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QUASICONFORMAL MAPPING

Infinitesimally quasiconformal functions map disks into ellipsoids.

Homeomorphism                                    is K-quasiconformal if for almost 
everywhere the classical Beltrami equation holds
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One can measurably preassign the 
eccentricity and angle of the ellipses.

@z̄f(z) = µ(z) @zf(z), |µ(z)| 6 k < 1, K =
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Every solution                      can be factorized as                 where    is analytic 
and    is a homeomorphic solution (Stoïlow factorization).
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QUASICONFORMAL FAMILY
Homeomorphic solution                                    is called normalized if 

There is a unique homeomorphic solution that maps                                      ;
namely, 

                         is a   -linear family of quasiconformal maps (and constant   )

Conversely, if one has a   -linear family of quasiconformal maps                     , 
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the family is generated by one function, f,, (injectivity)

by Stoïlow, solution = (analytic o homeomorphism)
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one can associate to it a classical Beltrami equation, by setting  

It is well-defined (and unique), since                    almost everywhere.



Families appear in the context of G-convergence properties of    -linear Beltrami 
operators,

Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone (2004), 
Bojarski, D’Onofrio, Iwaniec, and Sbordone (2005)

Homeomorphic solutions to    -linear Beltrami equation 

form an    -linear family of quasiregular mappings. Is their linear combination 
injective?
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Yes (after normalization): Homeomorphic solution is uniquely defined knowing its 
values at two distinct points. Moreover,  the linear combination is either 
homeomorphism or constant.

Homeomorphic solutions to    -linear Beltrami equation 

form an    -linear family of quasiregular mappings. Is their linear combination 
injective?

@z̄f(z) = µ(z) @zf(z) + ⌫(z) @zf(z), |µ(z)|+ |⌫(z)|  k < 1

R
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If we normalize                           , the linear independence of                  
implies that                                          is K-quasiconformal, and we have an
   -linear family of quasiconformal mappings.

Idea:                  , where homeomorphism     solves a reduced equation 

The only homeomorphic solution to the reduced equation that fixes two points 
is the identity, Astala, Iwaniec, and Martin (2009):

 = F � � F

@z̄f(z) = �(z) Im(@zf(z)) |�(z)| 6 2k/(1 + k2)

z 7! f(z)� tz

1� t
�(0) = 0 =  (0) �(1), (1)

↵�(z) + � (z), ↵,� 2 R,
R



   -LINEAR FAMILY OF QC MAPS
Conversely, if we have an   -linear family of quasiconformal mappings

can we define    and    so that every mapping of the linear family solves the
  -linear equation given by        ?
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Yes we can! 
generated by two mappings (injectivity)

@z̄�(z) = µ(z) @z�(z) + ⌫(z) @z�(z)
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when matrix of the system of linear equations is invertible

On the singular set, we set          .
Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone (2004), 
Bojarski, D’Onofrio, Iwaniec, and Sbordone (2005)
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   -LINEAR FAMILY OF QC MAPS
Conversely, if we have an   -linear family of quasiconformal mappings

we define    

R

{↵�(z) + � (z) : ↵,� 2 R}
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@z̄f(z) = µ(z) @zf(z) + ⌫(z) @zf(z)

Unique? Yes, by a Wronsky-type theorem, Alessandrini and Nesi (2009), Astala and 
Jääskeläinen (2009); Bojarski, D’Onofrio, Iwaniec, and Sbordone (2005)
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k < 1/2

Theorem. Suppose                          are homeomorphic solutions to

for almost every          .  Solutions     and      are    -linearly independent if and 
only if complex gradients         and         are pointwise independent almost 
everywhere, i.e.,
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   -LINEAR FAMILY OF QR MAPSR
@z̄f(z) = µ(z) @zf(z) + ⌫(z) @zf(z)

Wronsky-type theorem, Alessandrini and Nesi (2009), Astala and Jääskeläinen 
(2009); Bojarski, D’Onofrio, Iwaniec, and Sbordone (2005)

