On Reduced Beltrami Equations and Linear Families of Quasiregular Mappings

Jarmo Jääskeläinen
University of Helsinki
jarmo.jaaskelainen@helsinki.fi

October 18, 2010
Barcelona

Quasiregular Mappings

As a reminder, $f \in W_{\text {loc }}^{1,2}(\Omega), \Omega \subset \mathbb{C}$ a domain, is K-quasiregular if the classical Beltrami equation holds for almost every $z \in \Omega$

$$
\partial_{\bar{z}} f(z)=\mu(z) \partial_{z} f(z), \quad|\mu(z)| \leqslant k<1, \quad K=\frac{1+k}{1-k}
$$

where $\partial_{\bar{z}} f(z)=\frac{1}{2}\left(\partial_{x} f(z)+i \partial_{y} f(z)\right)$ and $\partial_{z} f(z)=\frac{1}{2}\left(\partial_{x} f(z)-i \partial_{y} f(z)\right)$.
If, in addition, the mapping is also a homeomorphism, then it is called quasiconformal.

Infinitesimally a quasiconformal function maps circles into ellipses.

Reduced Beltrami Equation

Mapping $f \in W_{\text {loc }}^{1,2}(\Omega)$, solves reduced Beltrami equation, if

$$
\partial_{\bar{z}} f(z)=\lambda(z) \operatorname{lm}\left(\partial_{z} f(z)\right), \quad|\lambda(z)| \leqslant k<1
$$

for almost every $z \in \Omega$.

- A differential constraint is stronger than the one in the Beltrami equation, hence f is K-quasiregular with $K=\frac{1+k}{1-k}$.
- $\mathcal{J}(z, f):=\operatorname{Im}\left(\partial_{z} f\right)$ is a null Lagrangian.

Generalized Stoïlow Factorization

Theorem (Astala, Iwaniec, and Martin, 2009) Let $\Phi \in W_{\mathrm{loc}}^{1,2}(\Omega)$ be a homeomorphic solution to the general Beltrami equation

$$
\partial_{\bar{z}} g(z)=\mu(z) \partial_{z} g(z)+\nu(z) \overline{\partial_{z} g(z)}, \quad|\mu(z)|+|\nu(z)| \leqslant k<1,
$$

for almost every $z \in \Omega$. Then any other solution $\psi \in W_{\mathrm{loc}}^{1,2}(\Omega)$ takes the form

$$
\Psi=F \circ \Phi,
$$

where F solves the reduced Beltrami equation in $\Phi(\Omega)$ with

$$
\lambda(w)=\frac{-2 i \nu(z)}{1+|\nu(z)|^{2}-|\mu(z)|^{2}}, \quad w=\Phi(z), \quad z \in \Omega .
$$

Also the converse direction holds.

On Reduced Beltrami Equations

The following answers in positive a conjecture of Astala, Iwaniec, and Martin.

Theorem
Suppose $f: \Omega \rightarrow \mathbb{C}, f \in W_{\mathrm{loc}}^{1,2}(\Omega)$, is a solution to the reduced Beltrami equation

$$
\partial_{\bar{z}} f(z)=\lambda(z) \operatorname{lm}\left(\partial_{z} f(z)\right), \quad|\lambda(z)| \leqslant k<1, \quad \text { a.e. } z \in \Omega .
$$

Then either $\partial_{z} f$ is a constant or else
$\operatorname{Im}\left(\partial_{z} f\right) \neq 0 \quad$ almost everywhere in Ω.
Thus if $\operatorname{lm}\left(\partial_{z} f\right)$ vanishes on a set of positive measure, then $f(z)=a z+b$, where $a \in \mathbb{R}$ and $b \in \mathbb{C}$.

What Was Known?

