
A Remark on Negation in Dependence Logic∗

Juha Kontinen† Jouko Väänänen ‡

Abstract

We show that for any pair φ and ψ of contradictory formulas of
dependence logic there is a formula θ of the same logic such that φ ≡ θ
and ψ ≡ ¬θ. This generalizes a result of J. Burgess [2].

1 Introduction
Dependence logic [11] arises from first-order logic by addition of dependence
atoms

=(x1, . . . , xn) (1)

the intuitive meaning of which is that the value of xn is completely determined
by the values of x1, . . . , xn−1. J. Burgess [2] observed (in the equivalent
context of Henkin sentences [6]) that if two sentences φ and ψ of dependence
logic have no models in common, then there is a sentence θ of dependence
logic such that φ ≡ θ and ψ ≡ ¬θ. In this paper we generalize this to
formulas with free variables.

As Burgess points out, his result indicates that negation is not a semantic
operation, that is, knowing the class of models of φ is not enough for knowing
the class of models of ¬φ. In this sense conjunction and disjunction are
different: once we know the classes of models of φ and ψ we know exactly
which models satisfy φ ∧ ψ or φ ∨ ψ. Likewise, existential and universal
quantifiers are semantic operations: once the class of teams satisfying φ(x) is
given, the classes of models of ∃xφ(x) and ∀xφ(x) are completely determined.
∗The first author was supported by grant 127661 of the Academy of Finland. The

second author was partially supported by grant 40734 of the Academy of Finland and by
the EUROCORES LogICCC LINT programme. The authors are grateful for the generous
support of the Mittag-Leffler Institute, where part of the work reported here was carried
out.
†Department of Mathematics and Statistics, University of Helsinki, Finland.
‡Department of Mathematics and Statistics, University of Helsinki, Finland and ILLC,

University of Amsterdam, The Netherlands.

1

Väänänen, Jouko A
Notre Dame Journal of Formal Logic 52(1), 55-65, 2011.

Thus we have to conclude that there is something special about negation.
This should not come as a surprise, given that the expressive power of sen-
tences of dependence logic is exactly existential second-order logic (Σ1

1). The
negation of dependence logic is not the classical Boolean negation although
we have the equivalences:

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ
¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ
¬¬φ ≡ φ

¬∃xφ ≡ ∀x¬φ
¬∀xφ ≡ ∃x¬φ

(2)

which hold for sentences and formulas with free variables alike. A clear indi-
cation of the non-classical nature of the negation in dependence logic is the
fact that the negations of the usual definitions of concepts such as “infinity”,
“even cardinality”, “equicardinality”, “non-wellfoundedness” and “incomplete-
ness (of a linear order)” are all non-determined [10].

In this paper we show that negation has similar qualities when applied
to formulas with free variables. We show that if two formulas φ and ψ of
dependence logic have only the empty team in common, then there is a
formula θ of dependence logic such that φ ≡ θ and ψ ≡ ¬θ.

The interest in extending the result of Burgess from sentences to formulas
stems from the following: We can think of formulas of dependence logic as
descriptions of properties of teams. Teams are more or less the same thing
as databases. Thus formulas describe properties of databases. The atomic
formula (1) describes the property of a database that a certain field (xn) is
completely determined by a combination of other fields (x1, . . . , xn−1). In
computer science this is called a functional dependency [1]. The composite
formulas of dependence logic simply describe more complex dependencies
than the mere functional dependencies. Our result then shows that if two
database properties, definable in dependence logic (i.e., downwards monotone
NP by Theorems 2.10 and 2.11), are such that only the empty database has
both, then we can capture (either) one of the properties with a formula
of dependence logic in such a way that its negation hits exactly the other
property.

This non-semantic quality of negation disappears if we define the semantic
value of a formula as the set of pairs of teams (X, Y) such that X satisfies
the formula and Y its negation. Then the semantic value of the negation
can of course be easily computed by simply reversing the pairs (X, Y) into
(Y,X).

2

2 Preliminaries
In this section we define Dependence Logic (D) and recall some basic results
on dependence logic.

Definition 2.1 ([11]). The syntax of D extends the syntax of FO, defined in
terms of ∨, ∧, ¬, ∃ and ∀, by new atomic (dependence) formulas of the form

=(t1, . . . , tn), (3)

where t1, . . . , tn are terms. If L is a vocabulary, we use D[L] to denote the
set of formulas of D based on L.

