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Quasiregular Mappings
As a reminder, f ∈W 1,2

loc (Ω), Ω ⊂ C a domain, is K -quasiregular if the
classical Beltrami equation holds for almost every z ∈ Ω

∂z̄ f (z) = µ(z)∂z f (z), |µ(z)| 6 k < 1, K =
1 + k
1− k

,

where ∂z̄ f (z) = 1
2

(
∂x f (z) + i∂y f (z)

)
and ∂z f (z) = 1

2

(
∂x f (z)− i∂y f (z)

)
.

If, in addition, the mapping is also a homeomorphism, then it is called
quasiconformal.

Infinitesimally a quasiconformal function maps circles into ellipses.

7→
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Reduced Beltrami Equation
Mapping f ∈W 1,2

loc (Ω), solves reduced Beltrami equation, if

∂z̄ f (z) = λ(z) Im
(
∂z f (z)

)
, |λ(z)| 6 k < 1,

for almost every z ∈ Ω.

• A differential constraint is stronger than the one in the Beltrami
equation, hence f is K -quasiregular with K = 1+k

1−k .

• J (z , f ) := Im
(
∂z f
)
is a null Lagrangian.
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Generalized Stoïlow Factorization

Theorem (Astala, Iwaniec, and Martin, 2009)
Let Φ ∈W 1,2

loc (Ω) be a homeomorphic solution to the general Beltrami
equation

∂z̄g(z) = µ(z)∂zg(z) + ν(z)∂zg(z), |µ(z)|+ |ν(z)| 6 k < 1,

for almost every z ∈ Ω. Then any other solution Ψ ∈W 1,2
loc (Ω) takes the

form
Ψ = F ◦ Φ,

where F solves the reduced Beltrami equation in Φ(Ω) with

λ(w) =
−2i ν(z)

1 + |ν(z)|2 − |µ(z)|2
, w = Φ(z), z ∈ Ω.

Also the converse direction holds.
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On Reduced Beltrami Equations
The following answers in positive a conjecture of Astala, Iwaniec, and
Martin.

Theorem
Suppose f : Ω→ C, f ∈W 1,2

loc (Ω), is a solution to the reduced Beltrami
equation

∂z̄ f (z) = λ(z) Im
(
∂z f (z)

)
, |λ(z)| 6 k < 1, a.e. z ∈ Ω.

Then either ∂z f is a constant or else

Im
(
∂z f
)
6= 0 almost everywhere in Ω.

Thus if Im(∂z f ) vanishes on a set of positive measure, then f (z) = az + b,
where a ∈ R and b ∈ C.

Jarmo Jääskeläinen (UH) On Reduced Beltrami Equations October 18, 2010 5 / 27



What Was Known?

Theorem
Suppose f : Ω→ C, f ∈W 1,2

loc (Ω), is a solution to the reduced Beltrami
equation

∂z̄ f (z) = λ(z) Im
(
∂z f (z)

)
, |λ(z)| 6 k < 1, a.e. z ∈ Ω.

Then either ∂z f is a constant or else Im
(
∂z f
)
6= 0 almost everywhere in Ω.

• (Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, 2004) proved
for homeomorphisms of the plane C, when k < 1/2.

• (Alessandrini and Nesi, 2009) for homeomorphisms of the plane C
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Linear Families of Quasiregular Mappings
Given an R-linear subspace F ⊂W 1,2

loc (Ω), F is a linear family of
quasiregular mappings, if there is 1 6 K <∞ such that for every g ∈ F
the function g is K -quasiregular in Ω.

The family F is generated by the maps Φ and Ψ if

F = {aΦ + b Ψ : a, b ∈ R}

for some quasiregular mappings Φ : Ω→ C and Ψ : Ω→ C.

In case of linear families that consist of quasiconformal mappings,
dimF 6 2, (Bojarski, D’Onofrio, Iwaniec, and Sbordone, 2005).

Recall that a linear family of quasiregular mappings is not always
two-dimensional; for instance, 1-quasiregular family spanned by functions
f1(z) = z , f2(z) = z2, and f3(z) = z3.
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Linear Families of Quasiregular Mappings
In general, quasiregularity is not preserved under linear combinations;
simple example is f (z) = kz̄ + z , g(z) = kz̄ − z .

However, if we have mappings that happen to be solutions to the same
general Beltrami equation

∂z̄g(z) = µ(z)∂zg(z) + ν(z)∂zg(z), |µ(z)|+ |ν(z)| 6 k < 1,

for almost every z ∈ Ω, then their linear combinations are quasiregular.

Theorem
For any linear two-dimensional family F of quasiregular mappings in a
domain Ω ⊂ C there exists a corresponding general Beltrami equation
satisfied by every element g ∈ F.
Moreover, the associated equation is unique.
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What Was Known?