Theorem

Suppose $f: \Omega \rightarrow \mathbb{C}, f \in W_{\mathrm{loc}}^{1,2}(\Omega)$, is a solution to the reduced Beltrami equation

$$
\partial_{\bar{z}} f(z)=\lambda(z) \operatorname{lm}\left(\partial_{z} f(z)\right), \quad|\lambda(z)| \leqslant k<1, \quad \text { a.e. } z \in \Omega .
$$

Then either $\partial_{z} f$ is a constant or else $\operatorname{lm}\left(\partial_{z} f\right) \neq 0$ almost everywhere in Ω.

- (Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, 2004) proved for homeomorphisms of the plane \mathbb{C}, when $k<1 / 2$.
- (Alessandrini and Nesi, 2009) for homeomorphisms of the plane \mathbb{C}

Linear Families of Quasiregular Mappings

Given an \mathbb{R}-linear subspace $\mathcal{F} \subset W_{\mathrm{loc}}^{1,2}(\Omega), \mathcal{F}$ is a linear family of quasiregular mappings, if there is $1 \leqslant K<\infty$ such that for every $g \in \mathcal{F}$ the function g is K-quasiregular in Ω.
The family \mathcal{F} is generated by the maps Φ and Ψ if

$$
\mathcal{F}=\{a \Phi+b \Psi: a, b \in \mathbb{R}\}
$$

for some quasiregular mappings $\Phi: \Omega \rightarrow \mathbb{C}$ and $\Psi: \Omega \rightarrow \mathbb{C}$.
In case of linear families that consist of quasiconformal mappings, $\operatorname{dim} \mathcal{F} \leqslant 2$, (Bojarski, D'Onofrio, Iwaniec, and Sbordone, 2005).

Recall that a linear family of quasiregular mappings is not always two-dimensional; for instance, 1-quasiregular family spanned by functions $f_{1}(z)=z, f_{2}(z)=z^{2}$, and $f_{3}(z)=z^{3}$.

Linear Families of Quasiregular Mappings

In general, quasiregularity is not preserved under linear combinations; simple example is $f(z)=k \bar{z}+z, g(z)=k \bar{z}-z$.

However, if we have mappings that happen to be solutions to the same general Beltrami equation

$$
\partial_{\bar{z}} g(z)=\mu(z) \partial_{z} g(z)+\nu(z) \overline{\partial_{z} g(z)}, \quad|\mu(z)|+|\nu(z)| \leqslant k<1
$$

for almost every $z \in \Omega$, then their linear combinations are quasiregular.

Theorem

For any linear two-dimensional family \mathcal{F} of quasiregular mappings in a domain $\Omega \subset \mathbb{C}$ there exists a corresponding general Beltrami equation satisfied by every element $g \in \mathcal{F}$.

Moreover, the associated equation is unique.

What Was Known?

Theorem

For any linear two-dimensional family \mathcal{F} of quasiregular mappings in a domain $\Omega \subset \mathbb{C}$ there exists a corresponding general Beltrami equation satisfied by every element $g \in \mathcal{F}$. The associated equation is unique.

- Existence, (Bojarski, D'Onofrio, Iwaniec, and Sbordone, 2005); uniquely defined on the regular set
- Uniqueness for family of K-quasiconformal mappings, $1 \leqslant K<3$ (Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, 2004); $1 \leqslant K<\infty$ (Alessandrini and Nesi, 2009); the singular set has measure zero for homeomorphisms
- The homeomorphic case with the ideas developed in (Bojarski, D'Onofrio, Iwaniec, and Sbordone, 2005) and (Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, 2004): the family of Beltrami differential operators, $1 \leq K<\infty$, in a domain is G-compact.

Idea of the Proof: Existence

For any linear two-dimensional family \mathcal{F} of quasiregular mappings in a domain $\Omega \subset \mathbb{C}$ there exists a corresponding general Beltrami equation satisfied by every element $g \in \mathcal{F}$.
Assume $\Phi, \Psi \in W_{\text {loc }}^{1,2}(\Omega)$ are generators. The goal is to find coefficients μ and ν such that

$$
\begin{equation*}
\partial_{\bar{z}} \Phi=\mu \partial_{z} \Phi+\nu \overline{\partial_{z} \Phi} \quad \text { and } \quad \partial_{\bar{z}} \psi=\mu \partial_{z} \Psi+\nu \overline{\partial_{z} \Psi} \tag{1}
\end{equation*}
$$