The intuitive meaning of the dependence formula (3) is that the value of
the term tn is determined by the values of the terms t1, . . . , tn−1. As singular
cases we have

=(),

which we take to be universally true, and

=(t),

which declares that the value of the term t depends on nothing, i.e., is con-
stant. We let > be the formula =() and ⊥ be ¬ =().

The set Fr(φ) of free variables of a formula φ ∈ D is defined as for first-
order logic, except that we have the new case

Fr(=(t1, . . . , tn)) = Var(t1) ∪ · · · ∪ Var(tn),

where Var(ti) is the set of variables occurring in term ti. If Fr(φ) = ∅, we
call φ a sentence.

In order to define the semantics of D, we first need to define the concept
of a team. Let A be a model with domain A. In this article, all models A

are assumed to have a domain with at least two elements. Assignments of
A are finite mappings from variables into A. The value of a term t in an
assignment s is denoted by tA〈s〉. If s is an assignment, x a variable, and
a ∈ A, then s(a/x) denotes the assignment (with domain dom(s) ∪ {x})
which agrees with s everywhere except that it maps x to a.

Let A be a set and {x1, . . . , xk} a finite (possibly empty) set of variables.
A team X of A with domain dom(X) = {x1, . . . , xk} is any set of assignments
from the variables {x1, . . . , xk} into the set A. We denote by rel(X) the k-ary
relation of A corresponding to X

rel(X) = {(s(x1), . . . , s(xk)) : s ∈ X}.

3

If X is a team of A, and F : X → A, we use X(F/xn) to denote the team
{s(F (s)/xn) : s ∈ X} and X(A/xn) the team {s(a/xn) : s ∈ X and a ∈ A}.

We are now ready to define the semantics of dependence logic. In Def-
inition 2.2 below, we only consider formulas in negation normal form, i.e.,
negation is allowed to appear only in front of atomic formulas. However,
in this article we allow negation of dependence logic to appear freely in for-
mulas. For a formula ψ = ¬φ, where φ is not atomic, A |=X ψ is taken
as a shorthand for A |=X ψ∗, where ψ∗ is acquired by transforming ψ into
negation normal form using the equivalences of (2).

Definition 2.2 ([11]). Let A be a model and X a team of A. The satisfaction
relation A |=X ϕ is defined as follows:

1. A |=X t1 = t2 iff for all s ∈ X we have tA1 〈s〉 = tA2 〈s〉.

2. A |=X ¬t1 = t2 iff for all s ∈ X we have tA1 〈s〉 6= tA2 〈s〉.

3. A |=X=(t1, . . . , tn) iff for all s, s′ ∈ X such that
tA1 〈s〉 = tA1 〈s′〉, . . . , tAn−1〈s〉 = tAn−1〈s′〉, we have tAn〈s〉 = tAn〈s′〉.

4. A |=X ¬ =(t1, . . . , tn) iff X = ∅.

5. A |=X R(t1, . . . , tn) iff for all s ∈ X we have (tA1 〈s〉, . . . , tAn〈s〉) ∈ RA.

6. A |=X ¬R(t1, . . . , tn) iff for all s ∈ X we have (tA1 〈s〉, . . . , tAn〈s〉) 6∈ RA.

7. A |=X ψ ∧ φ iff A |=X ψ and A |=X φ.

8. A |=X ψ ∨ φ iff X = Y ∪ Z such that A |=Y ψ and A |=Z φ .

9. A |=X ∃xnψ iff A |=X(F/xn)|= ψ for some F : X → A.

10. A |=X ∀xnψ iff A |=X(A/xn) ψ.

Above, we assume that the domain of X contains the variables free in φ.
Finally, a sentence φ is true in a model A (A |= φ) if A |={∅} φ.

From Definition 2.2 it follows that many familiar propositional equiva-
lences of connectives do not hold in dependence logic. For example, the
idempotence of disjunction fails, which can be used to show that the dis-
tributivity laws of disjunction and conjunction do not hold in dependence
logic either. We refer to Section 3.3 of [11] for a detailed exposition on
propositional equivalences of connectives in dependence logic.

Another important distinction between first-order logic and dependence
logic is that A 6|=X φ does not always imply that A |=X ¬φ.

