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Quasiregular Mappings

As areminder, f: QO — C € Wllcﬁ(Q) is K-quasiregular if the classical
Beltrami equation holds for almost every z € Q

d 1+k
0f(z) =nul(z) 0f(2), Iz <k<1, K=i—,
where 5:%(ax+iay), a:%(ax_iay), z=x41iy.

If, in addition, the mapping is also a homeomorphism, then it is called
quasiconformal.

Infinitesimally a quasiconformal function maps circles into ellipses.
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R-linear Beltrami Systems

The classical Beltrami equation 3 f(z) = p(z) 9f(z) is C-linear. A
general R-linear Beltrami equation takes the form

0f(z) = u(z) 9f(z) +v(2) 3f(2),  Iw@I+ () <k<1, (¥

for almost every z € Q. Letf € Wll(;i((l) be a homeomorphic solution
to (x). Then any other solution g € W2 (Q) to () can be written as

loc
g=Fof,
where F € Wllci(Q) solves the reduced Beltrami equation

0F(z) = A(z) Im(d F(z)), Az <k<1,

for almost every z € ). Generalized Stoilow Factorization, Astala,
Iwaniec, and Martin (2009); « = 2k/(1 + k?).
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Distortion Inequalities

The classical Beltrami equation N
0f(z) = u(z) 0f(z), implies -

0f(2)l <k [of(2)l.

The reduced Beltrami equation
9F(z) = A(z) Im(d F(z)), implies

[0 F(z)| <k [Tm(d F(2))].

e Fis K-quasiregular :"* ; e
1+k :
with K =~ -

1—k —~y %
° Im(a P) is a null Lagrangian.
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Reduced Beltrami Equation

(Theorem (Jadskeldinen, 2010)

Supposef : Q = C, f € Wlloi (Q), is a solution to the reduced Beltrami
equation

0f(z) =A(z) Im(3f(z)), I(z)<k<1l, aezeQ.

If solution is not flat, i.e., f(z) =az + b, wherea € Rand b € C, then

m(0f) #0 almost everywhere in Q.

e Similar role as that of the Jacobian of a general quasiregular map
J(z f) = Rf(z)* —Rf(z)P # 0.

e Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone (2004)
proved for homeomorphisms of the plane C, when k < 1/2.

e Alessandrini and Nesi (2009), Astala and Jagdskeldinen (2009) for
homeomorphisms of the plane C
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Key Ideas of the Proof

(Theorem (Jaaskeldinen, 2010) W

Supposef : Q — C, f € Wllcﬁ(f)_), is a solution to the reduced Beltrami
equation  3f(z) =A(z) Im(3f(z)), M(E=)<k<1, ae z€Q.
If solution is not flat, i.e., f(z) =az + b, wherea € Rand b € C, then
Im(9f) # 0 almost everywhere in Q.

e A weak reverse Holder inequality holds for 9, (Ref).
e Thus zeros of 9,(Ref) are of infinite order.
e 9y(Ref) and Im(9 f) have same zeros.

¢ Studying the smoothness around a point for the reduced
quasiregular mapping f at the zeros of Im(0f).

Jarmo Jadskeldinen On Linear and Nonlinear Beltrami Systems May 24, 2012 5/15



Wronsky-type Theorem

(Theorem (Jaaskeldinen, 2010)

Suppose ®,¥ € W2(Q) are solutions to

loc

0f(z) = wlz) 0f(z) +v(z) 3f(z),  In(2)l+Iv(z)l<k<1,

for almost every z € Q. Solutions ¥ and @ are R-linearly independent if and
only if complex gradients 0 ® and 9V are pointwise independent almost

everywhere, i.e., Im(0 © W) # 0 almost everywhere in Q.

e alinear family of quasiregular mappings has a unique associated
R-linear Beltrami equation (the singular set has measure zero)

e the homeomorphic case with the ideas developed in Giannetti,
Iwaniec, Kovalev, Moscariello, and Sbordone, (2004): the family of
Beltrami differential operators (with fixed 0 < k < 1) is G-compact.
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Nonlinear Beltrami Equation

H(z, of(z)

(H1) measurable /—J \
(H2)  k(z)-Lipschitz, 0 < k<1
(H3)  homogeneity:

(H2): Note that the difference f — g of two solutions (f and g) to the
nonlinear Beltrami equation does not necessarily solve the same
equation but it still is quasiregular.

