. 2

We have shown that, assuming the consistency of a supercompact car-
dinal, it is consistent to assume that LST(L(I)) exists and moreover, we
can consistently assume that it is either the first supercompact cardinal, or
something much smaller, namely the first (weakly) inaccessible cardinal. A
fortiori, then LST(L(I)) can be consistently equal to LST(L2) or also con-
sistently different from LST(L2). Moreover, we have shown that even the
existence of LST(L(I)) implies the consistency of large cardinals. In many
respects the existence of LST(L(I)) seems, in the light of present day knowl-
edge, like Martin’s Maximum, and the cardinal LST(L(I)) behaves – be it
small or large - as ℵ2 in the presence of Martin’s Maximum. But LST(L(I))
makes no claims about the size of the continuum: If it is consistent that
there are supercompact cardinals, then it is consistent on the one hand that
LST(L(I)) exists and 2ω = ℵ1 and on the other hand that LST(L(I)) = 2ω

([14]).
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