4

Example 2.3. Let A be a model with A = {0, 1, 2}. Consider the following
team X of A:

x0 x1 x2

s0 1 2 2
s1 2 1 2
s2 0 1 2

(4)

By Definition 2.2 part 1, we have that A 6|=X x0 = x2, since s0(x0) 6= s0(x2),
and A 6|=X ¬x0 = x2, since s1(x0) = s1(x2). On the other hand, it holds that
A |=X ∃x0(x0 = x2): let F : X → A be the mapping F (s0) = 2, F (s1) = 2,
F (s2) = 2. Then Y = X(F/x0) is the team

x0 x1 x2

s0 2 2 2
s1 2 1 2
s2 2 1 2

(5)

By Definition 2.2 part 1, we have that A |=Y x0 = x2, hence, by Definition
2.2 part 9, A |=X ∃x0(x0 = x2).

Example 2.4. Let A be a model. Consider the following sentence φ

φ := ∀x =(x).

Now φ is true in A if A |={∅} φ, and A |={∅} φ if and only if A |=Y =(x),
where

Y = {∅}(A/x) = {s(a/x) : s ∈ {∅} and a ∈ A}.

Therefore, for every a ∈ A, Y contains an assignment s with domain {x}
such that s(x) = a. Since |A| ≥ 2, A 6|=Y = (x), whence A 6|={∅} φ. On
the other hand, note that A |={∅} ¬φ if A |={∅} ∃x(¬ = (x)) if and only
if A |={∅}(F/x) ¬ =(x), for some F : {∅} → A. Since for all F , the team
{∅}(F/x) is non-empty, Definition 2.2 part 4 implies that, for all F : {∅} →
A, A 6|={∅}(F/x) ¬ =(x), and hence A 6|={∅} ¬φ.

A sentence φ is called determined in a model A if either A |= φ or A |= ¬φ.
Otherwise φ is called non-determined in A. Next we define the notions of
logical consequence and equivalence for formulas of dependence logic.

Definition 2.5. Let φ and ψ be formulas of dependence logic. The formula
ψ is a logical consequence of φ,

φ⇒ ψ,

5

if for all models A and teams X, with Fr(φ)∪Fr(ψ) ⊆ dom(X), and A |=X φ
we have A |=X ψ. The formulas φ and ψ are logically equivalent,

φ ≡ ψ,

if φ⇒ ψ and ψ ⇒ φ.

It is worth noting that φ ≡ ψ does not in general entail that ¬φ ≡ ¬ψ.
For the purposes of this paper, formulas φ and ψ are said to be contradictory
if, for all A and X, A |=X φ and A |=X ψ implies X = ∅. We have to allow
φ and ψ to agree on X = ∅ because, over any model A, the empty team
satisfies all formulas of dependence logic.

Proposition 2.6. For all models A and formulas φ of dependence logic, it
holds that A |=∅ φ.

Proof. See Lemma 3.9 in [11].

Let X be a team with domain {x1, . . . , xk} and V ⊆ {x1, . . . , xk}. Denote
by X � V the team {s � V : s ∈ X} with domain V . The following lemma
shows that the truth of a formula depends only on the interpretations of the
variables occurring free in the formula.

Lemma 2.7. Suppose V ⊇ Fr(φ). Then A |=X φ if and only if A |=X�V φ.

Proof. See Lemma 3.27 in [11].

The following fact (Fact 11.1 in [7], see Proposition 3.10 in [11]) is also a
very basic property of all formulas of dependence logic:

Proposition 2.8 (Downward closure). Let φ be a formula of dependence
logic, A a model, and Y ⊆ X teams. Then A |=X φ implies A |=Y φ.

On the other hand, the expressive power of sentences of D coincides with
that of existential second-order sentences (Σ1

1):

Theorem 2.9. For every sentence φ of D there is a sentence Φ of Σ1
1 such

that
For all models A: A |={∅} φ ⇐⇒ A |= Φ. (6)

Conversely, for every sentence Φ of Σ1
1 there is a sentence φ of D such that

(6) holds.

Proof. Using the method of [12, 5] (See Theorems 6.2 and 6.15 in [11]).

6

However, Theorem 2.9 does not – a priori – tell us anything about for-
mulas with free variables. An upperbound for the complexity of formulas of
D is provided by the following result showing that formulas of dependence
logic can be compositionally translated into sentences of Σ1

1 [11].

