On Linear and Nonlinear Beltrami Systems

Jarmo Jääskeläinen
jarmo.jaaskelainen@helsinki.fi

Finnish Centre of Excellence in Analysis and Dynamics Research
University of Helsinki

May 24, 2012
Analysis and Dynamics Day

Quasiregular Mappings

As a reminder, $f: \Omega \rightarrow \mathbb{C} \in W_{\text {loc }}^{1,2}(\Omega)$ is K-quasiregular if the classical Beltrami equation holds for almost every $z \in \Omega$

$$
\bar{\partial} f(z)=\mu(z) \partial f(z), \quad|\mu(z)| \leqslant k<1, \quad K=\frac{1+k}{1-k}
$$

where $\quad \bar{\partial}=\frac{1}{2}\left(\partial_{x}+i \partial_{y}\right), \quad \partial=\frac{1}{2}\left(\partial_{x}-i \partial_{y}\right), \quad z=x+i y$.
If, in addition, the mapping is also a homeomorphism, then it is called quasiconformal.

Infinitesimally a quasiconformal function maps circles into ellipses.

\mathbb{R}-linear Beltrami Systems

The classical Beltrami equation $\bar{\partial} f(z)=\mu(z) \partial f(z)$ is \mathbb{C}-linear. A general \mathbb{R}-linear Beltrami equation takes the form

$$
\begin{equation*}
\bar{\partial} f(z)=\mu(z) \partial f(z)+v(z) \overline{\partial f(z)}, \quad|\mu(z)|+|v(z)| \leqslant k<1 \tag{*}
\end{equation*}
$$

for almost every $z \in \Omega$. Let $f \in W_{\text {loc }}^{1,2}(\Omega)$ be a homeomorphic solution to $(*)$. Then any other solution $g \in W_{\mathrm{loc}}^{1,2}(\Omega)$ to $(*)$ can be written as

$$
g=F \circ f
$$

where $F \in W_{\mathrm{loc}}^{1,2}(\Omega)$ solves the reduced Beltrami equation

$$
\bar{\partial} F(z)=\lambda(z) \operatorname{Im}(\partial F(z)), \quad|\lambda(z)| \leqslant \kappa<1
$$

for almost every $z \in \Omega$. Generalized Stoïlow Factorization, Astala, Iwaniec, and Martin (2009); $\quad \kappa=2 k /\left(1+k^{2}\right)$.

Distortion Inequalities

The classical Beltrami equation $\bar{\partial} f(z)=\mu(z) \partial f(z)$, implies

$$
|\bar{\partial} f(z)| \leqslant k|\partial f(z)|
$$

The reduced Beltrami equation $\bar{\partial} F(z)=\lambda(z) \operatorname{Im}(\partial F(z))$, implies

$$
|\bar{\partial} F(z)| \leqslant k|\operatorname{Im}(\partial F(z))| .
$$

- F is K-quasiregular
with $K=\frac{1+k}{1-k}$.
- $\operatorname{Im}(\partial F)$ is a null Lagrangian.

Reduced Beltrami Equation

Theorem (Jääskeläinen, 2010)
Suppose $f: \Omega \rightarrow \mathbb{C}, f \in W_{\mathrm{loc}}^{1,2}(\Omega)$, is a solution to the reduced Beltrami equation

$$
\bar{\partial} f(z)=\lambda(z) \operatorname{Im}(\partial f(z)), \quad|\lambda(z)| \leqslant k<1, \quad \text { a.e. } z \in \Omega .
$$

If solution is not flat, i.e., $f(z)=a z+b$, where $a \in \mathbb{R}$ and $b \in \mathbb{C}$, then

$$
\operatorname{Im}(\partial f) \neq 0 \quad \text { almost everywhere in } \Omega .
$$

- Similar role as that of the Jacobian of a general quasiregular map $J(z, f)=|\bar{\partial} f(z)|^{2}-|\partial f(z)|^{2} \neq 0$.
- Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone (2004) proved for homeomorphisms of the plane \mathbb{C}, when $k<1 / 2$.
- Alessandrini and Nesi (2009), Astala and Jääskeläinen (2009) for homeomorphisms of the plane \mathbb{C}

Key Ideas of the Proof

Theorem (Jääskeläinen, 2010)
Suppose $f: \Omega \rightarrow \mathbb{C}, f \in W_{\mathrm{loc}}^{1,2}(\Omega)$, is a solution to the reduced Beltrami equation $\bar{\partial} f(z)=\lambda(z) \operatorname{Im}(\partial f(z)), \quad|\lambda(z)| \leqslant k<1$, a.e. $z \in \Omega$. If solution is not flat, i.e., $f(z)=a z+b$, where $a \in \mathbb{R}$ and $b \in \mathbb{C}$, then $\operatorname{Im}(\partial f) \neq 0$ almost everywhere in Ω.

