OPTIMAL RESTORATION OF NATURAL ASSETS

Habitat Restoration in Europe

Jarmo Jääskeläinen, Dept. of Economics and Management, jarmo.jaaskelainen@helsinki.fi NAERE 2023, 24 August 2023

Based on a joint work with *Pauli Lappi* (Reversing the tragedy of the commons: On optimal restoration of natural assets)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

RESTORATION OF NATURAL ASSETS

degenerated ecosystems and biodiversity

- No responsible party
- Restoration investments are costly
- One can rely also on natural regeneration or attenuation processes

HABITAT RESTORATION IN EUROPE

Percent habitat loss by terrestrial ecoregion, The Nature Conservancy (2009)

The Nature Conservancy

DECISION MAKER

has a fixed budget.

chooses the timing

the level of restoration investment

and which sites are restored.

DECISION MAKER'S GOAL

- The decision maker wants to **minimise the loss function** under budget restriction.
- In our general model the loss function satisfies

 $\partial_{\tau_i} \mathcal{W}((\tau_i, k_i)_{i=1}^s) > 0$

 $\partial_{k_i} \mathcal{W}((\tau_i, k_i)_{i=1}^s) < 0$

ecoregions in Europe Norden 50 million euros

- conservation under limited funds), we normalise this to the unity and discount

expected value of species is given by

$$\mathbb{E}\left(\int_{0}^{\dagger} e^{-rt} \, \mathrm{d}t\right) = \int_{0}^{\infty} \left(\int_{0}^{\dagger} e^{-rt} \, \mathrm{d}t\right) \mathrm{d}F(\dagger;\tau,k) \, \mathrm{d}\dagger$$

• The decision maker wants to **minimise the expected number of lost value** of species. • Each species have the same value (contrary to Weitzman's (1998) framework for the

 $\int e^{-rt} dt$

• The extinction of each species is uncertain and depends on the available habitat. The

The expected value of species is given by

$$\mathbb{E}\left(\int_0^{\dagger} e^{-rt} \, \mathrm{d}t\right) = \int_0^{\infty} \left(\int_0^{\dagger} e^{-rt} \, \mathrm{d}t\right) \mathrm{d}F(\dagger;\tau,k) \, \mathrm{d}\dagger$$

• The cumulative probability distribution of death dates

$$F(\dagger;\tau,k) = \begin{cases} 1 - e^{-\rho n_0 \dagger}, & \dagger \leq \tau \\ 1 - e^{-\rho n_0 \tau - \int_{\tau}^{\dagger} \rho N(s;\tau,k) \, \mathrm{d}s}, & \dagger > \tau \end{cases}$$

• The power of the exponential comes from the intensity, e.g.

• The extinction of each species is uncertain and depends on the available habitat.

 $P(\dagger \in (s, s + ds) \mid \dagger > s) = \rho N(s; \tau, k) ds + ds E(ds)$

46 TERRESTRIAL ECOREGIONS IN EU, UK, EFTA and CEFTA countries

"relatively large units of land containing a distinct assemblage of natural communities and species, with boundaries that approximate the original extent of natural communities prior to major land-use change"

-Olson et al. (2001)

Conservation Science Program - World Wildlife Fund

Creative Commons Attribution-NonCommercial 3.0 License.

SPECIES

Kier et al. (2005) plant data on vascular plant species for each ecoregion: approximately 80 000 species altogether and values range from 330 (e.g., Faroe Island Boreal Grassland) to 5 000 (e.g., Alps Conifer and Mixed Forest) per ecoregion.

Conservation Science Program - World Wildlife Fund

Creative Commons Attribution-NonCommercial 3.0 License.

