

Licensing resource exploitation with endogenous and privately known reserves

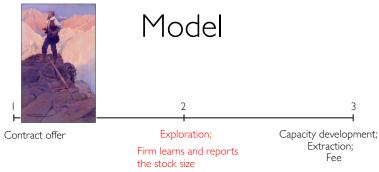
Jarmo Jääskeläinen and Pauli Lappi University of Helsinki

EAERE, June 2025

Motivation & problem

- Economic growth and climate change mitigation require large quantities of raw materials from nonrenewable sources.
- Current reserves of critical metals are limited, spurring exploration.
- Exploration effort is often unobservable to the owner.
- Results of exploration (discovered deposits and their sizes) remain private information to the firm.

Problem


How should the owner design resource pricing mechanisms when the firm takes unobservable exploration actions and has incentives to lie about discovered stock?

Model

I. A resource owner (e.g., government) with resource rights offers a contract to a risk-neutral firm. The contract gives the firm the right to explore and extract in exchange for a license fee or resource tax.

- I. A resource owner (e.g., government) with resource rights offers a contract to a risk-neutral firm. The contract gives the firm the right to explore and extract in exchange for a license fee or resource tax.
- 2. Firm chooses exploration effort, learns, and reports stock size (the owner cannot observe the exploration effort or the discovered resource stock).

Model

- I. A resource owner (e.g., government) with resource rights offers a contract to a risk-neutral firm. The contract gives the firm the right to explore and extract in exchange for a license fee or resource tax.
- 2. Firm chooses exploration effort, learns, and reports stock size (the owner cannot observe the exploration effort or the discovered resource stock).
- 3. Firm develops capacity, extracts, and pays fee.

Information asymmetries

- I. A resource owner (e.g., government) with resource rights offers a contract to a risk-neutral firm. The contract gives the firm the right to explore and extract in exchange for a license fee or resource tax.
- 2. Firm chooses exploration effort, learns, and reports stock size (the owner cannot observe the exploration effort or the discovered resource stock).
- 3. Firm develops capacity, extracts, and pays fee.

private information

Information asymmetries

- I. A resource owner (e.g., government) with resource rights offers a contract to a risk-neutral firm. The contract gives the firm the right to explore and extract in exchange for a license fee or resource tax.
- 2. Firm chooses exploration effort, learns, and reports stock size (the owner cannot observe the exploration effort or the discovered resource stock).
- 3. Firm develops capacity, extracts, and pays fee.

hidden action private information

How should the owner design resource pricing mechanisms when the firm takes unobservable exploration actions and has incentives to lie about discovered stock?

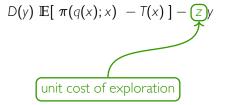
Firm/agent: the expected exploration profit with the fee T

$$D(y) \mathbb{E}[\pi(q(x);x) - T(x)] - zy$$

Contract offer Exploration with effort
$$y$$
; Capacity development q ; Extraction; Fee T

How should the owner design resource pricing mechanisms when the firm takes unobservable exploration actions and has incentives to lie about discovered stock?

Firm/agent: the expected exploration profit with the fee T

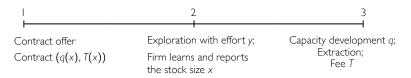

the discovery probability
$$D(y) \mathbb{E}[\pi(q(x);x) - T(x)] - zy$$

$$D'(y) > 0, \quad D''(y) < 0, \quad D(0) = 0 \quad \text{and} \quad D(y) \in (0,1) \text{ for all } y > 0$$

How should the owner design resource pricing mechanisms when the firm takes unobservable exploration actions and has incentives to lie about discovered stock?

Firm/agent: the expected exploration profit with the fee T

Contract offer Exploration with effort
$$y$$
; Capacity development q ; Extraction; Fee T


How should the owner design resource pricing mechanisms when the firm takes unobservable exploration actions and has incentives to lie about discovered stock?

