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Recent paper: Philosophical Uses of Categoricity
Arguments, with Penelope Maddy, 62 pages. To appear.
Available in arXiv.
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Natural numbers

In 1893 Dedekind gave an axiomatisation/definition of the
structure of natural numbers:

N = {0,1,2, . . .}, s(n) = n + 1
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Dedekind’s axiomatization

• s(n) 6= 0
• s(n) = s(m)→ n = m
• Induction Principle: If A is a set of natural numbers

such that A contains 0 and is closed under the
function s, then A = N.

4 / 82



Introduction SO PA2 ZFC2 PA1 ZFC1 Summary

Typical second order categoricity results

Theorem (Dedekind 1893)
If (M1, s1,01) and (M2, s2,02) satisfy Dedekind’s second
order axioms, then (M1, s1,01) ∼= (M2, s2,02).

Theorem (Zermelo 1930)
If (M1,∈1) and (M2,∈2) satisfy the second order
Zermelo-Fraenkel axioms1 and |M1| = |M2|, then
(M1,∈1) ∼= (M2,∈2).

1Without urelements, for simplicity.
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Is this set theory?

• Second order categoricity results seem to depend on
a (non-absolute) set–theoretical background
semantics2.
• Can mathematics be built on second order logic

alone?

2due to the interpretation of the second order quantifiers.
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Internal categoricity

• In the classical cases the axioms of second order
logic suffice for categoricity.
• No non-absolute set-theoretical semantics is needed.
• I call this “internal categoricity”, a term first used3 by

Walmsley (2002).

3in number theory.
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Some building blocks

• Comprehension Schema: ∃P∀~x(P(~x)↔ ϕ(~x , ~y , ~Q)),
where P is not free in ϕ(~x , ~y , ~Q).
• Categoricity is written in second order logic itself,

following Lindenbaum &Tarski 1936.
• Provability can be expressed in terms of

Henkin-semantics, which is absolute4.

4unlike validity.
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A detailed definition

• T1 a second-order theory, voc. {R1, . . . ,Rn}, Ri ri-ary.
• {R′1, . . . ,R′n} new relation symbols, R′i ri-ary.
• T2 is T1 with every occurrence of Ri replaced by R′i ,

1 ≤ i ≤ n.
• F a new unary function symbol, U and U ′ new unary

predicate symbols.
• ISO(F ,U,U ′) says (in first order logic) that F is a

bijection between U and U ′ such that
Ri(a1, . . . ,ari )↔ R′i (F (a1), . . . ,F (ari )) for all
a1, . . . ,an ∈ U and all i with 1 ≤ i ≤ n.
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Recall: relativization

• If ϕ is any second-order formula, ϕ(U) is obtained from
ϕ by relativizing all first- and second-order quantifiers
to U.
• For any theory T , T (U) denotes {ϕ(U) : ϕ ∈ T}.
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Definition
The second order theory T1 is internally categorical if

T (U)
1 ∪ T (U′)

2 `2 ∃F ISO(F ,U,U ′).
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• The (usual) categoricity of T1 is equivalent to

T (U)
1 ∪ T (U)

2 |= ∃F ISO(F ,U,U ′).

• Internal categoricity says that the categoricity of T1 is
not merely a set-theoretical fact but is, in fact,
provable in second-order logic.
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Naturally, internal categoricity is stronger than (the usual)
categoricity:

Theorem
Suppose T1 is internally categorical. Then T1 is
categorical.
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The (trivial) proof

• W.l.o.g., suppose the domains of M and M ′, which we
denote also with M and M ′, are disjoint.
• Let M∗ be the unique model with M ∪M ′ as domain,

UM∗ = M, U ′M
∗

= M ′, RM∗
i = RM

i , and R′M
∗

i = RM′
i for

1 ≤ i ≤ n. Clearly, M∗ |= T (U)
1 ∪ T (U′)

2 .
• Hence by internal categoricity and the Soundness

Theorem, M∗ |= ∃F ISO(F ,U,U ′).
• Hence, (UM∗ ,RM∗

1 , . . . ,RM∗
n ) ∼= (U ′M

∗
,R′M

∗

1 , . . . ,R′M
∗

n ).