- A weak reverse Hölder inequality holds for $\partial_{y}(\operatorname{Re} f)$.
- Thus zeros of $\partial_{y}(\operatorname{Re} f)$ are of infinite order.
- $\partial_{y}(\operatorname{Re} f)$ and $\operatorname{Im}(\partial f)$ have same zeros.
- Studying the smoothness around a point for the reduced quasiregular mapping f at the zeros of $\operatorname{Im}(\partial f)$.

Wronsky-type Theorem

Theorem (Jääskeläinen, 2010)

Suppose $\Phi, \Psi \in W_{\text {loc }}^{1,2}(\Omega)$ are solutions to

$$
\bar{\partial} f(z)=\mu(z) \partial f(z)+v(z) \overline{\partial f(z)}, \quad|\mu(z)|+|v(z)| \leqslant k<1,
$$

for almost every $z \in \Omega$. Solutions Ψ and Φ are \mathbb{R}-linearly independent if and only if complex gradients $\partial \Phi$ and $\partial \Psi$ are pointwise independent almost everywhere, i.e., $\operatorname{Im}(\partial \Phi \bar{\partial} \Psi) \neq 0$ almost everywhere in Ω.

- a linear family of quasiregular mappings has a unique associated \mathbb{R}-linear Beltrami equation (the singular set has measure zero)
- the homeomorphic case with the ideas developed in Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, (2004): the family of Beltrami differential operators (with fixed $0 \leqslant k<1$) is G-compact.

Nonlinear Beltrami Equation

(H1) measurable
(H2) $\quad k(z)$-Lipschitz, $0 \leqslant k(z) \leqslant k<1$
(H3) homogeneity: $\mathcal{H}(z, 0) \equiv 0$

$$
\bar{\partial} f(z)=\mathcal{H}(z, \partial f(z)) \quad \text { a.e. }
$$

(H2): Note that the difference $f-g$ of two solutions (f and g) to the nonlinear Beltrami equation does not necessarily solve the same equation but it still is quasiregular.
(H3): Constants are solutions.

Uniqueness of Normalized Solutions

Homeomorphic $W_{\text {loc }}^{1,2}$-solution $f: \mathbb{C} \rightarrow \mathbb{C}$ is a normalized solution if $f(0)=0$ and $f(1)=1$.

For classical Beltrami equation $\bar{\partial} f(z)=\mu(z) \partial f(z)$ the normalized solution is unique by Stoïlow factorization, that is, every solution can be factorized as
$\begin{array}{cc}g=h & \circ f \\ \text { where } \quad h \text { is holomorphic/analytic } & \\ \text { and } \quad f \text { is a normalized solution! }\end{array}$
For reduced Beltrami equation $\bar{\partial} F(z)=\lambda(z) \operatorname{Im}(\partial F(z))$, the normalized solution is unique by Astala, Iwaniec, and Martin (2009); study $\quad z \mapsto \frac{f(z)-t z}{1-t}, t \in[0,1)$.

Uniqueness in Nonlinear Systems

$$
\overline{\mathrm{\partial}} f(z)=\mathcal{H}(z, \partial f(z)) \quad \text { a.e }
$$

(H1) measurable (H2) $\quad k(z)$-Lipschitz, $0 \leqslant k(z) \leqslant k<1$ (H3) homogeneity: $\mathcal{H}(z, 0) \equiv 0$

Theorem (Astala, Clop, Faraco, Jääskeläinen, Székelyhidi, 2011)
Suppose $\mathcal{H}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ satisfies (H1)-(H3) for some $k<1$. If

$$
\limsup _{|z| \rightarrow \infty} k(z)<3-2 \sqrt{2}=0.17157 \ldots, \quad \text { i.e., } \quad \underset{|z| \rightarrow \infty}{\limsup } K(z)<\sqrt{2}
$$

then the nonlinear Beltrami equation (*) admits a unique homeomorphic solution $f \in W_{\mathrm{loc}}^{1,2}(\mathbb{C})$ normalized by $f(0)=0$ and $f(1)=1$. The bound is sharp: for each $k(z)>3-2 \sqrt{2}$ near ∞, there are counterexamples.

Uniqueness in Nonlinear Systems

$$
\begin{equation*}
\bar{\partial} f(z)=\mathcal{H}(z, \partial f(z)) \quad \text { a.e } \tag{*}
\end{equation*}
$$

(H1) measurable
(H2) $\quad k(z)$-Lipschitz, $0 \leqslant k(z) \leqslant k<1$
(H3) homogeneity: $\mathcal{H}(z, 0) \equiv 0$
(H4) $\quad \mathcal{H}(z, 1) \equiv 0$

Theorem (Astala, Clop, Faraco, Jääskeläinen, Székelyhidi, 2011)
Suppose $\mathcal{H}: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ satisfies conditions (H1)-(H4) for some $k<1$. If

$$
\limsup _{|z| \rightarrow \infty} k(z)<\frac{1}{3} \quad(3-2 \sqrt{2}=0.17157 \ldots) \quad \limsup _{|z| \rightarrow \infty} K(z)<2 \quad(\sqrt{2}) \text {, }
$$

then the function $f(z)=z$ is the unique normalized homeomorphic solution $f \in W_{\mathrm{loc}}^{1,2}(\mathbb{C})$ to the nonlinear Beltrami equation (*). The bound is sharp.

