On Reduced Beltrami Equations and Linear Families of Quasiregular Mappings

Jarmo Jääskeläinen

University of Helsinki jarmo.jaaskelainen@helsinki.fi

> October 18, 2010 Barcelona

Quasiregular Mappings

As a reminder, $f \in W^{1,2}_{loc}(\Omega)$, $\Omega \subset \mathbb{C}$ a domain, is *K*-quasiregular if the classical Beltrami equation holds for almost every $z \in \Omega$

$$\partial_{\overline{z}}f(z) = \mu(z)\partial_z f(z), \qquad |\mu(z)| \leqslant k < 1, \quad K = \frac{1+k}{1-k},$$

where $\partial_{\overline{z}}f(z) = \frac{1}{2} (\partial_x f(z) + i \partial_y f(z))$ and $\partial_z f(z) = \frac{1}{2} (\partial_x f(z) - i \partial_y f(z)).$

If, in addition, the mapping is also a homeomorphism, then it is called *quasiconformal*.

Infinitesimally a quasiconformal function maps circles into ellipses.

Jarmo Jääskeläinen (UH)

Reduced Beltrami Equation

Mapping $f \in W^{1,2}_{loc}(\Omega)$, solves *reduced Beltrami equation*, if

 $\partial_{\overline{z}}f(z) = \lambda(z) \operatorname{Im}(\partial_z f(z)), \qquad |\lambda(z)| \leqslant k < 1,$

for almost every $z \in \Omega$.

- A differential constraint is stronger than the one in the Beltrami equation, hence f is K-quasiregular with $K = \frac{1+k}{1-k}$.
- $\mathcal{J}(z, f) := \operatorname{Im}(\partial_z f)$ is a null Lagrangian.

3 / 27

October 18, 2010

Jarmo Jääskeläinen (UH)

Generalized Stoïlow Factorization

Theorem (Astala, Iwaniec, and Martin, 2009) Let $\Phi \in W^{1,2}_{loc}(\Omega)$ be a homeomorphic solution to the general Beltrami equation

$$\partial_{ar{z}}g(z) = \mu(z)\partial_z g(z) +
u(z)\overline{\partial_z g(z)}, \qquad |\mu(z)| + |
u(z)| \leqslant k < 1,$$

for almost every $z\in\Omega.$ Then any other solution $\Psi\in W^{1,2}_{\rm loc}(\Omega)$ takes the form

$$\Psi = F \circ \Phi$$
,

where F solves the reduced Beltrami equation in $\Phi(\Omega)$ with

$$\lambda(w) = rac{-2i\,
u(z)}{1+|
u(z)|^2-|\mu(z)|^2}, \qquad w = \Phi(z), \quad z \in \Omega.$$

October 18, 2010

4 / 27

Also the converse direction holds.

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

The following answers in positive a conjecture of Astala, Iwaniec, and Martin.

Theorem

Suppose $f : \Omega \to \mathbb{C}$, $f \in W^{1,2}_{loc}(\Omega)$, is a solution to the reduced Beltrami equation

$$\partial_{\bar{z}}f(z) = \lambda(z) \operatorname{Im}(\partial_z f(z)), \qquad |\lambda(z)| \leqslant k < 1, \qquad \text{a.e. } z \in \Omega.$$

Then either $\partial_z f$ is a constant or else

 $\operatorname{Im}(\partial_z f) \neq 0$ almost everywhere in Ω .

Thus if $Im(\partial_z f)$ vanishes on a set of positive measure, then f(z) = az + b, where $a \in \mathbb{R}$ and $b \in \mathbb{C}$.

Jarmo Jääskeläinen (UH)

What Was Known?

Theorem

Suppose $f : \Omega \to \mathbb{C}$, $f \in W^{1,2}_{loc}(\Omega)$, is a solution to the reduced Beltrami equation

$$\partial_{\overline{z}}f(z) = \lambda(z) \operatorname{Im}(\partial_z f(z)), \qquad |\lambda(z)| \leqslant k < 1, \qquad a.e. \ z \in \Omega.$$

Then either $\partial_z f$ is a constant or else $\operatorname{Im}(\partial_z f) \neq 0$ almost everywhere in Ω .

