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viction that they are always decidable remains un-
touched by these results.

—Gödel
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1 Introduction

1.1 Questions of incompleteness

On Friday, November 15, 1940, Kurt Gödel gave a talk on set theory at Brown
University.1 The topic was his recent proof of the consistency of Cantor’s Con-
tinuum Hypothesis, henceforth CH,2 with the axiomatic system for set theory
ZFC.3 His friend from their days in Vienna, Rudolf Carnap, was in the audience,
and afterward wrote a note to himself in which he raised a number of questions
on incompleteness:4

(Remarks I planned to make, but did not)

Discussion on Gödel’s lecture on the Continuum Hypothesis,
November 14,5 1940

There seems to be a difference: between the undecidable propo-
sitions of the kind of his example [i.e., 1931] and propositions such
as the Axiom of Choice, and the Axiom of the Continuum [CH ].

We used to ask: “When these two have been decided, is then
everything decided?” (The Poles, Tarski I think, suspected that this
would be the case.) Now we know that (on the basis of the usual
finitary rules) there will always remain undecided propositions.

∗An earlier version of this paper appeared as ‘Gödel’s modernism: on set-theoretic incom-
pleteness’, Graduate Faculty Philosophy Journal, 25(2), 2004, pp.289–349. Erratum facing
page of contents in 26(1), 2005.
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1. Can we nevertheless still ask an analogous question? I.e. is
there an objective difference between 2 kinds of problems, or is
it just a difference in degree of simplicity?

2. If so, are there grounds for a positive answer? I.e., “Now that
we have accepted both axioms, all simple problems are deter-
mined?”

We recapitulate the basic facts. In 1931, Gödel proved his well-known the-
orem: for every ω-consistent formal system that contains arithmetic and is
recursively axiomatizable, as we would say now, there exist sentences φ (in the
language of the system) such that neither φ nor ¬φ is derivable in the sys-
tem. Such a sentence is said to be undecidable in the system and renders it
incomplete. The three conditions on a formal system mentioned in the theorem
mean the following. 1. ω-consistency means that the system should not prove
(for some P definable in it) ∃x¬P (x) while also proving P (n) for each natural
number term n. 2. Containing a sufficient amount of arithmetic means that
the operations of addition, multiplication, successor, as well as the notion of
an order, should be definable in the system, and that the principle of induction
should be included. 3. Recursive axiomatizability means that the axioms should
be either finite in number or enumerable by an effective procedure. (In 1936,
J.B. Rosser showed that the requirement of ω-consistency can be weakened to
consistency.)

The class of formal systems to which the incompleteness theorem applies
includes all of the more ambitious formal systems that had been formulated
up till 1931: Principia Mathematica, the systems devised by Hilbert and his
followers, and, in particular, the system of set theory that is still the canonical
system today, ZFC.

Although the theorem shows that, for each system of the type described,
there are undecidable sentences, it does not show that there is a sentence that
cannot be decided in any possible system of that type. However, the theorem
does not exclude the existence of such a sentence either. If it exists, it could be
called absolutely undecidable (we will introduce a slightly more refined termi-
nology below).6

In this paper, we will be concerned with incompleteness and undecidability
in ZFC and related systems for set theory. The question that will be in the
foreground most, and in the background all of the time, is: do absolutely unde-
cidable propositions exist in set theory? We will analyse specifically how Gödel’s
thinking about this question developed in his published and unpublished work,
closing with considerations on the present situation in set theory in the light of
Gödel’s ideas.

1.2 Splitting of the notion of undecidability

Gödel held that the axioms of classical Zermelo-Fraenkel set theory (or some
system equivalent to it) are true and evident. It must have been they that he
had in mind when he said, in 1966, that the axiomatization of set theory was
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the greatest advance in its foundations prior to forcing.7 But they cannot be
more than an initial segment of the correct axioms for all of mathematics, as
by the incompleteness theorems, there are sentences φ (in the language of ZFC)
that are undecidable in ZFC. With Carnap (see above), one can ask whether
the collection of undecidable sentences is exhausted by those constructed in the
proof of the incompleteness theorem, and this question is central to the present
paper.

Clearly, any φ undecidable in ZFC falls into at least one of the following
nominally defined categories, which split the notion of undecidability:

1 sentences that are undecidable in ZFC but seen to be true (and hence
decided informally) by reflecting on the proof of their undecidability in
ZFC.

2 sentences that are undecidable in ZFC, and are not decided informally by
reflecting on the proof.

3 sentences that are undecidable in ZFC, but are decidable in an evident
extension (or series of extensions) of ZFC.

4 sentences that are undecidable in ZFC, are not decidable in any evident
extension of ZFC, but can be decided by human reason.

5 sentences that are undecidable in ZFC, are not decidable in any evident
extension of ZFC, and cannot be decided by human reason.

These categories are not all mutually exclusive, for example φ may be of both the
first and third category, or of the second and the third (if one finds a new axiom
by other means than reflecting on undecidability proofs), or of the second and
fifth. The questions at hand are the following: of which of these five categories,
if any, can we establish that they are not empty? And if a category is not
empty, do its members admit of a systematic characterization? It is crucial
here that “extension” is taken in a non-trivializing sense: one adds only axioms
that are seen to be true or evident. Simply adding φ without considering its
evidence would miss the point. Note that an extension of a formal system may
also consist in, or also involve, adding higher types to the logic or otherwise
changing the logic in some appropriate way.8

Category 4 seems to be necessarily empty. For, on any reasonable informal
understanding of proof, a proof of a sentence (or of its negation) proceeds from
evident axioms, by evident inferences, to its conclusion; it is, as Gödel put it, ‘not
. . . a sequence of expressions satisfying certain formal conditions, but a sequence
of thoughts convincing a sound mind’.9 So conversely, for any mathematical
sentence that human reason decides, it should be able to indicate the evident
axioms and evident inferences on the basis of which the decision was made. But
if this can be done (i.e., if oracles are not admitted), these can be formalized and
used to extend ZFC. (Note that ‘arguments from success’ only lead to probable
decisions, and such arguments are therefore not excluded by the emptiness of
category 4.)
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To demonstrate the non-emptiness of category 1, we can simply use an un-
decidable statement constructed along the lines of Gödel’s proof of the incom-
pleteness theorem. By theorems of Gödel (1938) and Cohen (1963) that will
play an important role in this paper, one can take φ = CH to give an exam-
ple of a statement in category 2 (and hence not in category 1). But it is at
present not known whether CH exemplifies the non-emptiness of category 3 or
5 (excluding 4 for the reason given above). It must be in one of them, and, as
3 and 5 are disjoint, exactly one. At the end of this paper we will consider the
suggestion associated with the Woodin school to the effect that CH is (close
to being) solved now. What can be said about category 5 will depend on how
strong and specific one’s views are on the nature of reason as well as on the
ontology of mathematics.10

A distinction that cuts across this classification of statements undecidable in
ZFC into five categories is that between statements that do play a role in mathe-
matical practice and those that do not. This may of course change through time
and therefore unlike the five-fold classification this one is not fixed. To consider
these two distinctions in tandem is motivated by the fact that the undecid-
able sentences constructed in the proofs of Gödel’s incompleteness theorems are
manifestly different from anything found in mathematical practice so far, and
in that specific sense not mathematically meaningful; we will take this specific
sense as our definition of mathematical meaningfulness. The greatest interest is
in the question whether a statement can be found that is both mathematically
meaningful and absolutely undecidable, for that would make urgent the search
for a new evident axiom from a practical perspective.

To a realist, the mathematical meaningfulness of a statement simply means
that it has mathematical content (or is equivalent to one that does), in the
sense that the terms in the statement refer.11 Such statements can be called
“contentual” (“inhaltlich”). To a (Hilbertian) formalist a certain statement may
well be relevant to mathematics without being contentual (think of any practi-
cally relevant part of classical mathematics that is not finitary). On the other
hand, this kind of background commitment associated with the realist and the
formalist is often lacking in the the colloquial use of the phrase “mathemati-
cally meaningful” among mathematicians. That use rather emphasizes typical
aspects (often of an aesthetic nature) such as being “natural,” “fundamental,”
“elementary,” or “interesting.”

The question as to the cardinality of the continuum, a decision of CH, ex-
emplifies many aspects of mathematical meaningfulness. As Gödel describes it
in the 1947 paper, it is one of “the most fundamental questions in the field”; a
question “from the “multiplication table” of cardinal numbers.”12

So the analysis of the phrase “how many” unambiguously leads to
a definite meaning for the question stated in the second line of this
paper: The problem is to find out which one of the ℵ’s is the num-
ber of points of a straight line or (which is the same) of any other
continuum (of any number of dimensions) in a Euclidean space.13
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1.3 Gödel’s view on undecidability in 1931

How were incompleteness phenomena understood by Gödel in 1931? Did he ex-
pect all undecidable statements to be in category 1, (coded) metamathematical
statements (e.g., involving provability, its particular case consistency, or com-
putability) or in any case equivalents of those? Or did he think there are also
mathematically meaningful statements which would be in category 2?

In the paper in which Gödel published his incompleteness theorem, he does
not go into questions of this type, but in a lecture text which probably is from
shortly after (*1931? ), Gödel mentions a concept of “absolute undecidablity”
in relation to his theorem:

The procedure just sketched furnishes, for every system that satis-
fies the aforementioned assumptions, an arithmetical sentence that
is undecidable in that system. That sentence is, however, not at
all absolutely undecidable; rather, one can always pass to “higher”
systems in which the sentence in question is decidable. (Some other
sentences, of course, nevertheless remain undecidable.)14

This quotation motivates us to make the following terminological point. As we
will see below, at different times Gödel used the term “absolutely undecidable”
in different ways. Around 1940 he used it in connection with category 2, but
from 1951 onward it refers strictly to category 5 (which is a sub-category of
2). The latter may be the more natural thing to do in any case, for if all we
know is that a sentence is of category 2, it is not excluded that we will come to
find and believe an axiom that shows the sentence is also of category 3, and the
sentence will have been decided after all. No such hope can be entertained if it
is somehow shown that a sentence is of category 5, and that circumstance would
earn it the predicate “absolutely undecidable” with more justification. We will
use “weakly absolutely undecidable” for category 2 and “strongly absolutely
undecidable” for category 5.