Theorem 2.10. Let L be a vocabulary and φ a D[L]-formula with free vari-
ables v1, . . . , vr. Then there is a L ∪ {R}-sentence ψ of Σ1

1, in which R
appears only negatively, such that for all model A and teams X with domain
{v1, . . . , vr}:

A |=X φ ⇐⇒ (A, rel(X)) |= ψ.

In [9] it was shown that also the converse holds.

Theorem 2.11. Let L be a vocabulary, R r-ary, and R /∈ L. Then for every
L ∪ {R}-sentence ψ of Σ1

1, in which R appears only negatively, there is a
L-formula φ of dependence logic with free variables v1, . . . , vr such that, for
all A and X with domain {v1, . . . , vr}:

A |=X φ ⇐⇒ (A, rel(X)) |= ψ ∨ ∀x¬R(x). (7)

Proof. See Theorem 4.10 in [9].

Theorem 2.11 shows that formulas of dependence logic correspond in a
precise way to the negative fragment of Σ1

1 and are therefore very expressive.
On the other hand, if we restrict attention to formulas that do not contain
dependence atomic formulas as subformulas, we lose much of the expressive
power.

Definition 2.12. A formula φ of D is called a first-order formula if it does
not contain dependence atomic formulas as subformulas.

Theorem 2.13. Let φ be a first-order formula of dependence logic. Then for
all A and X:

1. A |={s} φ⇔ A |=s φ.

2. A |=X φ⇔ for all s ∈ X:A |=s φ.

In this article our goal is to generalize the following result of J. Burgess
[2] to cover also open formulas.

Theorem 2.14. Suppose that φ and ψ are contradictory sentences of depen-
dence logic. Then there is a sentence θ ∈ D such that φ ≡ θ and ψ ≡ ¬θ.

The proof of Theorem 2.14 is based on the following direct consequence
of Theorem 2.9 and the Craig Interpolation Theorem [4]:

7

Theorem 2.15. Let φ and ψ be contradictory sentences of dependence logic.
Let the vocabulary of φ be L and the vocabulary of ψ be L′. Then there is a
first-order sentence θ in the vocabulary L∩L′ such that φ⇒ θ and ψ ⇒ ¬θ.

Proof. See Theorem 6.7 in [11].

3 The main result
The negation of dependence logic is not the classical negation and hence
knowing the models of φ does not completely determine the models of ¬φ.
Recall that, by Theorem 2.11, the formulas of dependence logic correspond
to the downwards monotone classes of Σ1

1. However, Theorem 2.11 does not,
in its formulation, say anything about negations of open formulas. In fact,
for every φ, constructed in the proof of Theorem 2.11, it is immediate that
¬φ is logically equivalent to a first-order formula of D.

The following result shows that the analogue of Theorem 2.14 does indeed
extend to all formulas of dependence logic.

Theorem 3.1. Let L be a vocabulary and let φ and ψ be contradictory L-
formulas of dependence logic with free variables v1, . . . , vk. Then there is a
L-formula θ of dependence logic with the same free variables such that φ ≡ θ
and ψ ≡ ¬θ.

Proof. Let us first assume that there is a L-formula η with free variables
v1, . . . , vk such that

φ⇒ η, (8)

and
ψ ⇒ ¬η. (9)

Define φ̂ := φ∨∀x =(x) and ψ̂ := ψ∨∀x =(x). In Example 2.4, it was shown
that for every A (recall that |A| is at least 2) and X 6= ∅, A 6|=X ∀x =(x)
and also A 6|=X ¬∀x =(x). This implies that, in every model A, A 6|=X ¬φ̂
and A 6|=X ¬ψ̂ for all non-empty teams X. We now claim that the formula θ
below is as wanted

θ := φ̂ ∧ (¬ψ̂ ∨ η).

Note that ¬θ ≡ ¬φ̂ ∨ (ψ̂ ∧ ¬η). We first show that φ ≡ θ. Let A be a
model and X 6= ∅. Note that it suffices to consider teams X 6= ∅ since, by
Proposition 2.6, all formulas of dependence logic are satisfied by the empty
team. Let us assume A |=X φ. Then, by (8), A |=X η, and hence A |=X θ.
Assume then that A |=X θ. Then A |=X φ̂. Now since A 6|=Y ∀x =(x) for all
Y 6= ∅, we must have A |=X φ.