• Now M ∼= M ′ follows.
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• Semantically, internal categoricity says that every
Henkin model of T (U)

1 ∪ T (U′)
2 satisfies

∃F ISO(F ,U,U ′).
• If a Henkin model recognizes two models of T1, it also

recognizes an isomorphism between them.
• Note: ISO(F ,U,U ′) is absolute in Henkin models.
• In every Henkin model there is at most one (up to ∼=)

model of T1.
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• If T1 has an infinite model, then (by the Compactness
Theorem) there are Henkin models H = (M,A) of T1
of any infinite cardinality.
• The Henkin models of T1 form a “cloud" H(T1) around

the full model M of (an internally categorical) T1.
• Inside each “point" H of the cloud H(T1) there is a

unique model MH of T1 in the sense of H.
• Truth of a sentence ϕ in M |= T1 has a stronger (than

M |= ϕ) and more absolute version, viz. truth in each
MH ∈ H(T1), i.e. T1 `2 ϕ.

16 / 82



Introduction SO PA2 ZFC2 PA1 ZFC1 Summary

Internal categoricity in number theory

17 / 82



Introduction SO PA2 ZFC2 PA1 ZFC1 Summary

When T1 is PA2, we have

Theorem (e.g. [Hel89]5)
PA2 is internally categorical.

Hence

Corollary (Dedekind)
PA2 is categorical.

5[Par90], [Sha91], [Wal02], probably others.
18 / 82



Introduction SO PA2 ZFC2 PA1 ZFC1 Summary

Internal categoricity of PA2—semantic version

Corollary
If (M1, s1,01) and (M2, s2,02) satisfy Dedekind’s second
order axioms in a Henkin model H, then
(M1, s1,01) ∼= (M2, s2,02), and the isomorphism is in H.

In other words: In every Henkin model there is at most
one (up to ∼=) model of PA2.
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Proof

By the Π1
1-Comprehension Schema, there is

R =
⋂
{P : P(01,02)∧

∀x ∈ M1∀y ∈ M2(P(x , y)→ P(s1(x), s2(y))}.

It is easy to prove that R is the desired isomorphism.

Much weaker principles suffice: Simpson and Yokoyama
(2013) show that WKL0 (Weak König’s Lemma6) suffices
over RCA0 (Recursive Comprehension Axiom). This is
interesting because WKL0 is weaker than Peano
arithmetic itself (i.e. ACA0).

6Every infinite binary subtree of 2<ω has an infinite branch.
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Internal categoricity of PA2—syntactic version

Let PA2
1 be the conjunction of the axioms of PA2 in the

vocabulary {01,S1}. Similarly PA2
1 in {02,S2}.

Theorem (Internal categoricity restated)
`2 ∀N101S1N202S2((PA2(N1)

1 ∧ PA2(N2)
2 )→ ∃F ISO(F ,N1,N2)).
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Corollary
Suppose ϕ(0,S) is a second-order sentence in the
vocabulary {0,S}. Then

`2 ∀N101S1N202S2((PA2(N1)
1 ∧ PA2(N2)

2 )

→ (ϕ(N1)(01,S1)↔ ϕ(N2)(02,S2))).

A detailed proof of this can be found in [BW18].
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Theorem ([BW18] ‘Intolerance’ of PA2)
Suppose ϕ(0,S) is a second-order sentence. Then

`2 ∀N0S(PA2(N) → ϕ(N)(0,S)) ∨ ∀N0S(PA2(N) → ¬ϕ(N)(0,S))).

In other words, the class of all Henkin models is divided
into those in which the unique model (if any) of PA2

satisfies ϕ and to those in which it satisfies ¬ϕ.

How is this different from PA2 ` ϕ ∨ ¬ϕ? The class of all
possible models of PA2 being divided into those which
satisfy ϕ and those which satisfy ¬ϕ.
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Proof.
Corollary 9 says

` ∀N101S1N202S2((PA2(N1)
1 ∧ PA2(N2)

2 )

→ (ϕ(N1)(01,S1) ∨ ¬ϕ(N2)(02,S2))).