Jääskeläinen (2012)

k < 1/2

Theorem. Suppose                          are homeomorphic solutions to

for almost every          .  Solutions     and      are    -linearly independent if and 
only if complex gradients         and         are pointwise independent almost 
everywhere, i.e.,
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  -linear   -linear NonlinearRC

fz̄ = H(z, fz)fz̄ = µ(z) fz + ⌫(z) fzfz̄ = µ(z) fz

                       measurable 
                         -Lipschitz

H(z, w) : C⇥ C ! C

z 7! H(z, w)
w 7! H(z, w)

H(z, 0) ⌘ 0
k

Difference of two solutions is K-quasiregular

Constants are solutions.

|@z̄f(z)� @z̄g(z)| = |H(z, @zf(z))�H(z, @zg(z))| 6 k|@zf(z)� @zg(z)|

BELTRAMI EQUATIONS



  -linear   -linear NonlinearRC

fz̄ = H(z, fz)fz̄ = µ(z) fz + ⌫(z) fzfz̄ = µ(z) fz

z 7! H(z, w)

There is a unique 
homeomorphic 
solution     such that �
�(0) = 0,�(1) = 1

Theorem. If                                                           then the nonlinear 
equation

admits a unique homeomorphic solution                                    normalized 
by                              .

Furthermore, the bound on    is sharp.
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2 = 0.17157...,

@z̄f(z) = H(z, @zf(z))
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                       measurable                          -Lipschitzw 7! H(z, w) H(z, 0) ⌘ 0k

Not unique in general, 
Astala, Clop, Faraco, 
Jääskeläinen, and 
Székelyhidi Jr. (2012)



z 7! H(z, w)

Theorem. If                                                           then the nonlinear 
equation

admits a unique homeomorphic solution                                    normalized 
by                              .

Furthermore, the bound on    is sharp.
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                       measurable                          -Lipschitzw 7! H(z, w) H(z, 0) ⌘ 0k

Astala, Clop, Faraco, Jääskeläinen, and Székelyhidi Jr. (2012)
COUNTEREXAMPLES
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  -linear   -linear NonlinearRC

fz̄ = H(z, fz)fz̄ = µ(z) fz + ⌫(z) fzfz̄ = µ(z) fz

There is a unique 
homeomorphic 
solution     such that �
�(0) = 0,�(1) = 1

There is a unique 
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�(0) = 0,�(1) = 1

There is a unique 
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solution     such that 
                              
when near the infinity

�
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p
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Homeomorphic solution is uniquely defined by its values at two distinct points. 
Difference is homeomorphism or constant.
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C R



{�a : �a K � qc, 0 7! 0, 1 7! a}

  -linear family of 
quasiconformal 
mappings
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FROM FAMILY TO EQUATION

{↵�(z) + � (z) : ↵,� 2 R}{a�(z) : a 2 C}

�(0) = 0,�(1) = 1 �(0) = 0,�(1) = 1

 (0) = 0, (1) = i

unique    and     s.t. every mapping of the family solves 
the Beltrami equation (Wronsky-type theorem)

µ ⌫

fz̄ = µ(z) fz + ⌫(z) fzfz̄ = µ(z) fz ?fz̄ = H(z, fz)¿

linearly independent, thus their complex gradients are linearly independent



{�a : �a K � qc, 0 7! 0, 1 7! a}We have a family of quasiconformal mappings                                                  ,

HOW TO DEFINE EQUATION?

�a(z)� �b(z)                       is K-quasiconformal.

                       measurable 
                         -Lipschitz
z 7! H(z, w)
w 7! H(z, w)

H(z, 0) ⌘ 0
k

We want nonlinear equation @z̄f(z) = H(z, @zf(z))

@z̄�a(z) = H(z, @z�a(z))

|@z̄�a(z)� @z̄�b(z)| 6 k|@z�a(z)� @z�b(z)|

Define pointwise

One can extend                       to whole plane as a Lipschitz map by Kirszbraun 
extension theorem. Hence there exists a nonlinear Beltrami equation.

Not overdetermined:

w 7! H(z, w)

Unique, when one has a full range                                      for almost every   . 
In the case of linear families

{@z�a(z) : a 2 C} = C
{a @z�(z)}, {↵@z�(z) + � @z (z)}

complex gradients are linearly independent (Wronsky-type theorem)

z



{�a : �a K � qc, 0 7! 0, 1 7! a}We have a family of quasiconformal mappings                                                  ,

PROPERTIES OF THE FAMILY

�a(z)� �b(z)                       is K-quasiconformal.