Theorem
For any linear two-dimensional family F of quasiregular mappings in a
domain Ω ⊂ C there exists a corresponding general Beltrami equation
satisfied by every element g ∈ F. The associated equation is unique.

• Existence, (Bojarski, D’Onofrio, Iwaniec, and Sbordone, 2005);
uniquely defined on the regular set

• Uniqueness for family of K -quasiconformal mappings, 1 6 K < 3
(Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, 2004);
1 6 K <∞ (Alessandrini and Nesi, 2009); the singular set has
measure zero for homeomorphisms

• The homeomorphic case with the ideas developed in (Bojarski,
D’Onofrio, Iwaniec, and Sbordone, 2005) and (Giannetti, Iwaniec,
Kovalev, Moscariello, and Sbordone, 2004): the family of Beltrami
differential operators, 1 ≤ K <∞, in a domain is G -compact.
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Idea of the Proof: Existence
For any linear two-dimensional family F of quasiregular mappings in a
domain Ω ⊂ C there exists a corresponding general Beltrami equation
satisfied by every element g ∈ F.
Assume Φ,Ψ ∈W 1,2

loc (Ω) are generators. The goal is to find coefficients µ
and ν such that

∂z̄Φ = µ∂zΦ + ν∂zΦ and ∂z̄Ψ = µ∂zΨ + ν∂zΨ, (1)

almost everywhere in Ω.

In the regular set RF of F, i.e., the set of points z ∈ Ω where the matrix

M(z) =

[
∂zΦ(z) ∂zΦ(z)

∂zΨ(z) ∂zΨ(z)

]
is invertible, the values µ(z) and ν(z) are uniquely determined by (1):
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Idea of the Proof: Existence (cont.)

µ = i
Ψz̄Φz −ΨzΦz̄

2 Im
(
ΦzΨz

) , ν = i
Φz̄Ψz − ΦzΨz̄

2 Im
(
ΦzΨz

) .

Note that changing the generators corresponds to multiplying

M(z) =

[
∂zΦ(z) ∂zΦ(z)

∂zΨ(z) ∂zΨ(z)

]
by an invertible constant matrix.

Hence the regular set and its complement, the singular set

SF =
{
z ∈ Ω : 2i Im

(
Φz(z)Ψz(z)

)
= detM(z) = 0

}
,

depend only on the family F and not the choice of generators.
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Idea of the Proof: Existence (cont.)
On the singular set it can be proven that for almost every z ∈ SF the vector(
Φz̄(z),Ψz̄(z)

)
lies in the range of the linear operator M(z) : C2 → C2.

It follows that on the singular set one may define ν(z) = 0.

Here the assumption that the family F consists entirely of quasiregular
mappings is needed. By quasiregularity, one has for every α, β ∈ R

|α∂z̄Φ(z) + β ∂z̄Ψ(z)| 6 k |α∂zΦ(z) + β ∂zΨ(z)|, for a.e. z ∈ Ω. (2)

Finally, ellipticity bounds follow for the singular set SF by definition of µ
and ν, since Φ and Ψ are K -quasiregular.

For the regular set one tests the inequality (2) by real-valued measurable
functions θ(z) instead of parameters α and β.
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Uniqueness and Reduced Beltrami Equations
To show the uniqueness, we prove that the singular set

SF =
{
z ∈ Ω : 2i Im

(
Φz(z)Ψz(z)

)
= detM(z) = 0

}
has measure zero.

Here reduced Beltrami equations come into play.

We can assume Φ is nonconstant. As a nonconstant quasiregular mapping,
Φ has the branch set that consists of isolated points; it is enough to study
points outside the branch set.

Let z0 be such a point. There exists a ball B := D(z0, r) such that
Φ|B : B → Φ(B) is a homeomorphism, hence quasiconformal. From the
generalized Stoïlow factorization we know that Ψ = F ◦ Φ in B , where F
solves the reduced Beltrami equation in Φ(B).
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Uniqueness and Reduced Beltrami Equations (cont.)
Let z ∈ B . Using the chain rule and a straightforward calculation gives

J(z ,Φ) Im(Fw ◦ Φ) = (−1 + |µ|2 − |ν|2) Im(ΦzΨz).

Since Φ preserves sets of zero measure, the statement,

SF =
{
z ∈ Ω : 2i Im

(
Φz(z)Ψz(z)

)
= detM(z) = 0

}
has measure zero, follows by by the theorem for reduced Beltrami
equations.
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Idea of the Proof

Theorem
Suppose f : Ω→ C, f ∈W 1,2

loc (Ω), is a solution to the reduced Beltrami
equation

∂z̄ f (z) = λ(z) Im
(
∂z f (z)

)
, |λ(z)| 6 k < 1, a.e. z ∈ Ω.