almost everywhere in Ω.
In the regular set $\mathcal{R}_{\mathcal{F}}$ of \mathcal{F}, i.e., the set of points $z \in \Omega$ where the matrix

$$
M(z)=\left[\begin{array}{cc}
\partial_{z} \Phi(z) & \overline{\partial_{z} \Phi(z)} \\
\partial_{z} \Psi(z) & \overline{\partial_{z} \Psi(z)}
\end{array}\right]
$$

is invertible, the values $\mu(z)$ and $\nu(z)$ are uniquely determined by (1) :

Idea of the Proof: Existence (cont.)

$$
\mu=i \frac{\psi_{\bar{z}} \overline{\phi_{z}}-\overline{\Psi_{z}} \Phi_{\bar{z}}}{2 \operatorname{lm}\left(\Phi_{z} \overline{\psi_{z}}\right)}, \quad \nu=i \frac{\Phi_{\bar{z}} \psi_{z}-\Phi_{z} \psi_{\bar{z}}}{2 \operatorname{lm}\left(\Phi_{z} \overline{\psi_{z}}\right)} .
$$

Note that changing the generators corresponds to multiplying

$$
M(z)=\left[\begin{array}{cc}
\partial_{z} \Phi(z) & \overline{\partial_{z} \Phi(z)} \\
\partial_{z} \psi(z) & \overline{\partial_{z} \psi(z)}
\end{array}\right]
$$

by an invertible constant matrix.
Hence the regular set and its complement, the singular set

$$
\mathcal{S}_{\mathcal{F}}=\left\{z \in \Omega: 2 i \operatorname{lm}\left(\Phi_{z}(z) \overline{\psi_{z}(z)}\right)=\operatorname{det} M(z)=0\right\},
$$

depend only on the family \mathcal{F} and not the choice of generators.

Idea of the Proof: Existence (cont.)

On the singular set it can be proven that for almost every $z \in \mathcal{S}_{\mathcal{F}}$ the vector $\left(\Phi_{\bar{z}}(z), \Psi_{\bar{z}}(z)\right)$ lies in the range of the linear operator $M(z): \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$. It follows that on the singular set one may define $\nu(z)=0$.
Here the assumption that the family \mathcal{F} consists entirely of quasiregular mappings is needed. By quasiregularity, one has for every $\alpha, \beta \in \mathbb{R}$

$$
\begin{equation*}
\left|\alpha \partial_{\bar{z}} \Phi(z)+\beta \partial_{\bar{z}} \Psi(z)\right| \leqslant k\left|\alpha \partial_{z} \Phi(z)+\beta \partial_{z} \Psi(z)\right|, \quad \text { for a.e. } z \in \Omega \text {. } \tag{2}
\end{equation*}
$$

Finally, ellipticity bounds follow for the singular set $\mathcal{S}_{\mathcal{F}}$ by definition of μ and ν, since Φ and Ψ are K-quasiregular.

For the regular set one tests the inequality (2) by real-valued measurable functions $\theta(z)$ instead of parameters α and β.

Uniqueness and Reduced Beltrami Equations

To show the uniqueness, we prove that the singular set

$$
\mathcal{S}_{\mathcal{F}}=\left\{z \in \Omega: 2 i \operatorname{lm}\left(\Phi_{z}(z) \overline{\Psi_{z}(z)}\right)=\operatorname{det} M(z)=0\right\}
$$

has measure zero.
Here reduced Beltrami equations come into play.
We can assume Φ is nonconstant. As a nonconstant quasiregular mapping, Φ has the branch set that consists of isolated points; it is enough to study points outside the branch set.

Let z_{0} be such a point. There exists a ball $B:=\mathbb{D}\left(z_{0}, r\right)$ such that $\left.\Phi\right|_{B}: B \rightarrow \Phi(B)$ is a homeomorphism, hence quasiconformal. From the generalized Stoïlow factorization we know that $\Psi=F \circ \Phi$ in B, where F solves the reduced Beltrami equation in $\Phi(B)$.