By rearranging quantifiers and connectives, we obtain

` ∀N101S1(PA2(N1)
1 → ϕ(N1)(01,S1))

∨ ∀N202S2(PA2(N2)
2 → ¬ϕ(N2)(02,S2)))

from which the claim follows by change of bound
variables.
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Corollary ([BW18])
If ϕ is a second-order sentence in the vocabulary {0,S},
then

PA2(N1)
1 ∪ PA2(N2)

2 ∪ {ϕ(N1)(01,S1),¬ϕ(N2)(02,S2)}

is deductively inconsistent.

How is this different from the inconsistency of
PA2 ∪ {ϕ} ∪ {¬ϕ}?
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What does internal categoricity of PA2 give us?

• It is stronger than (or as strong as) categoricity.
• Its proof is more absolute than the proof of

categoricity.
• It is (?) the actual content of the categoricity of PA2.
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Internal categoricity in set theory
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Internal categoricity in set theory

Theorem ([VW15])
If (M1,∈1) and (M2,∈2) satisfy the second order
Zermelo-Fraenkel axioms7 and |M1| = |M2| in a Henkin
model H, then (M1,∈1) ∼= (M2,∈2), and the isomorphism
is in H.

(Proof below)

7Urelements are irrelevant for our purposes, so for simplicity, we assume
there are none.
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• ZF2, the usual vocabulary {∈}.8
• E1 and E2 binary relation symbols and X1 and X2

unary relation symbols.
• If ϕ is a second-order sentence in the vocabulary {∈},

let ϕ(E1) and ϕ(E2) be translations of ϕ into the
vocabularies {E1} and {E2}, respectively.

8Urelements are irrelevant for our purposes, so for simplicity, we assume
there are none.
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• ZF2(X1)(E1) =
∧
{ϕ(X1)(E1) : ϕ(E1) ∈ ZF2(E1)}

ZF2(X2)(E2) =
∧
{ϕ(X2)(E2) : ϕ(E2) ∈ ZF2(E2)}.

• Let IA be the second-order sentence in the
vocabulary {X1,E1,X2,E2} which says that the
classes of inaccessible cardinals in the sense of
(X1,E1) and (X2,E2), respectively, are isomorphic.
• Let ISO(F ,X1,X2) be the first-order sentence that

says F is an isomorphism (X1,E1) between (X2,E2).
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Internal quasi-categoricity of ZF2

Theorem ([VW15])
`2 (ZF2(X1)(E1) ∧ ZF2(X2)(E2) ∧ IA)→ ∃F ISO(F ,X1,X2).

Every Henkin model has at most one (up to ∼=) model of
set theory with prescribed inaccessibles.

This implies Zermelo’s quasi-categoricity theorem9.

[McG97] and [Lav99] present a “schematic" version of
this.

9in the absence of urelements.
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Proof

Let π be an isomorphism between the inacessibles of
(X1,E1) and (X2,E2). Let

R =
⋂
{P : π ⊆ P ∧ ∀x ∈ X1∀y ∈ X2

((∀zE1x∃uE2yP(z,u) ∧ ∀uE2y∃zE1xP(z,u))

→ P(x , y))}.

It is easy to prove that R is the desired isomorphism.
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Corollary
Suppose ϕ is a second-order sentence in {∈}. Then

` (ZF2(X1)(E1)∧ZF2(X2)(E2)∧IA)→ (ϕ(X1)(E1)↔ ϕ(X2)(E2)).

A detailed proof of this can be found in [BW18].
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• Let IA0 be the first-order sentence of set theory
saying that there are no inaccessible cardinals, i.e.
that every limit cardinal > ω is singular.
• Let

Γ =
∧

(ZF2 ∪ {IA0}).
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Theorem ([BW18])
(‘Intolerance’) Suppose ϕ is a second-order sentence in
{∈}. Then

`2 ∀X∀E(Γ(X)(E)→ ϕ(X)(E)) ∨ ∀X∀E(Γ(X)(E)→ ¬ϕ(X)(E)).

How is this different from ZF2 ` ϕ ∨ ¬ϕ? The class of all
Henkin models of ZF2 is divided into those which satisfy ϕ
and those which satisfy ¬ϕ.
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Proof.
By Corollary 14,

`2 ∀X1∀E1∀X2∀E2((Γ(X1)(E1) ∧ Γ(X2)(E2))

→ (ϕ(X1)(E1) ∨ ¬ϕ(X2)(E2))).