8

Let us then show that ¬θ ≡ ψ. Assume A |=X ψ and X 6= ∅. Then
A |=X ψ̂. Now, by (9), it holds that A |=X ψ̂ ∧ ¬η, hence we have A |=X ¬θ.
For the converse, assume that A |=X ¬θ. Recall that ¬θ ≡ ¬φ̂ ∨ (ψ̂ ∧ ¬η).
Now ¬φ̂ ≡ ¬φ ∧ ¬∀x =(x) and since A 6|=Y ¬∀x =(x) for all Y 6= ∅, we
have A 6|=Y ¬φ̂ for all Y 6= ∅. The only possibility is then that A |=X ψ̂ ∧¬η
implying A |=X ψ̂. Since A 6|=Y ¬∀x =(x) for all Y 6= ∅, we have A |=X ψ as
wanted.

It now suffices to show that for each pair φ and ψ of contradictory for-
mulas, we can construct a formula η satisfying (8) and (9).

Without loss of generality, we may assume that both φ and ψ are satisfied
in some model A by some X 6= ∅. Note that if, e.g., φ ≡ ⊥, we can choose
η = φ trivially. By Theorem 2.15 there is a sentence φ′ (analogously ψ′)
of Σ1

1[L ∪ R], where R k-ary, such that for all models A and teams X with
domain {v1, . . . , vk} it holds that

A |=X φ⇔ (A, rel(X)) |= φ′. (10)

A |=X ψ ⇔ (A, rel(X)) |= ψ′. (11)

By Proposition 2.6, the sentences φ′ and ψ′ are not contradictory: if X = ∅,
then (A, rel(X)) |= φ′ and (A, rel(X)) |= ψ′. However, we can easily exclude
these models by considering the sentences φ∗ = φ′ ∧ χ and ψ∗ = ψ′ ∧ χ,
instead where χ ≡ ∃xR(x). By our assumption, both φ∗ and ψ∗ are still
satisfiable.

Now, applying the Craig Interpolation Theorem [4], we get a first-order
sentence η such that φ∗ ⇒ η and ψ∗ ⇒ ¬η (cf. Theorem 2.15). Let now
η∗(v) be the first-order formula η(P (t) \ v = t), i.e., the formula in which all
occurrences of subformulas of the form P (t1, . . . , tk) are replaced by formulas∧

1≤i≤k

vi = ti.

Using induction on the construction of η∗ it holds that for all A and a ∈ Ak

(A, {a}) |= η ⇔ A |=s η
∗, (12)

where s(vi) = ai, for 1 ≤ i ≤ k. We can now interpret η∗ as a first-order
formula of dependence logic. We claim that, for all models A and teams X,
the formula η∗ satisfies the clauses (8) and (9). Let us first show clause (8).
Let A be a model and X 6= ∅. Suppose that A |=X φ. By the downward
closure, we get that, for all s ∈ X, A |={s} φ. Therefore, by (10), for
all s ∈ X, (A, {(s(v1), . . . , s(vk))}) |= φ∗. It follows that, for all s ∈ X,

9

(A, {(s(v1), . . . , s(vk))}) |= η, and, by (12), that, for all s ∈ X, A |=s η
∗.

Now Theorem 2.13 part 2 implies that A |=X η∗ as wanted.
Let us then show that the clause (9) holds. Let A be a model and X 6= ∅.

Suppose that A |=X ψ. By the downward closure, we get that, for all s ∈ X,
A |={s} ψ. Therefore, by (11), for all s ∈ X, (A, {(s(v1), . . . , s(vk))}) |= ψ∗

and thus, for all s ∈ X, (A, {(s(v1), . . . , s(vk))}) |= ¬η. Again, by (12), we
get that, for all s ∈ X, A |=s ¬η∗. Now Theorem 2.13 part 2 implies that
A |=X ¬η∗ as wanted.

As discussed in the Introduction, Theorem 3.1 shows that the negation of
dependence logic is not a semantic operation, i.e., knowing the models of φ
does not tell us practically anything about ¬φ. It is straightforward to show
that the connectives → and ↔, defined in terms of ¬, ∧, and ∨ in the usual
way, are also non-semantical operations.