Idea of the Proof

Let f, g be two normalized solutions, $0 \mapsto 0,1 \mapsto 1$.

$$
|P(h(z))|=|f(z)-g(z)| \leqslant C\left|z\left\|^{\|K(z)\|} \leqslant C\left|h^{-1}(h(z))\right|^{\|K(z)\|} \leqslant C \mid h(z)\right\|^{\|K(z)\|^{2}}\right.
$$

- P is analytic, $\quad h$ is normalized and $\|K(z)\|$-quasiconformal, Stoïlow factorization (difference is $\|K(z)\|$-quasiregular)
- f and g are $\|K(z)\|$-quasiconformal
- h^{-1} is $\|K(z)\|$-quasiconformal
P is polynomial with at least two zeros, $z=0$ and $z=1$. Hence degree $\geqslant 2$.
Near ∞, maps f, g, and h are K_{0}-quasiconformal for any $K_{0}<\sqrt{2}$. For large $|z|$,

$$
\frac{1}{C}|z|^{2 / K_{0}} \leqslant\left.|P(h(z) \mid)=|f(z)-g(z)| \leqslant C| z\right|^{K_{0}} .
$$

Thus $K_{0} \geqslant \sqrt{2}$, which is contradiction.

Counterexamples

$$
\begin{aligned}
& f_{t}(z)= \begin{cases}(1+t) z|z|^{\sqrt{2}-1}-t\left(z|z|^{1 / \sqrt{2}-1}\right)^{2}, & \text { for }|z|>1, \\
(1+t) z-t z^{2}, & \text { for }|z| \leqslant 1,\end{cases} \\
& g_{t}(z)= \begin{cases}(1+t) z|z|^{\sqrt{2}-1}-t z|z|^{1 / \sqrt{2}-1}, & \text { for }|z|>1, \\
z, & \text { for }|z| \leqslant 1 .\end{cases}
\end{aligned}
$$

Counterexamples

$$
\begin{aligned}
& f_{t}(z)= \begin{cases}(1+t) z|z|^{\sqrt{2}-1}-t\left(z|z|^{1 / \sqrt{2}-1}\right)^{2}, & \text { for }|z|>1, \\
(1+t) z-t z^{2}, & \text { for }|z| \leqslant 1,\end{cases} \\
& g_{t}(z)= \begin{cases}(1+t) z|z|^{\sqrt{2}-1}-t z|z|^{1 / \sqrt{2}-1}, & \text { for }|z|>1, \\
z, & \text { for }|z| \leqslant 1\end{cases}
\end{aligned}
$$

Define for fixed $z \notin \partial \mathbb{D}$

$$
\mathcal{H}(z, 0)=0, \quad \mathcal{H}(z, \partial f(z))=\bar{\partial} f(z), \quad \mathcal{H}(z, \partial g(z))=\bar{\partial} g(z)
$$

The map $\mathcal{H}(z, \cdot):\{0, \partial f(z), \partial g(z)\} \rightarrow \mathbb{C}$ is k_{0}-Lipschitz, where $k_{0}=\max \left\{k, k_{f}, k_{g}\right\} \rightarrow 3-2 \sqrt{2}$ as $t \rightarrow 0$.
By the Kirszbraun extension theorem, the mapping can be extended to a k_{0}-Lipschitz map $\mathcal{H}(z, \cdot): \mathbb{C} \rightarrow \mathbb{C}$. From an abstract use of the Kirszbraun extension theorem, however, it is not entirely clear that the obtained map \mathcal{H} is measurable in z, i.e., (H1) is satisfied.

Most General Nonlinear Beltrami Equation

$$
\bar{\partial} f(z)=\mathcal{H}(z, f, \partial f(z)) \quad \text { a.e. }
$$

Note that, no matter how small is the distortion, the uniqueness of normalized solutions need not hold for the general nonlinear Beltrami equation.
Choose $0<k<1$ and let $f_{t}(z)=t \bar{z}+(1-t) z$, where $0<t \leqslant k /(1+k)$. Next, set
$\mathcal{H}(z, \zeta, w)=\mu(z, \zeta) w, \quad \mu(z, \zeta)= \begin{cases}\frac{|\zeta-z|}{|\zeta-\bar{z}|}, & 0 \leqslant|\zeta-z| \leqslant k|\zeta-\bar{z}| \\ k, & \text { otherwise. }\end{cases}$

Thank You!

"Geometry is just plane fun." - Unknown

