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fg:%(,fz) ae.
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k(z)-Lipschitz, 0 < k(z) <k < | (ellipticity)
H(2,0)=0 (normalisation)
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Beltrami equations
fg:,%”(z fz) ae.

z+— H(z, &) is measurable (measurability)
k(z)-Lipschitz, 0 < k(z) (ellipticity)
H(2,0)=0

(normalisation)

The domain of definition for solutions f: Q2 — C is Sobolev space 7/‘;;2(9, Q),
where € C C is a domain.
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Examples

C-linear Beltrami equation

fz = w(2) f, lu(z)] <k < 1.

Jarmo Jadskeldinen Nonlinear Beltrami equations Tad70 2/15



Examples

C-linear Beltrami equation

F=w@)fh  |u@<k<l
R-linear Beltrami equation

fr=w@)f+v(2) L @)+ v < k<.
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Examples

C-linear Beltrami equation

F=w@)fh  |u@<k<l

R-linear Beltrami equation

F=u@fh+v@fh @+ @) <k< I

Let I' be a curve in the complex plane. Set

fr=mn(2) dist(f,T),  |ul<k<I

The above Beltrami equation is a key to the solution of Tartar’s conjecture by
Faraco-Székelyhidi Jr. (2008).
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Quasiconformal maps

Solutions to Beltrami equation f; = J#(z, f;) satisfy distortion inequality

I +k

6l <KIfl or |IDAI* <KJ, where K= —

since

Izl = |12(z.fz) = (2, 0)] <KIf|.

Thus homeomorphic Vﬂ‘olc’z-solutions are quasiconformal. General solutions of
such an equation are called quasiregular mappings.
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Quasiconformal maps

Solutions to Beltrami equation f; = J#(z, f;) satisfy distortion inequality

I +k

6l <KIfl or |IDAI* <KJ, where K= —

since

Izl = |12(z.fz) = (2, 0)] <KIf|.

Thus homeomorphic Vﬁ‘olc’z-solutions are quasiconformal. General solutions of
such an equation are called quasiregular mappings.

An important result in the theory of the Beltrami equation is the Stoilow
factorisation: Every solution to the Beltrami equation fz = wf; may be written in

the form
f=®oh,

Where ® is holomorphic and h is a quasiconformal mapping that solves the
same equation.
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Connection to div-type equations

A key aspect of quasiregular mappings and Beltrami equations is their strong
connection to other elliptic PDEs.

There is one-to-one correspondence between
]‘;z%(z,]‘z) and dive/(z, Vu) =0

Here u = Ref e 7/|O'C'2(Q, R).
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Connection to div-type equations

A key aspect of quasiregular mappings and Beltrami equations is their strong
connection to other elliptic PDEs.

There is one-to-one correspondence between

(H(2.&1) = A(2.) <K& —&l. K=

is seen as the strong ellipticity condition of <7
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Connection to div-type equations

A key aspect of quasiregular mappings and Beltrami equations is their strong
connection to other elliptic PDEs.

There is one-to-one correspondence between
f;:%”(z,fz) and dive/(z, Vu) =0
Here u = Ref€ #/:*(Q,R). The ellipticity of 7, that is,

| (2, €1) — H(z, &) <K€ — &), K::%Z

is seen as the strong ellipticity condition of 7. It satisfies

61—+ (2 6) - (2 )P < (Kb ) {61 — 0 (2. 61) — (2. ).
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Connection to div-type equations

A key aspect of quasiregular mappings and Beltrami equations is their strong
connection to other elliptic PDEs.

There is one-to-one correspondence between
f;:%”(z,fz) and dive/(z, Vu) =0
Here u = Ref€ #/:*(Q,R). The ellipticity of 7, that is,

| (2, €1) — H(z, &) <K€ — &), K::%Z

is seen as the strong ellipticity condition of 7. It satisfies
|
6 -6+ (2.6) - (2. &)1 < (K ) 61— &0, (2.60) - 7 (2.62)).

