NONLINEAR

 BELTRAMI EQUATIONS

 BELTRAMI EQUATIONS
 Uniqueness and QC Families

Jarmo Jääskeläinen jarmo.jaskelainen@uam.es

DE MEDRID
W4: Quasiconformal Geometry and Elliptic PDEs
May 21,20I3 @ IPAM

QUASICONFORMAL MAPPING

Infinitesimally quasiconformal functions map disks into ellipsoids.
Homeomorphism $f: \Omega \rightarrow \mathbb{C} \in W_{\text {loc }}^{1,2}(\Omega)$ is K-quasiconformal if for almost everywhere the classical Beltrami equation holds

$$
\begin{gathered}
2 \partial_{\bar{z}} f(z)=\partial_{x} f(z)+i \partial_{y} f(z), \quad 2 \partial_{z} f(z)=\partial_{x} f(z)-i \partial_{y} f(z), \quad z=x+i y
\end{gathered}
$$

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z), \quad|\mu(z)| \leqslant k<1, \quad K=\frac{1+k}{1-k}
$$

One can measurably preassign the eccentricity and angle of the ellipses.
$\frac{\text { major axis }}{\text { minor axis }}=\frac{\left|\partial_{z} f\right|+\left|\partial_{\bar{z}} f\right|}{\left|\partial_{z} f\right|-\left|\partial_{\bar{z}} f\right|} \leq K$

Every solution $g \in W_{\mathrm{loc}}^{1,2}(\Omega)$ can be factorized as $g=h \circ f$ where h is analytic and f is a homeomorphic solution (Stoilow factorization).

QUASICONFORMAL FAMILY $\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z)$

Homeomorphic solution $\Phi: \mathbb{C} \rightarrow \mathbb{C} \in W_{\mathrm{loc}}^{1,2}(\mathbb{C})$ is called normalized if $\Phi(0)=0, \Phi(1)=1$
by Stoitow, solution $=$ (analytic o homeomorphism)
There is a unique homeomorphic solution that maps $0 \mapsto 0,1 \mapsto a \in \mathbb{C} \backslash\{0\}$; namely, $a \Phi(z)$
$\{a \Phi(z): a \in \mathbb{C}\}$ is a \mathbb{C}-linear family of quasiconformal maps (and constant 0)
Conversely, if one has a \mathbb{C}-linear family of quasiconformal maps $\{a f: a \in \mathbb{C}\}$, one can associate to it a classical Beltrami equation, by setting

$$
\mu(z)=\frac{\partial_{\bar{z}} f(z)}{\partial_{z} f(z)}
$$

It is well-defined (and unique), since $\partial_{z} f(z) \neq 0$ almost everywhere. The family is generated by one function, f) (injectivity)

Families appear in the context of G-convergence properties of \mathbb{R}-linear Beltrami operators,

$$
\partial_{\bar{z}}-\mu_{j}(z) \partial_{z}-\nu_{j}(z) \overline{\partial_{z}}, \quad\left|\mu_{j}(z)\right|+\left|\nu_{j}(z)\right| \leqslant k<1
$$

Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone (2004), Bojarski, D'Onofrio, Iwaniec, and Sbordone (2005)

Homeomorphic solutions to \mathbb{R}-linear Beltrami equation

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z)+\nu(z) \overline{\partial_{z} f(z)}, \quad|\mu(z)|+|\nu(z)| \leq k<1
$$

form an \mathbb{R}-linear family of quasiregular mappings. Is their linear combination injective?

Homeomorphic solutions to \mathbb{R}-linear Beltrami equation

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z)+\nu(z) \overline{\partial_{z} f(z)}, \quad|\mu(z)|+|\nu(z)| \leq k<1
$$

form an \mathbb{R}-linear family of quasiregular mappings. Is their linear combination injective?

Yes (after normalization): Homeomorphic solution is uniquely defined knowing its values at two distinct points. Moreover, the linear combination is either homeomorphism or constant.

Idea: $\Psi=F \circ \Phi$, where homeomorphism F solves a reduced equation

$$
\partial_{\bar{z}} f(z)=\lambda(z) \operatorname{Im}\left(\partial_{z} f(z)\right) \quad|\lambda(z)| \leqslant 2 k /\left(1+k^{2}\right)
$$

The only homeomorphic solution to the reduced equation that fixes two points is the identity, Astala, Iwaniec, and Martin (2009):

$$
z \mapsto \frac{f(z)-t z}{1-t}
$$

If we normalize $\Phi(0)=0=\Psi(0)$, the linear independence of $\Phi(1), \Psi(1)$ implies that $\alpha \Phi(z)+\beta \Psi(z), \alpha, \beta \in \mathbb{R}$, is K-quasiconformal, and we have an \mathbb{R}-linear family of quasiconformal mappings.

