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Grötzch Problem
Herbert Grötzsch asked in 1928 the most nearly conformal mapping
between a square and a rectangle.

Conformal mapping preserves angles locally.
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Quasiconformal Mappings

radius of the smallest disk outside
radius of the biggest disk inside

=
L(z, r)
l(z, r)

A homeomorphism f : C→ C is quasiconformal if for every point z

lim sup
r→∞

L(z, r)
l(z, r)

6 K

one point to one point, mapping and its inverse are continuous (if
points are close then the image of the points are close)
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Quasiconformal Mappings
Infinitesimal behaviour can be characterized by the derivative.

disks 7→ ellipsoids

major axis
minor axis

=
|∂z f |+ |∂z̄ f |
|∂z f |− |∂z̄ f |

6 K(z) 6 K

Conformal functions (preserve angles locally) map infinitesimally
disks to disks.
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Back to Grötzch
Herbert Grötzsch asked in 1928 the most nearly conformal mapping
between a square and a rectangle.

major axis
minor axis

=
|∂z f |+ |∂z̄ f |
|∂z f |− |∂z̄ f |

6 K(z) 6 K most nearly = smallest K

f (z) =
1
2

(
aR

aS
+

bR

bS

)
z +

1
2

(
aR

aS
−

bR

bS

)
z̄

This natural generalization of conformal maps is a superficial reason to
study quasiconformal functions. Quasiconformal mappings arise in
many questions of geometry and analysis (holomorphic dynamics,
elliptic PDEs, etc.)
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Beltrami Inequality

major axis
minor axis

=
|∂z f |+ |∂z̄ f |
|∂z f |− |∂z̄ f |

6 K(z) 6 K

|∂z̄f | 6 k|∂zf |, k =
K − 1
K + 1

< 1
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Beltrami Equation
Beltrami inequality

|∂z̄ f | 6 k|∂z f |, k =
K − 1
K + 1

< 1.

Beltrami equation

∂z̄ f (z) = µ(z)∂z f (z), |µ(z)| 6 k,

named after Eugenio Beltrami
(1835–1899); studied differential
geometry and mathematical
physics.

Already Carl Friedrich Gauss
(1777–1855) used the equation
when he studied isothermal
coordinates.
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Examples (Quasicircles)
Koch snowflake

Douady Rabbit

the rabbit on right: RBerenguel
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Examples (Radial Stretching)
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Reduced Beltrami Equation
Beltrami equation

∂z̄ f (z) = µ(z)∂z f (z), |µ(z)| 6 k.

Reduced Beltrami Equation

|∂z̄ f | = λ(z) Im∂z f (z), |λ(z)| 6 k < 1

Reduced Beltrami inequality

|∂z̄ f | 6 k| Im∂z f |.
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Reduced Beltrami Equation
Reduced Beltrami Equation

|∂z̄ f | = λ(z) Im∂z f (z), |λ(z)| 6 k < 1

Identity is always a solution,
f (z) = z.

The identity is the unique
homeomorphic solution fixing
points z = 0 and z = 1,
i.e., f (0) = 0 and f (1) = 1.

Im∂z f is non-vanishing almost everywhere.
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Radial Stretching

When rotated by 90◦, the mapping is reduced quasiregular.
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Linear Families
Linear families of quasiconformal mappings can be studied with the
help of a reduced Beltrami equation. That is families of
quasiconformal mappings a f + b g, where a and b are real numbers,
e.g., f + g, f − g, 0.1f − 6g, etc.

A linear family of quasiconformal mappings has a unique associated
linear Beltrami equation,

∂z̄ f (z) = µ(z)∂z f (z) + ν(z)∂z f (z).

∂z̄ f (z) = µ(z)∂z f (z) and ∂z̄ f (z) = λ(z) Im∂z f (z) are linear equations,
i.e., if f , g are solutions, then a f + b g is a solution.
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Nonlinear Situation
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Uniqueness in Nonlinear Equation

Beltrami Systems = we have uniform ellipticity bound k < 1.

The identity was the unique homeomorphic solution to the reduced
Beltrami equation such that 0 7→ 0 and 1 7→ 1. There is a unique
solution in the case of the Beltrami equation.

The same is true in the nonlinear case under an explicit bound of the
ellipticity. Namely, if we fix two points, say f (0) = 0 and f (1) = 1, then
there is a unique solution to nonlinear Beltrami equation if
k(z) < 3 − 2

√
2 = 0.17157 . . . when z is near ∞.
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