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How complicated can structures be?

Is there a measure of how ’close’ non-isomorphic mathematical structures are? Jouko
Väänänen, professor of logic at the Universities of Amsterdam and Helsinki, shows how con-
temporary logic, in particular set theory and model theory, provides a vehicle for a meaningful
discussion of this question. As the journey proceeds, we accelerate to higher and higher
cardinalities, so fasten your seatbelts.

By a structure we mean a set endowed with a
finite number of relations, functions and con-
stants. Examples of structures are groups,
fields, ordered sets and graphs. Such struc-
tures can have great complexity and indeed
this is a good reason to concentrate on the
less complicated ones and to try to make
some sense of them. In this article we walk
the less obvious and perhaps less appealing
trail of delving more deeply into more and
more complicated structures. We raise the
question of how we can make sense of the
statement that we have found an extremely
complicated structure? This is typical of the
kind of question investigated in mathematical
logic. The guiding result of mathematical log-
ic is the Incompleteness Theorem of Gödel,
which says that the logical structure of num-
ber theory is so complicated that it cannot be
effectively axiomatized in its entirety. In other
words, the theory is non-recursive, i.e. there
is no Turing machine that could tell whether
a sentence of number theory is true or not.
A contrasting and pivotal result of logic from
the same period is Alfred Tarski’s result that
the field of real numbers (or the field of com-
plex numbers) can be completely and effec-
tively axiomatized and is indeed recursive in
the sense that there is a Turing machine that
decides whether a given statement about the
plus and times of real (or complex) numbers
is true or not.

We start with the extremely interesting sit-
uation concerning attempts to classify finite
models. We then move to the more estab-
lished case of countable structures. Sweep-
ing results exist here and this case is very
much the focus of current research. Then we
turn our faces to the wind and stare into the

eyes of the difficult uncountable structures.
New ideas are needed here and a lot of work
lies ahead. Finally we tie the uncountable
case to stability theory, a recent trend in mod-
el theory. It turns out that stability theory and
the topological approach proposed here give
similar suggestions as to what is complicated
and what is not.

For unexplained set theoretical concepts
refer to [5].

Finite structures
Let us start with finite structures. The fa-
mous P=NP question, one of the Clay Insti-
tute Millennium Questions, asks if we can
decide in polynomial time whether a given
finite graph is 3-colourable. Should the an-
swer to the P=NP question be negative, as is
expected, we will have a sequence of some
rather complicated graphs, for which no algo-
rithm, running in polynomial time in the size
of the graph, can decide whether the graph is
3-colourable or not.

The problem of whether the isomorphism
of two finite structures can be solved in poly-
nomial time is a famous open problem of
complexity theory. It is particularly famous
because it is not known whether it is NP-
complete either; it may be strictly between
P and NP.

Countable structures
What about countably infinite structures? We
should not distinguish between isomorphic
structures. So let us assume the universe
of our countable structures is the set N of
natural numbers. After a little bit of coding,
such countable structures can be thought of
as points in the topological space N of all

functions f : N → N endowed with the topolo-
gy of pointwise convergence, where N is given
the discrete topology.

We can now consider the orbit of an arbi-
trary countable structure under all permuta-
tions of N and ask how complex this set is
in the topological space N. If the orbit is a
closed set in this topology, we should think of
the structure as an uncomplicated one. This
is because the orbit being closed means, in
view of the definition of the topology, that the
finite parts of the structure completely deter-
mine the whole structure, as is easily seen to
be the case in the graph of the picture:

A structure may be quite innocuous even if
the orbit is not closed. For example, the or-
bit of the ordered set of the rationals is not
closed because as far as the finite parts are
concerned it cannot be distinguished from the
order type of the integers. While not closed,
the orbit of the rationals is of the form

⋂
n

⋃
m
Fn,m, (1)

where each Fn,m is closed. This is a con-
sequence of the fact that the density of the
order, as well as not having endpoints, can
be expressed in the form ‘for all . . . exists . . .’,
and these two properties completely deter-
mine the structure among countable struc-
tures.

When the number of alternating intersec-
tions and unions increases in the formula (1),
even to the transfinite, we end up with the
hierarchy of Borel sets
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• G0 = open sets, F0 = closed sets
• Gα+1 = countable unions of sets from Fα
• Fα+1 = countable intersections of sets from
Gα

• Gν =
⋃
α<ν Gα, Fν =

⋃
α<ν Fα, if ν is a

limit ordinal
named after Émile Borel (1871–1956), a
French mathematician.