\mathbb{R}-LINEAR FAMILY OF OC MAPS
 $$
\partial_{\bar{z}} f(z)=\mu(z) \check{\partial}_{z} f(z)+\nu(z) \overline{\partial_{z} f(z)}
$$

Conversely, if we have an \mathbb{R}-linear family of quasiconformal mappings

$$
\{\alpha \Phi(z)+\beta \Psi(z): \alpha, \beta \in \mathbb{R}\}
$$

can we define μ and ν so that every mapping of the linear family solves the \mathbb{R} linear equation given by μ, ν ?

Yes we can!
generated by two mappings (injectivity)

$$
\begin{aligned}
& \partial_{\bar{z}} \Phi(z)=\mu(z) \partial_{z} \Phi(z)+\nu(z) \overline{\partial_{z} \Phi(z)} \\
& \partial_{\bar{z}} \Psi(z)=\mu(z) \partial_{z} \Psi(z)+\nu(z) \frac{\partial_{z} \Psi(z)}{\partial_{z}}
\end{aligned}
$$

when matrix of the

$$
\mu(z)=i \frac{\Psi_{\bar{z}} \overline{\Phi_{z}}-\overline{\Psi_{z}} \Phi_{\bar{z}}}{2 \operatorname{Im}\left(\Phi_{z} \overline{\Psi_{z}}\right)} \quad \nu(z)=i \frac{\Phi_{\bar{z}} \Psi_{z}-\Phi_{z} \Psi_{\bar{z}}}{2 \operatorname{Im}\left(\Phi_{z} \overline{\Psi_{z}}\right)} \ll
$$

On the singular set, we set $\nu \equiv 0$. Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone (2004), Bojarski, D'Onofrio, Iwaniec, and Sbordone (2005)

\mathbb{R}-LINEAR FAMILY OF QC MAPS $\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z)+\nu(z) \overline{\partial_{z} f(z)}$

Conversely, if we have an \mathbb{R}-linear family of quasiconformal mappings

$$
\{\alpha \Phi(z)+\beta \Psi(z): \alpha, \beta \in \mathbb{R}\}
$$

we define

$$
\mu(z)=i \frac{\Psi_{\bar{z}} \overline{\Phi_{z}}-\overline{\Psi_{z}} \Phi_{\bar{z}}}{2 \operatorname{Im}\left(\Phi_{z} \overline{\Psi_{z}}\right)} \quad \nu(z)=i \frac{\Phi_{\bar{z}} \Psi_{z}-\Phi_{z} \Psi_{\bar{z}}}{2 \operatorname{Im}\left(\Phi_{z} \overline{\Psi_{z}}\right)}
$$

Unique? Yes, by a Wronsky-type theorem, Alessandrini and Nesi (2009), Astala and Jääskeläinen (2009); Bojarski, D'Onofrio, Iwaniec, and Sbordone (2005) $k<1 / 2$

Theorem. Suppose $\Phi, \Psi \in W_{\mathrm{loc}}^{1,2}(\Omega)$ are homeomorphic solutions to

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z)+\nu(z) \overline{\partial_{z} f(z)}, \quad|\mu(z)|+|\nu(z)| \leqslant k<1,
$$

for almost every $z \in \Omega$. Solutions Φ and Ψ are \mathbb{R}-linearly independent if and only if complex gradients $\partial_{z} \Phi$ and $\partial_{z} \Psi$ are pointwise independent almost everywhere, i.e.,

$$
\operatorname{Im}\left(\partial_{z} \Phi \overline{\partial_{z} \Psi}\right) \neq 0 \text { does not change sign, } B D I S(2005)
$$

\mathbb{R}-LINEAR FAMILY OF QR MAPS $\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z)+\nu(z) \overline{\partial_{z} f(z)}$

Wronsky-type theorem, Alessandrini and Nesi (2009), Astala and Jääskeläinen (2009); Bojarski, D'Onofrio, Iwaniec, and Sbordone (2005) $k<1 / 2$

