


The dependence concept

Dependence of health on genes.

Dependence of future events on past decisions.

Dependence of moves of a player on previous moves.
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Arrow’s Theorem
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Classical logic

there is
for all
for some
for every

Modal logic

possibe

probably

likely

perhaps

it is possible that
possibly
necessarily

knows that
believes that

it is necessary that
it is obligatory that
it is permissible that
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Dependence logic

is part of
includes
subject to
liable to
677 open to
399 dependent
399 determined by
146 given by
independence
function of
dependent on
dependence
independent of
belonging to

609 modified by
313 dependency
234 dependence on
201 vulnerable to
146 independence of
118 computed from
85 totally dependent on
38 uniquely determined by
30 contingent on
23 qualified by
0.1 totally independent of
0.1 conditioned by
left open by

mutually dependent
totally determined by
mutual dependency
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Question

Can one add the dependence concept to

first order logic (or other logics) in a coherent way?

What is the logic of dependence?
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Solution

* We consider the strongest form of dependence,
namely functional determination z = f(x,,...,x_ ), where

X,,..,X,Z are individual variables.
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Solution

* We consider the strongest form of dependence,
namely functional determination z = f(x,,...,x_ ), where

X,,..,X,Z are individual variables.

« We denote it =(x,,...,x_,z) and call it a dependence

atom. Weaker forms of dependence are derived from
this.
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Solution

* We consider the strongest form of dependence,
namely functional determination z = f(x,,...,x_ ), where

X,,..,X,Z are individual variables.

« We denote it =(x,,...,x_,z) and call it a dependence

atom. Weaker forms of dependence are derived from
this.

 In computer science: x,..x, = z, where x,,...,x_,z are

LINT - Dependence logic Jouko Vaananen




LINT - Dependence logic Jouko Vaananen

10




Multitude

 Dependence does not manifest itself in a single
play, event or observation.
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 Dependence does not manifest itself in a single
play, event or observation.

 The underlying concept of dependence logic is
a multitude — a collection - of such plays,
events or observations.
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 The underlying concept of dependence logic is
a multitude — a collection - of such plays,
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e These collections are called in this talk teams.
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 Dependence does not manifest itself in a single
play, event or observation.

 The underlying concept of dependence logic is
a multitude — a collection - of such plays,
events or observations.

* These collections are called in this talk teams.
* They are the basic objects of our approach.
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* A set of records of stock exchange transactions of a
particular dealer.

* A set of possible histories of mankind written as
decisions and consequences.

* A set of chess games between Susan and Makx, as lists
of moves.

LINT - Dependence logic Jouko Vaananen 15




e 1stintuition: A team is a set of plays of a game.

LINT - Dependence logic Jouko Vaananen 16




Teams

e 1stintuition: A team is a set of plays of a game.
e 2" jntuition: A team is a database.
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Towards a logic based on teams

* A set of plays satisfies x,>x, if move x, is in each
play greater than move x,.

* A set of plays satisfies =(x,,...,x.,y) if move y is in
each play determined by the moves x.,...,x..
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Towards a logic based on teams

* A set of plays satisfies x,>x, if move x, is in each
play greater than move x,.

* A set of plays satisfies =(x,,...,x.,y) if move y is in

each play determined by the moves x.,...,x..
A database satisfies x,>x, if field x, is always

greater than field x,.

A database satisfies =(x,,...,x.,y) if field y is
functionally determined by the fields x,,...,x..
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+

First order logic

Dependence logic

Dependence atoms =(x,...
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Syntax of dependence logic

=;_';V/A;3;VI )/(1 X,'

X.,C ft..t

t=t’

=(Xq,:--

I xnr

Rty...1,
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Variables
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Assignment
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Universe of the
model
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Teams — exact definition

 Ateam is just a set of assignments for a model.

(Propositional logic — a set of valuations. Modal logic — a set of possible
worlds)
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Teams — exact definition

 Ateam is just a set of assignments for a model.

(Propositional logic — a set of valuations. Modal logic — a set of possible
worlds)

 Empty team .
— Database with no rows.
— No play was played.

LINT - Dependence logic Jouko Vaananen

24




Teams — exact definition

 Ateam is just a set of assignments for a model.

(Propositional logic — a set of valuations. Modal logic — a set of possible
worlds)

 Empty team O.
— Database with no rows.
— No play was played.
* The team {} with the empty assignment.

— Database with no columns, and hence with at most
one row.