So the philosophy is now that the further
the orbit is from being a closed set the more
complicated the structure is. We can go up
the Borel hierarchy and find structures on all
levels Fα∪Gα. By a deep result of Dana Scott
[9] every orbit is on some level of the Borel
hierarchy, although a priori the orbits are just
analytic sets, i.e. continuous images of closed
sets.

The levels Fα ∪ Gα of the Borel hierarchy
are calibrated by countable ordinals α. Or-
bits of familiar structures such as (N,+, ·,0,1),
the field of rational numbers, the Random
Graph, the free Abelian group of countably
many generators, and any vector space (over
Q) of countable dimension are all on one of
the lowest infinite levels of the Borel hierar-
chy. On the other hand the orbit of any suf-
ficiently closed countable ordinal (α,<) is on
levelα, i.e. in the set Fα but not in any Fβ∪Gβ
forβ < α (what is needed is thatα is such that
β < α implies ωβ < α). Such structures of
high level can be constructed for e.g. Abelian
groups. This basic setup has led recently to a
rich theory of Borel equivalence relations on
Polish spaces [1].

Uncountable structures
What if we have an uncountable structure and
we want to measure its complexity and the
degree to which a given structure is close to
being isomorphic to it? After all, the most
important mathematical structures, such as
the fields of real numbers and complex num-
bers, Euclidean spaces, Banach spaces, etc.,
are all uncountable. In the light of our experi-
ence with countable structures, it seems natu-
ral to consider structures that are determined
by their countable parts as uncomplicated.

Consider the ordered set L = (R, <) of all
real numbers. If we only look at countable
sub-orders, this is no different from the or-
dered set L′ = (R \ {0}, <) of the non-zero
real numbers — although L and L′ are not
isomorphic as the first is a complete order
and the second is not. In fact, L is quite a
complicated structure albeit not by any means
among the most complicated. One example
of the peculiar properties of L is the follow-
ing. If we add a new real to the universe by
Cohen’s method of forcing, L becomes iso-

morphic with L′. So in some sense L is a
hair’s breadth away from being L′. The fact
that L is complicated is related to exactly this
kind of phenomenon, to being an iota away
from another, non-isomorphic structure.

When we set our foot on the path of look-
ing at uncountable structures through the
lens of their countable parts, the first rest-
ing spot is bound to be the class of structures
that can be expressed as an increasing union
of countable substructures or, equivalently,
structures of cardinality ℵ1, the first uncount-
able cardinal. Now the alarm bells start to
ring! We do not know whether the real num-
bers, the complex numbers, Euclidean space,
Banach spaces, etc, have this property.

The question of whether the set R of real
numbers is an increasing union of countable
sets is known as the Continuum Hypothesis
(CH). So in order to include those structures
in this discussion we have to assume CH. In
fact, most of the currently known results in
this direction assume CH anyway. But there
is a whole family of structures that are by their
very definition increasing unions of countable
structures, and this family is closed under var-
ious algebraic operations but not under infi-
nite products, unless we assume CH. An ex-
ample is the order-type (ω1, <) and the nu-
merous structures built around it, such as the
free Abelian group on ℵ1 generators.

Models of cardinality ℵ1 can be thought
of as points in the space N1 of functions
f : ω1 → ω1 endowed with the topology
of pointwise convergence, that is, a neigh-
bourhood of a point f ∈ N1 is of the form
N(f ,X) = {g ∈ N1 : ∀x ∈ X(g(x) = f (x))}
where X is countable. So the orbit of a struc-
ture is a closed set essentially if the countable
parts of the structure completely determine
it. The orbit of the free abelian groep F (ℵ1)

on ℵ1 is not at all closed. There are so-called
almost free Abelian groups, every countable
subgroup of which is free but which are not
free themselves. So the question to ask is
not only what the countable substructures are
but also how they sit inside the structure. To
see how complicated the group F (ℵ1) is let us
define the Borel hierarchy in N1.

The class of Borel sets of the space N1

is the smallest class of sets containing the
open sets and closed under complements
and unions of length ω1. A set is analytic
if it is a continuous image of a closed subset
of N1. Orbits of structures of cardinality ℵ1

are, a priori, analytic, but are they Borel?
When we carry out the same topological

analysis of models of cardinality ℵ1, as we
did with countable models, the notion of an

Émile Borel (1871–1956), a French math-
ematician and politician who has many
theorems named after him; there is
even a Borel crater on the moon in the
Mare Serenitatis. Borel, together with
Lebesgue and Baire, is also known as
a representative of semi-intuitionism, an
alternative approach to constructivism
along with Brouwer’s intuitionism. The
former maintained that set theory should
be limited to definable sets, anticipat-
ing descriptive set theory, while the latter
launched a criticism of the Law of Exclud-
ed Middle, leading to modern intuitionis-
tic logic and constructive mathematics.

approximation is more complex. After all, we
have to approximate an uncountable object
and we cannot approximate f ∈ N1 merely
by its finite initial segments. Roughly for the
same reason, the approximations are scaled
by bounded trees, i.e. trees with no uncount-
able branches, rather than ordinals.