Theorem. Suppose $\Phi, \Psi \in W_{\mathrm{loc}}^{1,2}(\Omega)$ are

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z)+\nu(z) \overline{\partial_{z} f(z)}, \quad|\mu(z)|+|\nu(z)| \leqslant k<1,
$$

for almost every $z \in \Omega$. Solutions Φ and Ψ are \mathbb{R}-linearly independent if and only if complex gradients $\partial_{z} \Phi$ and $\partial_{z} \Psi$ are pointwise independent almost everywhere, ie.,

$$
\operatorname{Im}\left(\partial_{z} \Phi \overline{\partial_{z} \Psi}\right) \neq 0
$$

)ääskelänen (2012)

BELTRAMI EQUATIONS

\mathbb{C}-linear

$$
f_{\bar{z}}=\mu(z) f_{z}
$$

\mathbb{R}-linear

$$
f_{\bar{z}}=\mu(z) f_{z}+\nu(z) \overline{f_{z}} \quad f_{\bar{z}}=\mathcal{H}\left(z, f_{z}\right)
$$

Nonlinear

$$
\mathcal{H}(z, w): \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}
$$

$z \mapsto \mathcal{H}(z, w)$ measurable $\boldsymbol{\gamma} w \mapsto \mathcal{H}(z, w) k$-Lipschitz

$$
\mathcal{H}(z, 0) \equiv 0
$$

Difference of two solutions is K-quasiregular

$$
\left|\partial_{\bar{z}} f(z)-\partial_{\bar{z}} g(z)\right|=\left|\mathcal{H}\left(z, \partial_{z} f(z)\right)-\mathcal{H}\left(z, \partial_{z} g(z)\right)\right||\leqslant k| \partial_{z} f(z)-\partial_{z} g(z) \mid
$$

Constants are solutions.

There is a unique homeomorphic solution Φ such that $\Phi(0)=0, \Phi(1)=1$

There is a unique homeomorphic solution Φ such that $\Phi(0)=0, \Phi(1)=1$

Nonlinear

$$
f_{\bar{z}}=\mathcal{H}\left(z, f_{z}\right)
$$

Not unique in general, Astala, Clop, Faraco, Jääskeläinen, and Székelyhidi Jr. (20|2)
$z \mapsto \mathcal{H}(z, w)$ measurable $\quad w \mapsto \mathcal{H}(z, w) k$-Lipschitz $\quad \mathcal{H}(z, 0) \equiv 0$
Theorem. If $\lim \sup k(z)<3-2 \sqrt{2}=0.17157 \ldots$, then the nonlinear equation $\quad|z| \rightarrow \infty$

$$
\partial_{\bar{z}} f(z)=\mathcal{H}\left(z, \partial_{z} f(z)\right)
$$

admits a unique homeomorphic solution $\Phi: \mathbb{C} \rightarrow \mathbb{C} \in W_{\text {loc }}^{1,2}(\mathbb{C})$ normalized by $\Phi(0)=0, \Phi(1)=1$.

Furthermore, the bound on k is sharp.

cOUNTEREXAMPLES

Astala, Clop, Faraco, Jääskeläinen, and Székelyhidi Jr. (20|2)

$$
z \mapsto \mathcal{H}(z, w) \text { measurable } \quad w \mapsto \mathcal{H}(z, w) k \text {-Lipschitz } \quad \mathcal{H}(z, 0) \equiv 0
$$

Theorem. If $\lim \sup k(z)<3-2 \sqrt{2}=0.17157 \ldots$, then the nonlinear equation $\quad|z| \rightarrow \infty$

$$
\partial_{\bar{z}} f(z)=\mathcal{H}\left(z, \partial_{z} f(z)\right)
$$

admits a unique homeomorphic solution $\Phi: \mathbb{C} \rightarrow \mathbb{C} \in W_{\text {loc }}^{1,2}(\mathbb{C})$ normalized by $\Phi(0)=0, \Phi(1)=1$.

Furthermore, the bound on k is sharp.