It turns out that                      exists for almost every   (exceptional set might 
depend on  ; and this causes difficulties). Note that                      exists for 
almost every   (by quasiconformality). The exceptional set depends on   .

@z̄f(z) = H(z, @zf(z))
What more can we say about the family, if we know more about the nonlinear 
Beltrami equation                                     ?

We need some relation between    and   .

What other properties does the family have? For instance, when do we have a 
full range                                     for almost every   ?{@z�a(z) : a 2 C} = C z

a 7! @a�a(z) a
z z 7! @z�a(z)

az

za

Astala, Clop, Faraco, and Jääskeläinen



{�a : �a K � qc, 0 7! 0, 1 7! a}
�a(z)� �b(z)                       is K-quasiconformal.                       measurable z 7! H(z, w)

w 7! H(z, w)

H(z, 0) ⌘ 0

@z̄f(z) = H(z, @zf(z))

Theorem. For each fixed          , the mapping                  is continuously 
differentiable. Further, the convergence of derivatives               is locally uniform 
in   .

In fact, the directional derivatives 

are quasiconformal mappings of    all satisfying the same   -linear Beltrami 
equation  

k(z) < 3� 2
p
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C1
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Astala, Clop, Faraco, and Jääskeläinen



{�a : �a K � qc, 0 7! 0, 1 7! a}
�a(z)� �b(z)                       is K-quasiconformal.                       measurable z 7! H(z, w)

w 7! H(z, w)

H(z, 0) ⌘ 0

@z̄f(z) = H(z, @zf(z))

k(z) < 3� 2
p
2 near the infinity  -Lipschitz,k

C1

takes care of the second exceptional set

Astala, Clop, Faraco, and Jääskeläinen:

Schauder estimates: �a 2 C1,↵
loc

(C)

Fixing   , Jacobian of 

Hence                      is locally injective (locally homeomorphic, by invariance of 
domain); in particular, an open mapping. 

z
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a
1�a(z)] @z [@a

i �a(z)]) 6= 0 a.e. z

a 7! @z�a(z)

a 7! @z�a(z) : C ! C

Wronsky-type theorem + Theorem about directional derivatives

C↵
loc



{�a : �a K � qc, 0 7! 0, 1 7! a}
�a(z)� �b(z)                       is K-quasiconformal.                       measurable z 7! H(z, w)

w 7! H(z, w)

H(z, 0) ⌘ 0

@z̄f(z) = H(z, @zf(z))

k(z) < 3� 2
p
2 near the infinity  -Lipschitz,k

C1

takes care of the second exceptional set

Astala, Clop, Faraco, and Jääskeläinen:

Schauder estimates: �a 2 C1,↵
loc

(C)

Fixing   , Jacobian of 

Hence                      is locally injective (locally homeomorphic, by invariance of 
domain); in particular, an open mapping. Can be extended as a continuous 
mapping between Riemann spheres   . Thus ‘the covering map stuff ’ gives that
                                  is actually a homeomorphism for almost every  . (We 
get more than the full range                                    .)
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a 7! @z�a(z) : C ! C

Wronsky-type theorem + Theorem about directional derivatives

C↵
loc

{@z�a(z) : a 2 C} = C



{�a : �a K � qc, 0 7! 0, 1 7! a}
�a(z)� �b(z)                       is K-quasiconformal.                       measurable z 7! H(z, w)

w 7! H(z, w)

H(z, 0) ⌘ 0

@z̄f(z) = H(z, @zf(z))

k(z) < 3� 2
p
2 near the infinity  -Lipschitz,k

C1

�a 2 C1,↵
loc

(C)

a 7! @z�a(z) : Ĉ ! Ĉ

C↵
loc

{@z�a(z) : a 2 C} = C

{�a : �a K � qc, 0 7! 0, 1 7! a}
�a(z)� �b(z)                       is K-quasiconformal.

a homeomorphism
in particular, the full range

+ some regularity in   a

�a 2 C1,↵
loc

(C)
{@z�a(z) : a 2 C} = C

+ some regularity in   a

                       measurable z 7! H(z, w)
w 7! H(z, w)

H(z, 0) ⌘ 0

@z̄f(z) = H(z, @zf(z))

  -Lipschitz,k
C1
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p
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