— Zero moves of the game were played.
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For the truth definition: Negation Normal Form

We push negations all the way
to atomic formulas using de Morgan laws.

Thus --¢ will have the same meaning as ¢.
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Truth definition

A team satisfies a formula if
every assignment in the team does,

and ...
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A team satisfies Rt, ...t _if every team

member does.
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A team satisfies —-Rt ...t if every

team member does.
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A team satisfies —-Rt ...t if every

team member does.

LINT - Dependence logic

Note: some X satisfy
neither Rt,...t, nor

~Rt,...t

nl
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A team satisfies t=t’ if every team
member does.

X
X=Y
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A team satisfies —t=t’ if every team
member does.
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e Ateam X satisfies =(x,...,x_,z) if in any
two assignments in X, in which x,,...,x.

have the same values, also z has the
same value.




e Ateam X satisfies =(x,...,x_,z) if in any
two assignments in X, in which x,,...,x.

have the same values, also z has the
same value.

=

-
’Y\

Y

= d
X

=(x,y)




e Ateam X satisfies =(x,,...,x_,z) if in any
two assignments in X, in which x,,...,x.

have the same values, also z has the
same value.

50102
52505
<Y 550112

=(x,y) ~(xv,2)
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An extreme case

=(x)

”x is constant in the team”
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/

X

=(x)

LINT - Dependence logic

An extreme case

=(x)

”x is constant in the team”

record | A1 | A2 | A3 | A | AD | A6
100000 8 6 7 3 0 6
100002 7 5 6 3 0 6
100003 4 8 7 3 0 6
100004 6 5 4 3 0 6
100005 6 12 65 3 0 6
100006 5 56 9 3 0 6
100007 | 6 23 0 4 0 8
408261 | 77 2 11 1 0 2
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Negation of dependence atom

A team satisfies ==(x,,...,x_,z) only if it is empty.

Why?
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Negation of dependence atom

A team satisfies ==(x,,...,x_,z) only if it is empty.

Why?

Because every singleton team satisfies =(x,...,X ,z),

Inl

and we want downward closure (see later).
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e Ateam X satisfiesp v ¢ if

X=Y U Z, where Y satisfies ¢ and Z
satisfies .




e Ateam X satisfies @ v ¢ if

X=Y U Z, where Y satisfies ¢ and Z
satisfies .

Plays where rook or queen was sacrificed:

Rook was Queen was

sacrificed sacrificed




e Ateam X satisfies ¢ A U if it satisfies ¢
and .




Quantifiers - modified assighment
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e Ateam X satisfies Ixo if

team X can be supplemented with values
for x so that @ is satisfied.




Team X is supplemented with values for x.

T
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e A team X satisfies vx¢ if

team X, after it is duplicated along x, by
letting x get all possible values, satisfies .




Team X is duplicated along x, by
letting x get all possible values.

X

|
EEEEEENE
X
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* Asentence is true if {()}satisfies it.
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Example: even cardinality

KN N KN KN KN KN KN KN
e e e o o o 0o o 0 o 0 o o o 0o oo

‘v/onllexQEng(:(a:g, 5133)
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Equicardinality

VzodyoVr13y1 ( =(x1,y1) A
A(xo =21 yo=191))
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Partially ordered quantifiers

( zi gz )qb <— VxIdyVudv(=(u,v) A ¢)

LINT - Dependence logic Jouko Vaananen

52




Conservative over FO

A team {s} satisfies a first order formula ¢
iff

s satisfies @ in the usual sense.
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Two important properties

Downward closure: If a team satisfies a formula,
every subset does. (Hodges: optimal on finite structures!)

Empty team property: The empty team satisfies
every formula.
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No Law of Excluded Middle

Suppose the universe has at least two elements.

Vx =(x) not true

-Vx =(x) not true either

because it means 3Ix -=(x).
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LEM holds (exactly) for the FO part

e Every team satisfies x=y v = x=y:

X

Y

LINT - Dependence logic

T

— X=Y

— aX=y
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A special axiom schema

 Comprehension Axioms:

Vx(qpv-g),

if @ is FO.




A special axiom schema

 Comprehension Axioms:

Vx(qpv-g),

if @ is FO.

“LEM = Comprehension Axiom”




Armstrong’s Axioms

LINT -

Always =(x,x)

If =(x,y,2), then =(y,x,z).

If =(x,%,y), then =(x,y).

If =(x,z), then =(x,y,2).