In the quotation just given, the correct reading of “absolutely undecidable”
seems to be “weakly absolutely undecidable,” as the reason that Gödel goes
on to present is one that distinguishes category 2 from category 1 but does
not contain any element that at the same time distinguishes category 5 from
its supercategory 2. The reason that Gödel gives is that the higher system in
turn is incomplete, and therefore still leaves formally undecided other sentences,
which then must have been undecidable in the first system as well. These are
decided again in even higher systems, and the story repeats itself, ad infinitum;
but it never leads out of category 1.15 So it seems that Gödel around 1931
mentions (in effect) the notion of weak absolute undecidability only once and
in passing.
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2 V = L

2.1 1935–1940: A candidate for weak absolute undecid-
ability

But various people had already begun to entertain the possibility that CH may
be weakly absolutely undecidable, i.e., that it was not decidable in the known
systems for set theory. As early as 1922, Skolem (in a lecture in Helsinki) had
conjectured that CH cannot be decided from the axioms given in Zermelo 1908.16

Hilbert’s well-known attempt in 1925 (published in 192617) to demonstrate CH
was, as Gregory Moore put it, “met with widespread skepticism, in particular
from Fraenkel (1928) and Luzin (1929),”18 and in Bologna in 1928, Bernays
and Tarski discussed with each other the possibility of independence of CH
from ZFC.19 The next year, Tarski mentioned this possibility in print; in the
closing paragraph of “Geschichtliche Entwicklung und gegenwärtiger Zustand
der Gleichmächtigkeitstheorie und der Kardinalzahlarithmetik”20, he says that,
although he does not have any argument to offer, he strongly suspects that
CH will in the future be shown to be independent from ZF and ZFC. And
although Gödel in the lecture *1931? does not speculate on CH being formally
undecidable in ZFC,21 he too may have had it in the back of his mind then—to
Wang he said in 1976 that “it must have been in the summer of 1930 when
[I] began to think about the continuum problem and also heard of Hilbert’s
proposed solution.”22 But certainly no one at the time was in a position to turn
the suspicion of independence into a convincing (partial) argument. This may
explain why Gödel mentions the notion of (weakly) absolute undecidability but
does not give a (possible) example. He did though have a sense where to look
for a partial result, i.e. showing not (as Hilbert had attempted to do) CH itself,
but its consistency with the axioms of ZFC. He must have arrived at a good
idea quickly, for, as Kreisel reports on his conversations with Gödel, “he had
the general idea for his proof of GCH for L as a student.”23

What Kreisel is referring to is the hierarchy of sets L that Gödel was to
define in 1935 and which enabled him to establish that, if ZFC is consistent,
so is ZFC+CH (and, what is more, ZFC+GCH). The strategy is the following.
One formulation of CH is: there are ℵ1 subsets of ℵ0. So one could try to
find a restricted notion of set that on the one hand satisfies the axioms of ZFC
but on the other is so strict that it allows one to keep count of the subsets
generated from every set. This strictness can be given form in a hierarchy that
starts, naturally, with the empty set at the bottom level, on top of which, in a
controlled way so as not to lose count, higher and higher levels of sets are built
out of the ones previously obtained. This hierarchy does perhaps not capture
the full notion of set because the notion of set used may be too restricted for
that; but if it is shown that within a model for ZFC one can build this hierarchy
L and that in this “inner model” CH is true, then it has been shown that if
ZFC is consistent (i.e., has a model), so is ZFC+CH. (Appropriately, Kreisel in
his memoir of Gödel gave his section on constructible sets the subtitle “reculer
pour mieux sauter”.24) The consistency proof is relative to ZF; the consistency
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of ZF itself has not yet been established in the strongest sense of the word.
To obtain a precise definition of such a hierarchy, two fundamental choices

have to be made: what ordinals will there be to serve as indices of the subsequent
levels in the buildup of the hierarchy, and what is the method to build a higher
level from the ones beneath it? For the first, Gödel introduced a notion of
predicative definability in first-order logic; impredicative definitions25 would not
respect the idea of constructing the universe from the ground up and thereby
make it impossible to count.26 As for the second question, Gödel told Wang
that he experimented “with more and more complex constructions [for obtaining
the ordinals needed to built set-theoretical hierarchies] for some extended period
between 1930 and 1935.”27 The breakthrough came in 1935 and consisted in the
decision simply to take the classical ordinals as given. In particular, this means
that one takes the non-definable and non-denumerable ordinals as given. This
is a characteristically realist idea and was what distinguished L from Gödel’s
earlier efforts at constructing hierarchies of sets.28 To take the ordinals as given
does not detract from the value of the proof, as Gödel explained (in the Brown
lecture):

If you want to use [the set theory based on L ] for giving an unobjec-
tionable foundation to mathematics our procedure would of course
be preposterous, but for proving the consistency of the continuum
hypothesis it is perfectly all right, since what we want to prove is
of course only a relative consistency of the continuum hypothesis;
i.e., we want to prove its consistency under the hypothesis that set
theory, including all its transfinite methods, is consistent. There-
fore we are justified in using the whole set theory in the consistency
proof (because if a contradiction were obtaind from the continuum
hypothesis and if, on the other hand, we could prove its consistency
by means of set-theoretical arguments, then these set-theoretical ar-
guments would be contradictory).29

We will now be somewhat more precise. Given a set x, a first-order formula
φ(y, a1, a2, . . . an) (where all quantifiers range over x) defines a subset of x,
namely {y ∈ x|φ(y, a1, a2, . . . an)}, where the ai are specific elements of x that
form a (possibly empty) list of parameters. Let D(x) denote the set of all sets
thus definable from the set x. Then L is defined as follows (α ranging over all
the classically admissible ordinals):

L0 = ∅
Lα = D(Lβ) if α = β + 1

Lα =
⋃
β<α

Lβ if α is a limit ordinal

L =
⋃
Lα

The sets that occur at some Lα Gödel called “constructible.” (To avoid un-
intended bewitchment by the terminology, one should keep in mind that this
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notion goes far beyond what a constructive mathematican would accept.) The
idea that every set is constructible, in other words the idea that the universe
of all sets V coincides with the collection L, found its formulation in the axiom
V = L.

The use of “V ” to refer to the universe of all sets has its origin, via White-
head and Russell’s Principia Mathematica, in Peano; Kreisel reports that what
Gödel had meant by “L” was “lawlike.”30 But as Kreisel goes on to say that
“at the time [i.e. of the consistency proof] he toyed with the idea that L con-
tained all legitimate definitions of sets,” one may also suggest that originally
“L” rather stood for the German “legitim (definiert, definierbar),” legitimate in
the sense that the definitions are predicative and in terms of first-order logic.
That “lawlike” starts with the same letter would then be a fortunate coincidence
of the linguistic kind. (In German, ‘lawlike’ is ‘gesetzmäßig’.)

Gödel’s motivation to look for hierarchies of sets, which eventually led him
to L, had been to work on CH. But the first result he actually showed about
L, after having verified that the ZF axioms hold for it, was that the axiom of
choice (AC) holds in it: if ZF is consistent, so is ZF+AC. He practically kept
this secret at first though he did tell von Neumann when visiting Princeton that
year. Also in 1935, Gödel conjectured that V = L → CH and that therefore
CH is consistent with ZF and with ZFC. He set out to prove this,31 but for
a long period he struggled with depression and poor health. The proof that
V = L→ (G)CH he essentially found during the night of 14 to 15 Juni 1937.32

On December 15, 1937 he wrote to Karl Menger that he now was trying to
prove the independence of CH from ZFC (for which, given his earlier result, it
would suffice to show that ZFC+¬CH is also consistent), but without success
so far.33 He announced his consistency results in print in 1938.34 He did not
mention his expectation of independence, which however he did do in his lecture
in Göttingen in 1939.35 Consistency of ZFC+¬CH (and of ZF+¬AC) would in
fact be established by Paul Cohen in 1963 by a method called forcing.36 A
result by Shepherdson from 1953 made it clear that it is actually impossible to
use the method of inner models for ¬CH (or ¬AC).37

In 1938, Gödel claims that

the consistency proof for A [V = L ] does not break down if stronger
axioms of infinity (e.g., the existence of inaccessible numbers) are
adjoined to T [or to ZF]. Hence the consistency of A seems to be
absolute in some sense, although it is not possible in the present
state of affairs to give a precise meaning to this phrase.38

This turned out to be only partially correct, as many of the stronger large car-
dinal axioms that have later been proposed and are believed to be consistent
(e.g., measurable cardinals) have been shown to imply V 6= L; but it is correct
for inaccessible, Mahlo and the very large weakly compact cardinals. The reser-
vation Gödel expresses refers to the fact that what was still missing is a way to
make exact the notion of the whole transfinite series of possible extensions by
axioms of infinity.39 Could Gödel’s reason for the suggestion he made in 1938
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have something to do with a passage he in 1972 urged Wang to include in the
latter’s book From Mathematics to Philosophy?

There used to be a confused belief that axioms of infinity cannot
refute the constructibility hypothesis (and therefore even less the
continuum hypothesis) since L contains by definition all ordinals.
For example, if there are measurable cardinals, they must be in L.
However, in L they do not satisfy the condition of being measurable.
This is no defect of these cardinals, unless one were of the opinion
that L is the true universe. As is well known, all kinds of strange
phenomena appear in nonstandard models.40

Or had it simply been difficult to imagine the very possibility that large cardinals
could be of such a different kind that they violate V = L? Indeed, when Dana
Scott showed in 1961 that a measurable cardinal (introduced by Ulam in 1930)
would do just that, Gödel commented that that is an axiom of infinity “of an
entirely new kind,” as had become clear only shortly before.41 In a (draft)
letter to Tarski of August 1961, he writes: “You probably have heard of Scott’s
beautiful result that V 6= L follows from the existence of any such measure for
any set. I have not checked this proof either but the result does not surprise
me.”42 Presumably, this would have surprised him in 1938.

In 1939, Gödel explained his consistency proofs of AC and CH in a lecture
in Göttingen;43 on that occasion he voiced his suspicion that V = L is strongly
absolutely undecidable:

The consistency of the proposition A (that every set is constructible
[V = L ]) is also of interest in its own right, especially because it is
very plausible that with A one is dealing with an absolutely unde-
cidable proposition, on which set theory bifurcates into two different
systems, similar to Euclidean and non-Euclidean geometry.44

Gödel’s remark in Göttingen about Euclidean and non-Euclidean geometry is
reminiscent of his remarks in the second edition of the Cantor paper from 1964.
There however he makes a comment to quite the opposite effect:

[I]t has been suggested that, in case Cantor’s continuum problem
should turn out to be undecidable from the accepted axioms of set
theory, the question of its truth would lose its meaning, exactly as
the question of the truth of Euclid’s fifth postulate by the proof
of the consistency of non-Euclidean geometry became meaningless
for the mathematician. I therefore would like to point out that the
situation in set theory is very different from that in geometry, both
from the mathematical and from the epistemological point of view.45

Gödel then explains this in terms of weak and strong extensions (see below).
In making the comparison with geometry in the Göttingen lecture, he probably
did not have the notion of inner model in mind at all, but merely the fact that
there are two consistent ways of extending absolute geometry and that it does
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not make sense to ask which one is the correct one; similarly, he thought at the
time, extending ZFC by V = L or by V 6= L are both consistent and it does
not make sense to ask which extension is the correct one. (His conviction of the
consistency of the axiom stating that nonconstructible sets exist foreshadows in
a way the generic sets that Cohen would later use.)