Uniqueness and Reduced Beltrami Equations (cont.)

Let $z \in B$. Using the chain rule and a straightforward calculation gives

$$
J(z, \Phi) \operatorname{lm}\left(F_{w} \circ \Phi\right)=\left(-1+|\mu|^{2}-|\nu|^{2}\right) \operatorname{lm}\left(\Phi_{z} \overline{\Psi_{z}}\right)
$$

Since Φ preserves sets of zero measure, the statement,

$$
\mathcal{S}_{\mathcal{F}}=\left\{z \in \Omega: 2 i \operatorname{lm}\left(\Phi_{z}(z) \overline{\Psi_{z}(z)}\right)=\operatorname{det} M(z)=0\right\}
$$

has measure zero, follows by by the theorem for reduced Beltrami equations.

Idea of the Proof

Theorem

Suppose $f: \Omega \rightarrow \mathbb{C}, f \in W_{\mathrm{loc}}^{1,2}(\Omega)$, is a solution to the reduced Beltrami equation

$$
\partial_{\bar{z}} f(z)=\lambda(z) \operatorname{lm}\left(\partial_{z} f(z)\right), \quad|\lambda(z)| \leqslant k<1, \quad \text { a.e. } z \in \Omega .
$$

Then either $\partial_{z} f$ is a constant or else $\operatorname{lm}\left(\partial_{z} f\right) \neq 0$ almost everywhere in Ω.
Assume $|E|:=\left|\left\{z \in \Omega: \operatorname{lm}\left(\partial_{z} f(z)\right)=0\right\}\right|>0$.
Goal: For a.e. $z_{0} \in E, f(w)=c_{0}+c_{1}\left(w-z_{0}\right)+\mathcal{E}(w)$ near the point z_{0}, where $c_{0} \in \mathbb{C}, c_{1} \in \mathbb{R}$ are constants depending only on f and z_{0}, and

$$
\int_{\mathbb{D}\left(z_{0}, r\right)}|D \mathcal{E}| d m=\mathcal{O}\left(r^{n+1}\right)
$$

holds for small enough $r>0$ and for all positive integers n.

From the Goal to the Statement (Idea of the Proof (cont.))

 The constant c_{1} is real and hence $g(w):=f(w)-c_{0}-c_{1}\left(w-z_{0}\right)$ solves the same reduced Beltrami equation as f. Therefore, g is quasiregular with$$
\left(\int_{\mathbb{D}\left(z_{0}, r\right)}|D g|^{2} d m\right)^{1 / 2}=\mathcal{O}\left(r^{N+1}\right), \quad \text { when } r \text { is small enough, }
$$

for all positive integers N. We have the Hölder continuity of the form

$$
\left|g\left(z_{0}\right)-g(w)\right| \leqslant c\left(\frac{\left|z_{0}-w\right|}{r}\right)^{\alpha(K)}\left(\int_{\mathbb{D}\left(z_{0}, r\right)}|D g|^{2} d m\right)^{1 / 2}
$$

$w \in \mathbb{D}\left(z_{0}, r / 2\right)$ and $0<\alpha(K)<1$. Thus

$$
\sup _{\left|z_{0}-w\right|<r / 2}\left|g\left(z_{0}\right)-g(w)\right|=\mathcal{O}\left(r^{N+1}\right) .
$$

This proves our statement: If g is nonconstant, there is a contradiction, since the classical Stoïlow factorization gives

$$
c r^{\gamma} \leqslant \sup _{\left|z_{0}-w\right|<r / 2}\left|g\left(z_{0}\right)-g(w)\right|, \quad \gamma>0 .
$$

Stages to the Goal (Idea of the Proof (cont.))