Linearity and autonomity are preserved.
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Remarks
£ = A1)

Introduced by Bojarski and Iwaniec in 1970s.

[P-theory by Astala-lwaniec-Saksman (2001), that is, there is a solution with
Df € LP(C) to inhomogeneous equation

fz=2(z.f;) +¥(2)

where 9 € LP(C),p € (l +k I+ lk)
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F=uf F=nftvhk =01

Homeomorphic - Existence
7, (C.C)-

solutions 0 +— 0,

| = | - Uniqueness
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F=uf F=nttvh E=H(f)
Homeomorphic - Existence —Yes, Morrey
7.(C.C)- (1938)
solutions 0 +— 0,
[ = - Uniqueness

[Ivleasurable Riemann mapping theorem
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F=uf F=nftvhk =01

Homeomorphic - Existence —Yes, Morrey —Yes —Yes

7, (C.C)- (1938)

solutions 0 +— 0,

[ = - Uniqueness

[Measurable Riemann mapping theorem J

There is a good existence theory even for f; = J(z, f, fz). One needs so-called
Lusin-measurability of the structure field 7, Astala-lwaniec-Martin (2009).
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[ = - Uniqueness

Jarmo Jadskeldinen Nonlinear Beltrami equations Tad70 7115



F=uf F=nftvhk =01

Homeomorphic - Existence —Yes, Morrey —Yes —Yes

7.1(C.C)- (1938)

solutions 0 — O,

[ = - Uniqueness —Yes, by Stoilow
factorisation,
Bojarski (1950s)

Stoilow factorisation: Every solution to the Beltrami equation f; = u f; may be
written in the form

f:(l)oh,

Where ® is holomorphic and h is a quasiconformal mapping that solves the
 same equation.
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F=uf F=nftvhk =01

Homeomorphic - Existence —Yes, Morrey —Yes —Yes

7,'(C.C)- (1938)

solutions O > O,

[ = - Uniqueness —Yes, by Stoilow ~ —Yes, Astala-
factorisation, Iwaniec-Martin
Bojarski (1950s)  (2009)

Stoilow factorisation: Every solution to the Beltrami equation f; = wf; may be
written in the form

f:(l)oh,

Where ® is holomorphic and h is a quasiconformal mapping that solves the
 same equation.

[Reduction tofz=u Imfs. j
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F=uf F=nftvhk =01

Homeomorphic - Existence —Yes, Morrey —Yes —Yes

7 (C,C)- (1938)

loc

solutions O > O,

[ = - Uniqueness —Yes, by Stoilow  —Yes, Astala- -7
factorisation, Iwaniec-Martin
Bojarski (1950s)  (2009)

[Theorem. (ACFJS, IMRN 2012) )

Normalised homeomorphic V/b'c'z(C, C)-solutions are unique, if

limsupk(z) < 3 —2V2.

|z] =00
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F=uf F=nftvhk =01

Homeomorphic - Existence —Yes, Morrey —Yes —Yes

7 (C,C)- (1938)

loc

solutions O > O,

[ = - Uniqueness —Yes, by Stoilow  —Yes, Astala- -7
factorisation, Iwaniec-Martin
Bojarski (1950s)  (2009)

[Theorem. (ACFJS, IMRN 2012) )

Normalised homeomorphic V/b'c'z(C, C)-solutions are unique, if

limsupk(z) < 3 —2V2.

|z] =00

Question: Do nonlinear Beltrami equations always have a unique normalised
homeomorphic solution?
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F=uf F=nftvhk =01

Homeomorphic - Existence —Yes, Morrey —Yes —Yes
7, (C.C)- (1938)
solutions O > O,
| = - Uniqueness —Yes, by Stoilow —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
Bojarski (1950s)  (2009) lel o0
3—2+2, ACHS
(2012)
[Theorem. (ACFJS, IMRN 2012) )

Normalised homeomorphic V/b'c'z(C, C)-solutions are unique, if

limsupk(z) < 3 —2V2.

|z] =00

Question: Do nonlinear Beltrami equations always have a unique normalised
homeomorphic solution?