By rearranging quantifiers and connectives, we obtain

`2 ∀X1∀E1(Γ(X1)(E1)→ ϕ(X1)(E1))

∨ ∀X2∀E2(Γ(X2)(E2)→ ¬ϕ(X2)(E2)))

from which the claim follows by change of bound
variables.
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Corollary ([BW18])
If ϕ is a second-order sentence in vocabulary {∈}, then
the theory

{Γ(X1)(E1), Γ(X2)(E2), ϕ(X1)(E1),¬ϕ(X2)(E2)}

is deductively inconsistent.

How is this different from the fact that there is no Henkin
model of ZF2 ∪ {ϕ} ∪ {¬ϕ}?
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What does internal quasi-categoricity of ZF2 give us?

• It is stronger than (or as strong as) quasi-categoricity.
• Its proof is more absolute than the proof of

quasi-categoricity.
• It is (?) the actual content of the quasi-categoricity of

ZF2.
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Internal categoricity of first order theories: arithmetic
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A framework for two domains

• Let N1 and N2 be unary predicate symbols, +1 and
+2, ·1 and ·2 binary function symbols, and 01 and 02,
11 and 12 constant symbols.
• Let PA1(N1) be the first-order theory PA written in the

vocabulary {+1, ·1,01,11}, with the functions +1, ·1
mapping N1 × N1 to N1, the constants 01,11 in N1, the
Induction Schema allowing formulas from the larger
vocabulary {+1, ·1,01,11} ∪ {+2, ·2,02,12} and
(first-order) quantifiers ranging over the whole
domain, including N1 ∪ N2.
• Likewise PA2(N2).
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Arithmetic on two different domains.

Remark
PA1(N1) ∪ PA2(N2) does not imply the isomorphism of the
N1-part and the N2-part.
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• Let M be the disjoint sum of two copies of the standard model
(N,0,S). Thus (NM

1 ,0M
1 ,SM

1 ) ∼= (N,0,S) and
(NM

2 ,0M
2 ,SM

2 ) ∼= (N,0,S).

• Let (N∗,0∗,S∗) be a countable non-standard model elementarily
equivalent to (but again disjoint from) (N,0,S) and let M ′ be the
disjoint sum of (N,0,S) and (N∗,0∗,S∗), making it a model of
the vocabulary PA1(N1) ∪ PA2(N2).

• A simple Ehrenfeucht-Fraïssé-game argument, as in Feferman
[Fef72], shows that M ≡ M ′.

• Since (N,0,S) satisfies even the second-order Induction Axiom,
M certainly satisfies PA1(N1). Respectively, M satisfies PA2(N2).
Thus M |= PA1(N1) ∪ PA2(N2) and then also
M ′ |= PA1(N1) ∪ PA2(N2). But (NM′

1 ,0M′

1 ,SM′

1 ) and
(NM′

2 ,0M′

2 ,SM′

2 ) are non-isomorphic, as the former is standard
and the latter is non-standard.
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A new framework for two domains

• The vocabulary of PA is {+, ·,0,1}.
• Let N1 and N2 be unary predicate symbols, +1 and

+2, ·1 and ·2 binary function symbols, and 01 and 02,
11 and 12 constant symbols.
• Let PA1(N1) be the first-order theory PA written in the

vocabulary {+1, ·1,01,11}, with the functions +1, ·1
mapping N1 × N1 to N1, the constants 01,11 in N1, the
Induction Schema allowing formulas from the larger
vocabulary {+, ·,0,1}∪ {+1, ·1,01,11}∪ {+2, ·2,02,12}
and (first-order) quantifiers ranging over the whole
domain, including N1 ∪ N2.
• Likewise PA2(N2).
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• An obvious obstacle to a first-order project is that the
basic claim of categoricity – ‘there’s an isomorphism
between N1 and N2’– can’t be formulated in our
first-order language.
• It is possible, however, to devise a first-order formula,
ϕ(x , y), that determines a functional relation of the
desired form.
• Devising an appropriate ϕ involves coding.
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• Let ψ(x ,u, v) say that x , using + and ·, codes an
initial segment I1 of N1 ending with u, an initial
segment I2 of N2 ending with v , and a function
f : I1 → I2 such that f (01) = 02, f (z +1 11) = f (z) +2 12
for all z ∈ I1 � {u}, and f (u) = v .
• Let ϕ(u, v) be ∃xψ(x ,u, v).
• Let ISOϕ(N1,N2) be the first-order formula which says

that ϕ is a bijection between N1 and N2, and for all
x , y ∈ N1:

F (01) = 02 ∧
F (11) = 12 ∧
F (x +1 y) = F (x) +2 F (y) ∧
F (x ·1 y) = F (x) ·2 F (y),

(1)

where F (x) abbreviates the unique y ∈ N2 such that
ϕ(x , y).
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With ϕ as above we obtain:

Theorem ([Vää21])
First-order PA is internally categorical in the sense that

PA ∪ PA1(N1) ∪ PA2(N2) ` ISOϕ(N1,N2).

Parsons [Par90, Par08] emphasises this kind of
categoricity but does not accomplish it. He assumes
“Skolem’s recursive arithmetic", which is of course
included in PA. At the same time he explicitly tries to
avoid a common framework such as PA here.
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Proof.
By induction on +1, we show that F is a function N1 → N2
and that it satisfies the conditions (1). We then use
induction on +2 to prove that F is onto. These proofs
exploit the fact that induction holds for first-order formulas
that have any of the symbols
+, ·,0,1,+1, ·1,01,11,+2, ·2,02,12. Induction on + is used
to establish the necessary properties of the coding.

It’s easy to see that the internal categoricity (and thereby
the categoricity) of PA2 follows from the internal
categoricity of the first-order PA.
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• Another option is to consider two copies of PA with
the same domain: PA∗1 says that the axioms of
first-order PA hold of +1, ·1,01,11, PA∗2 says the same
for +2, ·2,02,12, where both allow induction for
first-order formulas in the joint vocabulary
{+1, ·1,01,11} ∪ {+2, ·2,02,12}.
• If AUTϕ says that ϕ defines a permutation of the

domain and that it satisfies the preservation clauses
in the definition of ISOϕ(N1,N2).
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Theorem ([Vää19, Vää21])
First-order Peano arithmetic PA is internally categorical in
the sense that

PA∗1 ∪ PA∗2 ` AUTϕ.

Proof.
As above, taking {+, ·,0,1} be {+1, ·1,01,11}.
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Corollary
If ψ is a first-order sentence, then

PA∗1 ∪ PA∗2 ` ψ(+1, ·1,01,11)↔ ψ(+2, ·2,02,12).
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Let PA∗1,n be the conjunction of the first n axioms of PA∗1
under some natural enumeration.

Theorem (‘Intolerance’ of PA))
There is a natural number n such that if ψ is a first-order
sentence, then

` (PA∗1,n → ψ(+1, ·1,01,11)) ∨ (PA∗2,n → ¬ψ(+2, ·2,02,12)).

How is this different from PA ` ψ ∨ ¬ψ? The class of all
possible models of PA is divided into those which satisfy ψ
and those which satisfy ¬ψ.
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Corollary
If ϕ is a first-order sentence of the vocabulary {∈}, then
the theory

{PA∗1 ∪ PA∗2, ψ(+1, ·1,01,11),¬ψ(+2, ·2,02,12)}

is deductively inconsistent.

How is this different from the inconsistency of
PA ∪ {ϕ} ∪ {¬ϕ}?
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What does internal categoricity of PA1 give us?

• Categoricity failing, internal categoricity is what is left
from the categoricity of PA2.
• It demonstrates that internal categoricity is not (only)

a second order phenomenon.