Goal: For a.e. $z_{0} \in E, f(w)=c_{0}+c_{1}\left(w-z_{0}\right)+\mathcal{E}(w)$ near the point z_{0}, where $c_{0} \in \mathbb{C}, c_{1} \in \mathbb{R}$ are constants depending only on f and z_{0} and

$$
\int_{\mathbb{D}\left(z_{0}, r\right)}|D \mathcal{E}| d m=\mathcal{O}\left(r^{n+1}\right)
$$

holds for small enough $r>0$ and for all positive integers n.

- an adjoint equation approach and a weak reverse Hölder inequality for the convergence rate of the integral of the derivative (almost every $z_{0} \in E$ is a zero of infinite order)
- a series representation by generalized Cauchy formula

Same Zeros (Idea of the Proof (cont.))

Mapping $f \in W_{\text {loc }}^{1,2}(\Omega)$ is a solution to the reduced Beltrami equation

$$
\partial_{\bar{z}} f(z)=\lambda(z) \operatorname{lm}\left(\partial_{z} f(z)\right), \quad|\lambda(z)| \leqslant k<1
$$

for almost every $z \in \Omega$. Let us write $f(z)=u(z)+i v(z)$, where u and v are real-valued.

Taking the imaginary part of the reduced equation gives

$$
2 \operatorname{lm}\left(\partial_{z} f(z)\right)=v_{x}-u_{y}=\frac{2}{\operatorname{Im}(\lambda)+1} v_{x}=\frac{2}{\operatorname{lm}(\lambda)-1} u_{y}
$$

Since $|\operatorname{Im}(\lambda(z))| \leqslant|\lambda(z)| \leqslant k<1$, the coefficients $2 /(\operatorname{Im}(\lambda(z)) \pm 1)$ are uniformly bounded from below. Hence $\operatorname{Im}\left(\partial_{z} f\right)$ and u_{y} have the same zeros.

Adjoint Equation (Idea of the Proof (cont.))

Mapping u_{y} is a real-valued weak solution to the adjoint equation $L^{*}\left(u_{y}\right)=0$; this means

$$
\int_{\Omega} u_{y} L(\varphi) d m=0, \quad \text { for every } \varphi \in C_{0}^{\infty}(\Omega)
$$

We set as a non-divergence type, uniformly elliptic operator L
$L=\frac{\partial^{2}}{\partial x^{2}}+a_{12} \frac{\partial^{2}}{\partial x \partial y}+a_{22} \frac{\partial^{2}}{\partial y^{2}}, \quad a_{12}=\frac{2 \operatorname{Re}(\lambda)}{1-\operatorname{Im}(\lambda)}, \quad a_{22}=\frac{1+\operatorname{Im}(\lambda)}{1-\operatorname{Im}(\lambda)}$.
Key point: recall that the components of solutions $f=u+i v$ to general Beltrami equations satisfy a divergence type second-order equation; now,

$$
\operatorname{div} A \nabla u=0, \quad A(z):=\left[\begin{array}{ll}
1 & a_{12}(z) \\
0 & a_{22}(z)
\end{array}\right]
$$

Weak Reverse Hölder Inequality (Idea of the Proof (cont.))

Theorem
Let $\omega \in L_{\text {loc }}^{2}(\Omega)$ be a real-valued weak solution to the adjoint equation $L^{*}(\omega)=0$. Then a weak reverse Hölder inequality holds for ω; namely,

$$
\left(\frac{1}{r^{2}} \int_{B} \omega^{2} d m\right)^{1 / 2} \leqslant \frac{c}{r^{2}} \int_{2 B}|\omega| d m,
$$

for every disk $B:=\mathbb{D}(a, r)$ such that $2 B:=\mathbb{D}(a, 2 r) \subset \Omega$. The constant c depends only on the ellipticity constant K.

There is a stronger result for non-negative solutions: a reverse Hölder inequality holds (Fabes and Stroock, 1984); this was used in the case of homeomorphisms of the plane.