The passage from well-founded trees to
bounded trees brings with it two major prob-
lems. The first is the problem of the ordering
of the class of all such trees. The problem of
the ordering of the trees is the following. In
analogy with ordinals and well-founded trees
we write T ≤ T ′ if there is a strict tree-order
preserving (but not necessarily one-to-one)
mapping from T to T ′. For well-founded trees
this quasi-order is connected, i.e. any two
well-founded trees are comparable by ≤. For
non-well-founded trees this need not be the
case [4, 13]. This is on the one hand a short-
coming of the whole approach, as it means
that some structures are incomparable as to
their complexity. On the other hand it has un-
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earthed a rich theory of trees, and whatever
progress we can make in this direction is di-
rectly reflected in our ability to measure how
close uncountable structures can be to each
other in the given topology. One puzzle that
has arisen in this connection is the existence
of a Canary tree. This name is due to the fol-
lowing special role of Canary trees. If any sta-
tionary subset of ω1 is killed by forcing with-
out adding reals, then the Canary tree gets
a long branch. Summing up, if a stationary
set is poisoned somewhere then the Canary
tree warns us by expiring. The existence of
Canary trees cannot be decided on the basis
of ZFC or even CH alone [7]. However, Canary
trees are intimately related to the complexity
of some canonical structures. It can be shown
that there is a Canary tree if and only if the or-
bit of the free Abelian group of ℵ1 generators
is analytic co-analytic [6]. In the space N,
analytic co-analytic sets are Borel but in the
space N1, the situation is more complicated.
The most promising attempt to bring order in-
to the chaos of bounded trees is the approach
of Todorcevic [12] under the assumption of the
so-called Proper Forcing Axiom (PFA). This ax-
iom says, very roughly speaking, that the uni-
verse is invariant under changes imposed by
a certain restricted form of Cohen’s concept
of forcing. Another approach is to restrict to
sufficiently definable trees and thereby avoid
the incomparability problem [2].

Another new feature that arises in the
study of N1 is the fact that if we assume CH,

the Luzin Separation Principle fails. There are
disjoint analytic sets that cannot be separat-
ed by a Borel set [11]. This further emphasizes
how the difference between the countable
and the uncountable is reflected in the topol-
ogy ofN andN1, and thereby in the classifica-
tion of countable versus uncountable models.

Stability theory
In modern model theory there is an alterna-
tive approach to the problem of classifying
structures, namely stability theory [8]. The
difference is that stability theory tries to clas-
sify complete first order theories rather than
structures. However, the message of stability
theory is that all models of size ℵ1 of theories
satisfying a combination of certain stability
conditions (superstable, NDOP, DOTOP) are
rather ‘uncomplicated’ in the sense that their
isomorphism can be expressed in terms of
a determined game (called the Ehrenfeucht-
Fraïssé-game) of length ω [10]. Naturally,
such structures may be very complicated in
other ways. The point of stability theory is that
in such structures one can define a kind of ge-
ometry that enables one to classify the struc-
ture in terms of dimension-like invariants. On
the other hand, theories failing to satisfy such
stability conditions are bound to have models
of cardinalityℵ1 that are extremely complicat-
ed. This is Shelah’s ‘Main Gap’ [10]. For exam-
ple, assuming CH and if there are no Canary
trees, such theories have models of cardinal-
ity ℵ1 with high complexity in the definability

theoretic sense described in this article [3]. To
measure the height of the complexity one us-
es bounded trees and it turns out that under
the stated assumptions one can go beyond
any bounded tree. Work in this direction is
very much underway.

Conclusion
The study of the complexity of uncountable
structures is an interdisciplinary subject. We
need to develop set theory, and especially
the theory of trees, in order to have a good
measure of the complexity of uncountable
models. At the same time, we have to de-
velop model theory, and especially stability
theory, in order to distinguish important di-
viding lines between simple and complicated
structures. Both set theory and model the-
ory suggest that we should look for an an-
swer in the direction of long games. In mod-
el theory the relevant games are known as
Ehrenfeucht-Fraïssé games. In set theory the
corresponding games are related to the so-
called stationary sets. The results referred
to above connect the two games and thereby
tie a knot connecting set theory and model
theory. When we look into the deep eyes of
the uncountable structures, we are perhaps
starting to see there some compassion for our
modest advances, our budding infinite trees,
our courageous appeals to stability and our
resolve to play the game to the end. k
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