- (Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, 2004) proved for homeomorphisms of the plane C, when k < 1/2.
- (Alessandrini and Nesi, 2009) for homeomorphisms of the plane ${\mathbb C}$

6 / 27

October 18, 2010

Jarmo Jääskeläinen (UH)

Linear Families of Quasiregular Mappings

Given an \mathbb{R} -linear subspace $\mathcal{F} \subset W^{1,2}_{\text{loc}}(\Omega)$, \mathcal{F} is a *linear family of quasiregular mappings*, if there is $1 \leq K < \infty$ such that for every $g \in \mathcal{F}$ the function g is K-quasiregular in Ω .

The family \mathcal{F} is *generated* by the maps Φ and Ψ if

$$\mathcal{F} = \{ a \Phi + b \Psi : a, b \in \mathbb{R} \}$$

for some quasiregular mappings $\Phi: \Omega \to \mathbb{C}$ and $\Psi: \Omega \to \mathbb{C}$.

In case of linear families that consist of quasiconformal mappings, $\dim \mathcal{F} \leqslant 2$, (Bojarski, D'Onofrio, Iwaniec, and Sbordone, 2005).

Recall that a linear family of quasiregular mappings is not always two-dimensional; for instance, 1-quasiregular family spanned by functions $f_1(z) = z$, $f_2(z) = z^2$, and $f_3(z) = z^3$.

Jarmo Jääskeläinen (UH)

Linear Families of Quasiregular Mappings

In general, quasiregularity is not preserved under linear combinations; simple example is $f(z) = k\overline{z} + z$, $g(z) = k\overline{z} - z$.

However, if we have mappings that happen to be solutions to the same general Beltrami equation

$$\partial_{\overline{z}}g(z) = \mu(z)\partial_z g(z) +
u(z)\overline{\partial_z g(z)}, \qquad |\mu(z)| + |
u(z)| \leqslant k < 1,$$

for almost every $z \in \Omega$, then their linear combinations are quasiregular.

Theorem

For any linear two-dimensional family \mathcal{F} of quasiregular mappings in a domain $\Omega \subset \mathbb{C}$ there exists a corresponding general Beltrami equation satisfied by every element $g \in \mathcal{F}$.

Moreover, the associated equation is unique.

Jarmo Jääskeläinen (UH)

What Was Known?

Theorem

For any linear two-dimensional family \mathcal{F} of quasiregular mappings in a domain $\Omega \subset \mathbb{C}$ there exists a corresponding general Beltrami equation satisfied by every element $g \in \mathcal{F}$. The associated equation is unique.

- Existence, (Bojarski, D'Onofrio, Iwaniec, and Sbordone, 2005); uniquely defined on the regular set
- Uniqueness for family of K-quasiconformal mappings, 1 ≤ K < 3 (Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, 2004); 1 ≤ K < ∞ (Alessandrini and Nesi, 2009); the singular set has measure zero for homeomorphisms
- The homeomorphic case with the ideas developed in (Bojarski, D'Onofrio, Iwaniec, and Sbordone, 2005) and (Giannetti, Iwaniec, Kovalev, Moscariello, and Sbordone, 2004): the family of Beltrami differential operators, 1 ≤ K < ∞, in a domain is G-compact.

Jarmo Jääskeläinen (UH)

Idea of the Proof: Existence

For any linear two-dimensional family \mathcal{F} of quasiregular mappings in a domain $\Omega \subset \mathbb{C}$ there exists a corresponding general Beltrami equation satisfied by every element $g \in \mathcal{F}$.

Assume $\Phi, \Psi \in W^{1,2}_{loc}(\Omega)$ are generators. The goal is to find coefficients μ and ν such that

$$\partial_{\overline{z}} \Phi = \mu \partial_z \Phi + \nu \overline{\partial_z \Phi} \quad \text{and} \quad \partial_{\overline{z}} \Psi = \mu \partial_z \Psi + \nu \overline{\partial_z \Psi}, \quad (1)$$

almost everywhere in Ω .