Weak Reverse Hölder Inequality (Idea of the Proof (cont.))

$$
\left(\frac{1}{r^{2}} \int_{B} \omega^{2} d m\right)^{1 / 2} \leqslant \frac{c}{r^{2}} \int_{2 B}|\omega| d m
$$

Key points:

- We solve the Dirichlet problem

$$
L(g)=h, \quad h \in L^{2}(\mathcal{D}), \quad g \in W^{2,2}(\mathcal{D}) \quad \text { with } g=0 \text { on } \partial \mathcal{D},
$$

for $\mathcal{D}=2 \mathbb{D}$ and $h=\omega \chi_{\mathbb{D}} \in L^{2}(2 \mathbb{D})$.

- Let $1<\delta<4 / 3$ and $\varphi \in C_{0}^{\infty}((3 / 2) \delta \mathbb{D})$ satisfy $\varphi \equiv 1$ on $\delta \mathbb{D}$.

$$
\int_{\mathbb{D}} \omega^{2}=\int_{2 \mathbb{D}} \omega L(g) \varphi=-2 \int_{2 \mathbb{D}} \omega\langle A \nabla \varphi, \nabla g\rangle-\int_{2 \mathbb{D}} \omega g L(\varphi)
$$

- If $L(g)=0$ in a subdomain $V \subset \mathcal{D}$, then the complex gradient g_{z} is quasiregular in V; plus, norm estimates for every relatively compact smooth subdomain $V^{\prime} \subset V$ (Astala, Iwaniec, and Martin, 2006).

Zeros of Infinite Order (Idea of the Proof (cont.))

Theorem (Bojarski and Iwaniec, 1983)
Let ω satisfy a weak reverse Hölder inequality. Then, for almost every zero z_{0} of ω and for every positive integer N, there is $r_{0}\left(z_{0}, N\right)>0$ such that

$$
\int_{\mathbb{D}\left(z_{0}, r\right)}|\omega| d m \leqslant \frac{r^{N}}{r_{0}^{N}} \int_{\mathbb{D}\left(z_{0}, 2 r_{0}\right)}|\omega| d m=\mathcal{O}\left(r^{N}\right), \quad 0<r \leqslant r_{0}\left(z_{0}, N\right) .
$$

- Let z_{0} be a point of density of $E=\{z \in \Omega: \omega(z)=0\}$. Since z_{0} is a density point, for $r_{0}:=r_{0}\left(z_{0}, N\right)$ sufficiently small, $0<\delta \leqslant 1$,

$$
\left|\mathbb{D}\left(z_{0}, \delta r_{0}\right) \backslash E\right| \leqslant \frac{\left(\delta r_{0}\right)^{2}}{c^{2} 2^{2 N}},
$$

where c is the constant from the weak reverse Hölder inequality.

- Using the weak reverse Hölder inequality and iterating gives our claim.

Series Representation (Idea of the Proof (cont.))

The adjoint equation approach with zeros of infinite order gives

$$
\int_{\mathbb{D}\left(z_{0}, r\right)}\left|\partial_{\bar{z}} f\right| \leqslant k \int_{\mathbb{D}\left(z_{0}, r\right)}\left|\operatorname{lm}\left(\partial_{z} f\right)\right| \leqslant \frac{k}{1-k} \int_{\mathbb{D}\left(z_{0}, r\right)}\left|u_{y}\right|=\mathcal{O}\left(r^{N}\right)
$$

for almost every $z_{0} \in E$ and for all positive integers N, when $r<r_{0}\left(z_{0}, N\right)$.
Suppose $w \in \mathbb{D}\left(z_{0}, r_{0}\right)$. We begin by showing that for all positive integers n

$$
f(w)=\sum_{j=0}^{n-1} c_{j}\left(w-z_{0}\right)^{j}+\mathcal{E}(w), \quad \int_{\mathbb{D}\left(z_{0}, r\right)}|D \mathcal{E}| d m=\mathcal{O}\left(r^{n+1}\right)
$$

where $0<r \leqslant r_{0}$ and $c_{j} \in \mathbb{C}$ are constants depending only on f and z_{0}. Smoothness at a point has been studied, for example, in (Dyn'kin, 1998) and we use a few similar ideas.