$$
K=\frac{1+k}{1-k}=\sqrt{2} \Leftrightarrow k=3-2 \sqrt{2}
$$

$$
\begin{aligned}
& f_{t}(z)= \begin{cases}(1+t) z|z|^{\sqrt{2}-1}-t\left(z|z|^{1 / \sqrt{2}-1}\right)^{2}, & \text { for }|z|>1, \\
(1+t) z-t z^{2}, & \text { for }|z| \leq 1,\end{cases} \\
& g_{t}(z)= \begin{cases}(1+t) z|z|^{\sqrt{2}-1}-t z|z|^{1 / \sqrt{2}-1}, & \text { for }|z|>1, \\
z, & \text { for }|z| \leq 1\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f_{t}(z)= \begin{cases}(1+t) z|z|^{\sqrt{2}-1}-t\left(z|z|^{1 / \sqrt{2}-1}\right)^{2}, & \text { for }|z|>1, \\
(1+t) z-t z^{2}, & \text { for }|z| \leq 1,\end{cases} \\
& g_{t}(z)= \begin{cases}(1+t) z|z|^{\sqrt{2}-1}-t z|z|^{1 / \sqrt{2}-1}, & \text { for }|z|>1, \\
z, & \text { for }|z| \leq 1 .\end{cases}
\end{aligned}
$$

$$
f_{\bar{z}}=\mu(z) f_{z}
$$

There is a unique homeomorphic solution Φ such that $\Phi(0)=0, \Phi(1)=1$

There is a unique homeomorphic solution Φ such that $\Phi(0)=0, \Phi(1)=1$

$$
f_{\bar{z}}=\mathcal{H}\left(z, f_{z}\right)
$$

There is a unique homeomorphic solution Φ such that $\Phi(0)=0, \Phi(1)=1$ when near the infinity

$$
k(z)<3-2 \sqrt{2}
$$

Homeomorphic solution is uniquely defined by its values at two distinct points. Difference is homeomorphism or constant.

$$
\left\{\Phi_{a}: \Phi_{a} K-\mathrm{qc}, 0 \mapsto 0,1 \mapsto a\right\}
$$

\mathbb{C}-linear family of quasiconformal mappings
\mathbb{R}-linear family of quasiconformal mappings
family of
quasiconformal
mappings

FROM FAMILYTO EQUATION

\mathbb{C}-linear family of quasiconformal mappings

$$
\left\{\Phi_{a}: \Phi_{a} K-\mathrm{qc}, 0 \mapsto 0,1 \mapsto a\right\}
$$

$$
\{a \Phi(z): a \in \mathbb{C}\} \quad\{\alpha \Phi(z)+\beta \Psi(z): \alpha, \beta \in \mathbb{R}\}
$$

$$
\Phi(0)=0, \Phi(1)=1 \quad \Phi(0)=0, \Phi(1)=1
$$

$$
\Psi(0)=0, \Psi(1)=i \uparrow
$$

unique μ and ν s.t. every mapping of the family solves the Beltrami equation (Wronsky-type theorem)

$$
f_{\bar{z}}=\mu(z) f_{z} \quad f_{\bar{z}}=\mu(z) f_{z}+\nu(z) \overrightarrow{f_{z}} \quad \quad i f_{\bar{z}}=\mathcal{H}\left(z, f_{z}\right) ?
$$

linearly independent, thus their complex gradients are linearly independent

HOWTO DEFINE EQUATION?

We have a family of quasiconformal mappings $\left\{\Phi_{a}: \Phi_{a} K-\mathrm{qc}, 0 \mapsto 0,1 \mapsto a\right\}$, $\Phi_{a}(z)-\Phi_{b}(z)$ is K-quasiconformal.
We want nonlinear equation $\partial_{\bar{z}} f(z)=\mathcal{H}\left(z, \partial_{z} f(z)\right)$
Define pointwise $\partial_{\bar{z}} \Phi_{a}(z)=\mathcal{H}\left(z, \partial_{z} \Phi_{a}(z)\right) \quad z \mapsto \mathcal{H}(z, w)$ measurable
Not overdetermined:

$$
\begin{gathered}
w \mapsto \mathcal{H}(z, w) k \text {-Lipschitz } \\
\mathcal{H}(z, 0) \equiv 0
\end{gathered}
$$

$$
\left|\partial_{\bar{z}} \Phi_{a}(z)-\partial_{\bar{z}} \Phi_{b}(z)\right| \leqslant k\left|\partial_{z} \Phi_{a}(z)-\partial_{z} \Phi_{b}(z)\right|
$$

One can extend $w \mapsto \mathcal{H}(z, w)$ to whole plane as a Lipschitz map by Kirszbraun extension theorem. Hence there exists a nonlinear Beltrami equation. Unique, when one has a full range $\left\{\partial_{z} \Phi_{a}(z): a \in \mathbb{C}\right\}=\mathbb{C}$ for almost every z. In the case of linear families $\left\{a \partial_{z} \Phi(z)\right\},\left\{\alpha \partial_{z} \Phi(z)+\beta \partial_{z} \Psi(z)\right\}$ complex gradients are linearly independent (Wronsly-yupe theocrem)

PROPERTIES OFTHE FAMILY

Astala, Clop, Faraco, and Jääskeläinen
We have a family of quasiconformal mappings $\left\{\Phi_{a}: \Phi_{a} K-\mathrm{qc}, 0 \mapsto 0,1 \mapsto a\right\}$, $\Phi_{a}(z)-\Phi_{b}(z)$ is K-quasiconformal.