If =(x,v) and =(v,z), then =(x,z).

D pPCToCT e oge To o
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Incorrect rules

No absortion

/

-rom AAND, follows (. Wrong!

From(gAy) v(gpAaO) follows @A (PvO). wrong!

from(gpvap) A(pv ) follows v (P AB). wrong

AN

Non-distributive




Correct intermediate rule

* From(pvy)A(pvO) follows @v(WAap)v(yAaD).
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Correct intermediate rule

* From(pvy)A(pvO) follows @v(WAap)v(yAaD).

What is the distributivity rule that gives this?
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e If =~ vy isvalid then @ logically implies 1.
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e If =~ vy isvalid then @ logically implies 1.
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e If =~ vy isvalid then @ logically implies 1.
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Game theoretic semantics

 Dependence logic has two versions of the
following games

— Semantic (evaluation) game

— Ehrenfeucht-Fraisse game
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Game theoretic semantics

 Dependence logic has two versions of the
following games

— Semantic (evaluation) game

— Ehrenfeucht-Fraisse game

e Version 1: Players move assighnments.

— Non-deterministic, imperfect information.
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Game theoretic semantics

 Dependence logic has two versions of the
following games

— Semantic (evaluation) game

— Ehrenfeucht-Fraisse game

e Version 1: Players move assighnments.

— Non-deterministic, imperfect information.

* Version 2: Players move teams.

— Deterministic, perfect information.
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Teams
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The game-intuition

Teams are records of playing the game, formulas
describe rules of the game

Atomic type: a simple rule

Negative atomic type: what is forbidden
Dependence atom: what player is allowed to know
Disjunction: playing in parallel

Conjunction: playing in sequence

Existential quantifier: to have a move

Universal quantifier: trying all moves




Semantic game of FO

LINT - Dependence logic
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Semantic game of FO

Players hold a formula, one player at a time. Each
thinks that if he or she holds the formula, it is
true.
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Semantic game of FO

Players hold a formula, one player at a time. Each
thinks that if he or she holds the formula, it is

true.

To account for free variables, they actually hold a
pair (¢,s), where s is an assignment.
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Beginning of the game

LINT - Dependence logic
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Conjunction move: “other”
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Conjunction move: “other”
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Conjunction move: “other”
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Conjunction move: “other”

(p,s)
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Conjunction move: “other”
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Conjunction move: “other”
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Conjunction move: “other”
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Conjunction move: “other”

(p,s)
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Disjunction move: “self”
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Disjunction move: “self”

LINT - Dependence logic

Jouko Vaananen

73




Disjunction move: “self”
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Disjunction move: “self”
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Disjunction move: “self”
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Disjunction move: “self”
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Disjunction move: “self”
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Disjunction move: “self”

(pv,s)

(W,s)
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Negation move: swap”
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Negation move: swap”

(_'(PIS)
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Negation move: swap”

 —— (_'(P;S)
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Negation move: swap”
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Negation move: swap”
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Negation move: swap”
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Negation move: swap”
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Existential quantifier move: “self”
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Existential quantifier move: “self”
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Existential quantifier move: “self”
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Existential quantifier move: “self”

(¢,s(a/x))
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Existential quantifier move: “self”
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Existential quantifier move: “self”
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Existential quantifier move: “self”
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Existential quantifier move: “self”

(Ixq,s)

(¢,s(a/x))
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Universal quantifier move: “other”
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Universal quantifier move: “other”
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Universal quantifier move: “other”
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Universal quantifier move: “other”

(p,s(a/x))
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Universal quantifier move: “other”
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Universal quantifier move: “other”
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Universal quantifier move: “other”
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Universal quantifier move: “other”

(p,s(a/x))
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Atomic formula: game ends
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Atomic formula: game ends
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Atomic formula: game ends
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Game theoretical semantics

@ is true in ‘A if and only if II
has a winning strategy

¢ is false in A if and only if |
has a winning strategy
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Truth = winning strategy

 Winning strategy of a player: make sure that if
you hold a formula, it is true, and if the other
guy holds a formula it is false.
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Truth € winning strategy

e By induction on the formula: If Il is playing her
winning strategy and

e she holds a formula then it is true, and if
* he is holding a formula, it is false.
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First semantic game of D

Moves for all logical operations and
atomic formulas are exactly the
same as for first order logic, except
for the new dependence atom.
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Dependence atom
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Dependence atom
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Dependence atom
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Dependence atom
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Dependence atom
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Uniform strategy

* A strategy of Il is uniform if whenever the game
ends in Il holding (=(t,,...,t.),s) with the same

=(t,,...,t ) and the same values of t,,...,t__,, then
also the value of t_ is the same.

e |mperfect information: Il cannot use anything
but the values of t,,...,t , when she chooses t..
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Game theoretical semantics of D

¢ is true in A if and only if II
has a uniform winning
strategy.