NO, above bound is sharp.
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Sketch of proof

Let, f and g solve the same .7#-equation, fz = J(z, f.). Then

fr-g= A )~ H(2g)

Hence,
((f—g)z| = 12(2.12) = #(z g-)| < kI(f—g)-]

that is, f — g is quasiregular.
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Sketch of proof ||

Suppose f and g are homeomorphic solutions, both fixing O and |. Then:

| 4 k
deaf-g) <K K=17
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Sketch of proof ||

Suppose f and g are homeomorphic solutions, both fixing O and |. Then:

I +k
T I—«k
Namely: f — g = ®(h), where ®(z) is holomorphic with ®(0) = ®(1) = 0, and
h a normalised quasiconformal mapping (Stoilow factorisation).

deg(f—g) <K’ K
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Sketch of proof ||

Suppose f and g are homeomorphic solutions, both fixing O and |. Then:

I +k
T I—«k
Namely: f — g = ®(h), where ®(z) is holomorphic with ®(0) = ®(1) = 0, and
h a normalised quasiconformal mapping (Stoilow factorisation).

deg(f—g) <K’ K

D oh(z)| = [f—g < Clz|X < ()¢
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Sketch of proof ||

Suppose f and g are homeomorphic solutions, both fixing O and |. Then:

I +k
T I—«k
Namely: f — g = ®(h), where ®(z) is holomorphic with ®(0) = ®(1) = 0, and
h a normalised quasiconformal mapping (Stoilow factorisation).

deg(f—g) <K’ K

D oh(z)| = [f—g < Clz|X < ()¢

, _k(z) - |
Now, I:glei) K(z) = KO T < V2

IfK? < 2, then deg(f—g) = |. Thusf=g.
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Sketch of proof ||

Suppose f and g are homeomorphic solutions, both fixing O and |. Then:

I +k
T I—«k
Namely: f — g = ®(h), where ®(z) is holomorphic with ®(0) = ®(1) = 0, and
h a normalised quasiconformal mapping (Stoilow factorisation).

deg(f—g) <K’ K

D oh(z)| = [f—g < Clz|X < ()¢

, _k(z) - |
Now, I:glei) K(z) = KO T < V2

IfK? < 2, then deg(f—g) = |. Thusf=g.

Sharpness: Example by construction.
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Counterexamples

Let
2

Ft(z):{(l—l—t)z|z|—tz,

(|+t)z—&2, for |z| < I,

for |z| > 1,

| +1t)zlz| — tz, for|z| > I,
S ((REE 2
z, for |z| < I.

Then F — G =t(z — 22) and both F; and G; fix 0 and |.

Jarmo Jddskeldinen Nonlinear Beltrami equations Tad70

11715



Counterexamples

Let

(I +1)zlz| — 2%, for|z| > I,
FI(Z): )

(I +t)z—tz5, for |z| < I,

| +1t)zlz| — tz, for|z| > I,
S ((REE 2
z, for |z| < I.

Then F — G =t(z — 22) and both F; and G; fix 0 and |.
Set

H(2,0) =0, H(z,0,F(2)) :=0F(2), H(z, 0,Gi(z)) := 05Gi(2).
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Counterexamples
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(I +1)zlz| — 2%, for|z| > I,
FI(Z): )

(I +t)z—tz5, for |z| < I,

| +1t)zlz| — tz, for|z| > I,
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z, for |z| < I.

Then F — G =t(z — 22) and both F; and G; fix 0 and |.
Set

H(2,0) =0, H(z,0,F(2)) :=0F(2), H(z, 0,Gi(z)) := 05Gi(2).
Extend by Kirzbraun’s theorem. Here K — 2
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Counterexamples

Let

(I +1)zlz| — 2%, for|z| > I,
FI(Z): )

(I +t)z—tz5, for |z| < I,

| +1t)zlz| — tz, for|z| > I,
S ((REE 2
z, for |z| < I.