In this lecture Gödel does not explicitly define what he means by “absolutely
undecidable,” but in his lecture at Brown University in 1940, when referring to
the very same result, he defines the related notion of absolute consistency by
saying that his consistency proof is absolute in the sense that it is “independent
of the particular formal system which we choose for mathematics.”46 By the
formal systems that can be chosen he evidently cannot mean just any formal
system, as such a system could contain V 6= L as an axiom or an axiom implying
it. It is far more likely that he means first of all the systems he also had in mind
in the Göttingen lecture the year before, in which he had said that “as is well
known, there are different mathematical formalisms, such as the Russellian, the
Hilbertian, the formalism of axiomatic set theory, and others”;47 and in addition
to those, their extension as suggested by applications of the incompleteness
theorem. Indeed, in the Göttingen lecture Gödel went on to mention that “today
in fact we know that every mathematical formalism is necessarily incomplete
and can be extended by means of new evident axioms. So, strictly speaking,
there is no one mathematical formalism at all, but rather only an unsurveyable
sequence of ever more comprehensive formalisms.” This is a reference to his
own incompleteness theorem (as it is this that justifies the adverb in “necessarily
incomplete,” and thereby his speaking of a “sequence”). The new evident axioms
then are the undecidable sentences generated by the proof of the incompleteness
theorem (which we can see to be true), in particular, consistency statements, or
(more generally) corresponding axioms of infinity (adding new types or levels
to the iterative hierarchy). He then says that his consistency proof of CH “is
applicable to all formalisms hitherto set up, and one can show that it holds
unchanged even for the aforementioned extensions by new evident axioms, so
that consistency therefore holds in an absolute sense.” Because of the reference
to the “aforementioned extensions,” “absolute consistency” here seems to mean:
consistent with ZFC and any series of extensions of it that result from adding
statements supplied by the incompleteness theorem. By analogy, “absolutely
undecidable” then means: undecidable in ZFC and in any series of extensions
of it that result from adding statements seen to be true from the proof of the
incompleteness theorem.

That would put Gödel’s “absolutely undecidable” statements, which he sug-
gests here includes V = L, in category 2, but not in category 5. Not without
further argument, that is; but that is not to be found in the papers under discus-
sion. Why, then, did he call these statements “absolutely undecidable”? Here
we stumble upon a difficulty in Gödel’s writings on the theme of undecidability
before 1947: besides V = L or its negation, he seems to have thought up till then
that all axioms to extend ZFC have to be statements seen to be true from the
proof of the incompleteness theorem (generally, axioms of infinity), and to have
built this into his notion of absolute undecidability. But why would whether
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a statement is absolutely undecidable or not depend only on ZFC and axioms
of infinity? In 1947, Gödel himself suggested that axioms of another type may
be needed too. We will come back to this when discussing the paper from that
year below.

One is presented with probably this same difficulty by a lecture manuscript
which is likely to have been written between 1938 and 1940.48 Its year is there-
fore referred to in CW III as *193?, and we will follow this practice. Of interest
in this lecture for the present discussion is that Gödel relates his ideas on abso-
lute undecidability explicitly to Hilbert, and that he makes conjectures about
the complexity of the simplest absolutely undecidable statements. Instead of
ZFC specifically, he here reasons more generally about formal systems on which
the only demand is that they can express Diophantine propositions of a specific,
simple type. Gödel shows, as he had first done in lectures at Princeton 1934,
that the undecidable sentence exhibited in his 1931 paper can be taken to be
“almost Diophantine,” i.e. of “class A,” which is defined as the class of sentences
of the form

(∀a1, . . . , am)(∃x1, . . . , xn)D

where D is a Diophantine equation with natural number coefficients. This is
theorem 2 of the manuscript, where theorem 1 asserts the undecidability of class
A, in anticipation of the solution of Hilbert’s Tenth Problem in the early 1970’s
due to Matiyasevic, Davis, Robinson and Putnam, which obtains theorem 2
for sentences of class A but with no universal quantifiers. Gödel remarks in
the manuscript that the result delineates “the smallest portion of mathematics
which cannot be completely mechanized” so far known.49 This part of the paper,
almost the whole, was meant by Gödel as a collection of scattered previous
results.50 But whereas the undecidable statement of class A is of category 1,
Gödel suspects that there is a statement of a very similar structure, which is
related to CH, but behaves very differently:

As to problems with the answer Yes or No, the conviction that they
are always decidable, remains untouched by these results [i.e., the
existence of undecidable statements in any system that includes class
A]. However, I would not leave it unmentioned that apparently there
do exist questions of a very similar structure which very likely are
really undecidable in the sense which I explained first. The difference
in the structure of these problems is only that also variables for
real numbers appear in this polynomial. Questions connected with
Cantor’s continuum hypothesis lead to problems of this type. So
far I have not been able to prove their undecidability, but there are
considerations which make it highly plausible that they really are
undecidable.51

What does Gödel mean here by the phrase “really undecidable in the sense which
I explained first”? At the beginning of the text, Gödel recalls “Hilbert’s famous
words that every mathematician is convinced that for any precisely formulated
mathematical question a unique answer can be found.”52 Gödel points out
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that, if this conviction is studied in the context of mathematical logic and proof
theory, the incompleteness theorem suffices to refute it even for number theory.
However, he adds:

[I]t is clear that this negative answer may have two different mean-
ings: (1) it may mean that the problem in its original formulation
has a negative answer, or (2) it may mean that through the transi-
tion from evidence to formalism something was lost.53 It is easily
seen that actually the second is the case, since the number-theoretic
questions which are undecidable in a given formalism are always
decidable by evident inferences not expressible in the given formal-
ism.54

The sense of undecidability that Gödel, as he says at the end of the paper,
‘explained first’, is the one labelled (1) in this quotation from the beginning
of the paper; this means that at the end of the lecture he says that there do
seem to be, contrary to Hilbert’s conviction, precisely formulated mathematical
questions for which no unique answer can be found.55 Such questions would be
of category 5; but to reach such a strong conclusion would seem to be beyond
the means available to Gödel then (or later; but see the section on rationalistic
optimism, below). Thus, Parsons comments on the closing passage of *193?
that

It is hard to see what Gödel could have expected to “prove” con-
cerning a statement of the form he describes other than that it is
consistent with and independent of the axioms of set theory, say ZF
or ZFC, and that this independence would generalize to extensions
of ZFC by axioms for inaccessible cardinals in a way that Gödel
asserts that his consistency result does.56

The puzzlement seems to be caused by Gödel’s particular and limited view at
the time on what absolute undecidability consists in.

We summarize the discussion so far by saying that Gödel seems to have
identified for a while categories 2 and 5. In the remainder of this section, we
address two questions: What could the polynomials mentioned at the end of
the *193? lecture have been? And did he ever think that V = L is true?

As Gödel says that the polynomials he has in mind are connected to CH, one
may at first think of equivalents of “Every real is constructible” or of V = L. For
what other candidates for absolute undecidability could he have had in view?
The passage at the end of *193? bears a close resemblance to one in the Brown
lecture of 1940:

A [every real is constructible] is very likely a really undecidable
proposition (quite different from the undecidable proposition which
I constructed some years ago and which can always be decided in
logics of higher types). This conjectured undecidability of A be-
comes particularly surprising if you investigate the structure of A in
more detail. It then turns out that A is equivalent to a proposition
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of the following form: (P )[F (x1, . . . , xk, n1, . . . , nl) = 0], where F is
a polynomial with given integer coefficients and with two kinds of
variables xi, ni, where the xi are variables for real numbers and the
ni variables for integers, and where P is a prefix, i.e., a sequence
of quantifiers composed of these variables xi and ni. I have not yet
succeeded in proving that A, and hence this proposition about this
polynomial, really is undecidable, but what I can prove owing to
the results which I presented in this lecture is of course this: Either
this proposition is absolutely undecidable or Cantor’s continuum hy-
pothesis is demonstrable (since A implies the continuum hypothesis).
But I have not yet been able to determine which one of these two
possibilities is realized.57

“Every set is constructible” implies “Every real number is constructible”, as
real numbers are conceived of as particular sets. The converse does not hold, for
there exist all kinds of other sets than the reals. However, both imply CH, and
perhaps that is why Gödel chose to “denote by A or An the proposition which
says that every real number (and more generally) every set is constructible.”58

On the assumption that the equivalence that Gödel claims indeed exists, we have
chosen to gloss A by “every real is constructible”; for by forcing arguments, for
no m,n is V = L equivalent to a Πm

n statement.59

“Every real is constructible” does not admit of a Π1
2-equivalent, by Shoen-

field’s absoluteness lemma. It is a corollary of this theorem that any Π1
2 state-

ment is absolute for any transitive model of ZFC that contains all countable
ordinals.60 “Every real is constructible” then cannot be Π1

2, for there are tran-
sitive models of ZFC containing all countable ordinals and also non-constructible
reals. So neither statement that Gödel denotes by “A” is equivalent to a poly-
nomial of the form he has in mind at the end of the paper *193? ; of course
it cannot be asked that Gödel had known this in the 1930’s. Notice that this
particular condition on the form of these polynomials is no longer made in the
Brown lecture. This suggests the following possible explanation of the situa-
tion: assume that *193? indeed was written before the Brown lecture.61 Then
it could be that while working on the former, Gödel still suspected that V = L
or “every real is constructible’ had a Π1

2-equivalent. In the last line of *193?,
Gödel says about the unspecified polynomials: “So far I have not been able to
prove their undecidability, but there are considerations which make it highly
plausible that they really are undecidable”.62 In the possible explanation that
we suggest, these considerations would involve two stages: first, to establish Π1

2-
equivalents of “Every real is constructible” or of V = L, and second, to establish
that the latter two “really are undecidable.” But in the interval between the
two lectures he came to realize (or strongly suspect) that the first stage cannot
be completed. Moreover, or as part of this realization, in that interval he had
come to see that “every real is constructible” is essentially Π1

3. The second stage
remained, and it is this one that survived in the Brown lecture (and beyond,
until Cohen’s work).

It has been suggested (e.g., by Martin Davis and by Gregory Moore) that
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upon introducing V = L, at first, Gödel thought that it is true.63 To be sure,
Kreisel reports that “At the time he toyed with the idea that L contained all
legitimate definitions of sets”;64 the crucial step to arrive at the identification of
V and L would then be to assert that, besides the classical ordinals which are
taken as given, no other sets but the legitimately definable (i.e., constructible)
exist. As evidence for the suggestion that Gödel indeed identified V and L,
Davis and Moore point to a statement that Gödel made when announcing his
consistency proof of CH in 1938:

The proposition A [V = L ] added as a new axiom seems to give
a natural completion of the axioms of set theory, in so far as it
determines the vague notion of an arbitrary infinite set in a definite
way.65

Naturality is a fine thing but it does not always extend to plausibility, let alone
truth; for would V = L determine the vague notion in the right way? Gödel’s
formulation leaves this very much open. It qualifies the axiom as natural “in so
far as” it sharpens the notion of an arbitrary set “in a definite way” (emphasis
ours). Even someone who is convinced that V = L is false would agree that it
thus sharpens the notion of arbitrary set. Gödel’s formulation does not at all
exclude that there are other definite ways to determine the vague notion.