Then either ∂z f is a constant or else Im
(
∂z f
)
6= 0 almost everywhere in Ω.

Assume |E | := |{z ∈ Ω : Im
(
∂z f (z)

)
= 0}| > 0.

Goal: For a.e. z0 ∈ E , f (w) = c0 + c1 (w − z0) + E(w) near the point z0,
where c0 ∈ C, c1 ∈ R are constants depending only on f and z0, and∫

D(z0,r)
|DE|dm = O(rn+1)

holds for small enough r > 0 and for all positive integers n.
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From the Goal to the Statement (Idea of the Proof (cont.))
The constant c1 is real and hence g(w) := f (w)− c0 − c1(w − z0) solves
the same reduced Beltrami equation as f. Therefore, g is quasiregular with(∫

D(z0,r)
|Dg |2dm

)1/2

= O(rN+1), when r is small enough,

for all positive integers N. We have the Hölder continuity of the form

|g(z0)− g(w)| 6 c
(
|z0 − w |

r

)α(K)(∫
D(z0,r)

|Dg |2dm
)1/2

,

w ∈ D(z0, r/2) and 0 < α(K ) < 1. Thus

sup
|z0−w |< r/2

|g(z0)− g(w)| = O(rN+1).

This proves our statement: If g is nonconstant, there is a contradiction,
since the classical Stoïlow factorization gives

crγ 6 sup
|z0−w |< r/2

|g(z0)− g(w)|, γ > 0.
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Stages to the Goal (Idea of the Proof (cont.))
Goal: For a.e. z0 ∈ E , f (w) = c0 + c1 (w − z0) + E(w) near the point z0,
where c0 ∈ C, c1 ∈ R are constants depending only on f and z0 and∫

D(z0,r)
|DE|dm = O(rn+1)

holds for small enough r > 0 and for all positive integers n.

• an adjoint equation approach and a weak reverse Hölder inequality for
the convergence rate of the integral of the derivative (almost every
z0 ∈ E is a zero of infinite order)

• a series representation by generalized Cauchy formula
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Same Zeros (Idea of the Proof (cont.))
Mapping f ∈W 1,2

loc (Ω) is a solution to the reduced Beltrami equation

∂z̄ f (z) = λ(z) Im
(
∂z f (z)

)
, |λ(z)| 6 k < 1,

for almost every z ∈ Ω. Let us write f (z) = u(z) + iv(z), where u and v
are real-valued.

Taking the imaginary part of the reduced equation gives

2 Im
(
∂z f (z)

)
= vx − uy =

2
Im(λ) + 1

vx =
2

Im(λ)− 1
uy .

Since | Im(λ(z))| 6 |λ(z)| 6 k < 1, the coefficients 2/(Im(λ(z))± 1) are
uniformly bounded from below. Hence Im(∂z f ) and uy have the same
zeros.
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Adjoint Equation (Idea of the Proof (cont.))
Mapping uy is a real-valued weak solution to the adjoint equation
L∗(uy ) = 0; this means∫

Ω
uyL(ϕ)dm = 0, for every ϕ ∈ C∞0 (Ω).

We set as a non-divergence type, uniformly elliptic operator L

L =
∂2

∂x2 + a12
∂2

∂x∂y
+ a22

∂2

∂y2 , a12 =
2Re(λ)

1− Im(λ)
, a22 =

1 + Im(λ)

1− Im(λ)
.

Key point: recall that the components of solutions f = u + iv to general
Beltrami equations satisfy a divergence type second-order equation; now,

divA∇u = 0, A(z) :=

[
1 a12(z)
0 a22(z)

]
.
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Weak Reverse Hölder Inequality (Idea of the Proof (cont.))

Theorem
Let ω ∈ L2

loc(Ω) be a real-valued weak solution to the adjoint equation
L∗(ω) = 0. Then a weak reverse Hölder inequality holds for ω; namely,(

1
r2

∫
B
ω2dm

)1/2

6
c
r2

∫
2B
|ω|dm,

for every disk B := D(a, r) such that 2B := D(a, 2r) ⊂ Ω. The constant c
depends only on the ellipticity constant K.

There is a stronger result for non-negative solutions: a reverse Hölder
inequality holds (Fabes and Stroock, 1984); this was used in the case of
homeomorphisms of the plane.
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Weak Reverse Hölder Inequality (Idea of the Proof (cont.))

(
1
r2

∫
B
ω2dm

)1/2

6
c
r2

∫
2B
|ω|dm

Key points:
• We solve the Dirichlet problem

L(g) = h, h ∈ L2(D), g ∈W 2,2(D) with g = 0 on ∂D,

for D = 2D and h = ωχD ∈ L2(2D).