Firm/agent: the expected exploration profit with the fee T

$$D(y) \mathbb{E}[\pi(q(x);x)] - T(x)] - z y$$

The resource profit from capacity development and extraction has a unique maximum with respect to $q \ge 0$

$$\left[\pi(0;x)=0, \hspace{0.1in} \pi_{\scriptscriptstyle X}>0, \hspace{0.1in} \pi_{\scriptscriptstyle qx}>0, \hspace{0.1in} \pi_{\scriptscriptstyle qq}<0, \hspace{0.1in} \pi_{\scriptscriptstyle q}(0;x)=0 \hspace{0.1in} ext{for some } x
ight]$$

How should the owner design resource pricing mechanisms when the firm takes unobservable exploration actions and has incentives to lie about discovered stock?

Firm/agent: the expected exploration profit with the fee T

$$D(y) \mathbb{E}[\pi(q(x);x) - T(x)] - zy$$

Owner/principal maximizes expected revenues:

$$\max_{\{q(x),T(x)\}} D(y) \mathbb{E}[T(x)]$$

Feasibility constraints

Limited liability type constraint (the firm can always claim bankruptcy after the exploration and discovery and obtain zero resource profit by doing so):

$$\pi(q(x); x) - T(x) \ge 0$$
 for all $x \in [0, \bar{x}]$. (LL)

The contract must provide incentives for reporting the true discovery; the incentive compatibility constraint:

$$\pi(q(x);x) - T(x) \ge \pi(q(\hat{x});x) - T(\hat{x})$$
 for all $(x,\hat{x}) \in [0,\bar{x}]^2$. (IC)

The (unobservable) exploration effort chosen by the firm maximizes the expected exploration profit, that is,

$$y = \arg\max_{\hat{y}} \{ D(\hat{y}) \mathbb{E}[\pi(q(x); x) - T(x)] - z \hat{y} \}.$$
 (EC)

The baseline: no license fee

Without the license fee

$$D(y) \mathbb{E}[\pi(q(x); x) \not\vdash \mathbb{I}(x)] - z y$$

there is an optimal extraction capacity $q^{\text{wot}}(x)$

$$q^{\text{wot}}(x) = \begin{cases} 0, & x \leq x^{\text{wot}}, \\ \text{the solution to } \pi_q(q; x) = 0, & x > x^{\text{wot}}, \end{cases}$$

A reserve cut-off x^{wot} is defined as the largest discovery for which optimal capacity is zero. Capacity is zero for $x \le x^{\text{wot}}$ and positive for $x > x^{\text{wot}}$.

Optimal effort equalizes expected marginal exploration revenue with unit exploration cost, provided expected profit is large enough, i.e., y^{wot} is the solution to

$$D'(y) \mathbb{E}\pi(q^{\text{wot}}(x), x) = z,$$

when $D'(0)\mathbb{E}\pi(q^{\text{wot}}(x), x) > z$.

With the fee & asymmetries

Owner/principal maximizes expected revenues:

$$\max_{\{q(x),T(x)\}} D(y) \mathbb{E}[T(x)]$$

Firm/agent's the expected profit

$$D(y) \mathbb{E}[\pi(q(x);x) - T(x)] - zy$$

Proposition

The optimal extraction capacity q^t is smaller, i.e., $q^t < q^{\text{wot}}$.

Proposition

The optimal exploration effort y^t is smaller, i.e., $y^t < y^{\text{wot}}$.

Proposition

The reserve cut-off x^t is larger, i.e., $x^t > x^{\text{wot}}$.

The resource profit $\pi(q, x)$ satisfies

 $\pi(0;x)=0$, $\pi_x>0$, $\pi_{qx}>0$, $\pi_{qq}<0$, $\pi_q(0;x)=0$ for some x and $\pi_{qqx}\geq0$, $\pi_{qxx}\leq0$ (the last two are 'standard assumptions' and made to avoid bunching of the capacity q, especially, the solution to the so-called relaxed problem is monotone and thus feasible).