In the *regular set* $\mathcal{R}_{\mathcal{F}}$ of \mathcal{F} , i.e., the set of points $z \in \Omega$ where the matrix

$$M(z) = \begin{bmatrix} \partial_z \Phi(z) & \overline{\partial_z \Phi(z)} \\ \partial_z \Psi(z) & \overline{\partial_z \Psi(z)} \end{bmatrix}$$

is invertible, the values $\mu(z)$ and $\nu(z)$ are uniquely determined by (1):

Jarmo Jääskeläinen (UH)

Idea of the Proof: Existence (cont.)

$$\mu = i \frac{\Psi_{\bar{z}} \overline{\Phi_{z}} - \overline{\Psi_{z}} \Phi_{\bar{z}}}{2 \ln(\Phi_{z} \overline{\Psi_{z}})}, \qquad \nu = i \frac{\Phi_{\bar{z}} \Psi_{z} - \Phi_{z} \Psi_{\bar{z}}}{2 \ln(\Phi_{z} \overline{\Psi_{z}})}$$

Note that changing the generators corresponds to multiplying

$$M(z) = \begin{bmatrix} \partial_z \Phi(z) & \overline{\partial_z \Phi(z)} \\ \partial_z \Psi(z) & \overline{\partial_z \Psi(z)} \end{bmatrix}$$

by an invertible constant matrix.

Hence the regular set and its complement, the singular set

$$\mathcal{S}_{\mathcal{F}} = ig\{ z \in \Omega : 2i \operatorname{\mathsf{Im}}ig(\Phi_z(z) \overline{\Psi_z(z)} ig) = \det M(z) = 0 ig\}, \quad |$$

depend only on the family $\mathcal F$ and not the choice of generators.

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 11 / 27

Idea of the Proof: Existence (cont.)

On the singular set it can be proven that for almost every $z \in S_{\mathcal{F}}$ the vector $(\Phi_{\overline{z}}(z), \Psi_{\overline{z}}(z))$ lies in the range of the linear operator $M(z) : \mathbb{C}^2 \to \mathbb{C}^2$. It follows that on the singular set one may define $\nu(z) = 0$.

Here the assumption that the family \mathcal{F} consists entirely of quasiregular mappings is needed. By quasiregularity, one has for every $\alpha, \beta \in \mathbb{R}$

$$|\alpha \,\partial_{\bar{z}} \Phi(z) + \beta \,\partial_{\bar{z}} \Psi(z)| \leqslant k |\alpha \,\partial_z \Phi(z) + \beta \,\partial_z \Psi(z)|, \qquad \text{for a.e. } z \in \Omega. \ (2)$$

Finally, ellipticity bounds follow for the singular set S_F by definition of μ and ν , since Φ and Ψ are *K*-quasiregular.

For the regular set one tests the inequality (2) by real-valued measurable functions $\theta(z)$ instead of parameters α and β .

Jarmo Jääskeläinen (UH)

Uniqueness and Reduced Beltrami Equations

To show the uniqueness, we prove that the singular set

$$\mathcal{S}_{\mathcal{F}} = \left\{ z \in \Omega : 2i \operatorname{Im} \left(\Phi_z(z) \overline{\Psi_z(z)} \right) = \det M(z) = 0 \right\}$$

has measure zero.

Here reduced Beltrami equations come into play.

We can assume Φ is nonconstant. As a nonconstant quasiregular mapping, Φ has the branch set that consists of isolated points; it is enough to study points outside the branch set.

Let z_0 be such a point. There exists a ball $B := \mathbb{D}(z_0, r)$ such that $\Phi|_B : B \to \Phi(B)$ is a homeomorphism, hence quasiconformal. From the generalized Stoïlow factorization we know that $\Psi = F \circ \Phi$ in B, where F solves the reduced Beltrami equation in $\Phi(B)$.

Jarmo Jääskeläinen (UH)

Uniqueness and Reduced Beltrami Equations (cont.)

Let $z \in B$. Using the chain rule and a straightforward calculation gives

$$J(z,\Phi) \operatorname{Im}(F_w \circ \Phi) = (-1 + |\mu|^2 - |\nu|^2) \operatorname{Im}(\Phi_z \overline{\Psi_z}).$$

Since Φ preserves sets of zero measure, the statement,

$$\mathcal{S}_{\mathcal{F}} = \left\{ z \in \Omega : 2i \operatorname{Im} \left(\Phi_z(z) \overline{\Psi_z(z)} \right) = \det M(z) = 0 \right\}$$

has measure zero, follows by by the theorem for reduced Beltrami equations.

14 / 27

October 18, 2010

Jarmo Jääskeläinen (UH)

Idea of the Proof

Theorem

Suppose $f : \Omega \to \mathbb{C}$, $f \in W^{1,2}_{loc}(\Omega)$, is a solution to the reduced Beltrami equation

$$\partial_{\bar{z}}f(z) = \lambda(z) \operatorname{Im}(\partial_z f(z)), \qquad |\lambda(z)| \leqslant k < 1, \qquad a.e. \ z \in \Omega.$$

Then either $\partial_z f$ is a constant or else $\operatorname{Im}(\partial_z f) \neq 0$ almost everywhere in Ω .