In our general model the cost function is increasing and GET RESTRICTION ultimately convex in k_i .

$$C_i(k_i, n_i) = \frac{c_i(k_i n_i)}{(1 - k_i)}$$

average cost of agricultural land (Eurostat)

Available budget drops by the restoration cost at the restoration date, but raises by the rate of interest in between dates

• The restoration cost is increasing and convex in the area brought under restoration and decreasing in the lost habitat area that is not restored, similar as in Harstad (2023)

LOSS FUNCTION IN NUMERICS

- end of the planning interval (e.g., IO years) vs. the discounted lost value
- Luby & al. (2022)
- 0.2, by the ecological research, e.g., Strassburg et al. (2020) and Luby et al. (2022).

$$\mathcal{W}((\tau_i, k_i)_{i=1}^{46}) = \text{ sum of all species } \left[\text{ a species does not survive in any region} \right]^{0.2}$$

$$= \sum_{i=1}^{46} (\# \text{ endemic species in the region } i) \left[1 - \left\{ 1 - \left((1 - k_i)n_{i,0} + \frac{2k_i n_{i,0}}{1 + e^{10 - \tau_i}} \right) \right\}^{0.2} \right]^{0.2}$$

• The decision maker wants to **minimise the expected number of lost species** at the • The loss function is the expected number of lost species, e.g., Costello & Polasky (2004),

• Probability to survive $= \{$ the current habitat size / the original habitat size $\}$ to the power • The current habitat = original - lost + area under restoration - dynamics of restoration

OPTIMAL ALLOCATION OF 10 BILLION E

- Allocation is driven by 1. The number of species 2. The cost 3. The lost habitat before restoration
- large I, small 2, and large 3 \implies money

Spain 1.6 billion e

Others 760 million e

Serbia 210 million e Romania 210 million e Portugal 420 million e Montenegro 210 million e 2 % Italy 1.7 billion e

Nordic countries 50 million euros

TIMES AND EFFORTS

DECISION MAKER'S PROBLEM $\inf_{\{(\tau_i,k_i)_{i=1}^s\}} \mathcal{W}((\tau_i,k_i)_{i=1}^s)$ $\dot{B} = rB \ge 0, \quad B(0^-) = b_0 > 0$ $B(\tau_i^-) - B(\tau_i^+) = C_i(k_i, N_i(\tau_i))$ i=1 $\tau_i \ge 0, \quad k_i \ge 0, \quad \text{for all } i.$

Results

- Optimal waiting and investment rules
- A sufficient condition for restoration of a damaged stock
- A budget allocation formulation of the problem
- A test: "Is the budget allocation optimal?"

 $b_{0} = \sum_{i=1}^{s} C_{i}(k_{i}, N_{i}(\tau_{i}))e^{-r\tau_{i}}$ $\tau_i \ge 0, \quad k_i \ge 0, \quad \text{for all } i.$

European Commissions's Digital Observatory for Protected Areas (<u>DOPA</u>) • The Nature Conservancy (2009) habitat loss as a percent of the total ecoregion area • Kier et al. (2005) plant data on vascular plant species for each ecoregion

- Eurostat's data on arable land prices

- Python SciPy's Sequential Least Squares Programming (SLSQP) with tolerance le-7
- Artelys Knitro

NUMERICS

MENTIONED REFERENCES

- Costello & Polasky (2004), Dynamic reserve site selection, Resource and Energy Economics, 26, 157–174
- Harstad (2023), The conservation multiplier, Journal of Political Economy, in Press
- Biogeography, 32, 1107–1116
- Luby et al. (2022), When and where to protect forests, Nature, 609, 89–93
- Olson et al. (2001), Terrestrial ecoregions of the world, BioScience, 51, 933–938
- 724-729
- Weitzman (1998), The Noah's ark problem, Econometrica, 66, 1279–1298

• Kier et al. (2005), Global patterns of plant diversity and floristic knowledge, Journal of

• Strassburg et al. (2020), Global priority areas for ecosystem restoration, Nature, 586,

Jarmo Jääskeläinen jarmo.jaaskelainen@helsinki.fi