Non-determined
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Truth = winning strategy

* Winning strategy of Il: keep holding an auxiliary
team X and make sure that if you hold a pair (¢,s),
then s&X and X satisfies @, and if the opponent
holds (¢,s), then s&X and X satisfies -~ .
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Truth € winning strategy

e Suppose Il has a uniform winning strategy t©
starting from (¢,{}).

e Idea: Let X be the set of assignments s such
that (,s) is a position in the game, Il playing .

» By induction on: If Il holds (y,s), then X
satisfies . If | holds (y,s), then X satisfies —1p.
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Second semantic game of D

This is like playing many semantic games in parallel.
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Beginning of the game
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Disjunction move “self”
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Disjunction move “self”
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Disjunction move “self”
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Disjunction move “self”
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Disjunction move “self”
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Disjunction move “self”

(P, X)
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Conjunction move “other”
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Conjunction move “other”
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Conjunction move “other”

(P, X)
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Conjunction move “other”
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Conjunction move “other”

(@AY, X)

(p,Y)
(p,2)
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Conjunction move “other”
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Negation
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Negation
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Negation move
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Negation move
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Negation

LINT - Dependence logic

Jouko Vaananen

Sl




\

Negation move

(_'(sz)
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Negation move swap”

 —— (_'(P;X)
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Negation
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Existential quantifier move (“self”)
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Existential quantifier move (“self”)
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Existential quantifier move (“self”)
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Existential quantifier move (“self”)

(@, X(F/x))
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Existential quantifier move (“self”)
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Existential quantifier move (“self”)
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Existential quantifier move (“self”)
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Existential quantifier move (“self”)

(Ixqp,X)

(¢, X(M/x))
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Universal quantifier move (“other”)

LINT - Dependence logic Jouko Vaananen 93




Universal quantifier move (“other”)
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Universal quantifier move (“other”)

LINT - Dependence logic Jouko Vaananen 93




Universal quantifier move (“other”)

(¢, X(M/x))
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Universal quantifier move (“other”)
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Universal quantifier move (“other”)
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Universal quantifier move (“other”)
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Universal quantifier move (“other”)

(@, X(F/x))
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(¢, X)

Atomic formula
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(¢, X)

Atomic formula
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Atomic formula
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Dependence atom

(=(ty,...,t,).X)
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Dependence atom

(=(ty,...,t,).X)
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Game theoretical semantics

X satisfies @ in A if and only if
Il has a winning strategy.

Determined, perfect information

X
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Winning str €= truth

* Winning strategy of Il: make sure that if you
hold (@, X), then X satisfies ¢, and if he holds
(,X), then X satisfies —q.
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Winning str =» truth

* By induction on the formula : If Il is playing

her winning strategy and
* she holds (¢, X), then X satisfies @, and if
 he is holding (¢,X), then X satisfies = .
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Wrap up of games

e Version 1: Players move assignments.

— Non-deterministic, imperfect information.

e Version 2: Players move teams.

— Deterministic, perfect information.

 Same with EF-game.
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Model theory of dependence logic

Hodges 1997: For every formula ¢(x,,...,x,)

there is an existential second order sentence @
(P) with P negative such that a team X satisfies

@ iff @(X) is true.
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Model theory of dependence logic

Hodges 1997: For every formula ¢(x,,...,x,)

there is an existential second order sentence @
(P) with P negative such that a team X satisfies
@ iff O(X) is true.

Theorem (Kontinen-V. 2008): The converse is
also true (for non-empty teams).

Answers a question of Hodges.
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Consequences

* Alanguage for NP on finite models.

* Compactness.
 Lowenheim-Skolem.
e Separation (Interpolation).
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3-disjunction of
atoms

LINT - Dependence logic

Jarmo Kontinen 2010

Jouko Vaananen

2-disjunction of
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Coherence

* Formula is n-coherent if a team satisfies it
whenever all subteams of size <n do.

e First order formulas are 1-coherent.

 Dependence atoms are 2-coherent.