An additional suggestion offered by Davis66 is that Gödel’s use of the term
“axiom” for V = L in his monograph on the consistency of CH from 194067

is indicative of his holding it true; but Gödel may well have meant to use the
term in a formal sense that is not related to truth, as he would do for example
on p. 184 of 1947, in particular when he writes “from an axiom in some sense
directly opposite to this [axiom of constructability] the negation of Cantor’s
conjecture [CH ] could perhaps be derived.”68

In 1938, Gödel only mentions the consistency of V = L and says nothing
about V 6= L. Did the reason he gives for thinking V 6= L is also absolutely
consistent occur only later? In any case, during the period that Gödel considered
V = L as well as its negation absolutely consistent (which period includes the
Göttingen lecture from 1939, arguably the lecture *193?, and the Brown lecture
from 1940), he cannot, given his views, reasonably have held V = L true. For
to hold V = L true under those circumstances would be to claim that V = L is
of category 4, and as we have explained it is obvious that that category should
be empty. Note that in Göttingen in 1939, after having named two “interesting
consequences” of V = L (one of which being CH), he adds merely that “besides,
the consistency of A [V = L ] has a certain interest in and of itself”;69 one would
have expected a stronger formulation if he had believed that V = L is moreover
true.

2.2 1947: . . .but not for strong absolute undecidability

As V = L implies CH, any argument against CH would also be an argument
against V = L. In 1947, in “What is Cantor’s continuum problem?,” Gödel
adduces a number of reasons why CH is probably false. By implication, these are
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reasons why V = L is probably false (and to that extent indicates that V = L
is not in category 5); indeed, he writes that “not one plausible proposition
is known which would imply the continuum hypothesis.”70 The reasons that
Gödel presents all consist in a fact and a judgement; the fact being of the
form “It has been shown that CH has consequence P ,” and the judgement that
P is very implausible or paradoxical.71 Gödel mentions that these facts were
“not known or not existing at Cantor’s time.” He then gives a list of such
facts, referring to results published by Luzin in 1914, by Sierpiński between
1924 and 1935 (one of them with Braun), and by Hurewicz in 1932.72 Given
these dates, it is somewhat surprising that Gödel in his lectures in 1939–1940
instead of mentioning them suggests that V = L is not only undecidable in
ZFC but “absolutely undecidable.” As we have seen, it is not in every case
immediately obvious what Gödel meant by that term, its reference seeming to
oscillate between categories 2 and 5. But in either case the facts in question
might have given him pause: either because they suggest inadequacy of the label
“absolutely undecidable” for category 2, or because they suggest that there are
considerations leading to a decision of V = L after all, on account of which it
would not be in category 5. This strengthens the suspicion, noted above, that
there was something missing in his notion of absolute undecidability at that
time.

On the other hand, Gödel’s willingness in the text *193? to identify his
(particular) notion of absolute undecidability with Hilbert’s informal notion
(category 5) is at odds with a conviction on which Menger reports. According
to Menger’s memoir, Gödel in 193973 had come to express “more and more
emphatically” his

early conviction that the right axioms of set theory had not yet been
discovered [. . .] He undoubtedly meant that no one had given an ad-
equate basic description of that world of sets in which he believed—a
description that would permit us to decide the fundamental prob-
lems of cardinality such as Cantor’s continuum hypothesis [. . .] I
[Menger] myself never heard from him any indications about where
he expected to find such axioms.74

It is difficult to see how Gödel could suggest the existence of statements that are
absolutely undecidable in Hilbert’s original sense if he at the same time thought
that axioms were still missing. The “early conviction” Menger had described in
somewhat more detail earlier on: “In 1933 he already repeatedly stressed that
the right (die rechten, sometimes he said die richtigen) axioms of set theory had
not yet been found.”75

3 1947: CH, conceptual incompleteness and re-
alism

The question raised by Menger’s memoir is perhaps not unanswerable, but at
present we have no suggestion to make. The fact remains that, even if Menger
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is correct about what Gödel told him in 1939, in the lectures of 1939-1940 (the
Göttingen lecture in 1939 took place on December the 15th, so after the stay at
Notre Dame that Menger reports on, which lasted from January till June), Gödel
certainly breathed no word about this conviction that fundamental axioms were
still missing from set theory. In 1947, however, he came to communicate it
publicly. From a philosophical point of view, the particular form this suggestion
takes is of a much broader importance (because it pertains directly to the very
foundations) than a decision of the specific problem of CH (by perhaps known
means) would be:

As for the continuum problem, there is little hope of solving it by
means of those axioms of infinity which can be set up on the basis
of principles known today (the above-mentioned proof for the undis-
provability of the continuum hypothesis, e.g., goes through for all of
them without any change). But probably there exist others based
on hitherto unknown principles; also there may exist, besides the or-
dinary axioms, the axioms of infinity and the axioms mentioned in
footnote 17 [axioms on higher-order properties of sets], other (hith-
erto unknown) axioms of set theory which a more profound under-
standing of the concepts underlying logic and mathematics would
enable us to recognize as implied by these concepts.76

Most of the subsequent attention of set theorists to this passage seems to have
gone into “axioms of infinity based on hitherto unknown principles.” Yet the
most important difference with the 1939–1940 lectures is that Gödel here has
come to consider the need for new axioms whose introduction is not suggested by
the incompleteness theorem but rather by conceptual analysis (this emphasizes
that incompleteness cannot be considered merely an artefact of formalization).
It might of course happen that justifications from the concept of set will also be
found for the large cardinals based on new principles. In 1966, Gödel pointed out
that so far this had not happened.77 As Charles Parsons remarked on the lecture
*193?, “There seems to be a clear conflict with the position of 1947; it’s hard
to believe that at the earlier time he thought that exploration of the concept of
set would yield new axioms that would decide them [i.e. the statements Gödel
in *193? suspected to be “really undecidable”].”78 (In fact, the large cardinal
program to decide CH has so far not provided a decisive solution.) In the 1947
paper, Gödel announced the idea of conceptual analysis a few pages before the
quotation just given, as follows:

This scarcity of results, even as to the most fundamental questions
in this field, may be due to some extent to purely mathematical
difficulties; it seems, however [. . .] that there are also deeper reasons
behind it and that a complete solution of these problems can be
obtained only by a more profound analysis (than mathematics is
accustomed to give) of the meanings of the terms occurring in them
(such as “set,” “one-to-one correspondence,” etc.) and of the axioms
underlying their use.79
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The suggestion, then, is that the usual systems of set theory such as ZFC, as
well as being formally incomplete as shown in the incompleteness theorems, are
also incomplete in another, more basic sense; they may be called “conceptually
incomplete.”80 It is not at all impossible that Gödel’s newly found interest in
the analysis of concepts was related to his study of Leibniz, but at present we
cannot be more specific. There certainly is a strong Leibnizian flavour to an
item in notebook XIV which is related to the “concepts underlying logic and
mathematics” that he mentioned in the quotation before the last one:81

The fundamental philosophical concept is cause [. . .] Perhaps the
other Kantian categories (that is, the logical [categories], including
necessity) can be defined in terms of causality, and the logical (set-
theoretical) axioms can be derived from the axioms of causality.
(Property = cause of the difference of things).82

Perhaps it is by such metaphysical derivations that Gödel hoped to clarify a
fundamental underdeterminedness of the concept of set by ZFC that he mentions
in 1947: one can take as a model for ZFC either his hierarchy L, or the class
of arbitrary multitudes irrespective of whether or not they are constructible
or in some other sense definable. But presumably it would be an essential
property of sets if they are definable. “This characteristic of sets, however, is
neither formulated explicitly nor contained implicitly in the accepted axioms of
set theory,” Gödel comments, and to that extent ZFC is, given these two very
different types of models it admits, not sharp enough an axiomatization.83

Gödel takes this view because he is a realist, meaning that he is “someone
who believes [the axioms of set theory] describes some well-determined reality,”
in which, in particular, “Cantor’s conjecture must be either true or false.”84

Kreisel aptly remarks that the constructible may also be taken to constitute
“some well-determined reality”;85 but there is a consideration that would limit
the use of that observation as an independent argument for holding that V =
L is true. Namely, if one holds that mathematical reality should admit of a
conceptual description that is entirely self-coherent, this certainly counts against
V = L:

[The constructibility hypothesis] is not a conceptually pure propo-
sition because it allows ordinal numbers definable only by impred-
icative definitions or not definable at all, but proceeds to reject all
further uses of impredicative definitions.86

(Borrowing a term Gödel once used to describe Hilbert’s formalism,87 from a
philosophical point of view one may describe L as “a curious hermaphroditic
thing.”) After his remark on mathematical reality, Gödel concludes about CH
that

its undecidability from the axioms as known today can only mean
that these axioms do not contain a complete description of this real-
ity: and such a belief is by no means chimerical, since it is possible
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to point out ways in which a decision of the question, even if it is un-
decidable from the axioms in their present form, might nevertheless
be obtained.88

(It is not obvious that only realists should find this sufficient reason to look for
new axioms.) He then describes two such ways, the one being that of conceptual
analysis and the other that of inductive arguments. We will discuss them below,
taking as our point of departure the version from 1964 (in which conceptual
analysis is tied to a specific notion of intuition).