(H3): Constants are solutions.
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Uniqueness of Normalized Solutions

Homeomorphic Wllcﬁ—solution f : C — Cis a normalized solution if
f(0)=0and f(1) =
For classical Beltrami equation 9 f(z) = u(z) df(z) the normalized

solution is unique by Stoilow factorization, that is, every solution can
be factorized as

g=ho \/\
where 1 is holomorphic/analytic j and f is a normalized solution .

For reduced Beltrami equation 9 F(z) = A(z) Im(d F(z)), the
normalized solution is unique by Astala, Iwaniec, and Martin (2009);

study z — f(zl)_—ttz, te[0,1).
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Uniqueness in Nonlinear Systems

H(z, of(z) a.e

(H1) measurable/J \
(H2)  k(z)-Lipschitz, 0 <

(H3)  homogeneity:

Theorem (Astala, Clop, Faraco, Jddskeldinen, Székelyhidi, 2011)
Suppose H : C x C — C satisfies (H1)—(H3) for some k < 1. If

limsupk(z) <3 —2 V2 =0.17157..., ie., lim sup K(z) < V2,

|z| =00 |z| =00

then the nonlinear Beltrami equation () admits a unique homeomorphic
solution f € Wll(;g(C) normalized by f(0) = 0 and f(1) = 1. The bound is
sharp: for each k(z) > 3 — 2V/2 near oo, there are counterexamples.
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Uniqueness in Nonlinear Systems

of(z) =H(z, of(z) ) a.e.

(H1) measurable \
(H2)  k(z)-Lipschitz, 0 < k(z) <k <1
(H3)  homogeneity: J(z,0) =0
(H4) H(z,1)=0

Theorem (Astala, Clop, Faraco, Jadskeldinen, Székelyhidi, 2011)
Suppose H : C x C — C satisfies conditions (H1)—(H4) for some k < 1. If

(3-2V2=017157..) limsupK(z) <2 (V2),

|z| =00

W -

limsupk(z) <

|z| =00

then the function f(z) = z is the unique normalized homeomorphic solution

fe Wlloi to the nonlinear Beltrami equation (x). The bound is sharp.
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Idea of the Proof

Let f, g be two normalized solutions, 0 — 0, 1 — 1.
IP(h(2))] = 1f(2) —g(2)] < CllX < Cln ((2)) K < Cliz) 1<

e Pisanalytic, hisnormalized and ||K(z)||-quasiconformal,
Stoilow factorization (difference is ||K(z)|-quasiregular)

e f and g are |K(z)||-quasiconformal
o i 1is |K(z)||-quasiconformal

P is polynomial with at least two zeros, z = 0 and z = 1. Hence degree
= 2.

Near oo, maps f, g, and h are Ky-quasiconformal for any Ko < v/2.
For large [z,

P/ < () = 1(2) - g(2)] < ClI®.

Thus Ky > \/E, which is contradiction.
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Counterexamples

fle) (14822 V21— ¢ (V212 forlz] > 1,
(1+8)z—t2% for|z|] <1,
(2) — (141 2]z V21—t 2 z[/V271) forfz| > 1,
grz) = z, for|z] < 1.
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Counterexamples

flo) = 1+18) 2|z V2 1 (z[2] V2102, forlz > 1,
Tzt for |z <1,

(
(

az) = {(1 1) z|z V2 —tz2V271) for 2] > 1,
z, for|z| <1

Define for fixed z ¢ 0ID

H(z,0) =0, H(z, 3f(z)) =0f(z), H(z, dg(z)) =0g(z).

The map H(z, -) : {0,0f(z) z)} — C is kp-Lipschitz, where

ko = max{k, ky, g} —3— 2fas t— 0.

By the Kirszbraun extension theorem, the mapping can be extended to a
ko-Lipschitz map H(z, -) : C — C. From an abstract use of the
Kirszbraun extension theorem, however, it is not entirely clear that the
obtained map J{ is measurable in z, i.e., (H1) is satisfied.
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Most General Nonlinear Beltrami Equation

of(z) =Hl(z, f, 3f(z)) a.e.

Note that, no matter how small is the distortion, the uniqueness of
normalized solutions need not hold for the general nonlinear Beltrami
equation.

Choose 0 < k < 1andletf;(z) =tz + (1 —1t)z, where 0 <t < k/(1+k).
Next, set

¢ — 7] i
 0<IC—2 <KC—
H(z, ¢, w)=wulz, Qw,  nulz,)=<I[C—2 € — 2zl <kl —Z]
k, otherwise.
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Thank You!

“Geometry is just plane fun.” — Unknown
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