On endogenous resources: the known continuous probability density g of the unknown stock size x satisfies the inequality (denote the cumulative distribution with G)

$$\frac{\partial}{\partial x} \frac{1 - G(x)}{g(x)} \le 0$$
 for all $x \in [x^{\text{wot}}, \bar{x}]$

i.e., the increasing hazard rate must hold for big enough stocks.

$$\max_{\{q(x),T(x)\}} D(y) \mathbb{E}[T(x)]$$

Firm/agent maximizes the expected profit

$$D(y) \mathbb{E}[\pi(q(x);x) - T(x)] - zy$$

Proposition

The optimal extraction capacity q^t is smaller, i.e., $q^t < q^{wot}$.

$$q^{t} = \begin{cases} 0, & x \leq x^{t}, \\ \text{the solution to } \pi_{q}(q; x) - \frac{1 - G(x)}{g(x)} \pi_{qx}(q; x) = 0, & x > x^{t}, \end{cases}$$

when $x^{t} < \overline{x}$.

$$\max_{\{q(x),T(x)\}} D(y) \mathbb{E}[T(x)]$$

Firm/agent's the expected profit

$$D(y) \mathbb{E}[\pi(q(x);x) - T(x)] - zy$$

Proposition

The optimal exploration effort y^t is smaller, i.e., $y^t < y^{\text{wot}}$.

$$y^{t} = \begin{cases} 0, & D'(0)\mathbb{E}U \leq z, \\ \text{the solution to } D'(y)\mathbb{E}U = z, & D'(0)\mathbb{E}U > z. \end{cases}$$

The resource profit or the 'rent' left to the firm is defined as $U(x) := \pi(q(x); x) - T(x)$.

$$\max_{\{q(x),T(x)\}} D(y) \mathbb{E}[T(x)]$$

Firm/agent's the expected profit

$$D(y) \mathbb{E}[\pi(q(x); x) - T(x)] - zy$$

Proposition

The optimal license fee is strictly increasing in the resource discovery

$$T(x) = \begin{cases} 0, & x \leq x^{t}, \\ \pi(q^{t}(x); x) - \int_{x^{t}}^{x} \pi_{x}(q^{t}(s); s) ds, & x > x^{t}, \end{cases}$$

and the expected profit (or rent $U(x) = \pi(q^{t}(x); x) - T(x)$) left for the firm is

$$\mathbb{E}U = \int_{x^t}^{\bar{x}} \pi_x(q^t(s); s)(1 - G(s)) \, ds.$$

$$\max_{\{q(x),T(x)\}} D(y) \mathbb{E}[T(x)]$$

Firm/agent's the expected profit

$$D(y) \mathbb{E}[\pi(q(x);x) - T(x)] - zy$$

- Tax schemes are non-neutral: no matter how royalties and rent taxes are designed, they will not deliver the same allocation as without them.
- The form of the tax scheme, can be as complicated as wanted and it can
 be made contingent on any observable (prices, costs, capacity, etc.) and
 unobservable characteristics (stock size and exploration effort). Any such
 design attempt fails, because the scheme cannot induce the correct
 allocation without breaking at least one of the feasibility constraints.

Conclusion

- Reserve cut-off is larger With the license fee, the optimal mechanism requires discovered resources to be greater than without a mechanism to yield a new reserve for extraction (i.e., $x^t > x^{\text{wot}}$).
 - → This means fewer discoveries qualify as reserves
- Optimal exploration effort is smaller With the license fee, the optimal mechanism induces less exploration (i.e., $y^t < y^{\text{wot}}$).
 - → This means fewer discoveries are made
- Extraction capacity is smaller When a discovery does yield a reserve, the optimal mechanism induces the firm to build a smaller extraction capacity than without the license fee (i.e., $q^t < q^{wot}$).

jarmo.jaaskelainen@helsinki.fi