An interesting example of the possibility of such conceptual advancement
Gödel gives in both versions is that of the inaccessible and the Mahlo cardinals.
This example is based on the iterative conception of set:

This concept of set [. . .] according to which a set is anything ob-
tainable from the integers (or some other well-defined objects) by
iterated application of the operation “set of,” and not something
obtained by dividing the totality of all existing things into two cat-
egories, has never led to any anitomy whatsoever; that is, the per-
fectly “näıve” and uncritical working with this concept of set has so
far proved completely self-consistent.89

Indeed, to Wang he later said that the iterative concept is “simply the correct”
concept of set. 90 It is this concept that he has in mind when he writes that

the axioms of set theory by no means form a system closed in itself,
but, quite on the contrary, the very concept of set on which they are
based suggests their extension by new axioms.91

The idea is that, as soon as one has determined exact ways of forming sets,
all the sets obtained by these specific means can be collected to form a set. If
one thinks of the ZFC axioms as a list of such exact means and then applies
this idea, one is led to inaccessible cardinals, and from there to the even larger
Mahlo cardinals92. Both give natural extensions:

[T]hese axioms show clearly, not only that the axiomatic system of
set theory as known today is incomplete, but also that it can be
supplemented without arbitrariness by new axioms which are only
the natural continuation of the series of those set up so far.93

One might have thought that the existence of inaccessibles requires a separate
assumption, involving some form of maximality, to be adjoined to the pure
concept of set; but this is not the case.94
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4 Abstract considerations about absolute unde-
cidability

4.1 1944, 1946: absolute provability

As was only to be expected, the different developments in Gödel’s thought con-
cerning these topics did not dovetail neatly but overlapped. We take a small
step back in time. Only a few years after writing the manuscript *193?, which
leaves open the possibility that there exist strongly absolutely undecidable sen-
tences, Gödel came to think that, on the contrary, category 5 is empty. In
1946, in his remarks before the Princeton bicentennial conference on problems
in mathematics,95, Gödel commented briefly on a notion of absolute demonstra-
bility (absolute in the sense of not depending on the formalism chosen). Such
a concept of demonstrability could of course not be entirely formalizable (be-
cause of his own incompleteness theorem), but Gödel does not exclude that a
concept of an appropriately different character can be found which would entail
the decidability of every set-theoretic proposition:

It is not impossible that for such a concept of demonstrability some
completeness theorem would hold which would say that every propo-
sition expressible in set theory is decidable from the present axioms
plus some true assertion about the largeness of the universe of all
sets.96

As we saw above, by 1947 Gödel thought that axioms of infinity need not be
sufficient and that axioms of a different kind may also be required (as in the
context of this quotation Gödel only speaks of axioms of infinity, we take it that
the one time he uses “largeness” he does not also have in mind the width of
the hierarchy; also note that largeness may well involve more than just cardi-
nality). What is in any case striking is the very suggestion here that a notion of
absolute provability (for set theory) is possible and moreover within reach. The
philosophical attitude required to make such a remark with some confidence
may well have been instilled or reinforced in Gödel by his study of Leibniz, for
the remark may be considered as a further development of the claim Gödel had
made at the end of the Russell paper, two years earlier:

Leibniz did not in his writings about the Characteristica universalis
speak of a utopian project; if we are to believe his words he had
developed this calculus of reasoning to a large extent [. . .] He went
even so far as to estimate the time which would be necessary for his
calculus to be developed by a few select scientists to such an extent
“that humanity would have a new kind of an instrument increasing
the powers of reason far more than any optical instrument has ever
aided the power of vision.” [. . .] Furthermore, he said repeatedly
that, even in the rudimentary state to which he had developed the
theory himself, it was responsible for all his mathematical discover-
ies.97
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What Gödel says here is amplified by a remark he is recorded to have made in
1948. Wang reports on a note by Carnap on a conversation with Gödel on March
3 of that year, according to which Gödel thought that Leibniz apparently had
obtained a decision procedure for mathematics.98 Gödel also said that, while the
system cannot be completely specific (again, because of his own incompleteness
theorem), it may still give sufficient indications as to what is to be done.99

At the same conference in Princeton in 1946, Tarski also spoke on decision
problems.100 He makes the distinction (for number theory) between undecidable
statements of category 1 and 2; as for problems in set theory, he mentions
Gödel’s recent work on the continuum hypothesis and expresses a belief that
certain problems of set theory may be independent (as we saw above, he had
done the same in 1929, when the actual situation in set theory had been less
clear). But unlike Gödel, he does not touch on the problem whether category 5
is empty or not.101

A remark Church made in the discussion at the Princeton conference should
be noted as well.102 Zermelo had in 1932 proposed a theory of infinite proofs
and had hoped that all true mathematical propositions were provable in this
extended sense. Church objected to proposals of this kind (as reported in the
minutes) that “while such systems might have considerable interest of one kind
or another, they could not properly be considered logics, insofar as logics ex-
plicate the notion of proof. For what we mean by a proof is something which
carries finality of conviction to any one who admits the assumptions (axioms and
rules) on which the proof is based; and this requires that there be an effective
(finitary, recursive) syntactical test of the validity of proposed proofs.”

4.2 1951: Strong absolute undecidability as an abstract
possibility

In 1951 Gödel returns to absolute undecidability. In what has become known
as the Gibbs lecture, he defines absolute undecidability to mean “undecidable,
not just within some particular axiomatic system, but by any mathematical
proof the human mind can conceive.”103 (As we already had occasion to recall,
in version III of the Carnap paper Gödel characterized the notion of proof
in “its original ‘contensive’ meaning” as “a sequence of thoughts convincing a
sound mind”.104) This time there is no ambiguity, and he clearly means strong
absolute undecidability. In particular he considers the possibility that among
the absolutely undecidable sentences in this sense, if there are such, will occur
standard Diophantine sentences of type Π0

2. He then goes on to establish his
“disjunctive theorem”:

Either mathematics is incompletable in this sense, that its evident
axioms can never be comprised in a finite rule, that is to say, the
human mind (even within the realm of pure mathematics) infinitely
surpasses the powers of any finite machine, or else there exist abso-
lutely unsolvable Diophantine problems of the type specified (where
the case that both terms of the disjunction are true is not excluded,
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so that there are, strictly speaking, three alternatives).105

Truth of the first disjunct of course would not mean that category 4 in our clas-
sification of undecidable sentences is non-empty after all. It is rather based on
the fact that the capacity to see the consistency of every consistent finite formal
system is not a capacity that a finite machine can have; so if the human mind
indeed has that capacity, it is not a finite machine. Its powers would moreover
surpass that of any finite machine “infinitely,” because for any finite machine
there exist infinitely many others of which that machine cannot establish their
consistency.

As Gödel adds, he means the disjunction to be inclusive: thereby the possi-
bility that category 5 is non-empty is, in effect, explicitly left open. That Gödel
considers it plausible that it is not empty may be inferred from his character-
ization, later on in the Gibbs lecture, of his platonistic view as “the view that
mathematics describes a non-sensual reality, which exists independently both of
the acts and [of] the dispositions of the human mind and is only perceived, and
probably perceived very incompletely, by the human mind.”106 An alternative
explanation would be that perception only allows us to establish basics such
as the axioms, and that for more complicated cases perceptions are not avail-
able and we have to resort to logic. Below we will make some remarks about
Gödel’s realist views on mathematics; here we would like to emphasize a point
made by Charles Parsons that the existence of (strongly) absolutely undecidable
propositions would in itself not be incompatible with realism.107

4.3 Phenomenology and rationalistic optimism

One consequence of the disjunctive theorem is this: If the mind is a finite
machine, then there are absolutely undecidable Diophantine problems. So one
might try to settle the issue by attempting to establish that the mind indeed is
a finite machine.

However, that was clearly not what Gödel had in mind, given the views he
expressed on Leibniz in the 1940s (see above), and, consistent with Leibniz’
position as the (grand)father of German Idealism, Gödel’s philosophical devel-
opment in the direction of idealistic philosophy; in particular, from 1959 on,
to Husserl’s transcendental idealism, which became the general framework for
his general philosophical endeavours and for the grounding of his mathemat-
ical realism in particular.108 One of Gödel’s aims was to use phenomenology
to clarify our understanding of the mind as well as of the ontology of mathe-
matics to such an extent that it would be established that the mind is not a
finite machine, and that there are no absolutely unsolvable problems.109 In a
draft letter from (June?) 1963 from Gödel to TIME Inc., regarding the up-
coming publication Mathematics in the Life Science Library, he connects his
phenomenological program to his famous “disjunctive conclusion” that either
the human mind infinitely surpasses the powers of any finite machine, or there
exist absolutely unsolvable Diophantine problems.110 In that draft letter, he
mentions the disjunction again, with the disjuncts in reverse order, and then
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comments:

I believe, on ph[ilosophical] grounds, that the sec[ond] alternative
is more probable & hope to make this evident by a syst[ematic]
developm[ent] & verification of my phil[osophical] views. This
dev[elopment] & ver[ification] constitutes the primary obj[ect]111 of
my present work.112

And another version of that passage reads

I conj[ecture] that the sec[ond] altern[ative] is true & perhaps can
be verified by a phenomenol[ogical] investigat[ion] of the processes
of reasoning113.

A sign of Gödel’s optimism at the time is that he saw to it that in the TIME
book itself, which appeared in 1963, it was reported that

“Either mathematics is too big for the human mind,’ he says, “or
the human mind is more than a machine.” He hopes to prove the
latter.114

In our discussion of the paper from 1964, we will make some comments on the
importance of phenomenology for Gödel’s realism. In later remarks on minds
and machines, Gödel brings into play what he calls “the rationalistic attitude,”
in connection to which he mentions the name of Hilbert but which also takes
up again the Leibnizian theme at the end of the Russell paper. In the 1970’s,
Gödel said to Wang:

Our incompleteness theorem makes it likely that the mind is not
mechanical, or else the mind cannot understand its own mechanism.
If our result is taken together with the rationalistic attitude that
Hilbert had and which was not refuted by our results, then (we can
infer) the sharp result that the mind is not mechanical. This is so,
because, if the mind were a machine, there would, contrary to this
rationalistic attitude, exist number-theoretic questions undecidable
for the human mind.115

In 1972 he went into a little more detail and gave the basic ideas of two argu-
ments, which ideas were then published in Wang’s From Mathematics to Phi-
losophy :

If it were true [that there exist number theoretical questions unde-
cidable for the human mind] it would mean that human reason is
utterly irrational by asking questions it cannot answer, while assert-
ing emphatically that only reason can answer them. Human reason
would then be very imperfect and, in some sense, even inconsistent,
in glaring contradiction to the fact that those parts of mathematics
which have been systematically and completely developed (such as,
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e.g. the theory of 1st and 2nd degree Diophantine equations, the lat-
ter with two unknowns) show an amazing degree of beauty and per-
fection. In these fields, by entirely unexpected laws and procedures
(such as the quadratic law of reciprocity, the Euclidean algorithm,
the development into continued fractions, etc.), means are provided
not only for solving all relevant problems, but also solving them in
a most beautiful and perfectly feasible manner (e.g. due to the exis-
tence of simple expressions yielding all solutions). These facts seem
to justify what may be called “rationalistic optimism.”116

The first argument is a deduction from the essence of reason. If one wishes
to attempt such an argument, it would be natural to do so in the context
of phenomenology, and this is what Gödel will have had in mind. It would go
together well with his intention (see above) to apply phenomenology to establish
that the mind infinitely surpasses any finite machine. Similarly, Gödel’s claim
that “In principle, we can know all of mathematics. It is given to us in its
entirety and does not change—unlike the Milky Way.”117 is probably more
easily interpreted in the context of Husserl’s transcendental idealism than in
others.