Then F — G =t(z — 22) and both F; and G; fix 0 and |.
Set

H(2,0) =0, H(z,0,F(2)) :=0F(2), H(z, 0,Gi(z)) := 05Gi(2).

Extend by Kirzbraun’s theorem. Here K — 2
To get K — V2 compose F; and G; with

L
#(2) = {Z'Z' i

z ,when |z| < |

,when |z| > |,
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Homeomorphic
7, (C.C)-

solutions O — O,

[ =

family of solutions
T ={ps:a €
C}, where
homeomorphisms
Qg satisfy

©.(0) =0,

©wo(1) = a, when

a#0,p0=0
o= )

Jarmo Jddskeldinen

fF=nf F=uh+vhk f=H(f)
- Existence —Yes, Morrey —Yes —Yes
(1938)
- Uniqueness —Yes, by Stoilow —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
Bojarski (1950s)  (2009) lel o0
3—2V/2, ACHS
(2012)
- Structure of
homeomorphic
solutions
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fr=uf F=plt+vl  E=2(f)
Homeomorphic - Existence —Yes, Morrey —Yes —Yes
7,(C.C)- (1938)
solutions 0 +— 0,
| = - Uniqueness —Yes, by Stoilow —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
family of solutions Bojarski (1950s)  (2009) Jel=>e
Fp = {10 € 3-2V2, ACFS
C}, where (2012)
homeomorphisms | Structure of —a complex line
. satisfy homeomorphic in #/.*(C, C)
©,(0) =0 solutions
©wo(1) = a, when
a#0,p0=0
- ="
[,%L:{a(p‘ :aeC} }
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F=uf F=nftvhk =01

Y
Homeomorphic - Existence —Yes, Morrey —Yes —Yes
7.'(C.C)- (1938)
solutions 0 +— 0,
[ - Uniqueness —Yes, by Stoilow  —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
family of solutions Bojarski (1950s)  (2009) o0
. _ . 3—2+2, ACHS
7:;;0 = {(pd ae
C}, where : (2012)
homeomorphisms |’ Structure Of. -2 co‘ngplex line  —an R-linear
homeomorphic in % °(C,C) 2D-subspace of

. satisf loc
Z:(O) :yo solutions #.*(C,C)

loc
©wo(1) = a, when
a#0,p0=0

[ﬁuz{a(p|:a€C} }

[,,?uvuz{swﬂap,:s,telR} j
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Homeomorphic
7, (C.C)-

solutions O — O,

[ =

family of solutions
T ={ps:a €
C}, where
homeomorphisms
Qg satisfy

©.(0) =0,

©wo(1) = a, when

a#0,p0=0
o= )

Jarmo Jddskeldinen

f=nf F=uftvi f=H(f)
- Existence —Yes, Morrey —Yes —Yes
(1938)
- Uniqueness —Yes, by Stoilow —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
Bojarski (1950s)  (2009) lel o0
3-2V2, ACFJS
(2012)
- Structure of —a complex line  —an R-linear -
homeomorphic in #/.:*(C, C) 2D-subspace of
solutions #.!(C, Q)
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Homeomorphic
7, (C.C)-

solutions O — O,

[ =

family of solutions
T ={ps:a €
C}, where
homeomorphisms
Qg satisfy

©.(0) =0,

©wo(1) = a, when

a#0,p0=0

fr=uf F=plt+vl  E=2(f)
- Existence —Yes, Morrey —Yes —Yes
(1938)
- Uniqueness —Yes, by Stoilow —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
Bojarski (1950s)  (2009) lel o0
3—2+2, ACHS
(2012)

- Structure of
homeomorphic
solutions

—a complex line
in #,*(C, C)

loc

—an R-linear
2D-subspace of
#.2(C,C)

loc

—an embedded
submanifold of

#.2(C,Q),

loc

ACFJ (2017)

(Theorem. (ACF), ] Anal Math 2017)

arr g C— %O'C’Q(C, C) is bi-Lipschitz.

If € = H(2,€) is C', Fy is a C'-embedded submanifold of #-*(C, C).
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What is the tangent plane of .7 !