53 / 82



Introduction SO PA2 ZFC2 PA1 ZFC1 Summary

Internal categoricity of first order theories: set theory
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• ZF has the vocabulary {∈}. ZF(E) is the result of
replacing ∈ with a binary relation symbol E .
• E1 and E2 new binary, X1 and X2 new unary relation

symbols, and π a new unary function symbol.
• Let ϕ(X)(E) be ϕ(E) with the first-order quantifiers

relativized to X .
• Let ZF(X1)(E1) consist of all ϕ(X1)(E1), where ϕ ∈ ZF,

allowing in the separation and replacement schemas
formulas from the vocabulary {X1,E1,X2,E2, π} with
unrestricted (i.e. not relativized to X1) quantifiers.
• Similarly ZF(X2)(E2).
• Let IOπ says that π is an isomorphism between the

ordinals of (X1,E1) and the ordinals of (X2,E2).
• Let ISOϕ((X1,E1), (X2,E2)) say that ϕ(x , y) defines an

isomorphism between (X1,E2) and (X2,E2).
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Theorem
(Internal quasi-categoricity of ZF) There is a first-order
formula ϕ = ϕ(x , y) of set theory such that

ZF ∪ ZF(X1)(E1) ∪ ZF(X2)(E2) ∪ {IOπ} ` ISOϕ((X1,E1), (X2,E2)).
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• The proof is as below, cf. also [Mar18] for an informal
version.
• What fundamentally differentiates this theorem from

the second-order version is the mechanism by which
that the crucial links between the (X1,E1) and (X2,E2)
are forged: in the first-order theorem, the key is
allowing the vocabulary of one into the axiom
schemas of the other; in the second-order theorem,
these specifics are masked in the Comprehension
Axioms.
• [McG97] comes close to the above theorem with his

“schematic" categoricity theorem.
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• As with arithmetic, the ZF in “the background" can be
eliminated if we assume that the domains of the two
versions of ZF are the same.
• An extra assumption like IOπ is now unnecessary.
• Given a formula ϕ(x , y), let Autϕ be the first-order

sentence which says that ϕ(x , y) defines an
automorphism between the binary predicates E1 and
E2, again assuming the axioms ZF for E1 and E2.
• Let ZF(E ,E ′) be ZF with E as the membership

relation, but with separation and replacement
schemas allowing formulas from the vocabulary
{E ,E ′}.
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Theorem ([Vää19])
There is a first-order formula ϕ = ϕ(x , y) of set theory
such that

ZF(E1,E2) ∪ ZF(E2,E1) ` Autϕ(E1,E2).
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Proof of the Theorem

We use ∈i to denote Ei .
• Let tri(x) be the formula ∀t ∈i x∀w ∈i t(w ∈i x). It

says that x is transitive in ∈i-set theory.
• Let TCi(x) be the unique u such that

tri(u)∧x ∈i u∧∀v((tri(v)∧x ∈i v)→ ∀w ∈i u(w ∈i v))
(i.e. “u is the ∈i-transitive closure of x”).
• Let ϕ(x , y) be the formula ∃fψ(x , y , f ), where
ψ(x , y , f ) is the conjunction of the following formulas
(where f (t) and f (w) are understood in the sense of
∈1):
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Proof of the Theorem

ψ(x , y , f ) :

(1) In the sense of ∈1, the set f is a function with
TC1(x) as its domain.

(2) ∀t ∈1 TC1(x)(f (t) ∈2 TC2(y))

(3) ∀t ∈2 TC2(y)∃w ∈1 TC1(x)(t = f (w))

(4) ∀t ∈1 TC1(x)∀w ∈1 TC1(x)(t ∈1 w ↔ f (t) ∈2
f (w))

(5) f (x) = y
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Proof of the Theorem
Lemma
If ψ(x , y , f ) and ψ(x , y , f ′), then f = f ′.
Proof:
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Proof of the Theorem

Lemma
1. If ψ(x , y , f ) and x ′ ∈1 x, then ϕ(x ′, f (x ′)).
2. If ψ(x , y , f ) and y ′ ∈2 y, then there is x ′ ∈1 x such that

f (x ′) = y ′ and ϕ(x ′, y ′).
3. If ϕ(x , y) and ϕ(x , y ′), then y = y ′.
4. If ϕ(x , y) and ϕ(x ′, y), then x = x ′.
5. If ϕ(x , y) and ϕ(x ′, y ′), then x ′ ∈1 x ↔ y ′ ∈2 y.
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Proof of the Theorem

• Let On1(x) be the ∈1-formula saying that x is an
ordinal i.e. a transitive set of transitive sets, and
similarly On2(x).
• For On1(α) let V 1

α be the αth level of the cumulative
hierarchy in the sense of ∈1, and similarly V 2

a .
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Proof of the Theorem

Lemma
1. If ϕ(α, y), then On1(α) if and only if On2(y).
2. If α is a limit ordinal then so is y i.e. if
∀u ∈1 α∃v ∈1 α(u ∈1 v), then
∀u ∈2 y∃v ∈2 y(u ∈2 v).