The second argument is a projection from very specific, highly successful
theories. This is a wholly different kind of argument. It is not in obvious
contradiction with phenomenological principles but it would take further work
to see exactly how it fits in with them. We notice that, as he would do in the
1964 version of the Cantor paper, Gödel here gives two types of argument for
a strong conviction: one based on intuition (here, of essences) and one from
success (of reason in a particular area). There is a comment by Gödel that is
related to this second argument and that contains a reflection on the fact that
Hilbert and he shared the conviction of the decidability of all mathematics:

We have the complete solutions of linear differential equations and
second-degree Diophantine equations. We have here something ex-
tremely unusual happening to small sample; in such cases the weight
of the sample is far greater than its size. The a priori probability
of arriving at such complete solutions is so small that we are enti-
tled to generalize to the large conclusion, that things are made to
be completely solved. Hilbert, in his program of finitary consistency
proofs of strong systems, generalized in too specialized a fashion.118

(We have not investigated to what extent this view on what Hilbert did is
historically accurate.) We will now see how Gödel in 1964 brought the strongly
rationalist position which he is likely to have held from early on but took many
years to articulate to bear on CH.
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5 1964: How to find new axioms and decide CH

5.1 The meaningfulness of the question

In the supplement to the 1964 edition of the Cantor paper, Gödel gives two
criteria for determining whether a statement that is independent of ZFC gives
rise to a decision problem that is meaningful. The first is a mathematical
criterion. It is in a sense a result in meaning analysis; on the other hand, at the
time Gödel could not demonstrate but only make plausible that CH satisfies it.
The second is a philosophical criterion. If one accepts the philosophical position
that motivates that criterion, then CH certainly satisfies it.

The mathematical criterion is based on a distinction between different kinds
of extensions of axiomatic systems. Consider the parallel axiom in geometry.
Both it and its negation are independent of the first four axioms (absolute geom-
etry), which can thus be extended either way, but for both extensions one can
find models in the unextended (Euclidean) system. But then the question of the
truth (simpliciter) of the parallel postulate “became meaningless for the mathe-
matician.”119 Rather, geometry bifurcates at the parallel axiom. Gödel speaks
of “weak extensions.” Something similar holds for questions about extensions
of the real field by the addition or non-addition of complex numbers.

Gödel then considers extensions that are stronger, in the sense that they
are not weak extensions and that moreover they also have consequences outside
their own domain. Gödel gives the example of inaccessible cardinals. In ZFC we
can define a model of ZFC + the statement “there are no inaccessible cardinals”
as follows:

Case 1. Suppose there are no inaccessible cardinals. Then V can be taken
to be the desired model.

Case 2. Suppose there is an inaccessible κ. Take the least such, and call it
λ. Cut the universe at Vλ and take everything below for the desired model.

Note that no axiom beyond ZFC has been invoked in the construction of the
model, so the statement “there are no inaccessible cardinals” is a weak extension
of ZFC. It does not result in new theorems about integers. On the other hand, it
is easy to see that in ZFC one cannot establish a model of ZFC + “there exists
an inaccessible cardinal” this way. The latter therefore is not a weak extension,
and, moreover, new theorems about integers follow from it. Hence it is an
extension in a stronger sense. Gödel’s mathematical criterion is then, that the
question as to the truth of an independent statement is meaningful if either it
or its negation (and presumably not both) would be a stronger extension of this
type. Applied to CH, Gödel notes that models of ZF+CH can be obtained by
an inner model construction; also CH is “sterile for number theory,”120 i.e. CH
implies no new theorems about the integers. Therefore CH is a weak extension
of ZF. Models of ZFC+¬CH cannot be thus obtained (Shepherdson’s result, see
above) and assuming that alternatives to CH may have consequences outside
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their domain, the question whether CH is true or false remains meaningful
even though it is independent of ZFC. That would show a difference between
the parallel postulate and CH. As it turns out, a simple forcing argument
demonstrates that the negation of CH is also sterile for number theory, as noted
by Gödel in the postscript to the paper. An asymmetry between the parallel
postulate and the CH lying in a somewhat opposite direction has been pointed
out by Kreisel: namely, in Hilbert’s second order axiomatization the parallel
postulate is still independent, whereas second order CH is decidable.121 This
demonstrates, in Kreisel’s view, the significance of the first order/second order
distinction. In the section on the notion of success below, we will return to this
mathematical criterion.122

The philosophical criterion is based on Gödel’s realism. In the 1947 version,
he had already given the argument that CH has a fixed truth value because it is
a proposition about a well-determined reality. In our discussion of 1947 we have
alluded to this passage but did not quote it. In 1964 he repeats this passage
(with some changes in the formulation, which we have argued elsewhere reflect
his study of Husserl):123:

For if the meaning of the primitive terms of set theory as explained
on page 262 and in footnote 14 are accepted as sound, it follows
that the set-theoretical concepts and theorems describe some well-
determined reality, in which Cantor’s conjecture must be either true
or false and its undecidability from the axioms as known today can
only mean that these axioms do not contain a complete description
of this reality; and such a belief is by no means chimerical, since
it is possible to point out ways in which a decision of the question,
even if it is undecidable from the axioms in their present form, might
nevertheless be obtained.124

Robert Tragesser, in his book Phenomenology and Logic, explains that this
is “the extremely crucial statement” in Gödel’s considerations as to how the
continuum problem might be solved:

What is so important in this statement is the tie it makes between
our right to say that S [i.e., the domain of set theory] is a well-
determined reality (in which, say, CH is decided) and the discover-
ability of promising ways in which open problems (e.g., CH) about
the domain could be decided. Gödel spends the remainder of the
article presenting possible paths to a decision about CH. As long as
we can find such paths, S will seem to be the well-determined reality
we initially took it to be.125

The tie that Gödel makes here reflects his adoption of Husserl’s transcendental
idealism from 1959 onward. For one aspect of Husserl’s later philosophy that
was of particular importance to Gödel was the way it analysed the relations (1)
between the existence of (concrete as well as abstract) objects and consciousness
and (2) between consciousness and reason. Briefly, the basic principle of tran-
scendental idealism is that the objects that can be said to exist are exactly those
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that are in principle accessible to a consciousness that acts in accordance with
the evidence it obtains for those objects. To act in that way is precisely what
rationality in the most pregnant sense consists in. Thus, Gödel’s realism, after
having received its foundation in transcendental idealism, and his rationalism,
are intimately connected. One can even say that they are two sides of the same
coin.126

Tragesser continues:

Gödel may be viewed as giving an analysis of the elements of the pre-
hension of S and, on the foundations of that analysis, showing how
CH could possibily be decided. Such analysis, because it reflects
faithfully upon, and describes, the elements of an act of conscious-
ness (a prehension, in this case), is phenomenological analysis. We
can see here the critical importance of such analysis, viz., that it
provides possible paths to reasons better than arbitrary for holding
something to be true of a considered object or objective domain.127

Tragesser defined “prehension” as the “imperfect or incomplete “grasp” of a
purportedly objective state of affairs, where it is somehow known that the state
of affairs is imperfectly or incompletely given.”128 ZFC expresses a prehension of
the universe, in the sense that ZFC is not a complete axiomatization in the two
senses Gödel gives to the word “incomplete.’ Gödel suggests that on the basis
of this prehension, in other words, starting from the “incomplete description”
we have gotten of the set-theoretic universe so far, it is possible to proceed in
such a way as to decide CH. In the paper, he proposes two “truth criteria”129

for evaluating candidate axioms extending ZFC.

5.2 Two truth criteria for new axioms

5.2.1 Intuition

The strong notion of intuition invoked in the 1964 version of the Cantor paper
is one of the most conspicuous differences with the text from 1947. In the
larger context of Gödel’s philosophical development, it is natural that it should
have appeared, given Gödel’s intensive study of (and enthusiasm for) Husserl’s
phenomenology since 1959.130 The key passage in the 1964 paper is this one:

But, despite their remoteness from sense experience, we do have
something like a perception also of the objects of set theory, as is
seen from the fact that the axioms force themselves upon us as be-
ing true. I don’t see why we should have less confidence in this kind
of perception, i.e., in mathematical intuition, than in sense percep-
tion.131

Much has been written on the interpretation of this passage, and we refer
the reader to Parsons,132 Tieszen133, Tragesser,134 Van Atten and Kennedy,135

and, for background, Husserl, whose sixth Logical Investigation136 Gödel rec-
ommended to logicians in the 1960s137.
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The comparison of (abstract) intuition to (sense) perception in this passage
shows that Gödel means intuition in a technical sense, and as such it is just as
decisive as the intuitionists intend it to be. He is not talking about intuition
as (merely) a psychological fact here. Still, Gödel allows for mistakes even in
intuitions, but that is because intuition is not an all-or-nothing affair. It comes
in degrees.138 And ultimately, existence remains tied to (ideal) intuition, by the
basic principle of transcendental idealism.

The work that this intuition is meant to do with respect to the continuum
problem is to give a well-defined meaning to the question and indeed to decide it.
In 1964, Gödel writes, “That new mathematical intuitions leading to a decision
of such problems as Cantor’s continuum hypothesis are perfectly possible was
pointed out earlier (pages 264–265).”139

Gödel was aware that his talk of an objective realm of transfinite set theory
and of a faculty of intuition that has access to it would probably not be well
received. In fact, he had already feared that the 1947 version, which did not
even contain the strong views on mathematical intuition yet, would be subjected
to positivistic attacks by Benacerraf and Putnam in the introduction of their
planned anthology which was to contain it.140 Gödel not only overcame these
fears but he went ahead to include views even more opposed to positivism in
the revision of the 1947 paper that he went on to prepare for the occasion. But
perhaps it was a residual fear that motivated him to propose also an argument
from metaphysically less contentious premises that should lead to the desired
conclusion that CH can be decided.

This argument takes the existence of intuition not as an epistemological but
as just a psychological fact (where the former sense does, and the latter does
not, imply access to objects in reality):

However, the question of the objective existence of the objects of
mathematical intuition [. . .] is not decisive for the problem under
discussion here [. . .] The mere psychological fact of the existence
of an intuition which is sufficiently clear to produce the axioms of
set theory and an open series of extensions of them suffices to give
meaning to the question of the truth or falsity of propositions like
Cantor’s continuum hypothesis.141

By an appeal to psychology, Gödel suggests that meaningfulness and decidability
may be securable without resorting to realism. In 1975, Hao Wang characterized
this statement “as asserting the possibility of recognizing meaningfulness with-
out realism”; Gödel agreed, for he suggested that Wang would report: “He [i.e.,
Gödel] himself suggests an alternative to realism as ground for believing that
undecided propositions in set theory are either true or false.”142 Given Gödel’s
avowals of realism in this paper143 and elsewhere, it is clear that he does not
actually embrace this alternative. But suggesting this alternative serves a di-
alectical purpose to him, that of indicating that even from alternative points of
view, his idea (here, of meaningfulness of the question) is the correct one.144

The argument from the psychological fact however is not particularly strong,
for a reason that Gödel himself had indicated before and that he, surprisingly,
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left out of consideration both in the 1964 paper itself and, apparently, in his
discussion with Wang of the passage that we just quoted. This reason is stated
in a footnote to version III of the paper on Carnap, *1953/9-III :

the existence, as a psychological fact, of an intuition covering the
axioms of classical mathematics can hardly be doubted, not even
by adherents of the Brouwerian school, except that the latter will
explain this psychological fact by the circumstance that we are all
subject to the same kind of errors if we are not sufficiently careful
in our thinking.145

This seems to give a more complete view of the situation but also a some-
what more complicated one, for should the intuitionists be right, one can doubt
whether an intuition that is brought about by insufficiently careful thinking can
itself function as the basis for a sufficiently careful judgement (a judgement that,
if it can be made, from the intuitionist’s point of view will be purely hypothetical
or “as if”). So for the “psychological fact” to have the force that Gödel takes it
to have, the suggested intuitionistic interpretation has to be shown wrong first.
It would be crucial to do this at some point, for Gödel’s whole approach of an
appeal to intuition to clarify and (to find axioms that) decide CH stands or
falls with his being able to come up with a notion of intuition that is relevantly
different from the intuitionist’s.