• Let 1 < δ < 4/3 and ϕ ∈ C∞0
(
(3/2)δD

)
satisfy ϕ ≡ 1 on δD.∫

D
ω2 =

∫
2D
ωL(g)ϕ = −2

∫
2D
ω〈A∇ϕ,∇g〉 −

∫
2D
ωgL(ϕ)

• If L(g) = 0 in a subdomain V ⊂ D, then the complex gradient gz is
quasiregular in V; plus, norm estimates for every relatively compact
smooth subdomain V ′ ⊂ V (Astala, Iwaniec, and Martin, 2006).
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Zeros of Infinite Order (Idea of the Proof (cont.))

Theorem (Bojarski and Iwaniec, 1983)
Let ω satisfy a weak reverse Hölder inequality. Then, for almost every zero
z0 of ω and for every positive integer N, there is r0(z0,N) > 0 such that∫

D(z0,r)
|ω|dm 6

rN

rN0

∫
D(z0,2r0)

|ω|dm = O(rN), 0 < r 6 r0(z0,N).

• Let z0 be a point of density of E = {z ∈ Ω : ω(z) = 0}. Since z0 is a
density point, for r0 := r0(z0,N) sufficiently small, 0 < δ 6 1,

|D(z0, δr0) \ E | 6 (δr0)2

c2 22N ,

where c is the constant from the weak reverse Hölder inequality.

• Using the weak reverse Hölder inequality and iterating gives our claim.
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Series Representation (Idea of the Proof (cont.))
The adjoint equation approach with zeros of infinite order gives∫

D(z0,r)
|∂z̄ f | 6 k

∫
D(z0,r)

| Im
(
∂z f
)
| 6 k

1− k

∫
D(z0,r)

|uy | = O(rN),

for almost every z0 ∈ E and for all positive integers N, when r < r0(z0,N).

Suppose w ∈ D(z0, r0). We begin by showing that for all positive integers n

f (w) =
n−1∑
j=0

cj (w − z0)j + E(w),

∫
D(z0,r)

|DE|dm = O(rn+1),

where 0 < r 6 r0 and cj ∈ C are constants depending only on f and z0.

Smoothness at a point has been studied, for example, in (Dyn′kin, 1998)
and we use a few similar ideas.
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Generalized Cauchy Formula (Series Representation (cont.))
The generalized Cauchy formula gives

f (w) =
1
2πi

∫
∂D(z0,r0)

f (z)

z − w
dz+

1
π

∫
D(z0,r0)

∂z̄ f (z)

w − z
dm(z), w ∈ D(z0, r0).

The first term is analytic in the disk D(z0, r0), thus
n−1∑
j=0

aj (w − z0)j + Rn(w), Rn(w) = O(|w − z0|n).

The second term = −
n−1∑
j=0

(w − z0)j 1
π

∫
D(z0,r0)

∂z̄ f (z)

(z − z0)j+1 dm(z)

+ (w − z0)n 1
π

∫
D(z0,r0)

∂z̄ f (z)

(z − z0)n(w − z)
dm(z).

The coefficient integrals converge: divide in annuli and use the fact that z0
is a zero of infinite order (set N = n + 2).
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Remainder Term (Series Representation (cont.))
To show: ∫

D(z0,r)
|DE|dm = O(rn+1).

Note E = Rn + T, where Rn is holomorphic with Rn(w) = O(|z − w |n) and

T (w) := (w − z0)n 1
π

∫
D(z0,r0)

∂z̄ f (z)

(z − z0)n(w − z)
dm(z).

Only the estimation of ∂zT remains.

Key points
• Higher integrability for ∂z̄ f (Astala, 1994)
• Integral term in T is a Cauchy transform of a Lp-function with a
compact support and p > 2.
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No Higher-Order Terms (Series Representation (cont.))
We have

f (w) =
n−1∑
j=0

cj (w − z0)j + E(w),

∫
D(z0,r)

|DE|dm = O(rn+1).

The goal was: For a.e. z0 ∈ E , f (w) = c0 + c1 (w − z0) + E(w) near the
point z0, where c0 ∈ C, c1 ∈ R are constants depending only on f and z0
and ∫

D(z0,r)
|DE|dm = O(rn+1)

holds for small enough r > 0 and for all positive integers n.

Take Im
(
∂z ·
)
. The goal follows by convergence rates of

∫
D(z0,r) |DE|dm

and
∫
D(z0,r) | Im

(
∂z f
)
|dm.
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Thank You!

jarmo.jaaskelainen@helsinki.fi
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