Assume
$$|E| := |\{z \in \Omega : \operatorname{Im}(\partial_z f(z)) = 0\}| > 0.$$

Goal: For a.e. $z_0 \in E$, $f(w) = c_0 + c_1(w - z_0) + \mathcal{E}(w)$ near the point z_0 , where $c_0 \in \mathbb{C}$, $c_1 \in \mathbb{R}$ are constants depending only on f and z_0 , and

$$\int_{\mathbb{D}(z_0,r)} |D\mathcal{E}| dm = \mathcal{O}(r^{n+1})$$

holds for small enough r > 0 and for all positive integers n.

Jarmo Jääskeläinen (UH)

From the Goal to the Statement (Idea of the Proof (cont.))

The constant c_1 is real and hence $g(w) := f(w) - c_0 - c_1(w - z_0)$ solves the same reduced Beltrami equation as f. Therefore, g is quasiregular with

$$\left(\int_{\mathbb{D}(z_0,r)} |Dg|^2 dm\right)^{1/2} = \mathcal{O}(r^{N+1}), \quad \text{when } r \text{ is small enough},$$

for all positive integers N. We have the *Hölder continuity* of the form

$$|g(z_0)-g(w)| \leq c \left(\frac{|z_0-w|}{r}\right)^{\alpha(\kappa)} \left(\int_{\mathbb{D}(z_0,r)} |Dg|^2 dm\right)^{1/2},$$

 $w\in \mathbb{D}(z_0,r/2)$ and $0<lpha(\mathcal{K})<1.$ Thus

$$\sup_{|z_0-w| < r/2} |g(z_0) - g(w)| = \mathcal{O}(r^{N+1}).$$

This proves our statement: If g is nonconstant, there is a contradiction, since the classical Stoïlow factorization gives

$$cr^{\gamma} \leqslant \sup_{|z_0-w| < r/2} |g(z_0) - g(w)|,$$

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 16 / 27

Stages to the Goal (Idea of the Proof (cont.))

Goal: For a.e. $z_0 \in E$, $f(w) = c_0 + c_1(w - z_0) + \mathcal{E}(w)$ near the point z_0 , where $c_0 \in \mathbb{C}$, $c_1 \in \mathbb{R}$ are constants depending only on f and z_0 and

$$\int_{\mathbb{D}(z_0,r)} |D\mathcal{E}| dm = \mathcal{O}(r^{n+1})$$

holds for small enough r > 0 and for all positive integers n.

- an adjoint equation approach and a weak reverse Hölder inequality for the convergence rate of the integral of the derivative (almost every z₀ ∈ E is a zero of infinite order)
- a series representation by generalized Cauchy formula

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 17 / 27

Same Zeros (Idea of the Proof (cont.))

Mapping $f \in W^{1,2}_{\text{loc}}(\Omega)$ is a solution to the reduced Beltrami equation

$$\partial_{ar{z}} f(z) = \lambda(z) \ln ig(\partial_z f(z) ig), \qquad |\lambda(z)| \leqslant k < 1,$$

for almost every $z \in \Omega$. Let us write f(z) = u(z) + iv(z), where u and v are real-valued.

Taking the imaginary part of the reduced equation gives

$$2\ln(\partial_z f(z)) = v_x - u_y = \frac{2}{\ln(\lambda) + 1}v_x = \frac{2}{\ln(\lambda) - 1}u_y.$$

Since $|\operatorname{Im}(\lambda(z))| \leq |\lambda(z)| \leq k < 1$, the coefficients $2/(\operatorname{Im}(\lambda(z)) \pm 1)$ are uniformly bounded from below. Hence $\operatorname{Im}(\partial_z f)$ and u_y have the same zeros.

Jarmo Jääskeläinen (UH)

Adjoint Equation (Idea of the Proof (cont.))