Of course Gödel does not at all doubt that the intuitionist is indeed wrong,
as is clear from a passage that at the same time brings out the urgency of finding
an argument to that effect:

First of all there is Brouwer’s intuitionism, which is utterly destruc-
tive in its results. The whole theory of ℵ’s greater than ℵ1 is re-
jected as meaningless [. . .] However, this negative attitude toward
Cantor’s set theory, and toward classical mathematics, of which it
is a natural generalization, is by no means a necessary outcome of a
closer examination of their foundations, but only the result of a cer-
tain philosophical conception of the nature of mathematics, which
admits mathematical objects only to the extent to which they are
interpretable as our own constructions or, at least, can be completely
given in mathematical intuition. For someone who considers math-
ematical objects to exist independently of our constructions and of
our having an intuition of them individually, and who requires only
that the general mathematical concepts must be sufficiently clear for
us to be able to recognize their soundness and the truth of the ax-
ioms concerning them, there exists, I believe, a satisfactory founda-
tion of Cantor’s set theory in its whole original extent and meaning,
namely the axiomatics of set theory interpreted in the way sketched
below.146

It is possible to have qualms with Gödel’s characterization of intuitionism here.
A potential unclarity in the use of “completely given” here is whether this may or
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may not involve certain (carefully controlled) idealizations: intuitionists do make
such idealizations, and they are not finitists (as Gödel himself of course pointed
out on other occasions).147 And in any case, intuitionists accept essentially
incomplete objects (choice sequences) in their ontology, which by their nature
can never be completely given in either actual or (to intuitionistic standards)
appropriately idealized intuition. For the contrast that Gödel wishes to draw
here, these qualms do of course not make much difference. But the intuitionist
can in any case point out the symmetry in the situation as sketched by Gödel
in this passage, and use Gödel’s own words to comment that the latter’s realist
views are “by no means a necessary outcome of a closer examination of [the]
foundations [of Cantor’s set theory and classical mathematics], but only the
result of a certain philosophical conception of the nature of mathematics.”

Thus, further argumentation is required. Immediately after presenting the
argument from the psychological fact, Gödel introduces a second and apparently
stronger argument:

What, however, perhaps more than anything else, justifies the accep-
tance of this criterion of truth in set theory is the fact that continued
appeals to mathematical intuition are necessary not only for obtain-
ing unambiguous answers to the questions of transfinite set theory,
but also for the solution of the problems of finitary number theory
(of the type of Goldbach’s conjecture), where the meaningfulness
and unambiguity of the concepts entering into them can hardly be
doubted. This follows from the fact that for every axiomatic system
there are infinitely many undecidable propositions of this type.148

In particular, those undecidable propositions can take the simple form of Dio-
phantine equations. It is through mathematical intuition that we come to see
that these propositions are actually true (provided we believe in the consistency
of the axioms). The intuitionist agrees, but would balk at taking the range of
this intuition to be so large as to include transfinite set theory. According to
the intuitionist, even if such an axiom can be shown to be consistent, there is
no reason to assume that it is true.

In a third type of argument, not presented in the Cantor paper but as perti-
nent to the issue discussed there, Gödel aims to show not so much that intuition
exists at all, but rather that, if one accepts its existence, it would be wrong to
think of it as an all-or-nothing phenomenon that, for that very reason, would
cancel any purported intuitive evidence for objects that is not maximal (as in
most people’s experience the evidence for transfinite sets is not). Rather, the
evidence that intuition provides comes in degrees:

We have no absolute knowledge of anything. There are degrees of
evidence. The clearness with which we perceive something is overes-
timated. The simpler things are, the more they are used, the more
evident they become. What is evident need not be true. If 1010 is
already inconsistent, then there is no theoretical science.149
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It should not be surprising that what Gödel says here—to Wang, in the 1970s—
is in agreement with Husserl’s views on intuition, views that Gödel began to
study in 1959. In an unpublished manuscript titled “For Perspicuous Objectiv-
ity,” Hao Wang reports that in November 1972, Gödel drew his attention to the
following sentence in Husserl’s essay “Philosophy as rigorous science”: “Obvi-
ously essences can also be vaguely represented, let us say represented in symbols
and falsely posited; then they are merely conjectural essences, involving contra-
diction, as is shown by the transition to an intuition of their inconsistency.”150

Gödel then commented that he was glad that Husserl also recognizes the possi-
bility of error’.151 A related way in which an essence can be represented vaguely
(one which is equally important to the present discussion) is if this represen-
tation, is in part symbolic and in part intuitive. We then have evidence (in
Husserl’s sense) up to a certain degree; but the possibility of error remains.152

On the other hand, as Husserl writes immediately after the sentence just quoted,
‘[i]t is possible, however, that their vague position will be shown to be valid by
a return to the intuition of the essence in its givenness’.153

It is also in the recognition that intuition is not an either-or affair but comes
in degrees (i.e., intuitions are, generally speaking, partial) that Gödel sees an
answer to skepticism:

We have no absolute knowledge of anything. To acknowledge what
is correct in skepticism serves to take the sting out of skeptical ob-
jections. None of us is infallible. Before the paradoxes Dedekind
would have said that sets are just as clear as integers.154

This remark about Dedekind points to a difference between the degree of evi-
dence we have for the integers and that for sets. This can be generalized from
different types of objects to different conceptions of mathematics as a whole
and by doing so, one may obtain a scale such as the following one suggested by
Gödel in a version of his paper on Carnap paper:

The field of unconditional mathematical truth is delimited very dif-
ferently by different mathematicians. At least eight standpoints can
be distinguished. They may be characterized by the following catch-
words: 1. Classical mathematics in the broad sense (i.e., set theory
included), 2. Classical mathematics in the strict sense, 3. Semi-
Intuitionism, 4. Intuitionism, 5. Constructivism, 6. Finitism, 7.
Restricted Finitism, 8. Implicationism.155

That Gödel interpreted such a list as a scale of evidence is clear from the fol-
lowing:

Without idealizations nothing remains: there would be no mathe-
matics at all, except the part about small numbers. It is arbitrary
to stop anywhere along the path of more and more idealizations.
We move from intuitionistic to classical mathematics and then to
set theory, with decreasing certainty. The increasing degree of un-
certainty begins [at the region] between classical mathematics and
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set theory. Only as mathematics is developed more and more, the
overall certainty goes up. The relative degrees remain the same.156

Moreover, Gödel claims that it would be arbitrary to draw (as the intuitionist
does) a line that partitions the scale into an acceptable and an unacceptable
part:

Strictly speaking we only have clear propositions about physically
given sets and then only about simple examples of them. If you
give up idealization, then mathematics disappears. Consequently
it is a subjective matter where you want to stop on the ladder of
idealization.157

Behind accepting this role of subjectiveness must be the idea that the various
possible idealizations are in a sense continuous with one another; and, for Gödel,
even as evidence decreases with each further idealization, there is still intuition
of a sufficiently high degree which remains to give a purchase on the transfinite.
An intuitionist, however, will argue that it is not at all arbitrary where to
stop idealizing, and that the place to stop occurs well before having reached
all of classical mathematics in the strict sense (let alone transfinite set theory).
An argument to this effect is found in the inaugural address of Brouwer’s pupil
Arend Heyting from 1949. He noticed that within the intuitionistic school, there
is disagreement as to what idealizations are permitted. The disputed notions
are those of negation, choice sequences, and certain proof methods (Brouwer
accepted all of these). Each depends on certain idealizations; with every new
idealization ‘we descend a step on the stairs of clarity’, as Heyting says. He
then wonders if, once you are prepared to descend those stairs at all, this might
not provide a justification of classical mathematics:158

Those concepts and methods that are not accepted by all intuition-
istically oriented mathematicians, upon introspection turn out to
have different degrees of clarity, and to be accompanied by convic-
tions of correctness of different intensities. It lies close to hand to
ask whether it isn’t then also the case that much can be said for
accepting the independent existence of the mathematical objects,
independent of our thinking, and thereby arrive at classical math-
ematics, even if this diminishes the clarity of the concepts a bit.
For me, the answer to this question is that this step is not at all
comparable to the earlier ones. So far, we remained in the realm of
mental constructions, now we would all of a sudden leave that. We
would be asked not merely to accept a new construction method,
but a philosophical thesis, of which the sense and motivation are
questionable already for the objects in daily life and which would
become even less understandable when applied to mathematical ob-
jects. The stairs that slowly led down from the light of day into the
darkness stops here, and the next step would be a jump into the
darkness of an bottomless well.159
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This passage illustrates Gödel’s general point that “There is a choice of how
much clarity and certainty you want in deciding which part of classical math-
ematics is regarded as satisfactory: this choice is connected to one’s general
philosophy.”;160 but Heyting warns that it is not just a question of “how much”
and that there are also qualitative differences between the idealizations that
introduce discontinuities in the scale. These discontinuities put one’s notion of
intuition under pressure (and hence the range of idealizations one can reasonably
make on the basis of that notion).

We will not discuss possible intuitionistic criticisms of Gödel’s three argu-
ments any further, but note that the task of their assessment emphasizes the
need for further study of the notion of intuition—which notion, for all their
differences, is central to both Brouwer’s intuitionism and Gödel’s platonism—
before it can be made to do the work Gödel wants it to do towards, e.g., a
decision of the continuum hypothesis. Phenomenology is a systematic way of
going about such a study;161 and indeed, an unpublished draft of the 1964 sup-
plement to the Cantor paper contains an additional paragraph at the end that
starts, “Perhaps a further development of phenomenology will, some day, make
it possible to decide questions regarding the soundness of primitive terms and
their axioms in a completely convincing manner.”162 Of course, Gödel’s inten-
tion when writing this will not primarily have been to settle the dispute with
the intuitionist; but a development as Gödel hopes for here may well have that
effect.