Generalized Cauchy Formula (Series Representation (cont.))

The generalized Cauchy formula gives
$f(w)=\frac{1}{2 \pi i} \int_{\mathscr{D}\left(z_{0}, r_{0}\right)} \frac{f(z)}{z-w} d z+\frac{1}{\pi} \int_{\mathbb{D}\left(z_{0}, r_{0}\right)} \frac{\partial_{\bar{z}} f(z)}{w-z} d m(z), \quad w \in \mathbb{D}\left(z_{0}, r_{0}\right)$.
The first term is analytic in the disk $\mathbb{D}\left(z_{0}, r_{0}\right)$, thus

$$
\begin{aligned}
& \qquad \sum_{j=0}^{n-1} a_{j}\left(w-z_{0}\right)^{j}+R_{n}(w), \quad R_{n}(w)=\mathcal{O}\left(\left|w-z_{0}\right|^{n}\right) . \\
& \text { The second term }=- \\
& \sum_{j=0}^{n-1}\left(w-z_{0}\right)^{j} \frac{1}{\pi} \int_{\mathbb{D}\left(z_{0}, r_{0}\right)} \frac{\partial_{\bar{z}} f(z)}{\left(z-z_{0}\right)^{j+1}} d m(z) \\
& \\
& \quad+\left(w-z_{0}\right)^{n} \frac{1}{\pi} \int_{\mathbb{D}\left(z_{0}, r_{0}\right)} \frac{\partial_{\bar{z}} f(z)}{\left(z-z_{0}\right)^{n}(w-z)} d m(z) .
\end{aligned}
$$

The coefficient integrals converge: divide in annuli and use the fact that z_{0} is a zero of infinite order (set $N=n+2$).

Remainder Term (Series Representation (cont.))

To show:

$$
\int_{\mathbb{D}\left(z_{0}, r\right)}|D \mathcal{E}| d m=\mathcal{O}\left(r^{n+1}\right)
$$

Note $\mathcal{E}=R_{n}+T$, where R_{n} is holomorphic with $R_{n}(w)=\mathcal{O}\left(|z-w|^{n}\right)$ and

$$
T(w):=\left(w-z_{0}\right)^{n} \frac{1}{\pi} \int_{\mathbb{D}\left(z_{0}, r_{0}\right)} \frac{\partial_{\bar{z}} f(z)}{\left(z-z_{0}\right)^{n}(w-z)} d m(z)
$$

Only the estimation of $\partial_{z} T$ remains.

Key points

- Higher integrability for $\partial_{\bar{z}} f$ (Astala, 1994)
- Integral term in T is a Cauchy transform of a L^{p}-function with a compact support and $p>2$.

No Higher-Order Terms (Series Representation (cont.))

We have

$$
f(w)=\sum_{j=0}^{n-1} c_{j}\left(w-z_{0}\right)^{j}+\mathcal{E}(w), \quad \int_{\mathbb{D}\left(z_{0}, r\right)}|D \mathcal{E}| d m=\mathcal{O}\left(r^{n+1}\right)
$$

The goal was: For a.e. $z_{0} \in E, f(w)=c_{0}+c_{1}\left(w-z_{0}\right)+\mathcal{E}(w)$ near the point z_{0}, where $c_{0} \in \mathbb{C}, c_{1} \in \mathbb{R}$ are constants depending only on f and z_{0} and

$$
\int_{\mathbb{D}\left(z_{0}, r\right)}|D \mathcal{E}| d m=\mathcal{O}\left(r^{n+1}\right)
$$

holds for small enough $r>0$ and for all positive integers n.
Take $\operatorname{Im}\left(\partial_{z} \cdot\right)$. The goal follows by convergence rates of $\int_{\mathbb{D}\left(z_{0}, r\right)}|D \mathcal{E}| d m$ and $\int_{\mathbb{D}\left(z_{0}, r\right)}\left|\operatorname{Im}\left(\partial_{z} f\right)\right| d m$.

Thank You!

jarmo.jaaskelainen@helsinki.fi