3. Also vice versa.
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Proof of the Theorem

Lemma
Suppose ψ(α, y , f ). If On1(α) (or equivalently On2(y)), then
there is f̄ ⊇ f such that ψ(V 1

α ,V 2
y , f̄ ).
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Proof of the Theorem

Lemma
∀x∃yϕ(x , y) and ∀y∃xϕ(x , y).
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• Note that (M,∈1) and (M,∈2) can be models of
V = L, V 6= L, CH, ¬CH, even of ¬Con(ZF ).
• It is easy to construct such pairs of models using

classical methods of Gödel and Cohen.
• Not all of them can be models of second order set

theory.
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Continuum Hypothesis (CH)

• What if (M,∈1) |= CH and (M,∈2) |= ¬CH?
• Then either (M,∈1) or (M,∈2) does not satisfy the

Separation Schema or the Replacement Schema if
formulas are allowed to mention the other
membership-relation.
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As before, we can argue:

Corollary
If ϕ is a first-order sentence in the vocabulary {∈}, then

ZF(E1,E2) ∪ ZF(E2,E1) ` ϕ(E1)↔ ϕ(E2).
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Let ZFn(E ,E ′) be the conjunction of the first n axioms of
ZF(E ,E ′) under some natural enumeration.

Theorem (‘Intolerance’ of ZF))
There is a natural number n such that if ϕ is a first-order
sentence in the vocabulary {∈}, then

` (ZFn(E1,E2)→ ϕ(E1)) ∨ (ZFn(E2,E1)→ ¬ϕ(E2)).

How is this different from ZF ` ϕ ∨ ¬ϕ? The class of all
possible models of ZF is divided into those which satisfy ϕ
and those which satisfy ¬ϕ.
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Corollary
If ϕ is a first-order sentence of the vocabulary {∈}, then
the theory

{ZF(E1,E2),ZF(E2,E1), ϕ(E1),¬ϕ(E2)} (2)

is deductively inconsistent.

How is this different from the inconsistency of
ZF ∪ {ϕ} ∪ {¬ϕ}?
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What does internal (quasi-)categoricity of ZF give us?

• (Quasi-)categoricity failing, internal (quasi-)
categoricity is what is left.
• Internal (quasi-)categoricity is not (only) a second

order phenomenon.
• A strong robustness result for set theory.
• The model cannot be changed “internally”.
• To get non-isomorphic models one has to go “outside”

the model.
• But going “outside” raises the potential of an infinite

regress of meta theories.
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Recap: The importance of internal categoricity in SO

• A strong form of categoricity.
• Independent of set theoretical background.
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Recap: The importance of internal categoricity in FO

• A weak form of categoricity.
• An echo of SO axiomatizations.
• Dilutes the first order/second order distinction.
• An outcome that was thought to require second-order

resources—namely, categoricity theorems—can
actually be achieved by suitable first-order means.
What seems to be crucial is a link between the
languages of the two relevant models.
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A note

There is a connection between internal categoricity and
bi-interpretability, brought to my attention recently by Ali
Enayat.

Freire and Hamkins: Bi-interpretation in weak set
theories. (English summary) J. Symb. Log. 86 (2021), no.
2, 609—634.

Enayat: Variations on a Visserian theme. A tribute to
Albert Visser, 99—110, Tributes, 30, Coll. Publ., [London],
2016.
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Summary

• Second order logic as the (language for the)
foundation of mathematics is advocated because of
its power to characterize structures up to
isomorphism.
• But full second order logic depends heavily on set

theory, which is itself an alternative language for the
foundation of mathematics. If you try to avoid set
theory, you should not use it as your metatheory.
• Categoricity does not require full second order logic,

contrary to common belief. Henkin second order logic
is enough for (the stronger) internal categoricity.
• Even first order theories manifest internal categoricity.
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Thank you!
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