* Disjunctions of two dependence atoms need
not be n-coherent for any n.
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Deskolemization

e Skolemize first order formula.

* Do something.

* Can you get back to a first order formula.
* Non-arithmetical on all models.
 Nonrecursive on finite models.

e Can always deskolemize into dependence logic.
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Classical negation

 The closure of dependence logic under
classical negation has the exact strength of
second order logic (Ville Nurmi, 2008).

 But we need negation to express Arrow’s
Theorem?
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How about intuitionistic negation?

Joint work with S. Abramsky.

* Definition: X satisfies ¢—> iff every subteam
of X which satisfies ¢ also satisfies .

* Definition: X satisfies L iff X is the empty team.
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How about intuitionistic negation?

Joint work with S. Abramsky.

* Definition: X satisfies ¢—> iff every subteam
of X which satisfies ¢ also satisfies .

* Definition: X satisfies L iff X is the empty team.

e - ( is now equivalent to ¢—> Lfor atomic o.
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How about intuitionistic negation?

Joint work with S. Abramsky.

* Definition: X satisfies ¢—> iff every subteam
of X which satisfies ¢ also satisfies .

* Definition: X satisfies L iff X is the empty team.

e - ( is now equivalent to ¢—> Lfor atomic o.

* |ntuitionistic negation (@—>

) is an alternative

way to extend negation from atomic to non-

atomic formulas.
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How about intuitionistic negation?

 Dependence atoms can now be defined in
terms of constancy:

(=(x)) Ao a=(x)) 2 =(2).

=(X1,.00,X,2)
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How about intuitionistic negation?

 Dependence atoms can now be defined in
terms of constancy:

(=(x)) Ao n=(x)) 2 =(2)

=(X1,.00,X,2)

 Downward closure and the empty set property
are preserved.
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How about intuitionistic negation?

 Dependence atoms can now be defined in
terms of constancy:
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 Downward closure and the empty set property
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=(X1,.00,X,2)

 Compactness fails.
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How about intuitionistic negation?

 Dependence atoms can now be defined in
terms of constancy:

(=(x)) Ao n=(x)) 2 =(2)

=(X1,.00,X,2)

 Downward closure and the empty set property
are preserved.
 Compactness fails.

* Goes beyond NP, unless NP=co-NP.
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We can prove Armstrong’s Axioms

Dependence logic Heyting’s intuitionistic logic

=(x,x) =(x)=>=(x)

If =(x,v,z), then =(y,x,z). If (=(x)A=(y))=2=(z), then (=(y)A=(x))=2>=(z)
If =(x,%,v), then =(x,y). If (=(x)A=(x))=2=(y), then =(x)=2>=(y)
If =(x,z), then =(x,y,z). If =(x)=2=(z), then (=(x)A=(y))=2>=(z)

If=(x,y)and =(y,2), then ¢ _(;)> (), and =(y)>=(z) then =(x)>=(z)

=(x.7).

LINT - Dependence logic Jouko Vaananen 115




Linear implication

e X satisfies ¢ —o  iff for every team Y which
satisfies ¢ the team X U Y satisfies .

 Downward closure is preserved.
 Compactness fails.
* Goes beyond NP unless NP=co-NP.
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Galois connections

* |ntuitionistic implication is the adjoint of
conjunction:

(PAY)FO = o=t —0

e Linear implication is the adjoint of disjunction.

(pVY)EO <— ¢ =1 —o8b

LINT - Dependence logic Jouko Vaananen 117




e Linear implication is the adjoint of disjunction.
(PVY) O <— o —o0

X
N
—- Y

XUuyY
X uUuY

- X UY

LINT - Dependence logic Jouko Vaananen 118




e Linear implication is the adjoint of disjunction.

(V) O < ¢ o0
/

XUy —- X Y
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The moral of the story

e One can add both intuitionistic and linear
implication to dependence logic without losing
the downward closure.

 |ntuitionistic negation agrees with the original
negation on the atomic level, and basic axioms
of dependence become provable.

* Good (?) for proof theory, but bad (?) for
model theory. Is there a reason for this?
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What is dependence logic good for?

* Language for NP.

e Tool for the study of more complex
dependencies than just the Armstrong ones.

e A vehicle for uncovering the mathematics of
dependence in a variety of contexts

— Data mining

— Social choice theory

— Logic for Rationality and Interaction
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e J. Vaananen, Dependence Logic, Cambridge
University Press, 2007.

* Logic for Interaction (LINT), ESF LogICCC
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