What other properties does the family have? For instance, when do we have a full range $\left\{\partial_{z} \Phi_{a}(z): a \in \mathbb{C}\right\}=\mathbb{C}$ for almost every z ?

It turns out that $a \mapsto \partial_{a} \Phi_{a}(z)$ exists for almost every a (exceptional set might depend on z; and this causes difficulties). Note that $z \mapsto \partial_{z} \Phi_{a}(z)$ exists for almost every z (by quasiconformality). The exceptional set depends on a.
We need some relation between a and z.

What more can we say about the family, if we know more about the nonlinear Beltrami equation $\partial_{\bar{z}} f(z)=\mathcal{H}\left(z, \partial_{z} f(z)\right)$?

$$
\begin{aligned}
\partial_{\bar{z}} f(z) & =\mathcal{H}\left(z, \partial_{z} f(z)\right) \\
z & \mapsto \mathcal{H}(z, w) \text { measurable } \\
w & \mapsto \mathcal{H}(z, w) C^{1} \\
& k \text {-Lipschitz, } k(z)<3-2 \sqrt{2} \text { near the infinity } \\
& \mathcal{H}(z, 0) \equiv 0
\end{aligned}
$$

Astala, Clop, Faraco, and Jääskeläinen takes care of the first exceptional set
Theorem. For each fixed $z \in \mathbb{C}$, the mapping $a \mapsto \Phi_{a}(z)$ is continuously differentiable. Further, the convergence of derivatives $\partial_{a} \Phi_{a}(z)$ is locally uniform in z.

In fact, the directional derivatives

$$
\partial_{e}^{a} \Phi_{a}(z):=\lim _{t \rightarrow 0^{+}} \frac{\Phi_{a+t e}(z)-\Phi_{a}(z)}{t}, \quad e \in \mathbb{C}
$$

are quasiconformal mappings of z all satisfying the same \mathbb{R}-linear Beltrami equation

$$
\begin{gathered}
\partial_{\bar{z}} f(z)=\mu_{a}(z) \partial_{z} f(z)+\nu_{a}(z) \overline{\partial_{z} f(z)} \\
\mu_{a}(z)=\partial_{w} \mathcal{H}\left(z, \partial_{z} \Phi_{a}(z)\right), \quad \nu_{a}(z)=\partial_{\bar{w}} \mathcal{H}\left(z, \partial_{z} \Phi_{a}(z)\right)
\end{gathered}
$$

$\partial_{\bar{z}} f(z)=\mathcal{H}\left(z, \partial_{z} f(z)\right)$
$z \mapsto \mathcal{H}(z, w)$ $C_{\text {loc }}^{\alpha}$ $w \mapsto \mathcal{H}(z, w) C^{1}$ k-Lipschitz, $k(z)<3-2 \sqrt{2}$ near the infinity $\mathcal{H}(z, 0) \equiv 0$

Schauder estimates: $\Phi_{a} \in C_{\operatorname{loc}}^{1, \alpha}(\mathbb{C})$

$$
\left\{\Phi_{a}: \Phi_{a} K-\mathrm{qc}, 0 \mapsto 0,1 \mapsto a\right\}
$$

$\Phi_{a}(z)-\Phi_{b}(z)$ is K-quasiconformal.

Wronssly-tupe theorem + Theorem about directional derivatives
Astala, Clop, Faraco, and Jääskeläinen:
Fixing z, Jacobian of $a \mapsto \partial_{z} \Phi_{a}(z): \mathbb{C} \rightarrow \mathbb{C}$
takes care of the second exceptional set

$$
J\left(a, a \mapsto \partial_{z} \Phi_{a}(z)\right)=\operatorname{Im}\left(\partial_{z}\left[\partial_{1}^{a} \Phi_{a}(z)\right] \overline{\partial_{z}\left[\partial_{i}^{a} \Phi_{a}(z)\right]}\right) \neq 0 \quad \text { a.e. } z
$$