Mapping u_y is a real-valued weak solution to the *adjoint equation* $L^*(u_y) = 0$; this means

$$\int_{\Omega} u_{y} L(\varphi) dm = 0, \qquad \text{for every } \varphi \in C_{0}^{\infty}(\Omega).$$

We set as a non-divergence type, uniformly elliptic operator L

$$L = \frac{\partial^2}{\partial x^2} + a_{12} \frac{\partial^2}{\partial x \partial y} + a_{22} \frac{\partial^2}{\partial y^2}, \qquad a_{12} = \frac{2 \operatorname{Re}(\lambda)}{1 - \operatorname{Im}(\lambda)}, \quad a_{22} = \frac{1 + \operatorname{Im}(\lambda)}{1 - \operatorname{Im}(\lambda)}.$$

Key point: recall that the components of solutions f = u + iv to general Beltrami equations satisfy a divergence type second-order equation; now,

div
$$A \nabla u = 0$$
, $A(z) := \begin{bmatrix} 1 & a_{12}(z) \\ 0 & a_{22}(z) \end{bmatrix}$.

Jarmo Jääskeläinen (UH)

Weak Reverse Hölder Inequality (Idea of the Proof (cont.))

Theorem

Let $\omega \in L^2_{loc}(\Omega)$ be a real-valued weak solution to the adjoint equation $L^*(\omega) = 0$. Then a weak reverse Hölder inequality holds for ω ; namely,

$$\left(\frac{1}{r^2}\int_B\omega^2dm\right)^{1/2}\leqslant \frac{c}{r^2}\int_{2B}|\omega|dm,$$

for every disk $B := \mathbb{D}(a, r)$ such that $2B := \mathbb{D}(a, 2r) \subset \Omega$. The constant c depends only on the ellipticity constant K.

There is a stronger result for non-negative solutions: a reverse Hölder inequality holds (Fabes and Stroock, 1984); this was used in the case of homeomorphisms of the plane.

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 20 / 27

Weak Reverse Hölder Inequality (Idea of the Proof (cont.))

$$\left(\frac{1}{r^2}\int_B\omega^2 dm\right)^{1/2}\leqslant \frac{c}{r^2}\int_{2B}|\omega|dm$$

Key points:

• We solve the *Dirichlet problem*

 $L(g) = h, \qquad h \in L^{2}(\mathcal{D}), \qquad g \in W^{2,2}(\mathcal{D}) \quad \text{with } g = 0 \text{ on } \partial \mathcal{D},$ for $\mathcal{D} = 2\mathbb{D}$ and $h = \omega\chi_{\mathbb{D}} \in L^{2}(2\mathbb{D}).$ • Let $1 < \delta < 4/3$ and $\varphi \in C_{0}^{\infty}((3/2)\delta\mathbb{D})$ satisfy $\varphi \equiv 1$ on $\delta\mathbb{D}$. $\int_{\mathbb{D}} \omega^{2} = \int_{2\mathbb{D}} \omega L(g)\varphi = -2\int_{2\mathbb{D}} \omega \langle A\nabla\varphi, \nabla g \rangle - \int_{2\mathbb{D}} \omega gL(\varphi)$

 If L(g) = 0 in a subdomain V ⊂ D, then the complex gradient g_z is quasiregular in V; plus, norm estimates for every relatively compact smooth subdomain V' ⊂ V (Astala, Iwaniec, and Martin, 2006).

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 21 / 27

Zeros of Infinite Order (Idea of the Proof (cont.))

Theorem (Bojarski and Iwaniec, 1983)

Let ω satisfy a weak reverse Hölder inequality. Then, for almost every zero z_0 of ω and for every positive integer N, there is $r_0(z_0, N) > 0$ such that

$$\int_{\mathbb{D}(z_0,r)} |\omega| dm \leqslant \frac{r^N}{r_0^N} \int_{\mathbb{D}(z_0,2r_0)} |\omega| dm = \mathcal{O}(r^N), \qquad 0 < r \leqslant r_0(z_0,N).$$

Let z₀ be a point of density of E = {z ∈ Ω : ω(z) = 0}. Since z₀ is a density point, for r₀ := r₀(z₀, N) sufficiently small, 0 < δ ≤ 1,

$$|\mathbb{D}(z_0,\delta r_0)\setminus E|\leqslant \frac{(\delta r_0)^2}{c^2 2^{2N}},$$

where c is the constant from the weak reverse Hölder inequality.

• Using the weak reverse Hölder inequality and iterating gives our claim.

Jarmo Jääskeläinen (UH)

Series Representation (Idea of the Proof (cont.))