Corollary 3.2. Let ξ1 and ξ2 be formulas of dependence logic. There are
formulas φi and ψi, for 1 ≤ i ≤ 2, such that φ1 ≡ ψ1 and φ2 ≡ ψ2, but

(φ1 → φ2) ≡ ξ1

(ψ1 → ψ2) ≡ ξ2

(φ1 ↔ φ2) ≡ ξ1

(ψ1 ↔ ψ2) ≡ ξ2

Proof. Let φ2 = ψ2 = ⊥. By Theorem 3.1, we can find formulas φ1 and ψ1

such that
φ1 ≡ ψ1 ≡ ⊥,

¬φ1 ≡ ξ1, and ¬ψ1 ≡ ξ2. Now it holds that

φ1 → φ2 ≡ ¬φ1 ∨ ⊥ ≡ ¬φ1 ≡ ξ1.

Analogously, we get that ψ1 → ψ2 ≡ ξ2. Finally, note that

φ1 ↔ φ2 ≡ (¬φ1 ∨ ⊥) ∧ (¬φ2 ∨ ⊥)

≡ ξ1 ∧ (> ∨⊥) ≡ ξ1.

Analogously, we get that ψ1 ↔ ψ2 ≡ ξ2.

Corollary 3.2 shows that if we a given an implication (respectively an
equivalence) of which we do not know either the antecedent or the conse-
quent, but only the classes of models that satisfy the antecedent and the
consequent, then we cannot say anything about the class of models satisfy-
ing the implication.

10

4 The case of IF logic
In this section we formulate Theorem 3.1 for Independence Friendly Logic
(IF logic). We first briefly recall the syntax and semantics of IF logic.

The syntax of IF logic (as defined in [3]) extends the syntax of FO by
slashed quantifiers (∃x/W) and (∀x/W), where W is a finite set of vari-
ables. The intuitive meaning, e.g., of a formula (∃x/{y})φ is that "there
exists x, independently of y, such that φ". Compositional semantics, sim-
ilar to Definition 2.2, was defined for IF logic in [7]. In the context of IF
logic one usually talks about trumps instead of teams, i.e., a trump for a
formula φ(x1, . . . , xn), with free variables x1, . . . , xn, corresponds to a team
with domain {x1, . . . , xn}. The set Fr(φ) of free variables of a IF-formula φ is
defined otherwise as for first-order logic, except that we have the new cases:
Fr((∃x/W)ψ)) = W ∪ (Fr(ψ) \ {x}) and Fr((∀x/W)ψ)) = W ∪ (Fr(ψ) \ {x}).
We refer to the Appendix of [3] for the truth definition of IF logic and only
discuss its similarities and differences to Definition 2.2.

In IF logic, atomic formulas and connectives ∧, ∨, and ¬ are treated just
like in Definition 2.2. With respect to trumps with a fixed domain

{x1, . . . , xn},

the meaning of a formula of the form (∃x/W)φ, where W ⊆ {x1, . . . , xn}, is
that "there is an x, depending only on variables in the set {x1, . . . , xn} \W ,
such that φ". This can be expressed in dependence logic as

∃x(=(xj1 , . . . , xjr , x) ∧ φ), (13)

where {xj1 , . . . , xjr} = {x1, . . . , xn} \ W . Note that if we consider trumps
over variables {x1, . . . , xn+m}, the variables xn+1, . . . , xn+m need to be added
to formula (13). This simple observation actually marks a difference between
IF logic and D, since, unlike with D, the truth of an IF-formula may depend
on the interpretations of variables that do not occur in the formula. For
example, the truth of the formula φ

φ = ∃x/{y}(x = y) (14)

in a trumpX with domain {x, y, z} depends on the values of z in X, although
z does not occur in φ. This observation also implies that it is not possible
to define a compositional meaning-preserving translation of formulas either
from IF logic into D, or from D into IF logic.

We shall next show that a version of Theorem 3.1 can be proved for IF-
logic. As a corollary, we get a (non-compositional) translation of formulas
between IF logic and dependence logic.

11

Theorem 4.1. Let L be a vocabulary and let φ and ψ be contradictory L-
formulas of IF logic with free variables v1, . . . , vk. Then there is a L-formula θ
of IF logic with the same free variables such that for all models A and trumps
X with domain {v1, . . . , vk}: A |=X φ⇔ A |=X θ and A |=X ψ ⇔ A |=X ¬θ.