Hence $a \mapsto \partial_{z} \Phi_{a}(z)$ is locally injective (locally homeomorphic, by invariance of domain); in particular, an open mapping.
$\partial_{\bar{z}} f(z)=\mathcal{H}\left(z, \partial_{z} f(z)\right)$
$z \mapsto \mathcal{H}(z, w)$ $C_{\text {loc }}^{\alpha}$ $w \mapsto \mathcal{H}(z, w) C^{1}$ k-Lipschitz, $k(z)<3-2 \sqrt{2}$ near the infinity

$$
\mathcal{H}(z, 0) \equiv 0
$$

Schauder estimates: $\Phi_{a} \in C_{\text {loc }}^{1, \alpha}(\mathbb{C})$
$\left\{\Phi_{a}: \Phi_{a} K-\mathrm{qc}, 0 \mapsto 0,1 \mapsto a\right\}$
$\Phi_{a}(z)-\Phi_{b}(z)$ is K-quasiconformal.

Wronsly-tupe theorem + Theorem about directional derivatives
Astala, Clop, Faraco, and Jääskeläinen:
Fixing z, Jacobian of $a \mapsto \partial_{z} \Phi_{a}(z): \mathbb{C} \rightarrow \mathbb{C}$
takes care of the second exceptional set

$$
J\left(a, a \mapsto \partial_{z} \Phi_{a}(z)\right)=\operatorname{Im}\left(\partial_{z}\left[\partial_{1}^{a} \Phi_{a}(z)\right] \overline{\partial_{z}\left[\partial_{i}^{a} \Phi_{a}(z)\right]}\right) \neq 0 \quad \text { a.e. } z
$$

Hence $a \mapsto \partial_{z} \Phi_{a}(z)$ is locally injective (locally homeomorphic, by invariance of domain); in particular, an open mapping. Can be extended as a continuous mapping between Riemann spheres $\widehat{\mathbb{C}}$. Thus 'the covering map stuff' gives that $a \mapsto \partial_{z} \Phi_{a}(z): \widehat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ is actually a homeomorphism for almost everyz. (We get more than the full range $\left\{\partial_{z} \Phi_{a}(z): a \in \mathbb{C}\right\}=\mathbb{C}$.)

$$
\partial_{\bar{z}} f(z)=\mathcal{H}\left(z, \partial_{z} f(z)\right)
$$

$$
\left\{\Phi_{a}: \Phi_{a} K-\mathrm{qc}, 0 \mapsto 0,1 \mapsto a\right\}
$$

$$
z \mapsto \mathcal{H}(z, w) \text { able } C_{\text {loc }}^{\alpha}
$$

$$
\Phi_{a}(z)-\Phi_{b}(z) \text { is K-quasiconformal. }
$$

$$
w \mapsto \mathcal{H}(z, w) C^{1}
$$

$$
\underset{k \text {-Lipschitz, }}{\mapsto \mathcal{H}(z, w)<3-2 \sqrt{2}} C^{1} \text { near the infinity } K(z)<\sqrt{2} \text { near the infinity }
$$

$$
k \text {-Lipschitz, } k(z)<3-2 \sqrt{2} \text { near the infinity } \quad \Phi_{a} \in C_{\mathrm{loc}}^{1, \alpha}(\mathbb{C})
$$

$$
\mathcal{H}(z, 0) \equiv 0
$$

$$
\left\{\partial_{z} \Phi_{a}(z): a \in \mathbb{C}\right\}=\mathbb{C}
$$

$$
+ \text { some regularity in } a
$$

$\left\{\Phi_{a}: \Phi_{a} K-\mathrm{qc}, 0 \mapsto 0,1 \mapsto a\right\}$
$\Phi_{a}(z)-\Phi_{b}(z)$ is K-quasiconformal.
$\Phi_{a} \in C_{\mathrm{loc}}^{1, \alpha}(\mathbb{C})$

$$
\begin{aligned}
& \partial_{\bar{z}} f(z)=\mathcal{H}\left(z, \partial_{z} f(z)\right) \\
& z \mapsto \mathcal{H}(z, w) \\
& w \mapsto \mathcal{H}(z, w) C^{1} \\
& k \text {-Lipschitz, } \\
& \mathcal{H}(z, 0) \equiv 0
\end{aligned}
$$

$a \mapsto \partial_{z} \Phi_{a}(z): \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ a homeomorphism in particular, the full range $\left\{\partial_{z} \Phi_{a}(z): a \in \mathbb{C}\right\}=\mathbb{C}$

+ some regularity in a

THANKYOU!