(Theorem. (ACH, J Anal Math 2017) W
a+s s : C— #[*(C,C) is bi-Lipschitz.

If € s H(2,€) is C', Ty is a C'-embedded submanifold of %O'C’Q(C, C).
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What is the tangent plane of .7 !

(Theorem. (ACFJ, ] Anal Math 2017)

a+s s : C— #[*(C,C) is bi-Lipschitz.
If € s H(2,€) is C', Ty is a C'-embedded submanifold of %O'C’Q(C, C).

(Theorem. (ACFJ, ] Anal Math 2017)

The tangent plane at @, is given by the solutions to an IR-linear equation,
T‘Pa*o}}f = yﬂaﬂa'

where

Ua(z) = 0 (2, 0.04(2)) and Vo(2) = 0z (2, 0,04(2)) .
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Homeomorphic
Io‘c2 (C C)

solutions O — O,

[ =

family of solutions
T ={ps:a €
C}, where
homeomorphisms
©a satisfy

©a(0) =

wa(l)=aq when
a#0,00=0

W, v € 6o(Q, C),
7z H(z,€) €
%‘OC(Q’C)

Jarmo Jddskeldinen

f=uf f=uf+vh f=2(f)
- Existence —Yes, Morrey —Yes —Yes
(1938)
- Uniqueness —Yes, by Stoilow —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
Bojarski (1950s)  (2009) le|=vo0
3—2+2, ACHS
(2012)

- Structure of —a complex line  —an R-linear —an embedded
homeomorphic in %O‘Cz(C, ()] 2D-subspace of  submanifold of
solutions #.!(C, Q) #.(C,C),
ACF) (2017)
- Schauder
estimates
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Homeomorphic
Io‘c2 (C C)

solutions O — O,

[ =

family of solutions
T ={ps:a €
C}, where
homeomorphisms
©a satisfy

©a(0) =

wa(l)=aq when
a#0,00=0

W, v € 6o (Q,C),
7z H(z,€) €
%‘OC(Q’C)

Jarmo Jddskeldinen

F=uf F=uft+vh F=H(zf)
- Existence —Yes, Morrey —Yes —Yes
(1938)
- Uniqueness —Yes, by Stoilow —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
Bojarski (1950s)  (2009) lel o0
3—2+2, ACHS
(2012)
- Structure of —a complex line  —an R-linear —an embedded
homeomorphic in %O‘Cz(C, ()] 2D-subspace of  submanifold of
solutions #.!(C, Q) #.(C,C),
ACFJ (2017)
- Schauder fE€.%(Q.C),  fe€.*(QC),
estimates Ladyzhenskaya— Ladyzhenskaya-
Uralt'seva, Uralt'seva,
(1968) (1968)
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Homeomorphic
Io‘c2 (C C)

solutions O — O,

[ =

family of solutions
T ={ps:a €
C}, where
homeomorphisms
©a satisfy

©a(0) =

wa(l)=aq when
a#0,00=0

-/
bv € GE(R.C),
z— H(2,€) €

%c(2.C)

F=uf F=uf+vl f=H(@zf)
- Existence —Yes, Morrey —Yes —Yes
(1938)
- Uniqueness —Yes, by Stoilow —Yes, Astala- —Yes, when
factorisation, Iwaniec-Martin limsupk(z) <
Bojarski (1950s)  (2009) lel o0
3—2+2, ACHS
(2012)
- Structure of —a complex line  —an R-linear —an embedded
homeomorphic in %O‘Cz(C, ()] 2D-subspace of  submanifold of
solutions #.!(C, Q) #.(C,C),
ACFJ (2017)
- Schauder fE€.%(Q,C), fe€*(Q.C), fe€.(QC)
estimates Ladyzhenskaya— Ladyzhenskaya- v <min {a, l}
Uralt'seva, Uralt'seva, K
(1968) (1968) ACFK (Ann I H
Poincare-An
2016)

Question: Is it necessary for the Holder exponent to depend on K and not only

on o!
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Dziekuje!  Kitos!  Thank you!