Proof. All the properties of dependence logic used in the proof of Theorem
3.1 also hold for IF logic. In particular, the analogue of Theorem 2.10 for
IF-formulas can be found in [8]. The formula ∀x =(x) can be replaced, e.g.,
by the formula

∀x∃y/{x}(x = y),

which (and its negation) is non-determined in all structures of cardinality
greater than 1.

Unlike with dependence logic (Proposition 2.7), it is not clear that Theo-
rem 4.1 holds without the restriction to trumps with domain {v1, . . . , vk}. It
is an open question whether the version of Theorem 4.1 holds in which "for
all X with domain {v1, . . . , vk}" is replaced by "for all X with {v1, . . . , vk} ⊆
dom(X)".

Theorem 4.1 can be used to show the following (non-compositional) trans-
lation of formulas between IF logic and dependence logic.

Corollary 4.2. Let L be a vocabulary. For every L-formula φ ∈ D (φ ∈ IF)
with free variables v1, . . . , vk there is a L-formula φ∗ of IF logic (respectively
φ∗ ∈ D) with the same free variables such that for all models A and X with
domain {v1, . . . , vk}:

A |=X φ ⇔ A |=X φ∗,

A |=X ¬φ ⇔ A |=X ¬φ∗.

Proof. We show how to translate φ ∈ D[L] into a IF[L]-formula φ∗. By
Theorem 2.10, there are sentences ψ+ and ψ− of Σ1

1[L ∪ {R}], in which R
appears only negatively, that are equivalent (in the sense of Theorem 2.10) to
φ and ¬φ, respectively. By Theorem 5.2 in [9] (i.e., the analogue of Theorem
2.11 for IF logic), there are IF[L]-formulas Ψ+ and Ψ− equivalent to ψ+ and
ψ−, with v1, . . . , vk free. By Theorem 4.1 there is a IF[L]-formula φ∗ such
that for all models A and trumps X with domain {v1, . . . , vk}: A |=X φ∗ ⇔
A |=X Ψ+ and A |=X ¬φ∗ ⇔ A |=X Ψ−. By the construction, φ∗ is a correct
translation for φ. For the converse, we first apply the translation of IF[L]-
formulas into Σ1

1[L ∪ {R}]-sentences (see [8]), and then Theorems 2.11 and
3.1.

12

References
[1] W. W. Armstrong. Dependency structures of data base relationships.

In IFIP Congress, pages 580–583, 1974.

[2] J. P. Burgess. A remark on Henkin sentences and their contraries. Notre
Dame J. Formal Logic, 44(3):185–188 (electronic) (2004), 2003.

[3] P. Cameron and W. Hodges. Some combinatorics of imperfect informa-
tion. J. Symbolic Logic, 66(2):673–684, 2001.

[4] W. Craig. Linear reasoning. a new form of the herbrand-gentzen theo-
rem. J. Symb. Log., 22(3):250–268, 1957.

[5] H. B. Enderton. Finite partially-ordered quantifiers. Z. Math. Logik
Grundlagen Math., 16:393–397, 1970.

[6] L. Henkin. Some remarks on infinitely long formulas. In Infinitistic
Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), pages
167–183. Pergamon, Oxford, 1961.

[7] W. Hodges. Compositional semantics for a language of imperfect infor-
mation. Log. J. IGPL, 5(4):539–563 (electronic), 1997.

[8] W. Hodges. Some strange quantifiers. In Structures in logic and com-
puter science, volume 1261 of Lecture Notes in Comput. Sci., pages
51–65. Springer, Berlin, 1997.

[9] J. Kontinen and J. Väänänen. On definability in dependence logic. Jour-
nal of Logic, Language and Information, 18(3):317–332, 2009.

[10] J. Väänänen. A Remark on Nondeterminacy in IF Logic. Acta Philo-
sophica Fennica, 78:71–77, 2006.

[11] J. Väänänen. Dependence logic: A New Approach to Independence
Friendly Logic, volume 70 of London Mathematical Society Student
Texts. Cambridge University Press, Cambridge, 2007.

[12] W. J. Walkoe, Jr. Finite partially-ordered quantification. J. Symbolic
Logic, 35:535–555, 1970.

13