The adjoint equation approach with zeros of infinite order gives

$$\int_{\mathbb{D}(z_0,r)} |\partial_{\overline{z}} f| \leq k \int_{\mathbb{D}(z_0,r)} |\operatorname{Im}(\partial_z f)| \leq \frac{k}{1-k} \int_{\mathbb{D}(z_0,r)} |u_y| = \mathcal{O}(r^N),$$

for almost every $z_0 \in E$ and for all positive integers N, when $r < r_0(z_0, N)$. Suppose $w \in \mathbb{D}(z_0, r_0)$. We begin by showing that for all positive integers n

$$f(w) = \sum_{j=0}^{n-1} c_j (w-z_0)^j + \mathcal{E}(w), \qquad \int_{\mathbb{D}(z_0,r)} |D\mathcal{E}| dm = \mathcal{O}(r^{n+1}),$$

where $0 < r \leq r_0$ and $c_j \in \mathbb{C}$ are constants depending only on f and z_0 . Smoothness at a point has been studied, for example, in (Dyn'kin, 1998) and we use a few similar ideas.

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 23 / 27

Generalized Cauchy Formula (Series Representation (cont.))

The generalized Cauchy formula gives

$$f(w) = \frac{1}{2\pi i} \int_{\partial \mathbb{D}(z_0,r_0)} \frac{f(z)}{z-w} dz + \frac{1}{\pi} \int_{\mathbb{D}(z_0,r_0)} \frac{\partial_{\overline{z}}f(z)}{w-z} dm(z), \quad w \in \mathbb{D}(z_0,r_0).$$

The first term is analytic in the disk $\mathbb{D}(z_0, r_0)$, thus

$$\sum_{j=0}^{n-1} a_j (w - z_0)^j + R_n(w), \qquad R_n(w) = \mathcal{O}(|w - z_0|^n).$$

The second term =
$$-\sum_{j=0}^{n-1} (w - z_0)^j \frac{1}{\pi} \int_{\mathbb{D}(z_0, r_0)} \frac{\partial_{\bar{z}} f(z)}{(z - z_0)^{j+1}} dm(z) + (w - z_0)^n \frac{1}{\pi} \int_{\mathbb{D}(z_0, r_0)} \frac{\partial_{\bar{z}} f(z)}{(z - z_0)^n (w - z)} dm(z).$$

The coefficient integrals converge: divide in annuli and use the fact that z_0 is a zero of infinite order (set N = n + 2).

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 24 / 27

Remainder Term (Series Representation (cont.))

To show:

$$\int_{\mathbb{D}(z_0,r)} |D\mathcal{E}| dm = \mathcal{O}(r^{n+1}).$$

Note $\mathcal{E} = R_n + T$, where R_n is holomorphic with $R_n(w) = \mathcal{O}(|z - w|^n)$ and

$$T(w):=(w-z_0)^n\frac{1}{\pi}\int_{\mathbb{D}(z_0,r_0)}\frac{\partial_{\overline{z}}f(z)}{(z-z_0)^n(w-z)}dm(z).$$

Only the estimation of $\partial_z T$ remains.

Key points

- Higher integrability for $\partial_{\bar{z}} f$ (Astala, 1994)
- Integral term in T is a Cauchy transform of a L^p -function with a compact support and p > 2.

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 25 / 27

No Higher-Order Terms (Series Representation (cont.)) We have

$$f(w) = \sum_{j=0}^{n-1} c_j (w-z_0)^j + \mathcal{E}(w), \qquad \int_{\mathbb{D}(z_0,r)} |D\mathcal{E}| dm = \mathcal{O}(r^{n+1}).$$

The goal was: For a.e. $z_0 \in E$, $f(w) = c_0 + c_1 (w - z_0) + \mathcal{E}(w)$ near the point z_0 , where $c_0 \in \mathbb{C}$, $c_1 \in \mathbb{R}$ are constants depending only on f and z_0 and

$$\int_{\mathbb{D}(z_0,r)} |D\mathcal{E}| dm = \mathcal{O}(r^{n+1})$$

holds for small enough r > 0 and for all positive integers n. Take $Im(\partial_z \cdot)$. The goal follows by convergence rates of $\int_{\mathbb{D}(z_0,r)} |D\mathcal{E}| dm$ and $\int_{\mathbb{D}(z_0,r)} |Im(\partial_z f)| dm$.

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 26 / 27

Thank You!

jarmo.jaaskelainen@helsinki.fi

Jarmo Jääskeläinen (UH)

On Reduced Beltrami Equations

October 18, 2010 27 / 27