5.2.2 Success

Secondly, even disregarding the intrinsic necessity of some new ax-
iom, and even in case it has no intrinsic necessity at all, a probable
decision about its truth is possible also in another way, namely, in-
ductively by studying its “success.” Success here means fruitfulness
in consequences, in particular in “verifiable” consequences, i.e. con-
sequences verifiable without the new axiom, whose proofs with the
help of the new axiom, however, are considerably simpler and easier
to discover, and make it possible to contract into one proof many
different proofs. The axioms for the system of real numbers, re-
jected by the intuitionists, have in this sense been verified to some
extent, owing to the fact that analytic number theory frequently
allows one to prove number-theoretical theorems which, in a more
cumbersome way, can subsequently be verified by elementary meth-
ods. A much higher degree of verification than that, however, is
conceivable. There might exists axioms so abundant in their verifi-
able consequences, shedding so much light upon a whole field, and
yielding such powerful methods for solving problems, (and even solv-
ing them constructively, as far as that is possible) that, no matter
whether or not they are intrinsically necessary, they would have to be
accepted at least in the same sense as any well-established physical
theory.163
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Because of its dependence on (cognitive, aesthetic) values and choices of
criteria, the notion of success is much less tractable than that of intuition,
which stands in a direct relation to its object. On the other hand, indications
of success may be easier to recognize than sharp intuitions, which will generally
take much care and effort to arrive at. Some of the precautions that should
be taken when searching for intuitions of essences are described by Husserl in
sections 80–98 of Erfahrung und Urteil.164 Gödel observed that “appealing to
intuition calls for more caution and more experience than the use of proofs—
not less”;165 and, as Wang says, “this may be the reason why one could believe
in this strong position [according to which we perceive mathematical objects
that exist objectively] and yet not regard the criterion of pragmatic success as
entirely superfluous.”166

A clear case of a conflict of values is presented by V = L. If one defines
success of an axiom in terms of its power to decide questions, then it seems
V = L should qualify for that reason. But the axiom conflicts with certain
large cardinal axioms that are believed to be consistent. These may not (yet)
be seen to be themselves intrinsically necessary, but they too are successful
in Gödel’s sense, in the sense that they decide many questions lower down
(Diophantine equations).167 Such a conflict of values can be resolved by an
appeal to intuition, for example if intuition of the essence of set yields that all
consistent sets should exist,168 then, if one believes the large cardinal axioms in
question to be consistent, these cardinals therefore exist. A related argument
is that V = L may be successful but is also conceptually impure (a judgement
based on intuition), in the sense explained in section ?? above.

There clearly is an asymmetry between the two criteria of intuition and suc-
cess. As a first approximation one could say that intuition is conclusive while
induction is not; but this approximation needs refinement once we take the fol-
lowing into account. As we saw above, Husserl emphasizes that in the correct
understanding of intuition, it is not an either-or phenomenon – evidence comes
in degrees. On such a construal, specific intuitions will in general not be conclu-
sive in an apodictic sense. This it has in common with inductive arguments, but
there are essential differences. Intuitions are of the objects (and the states of af-
fairs composed of them) directly. By their (horizonal) structure, intuitions lend
themselves to explication; they suggest ways in which they can be unfolded.169

Inductive arguments (in terms of fruitful consequences) on the other hand are
indirect; evidence for them will not come from the objects (or states of affairs)
themselves but from seeing the truth of their consequences. This induces a prin-
cipled epistemological difference because inductive arguments may have heuris-
tic value but cannot have the same regulative significance (towards the ideal of
full clarity and insight, through explication) as partial intuitions. Moreover, this
emphasizes the foundational priority of intuition as such over induction as such:
for as Wang remarks, “The truth of these consequences, however, had also be
seen by mathematical intuition, and we see certain mathematical propositions,
such as numerical computations, to be true directly, without going through the
axioms. Indeed, we apply our intuition at all levels of generality.”170
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An example of an axiom that extends ZFC and that can be defended on the
basis of its success is the axiom stating the existence of inaccessibles:

A closely related fact is that the assertion (but not the negation)
of the axiom [of inaccessibles] implies new theorems about integers
(the individual instances of which can be verified by computation).
So the criterion of truth explained on page 264 is satisfied, to some
extent, for the assertion, but not for the negation. Briefly speaking,
only the assertion yields a “fruitful” extension, while the negation is
sterile outside of its own very limited domain.171

This is a reference to the fact that in the theory ZFC + “there is an inaccessible
cardinal” one can prove the statement “there exists a model of ZFC.” But this
is equivalent to Con(ZFC), by the completeness theorem, which is a Π0

1 number-
theoretic or Diophantine statement. As we saw above, Gödel also had a (much
more conclusive) justification of inaccessibles from an analysis of the concept of
set. Thus inaccessibles are justified in two very different ways; Gödel probably
wanted to include the pragmatic argument because it may serve to convince
those who are more easily impressed by formal(istic) considerations.172

In the early 1970’s Gödel suggested to Wang that the existence of measur-
ables may be perhaps be verified in the same way:

The hypothesis of measurable cardinals may imply more interest-
ing (positive in some yet to be analyzed sense) universal number-
theoretical statements beyond propositions such as the ordinary con-
sistency statements: for instance, the equality of pn (the function
whose value at n is the n-th prime number) with some easily com-
putable function. Such consequences can be rendered probable by
verifying large numbers of numerical instances.173

On the other hand, CH itself cannot have new number-theoretic conse-
quences, as is clear from absoluteness of arithmetical statements: arithmetical
statements are true in a given model M of ZFC if and only if they are true in L
over M. (Kreisel174 draws attention to the fact that Gödel did not realize this
in section 3 of the 1947 paper: “Certainly [. . .] mere consistency leaves open the
possibility that CH has new, even false arithmetic consequences; but a glance
at his own definition of L [. . .] shows that CH, and even V = L has none at
all. Gödel’s oversight is natural enough if consistency is regarded as an end in
itself.”)

It turned out (at about the time Gödel was writing the 1964 revision and
the 1966 postscript to it) that the negation of CH does not have new number-
theoretic consequences either, as a simple observation about forcing shows.
Hence, different aspects of fruitfulness than arithmetic consequences (verifiable
up to any given integer) will have to be taken into account if an argument from
success is to lead to a probable decision of CH.

Gödel mentions several different aspects of fruitfulness. One is that of mak-
ing proofs simpler and “easier to discover,” i.e., more obvious; where without
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the new axiom their proofs are long and “cumbersome.” It is an open question
whether, to the extent that fruitfulness of this kind is indeed truth-conducive,
what is operative here is a relation between truth and aesthetic factors, or be-
tween truth and exigence of resources, or both (on the possible ground that
economy of resources may be, at least in part, itself an aesthetic factor). So
far, no convincing arguments of this type are known that suggest a decision of
CH. Certainly the recently proposed solution to CH we will discuss below is
by no means “easy,” “obvious,” or in some other sense elementary. Should the
proof eventually work, then it is of course to be expected that in due course
simplifications (e.g., from conceptual insight) will be found.

In the supplement to the 1964 edition of the Cantor paper, Gödel points out
that his second truth criterion has not (at the time of writing) led to concrete
results:

It was pointed out earlier [. . .] that, besides mathematical intuition,
there exists another (though only probable) criterion of the truth
of mathematical axioms, namely their fruitfulness in mathematics
and, one may add, possibly also in physics. This criterion, however,
though it may become decisive in the future, cannot yet be applied
to the specifically set theoretical axioms (such as those referring to
great cardinal numbers), because very little is known about their
consequences in other fields. The simplest case of an application of
the criterion under discussion arises when some set-theoretical axiom
has number theoretical consequences verifiable by computation up
to any given integer. On the basis of what is known today, however,
it is not possible to make the truth of any set-theoretical axiom
reasonably probable in this manner.175

It is not entirely clear what Gödel has in mind when he first says that the second
criterion is “only probable” and then goes on to add that this inductive criterion
“may become decisive in the future.” We already quoted from an unpublished
draft of this supplement, in which there is an additional final paragraph. In full,
it reads:

Perhaps a further development of phenomenology will, some day,
make it possible to decide questions regarding the soundness of prim-
itive terms and their axioms in a completely convincing manner. As
of now it seems to me that the character of cogency of its axioms176

and the success of its development are sufficient reasons for putting
trust in Cantor’s set theory, i.e., in mathematics in its whole exten-
sion.177

Gödel expects phenomenology to lead to decisions; in contrast, cogency of the
axioms (clearly meant in a sense that does not amount to complete clarity
obtained by phenomenological analysis) and inductive arguments from success
do not go that far, but increase confidence. Of course, the phenomenological
investigation into the basic concepts of mathematics will not by itself settle
mathematical questions. As Gödel said to Wang in the 1970’s,
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The epistemological problem is to set the primitive concepts of our
thinking right. For example, even if the concept of set becomes clear,
even after satisfactory axioms of infinity are found, there would re-
main technical (i.e. mathematical) questions of deciding the contin-
uum hypothesis from the axioms.178

Some years after Gödel had written about this notion of success and the
senses in which axioms can to some extent be verified, specific examples were
found. We mention the following two.

A result obtained by Richard Laver in 1992 says that, if one assumes the
existence of very large cardinals (larger than supercompact), one can find a
decision method for the word problem of the free algebra with one generator
and one left-distributive binary operator.179 Later, Patrick Dehornoy gave a
proof without the large cardinals.180 So the large cardinals gave the correct
result, which in a sense verified their use.

Another, dramatic example of this has to do with Borel Determinacy, which
was proved to follow from the ZFC axioms only by D.A. Martin in 1975,181

where an earlier proof also due to Martin182 used a measurable cardinal.183

In this way Borel Determinacy is a “verifiable consequence,” in Gödel’s sense
of the phrase here, i.e., it was proved without using measurables, and the mea-
surables in turn were verified by their having lead to the “correct” result.184

As Yiannis Moschavakis put it in his book Descriptive Set Theory : “This im-
portant result of Martin answered a long-standing question and lent consider-
able respectability to the practice of adopting determinacy hypotheses” [emphasis
ours]. 185

5.3 Gödel’s interpretation of Cohen’s independence result

In 1963, Paul Cohen proved the consistency of ¬CH with ZFC and thereby, as
Gödel had shown the consistency of CH with ZFC, the independence of CH from
ZFC. Cohen sent his proof to Gödel, who (in a draft letter which may or may
not have been sent) commented, “Reading your proof had a similarly pleasant
effect on me as seeing a really good play.”186

As we had occasion to mention elsewhere,187 to Gödel this independence of
CH from ZFC did not, by suggesting a certain relativism in set theory, pose
a threat to his realism. To Church, who did interpret the independence proof
along these lines, he wrote on September 29, 1966:

You know that I disagree [i.e. with Church] about the philosophical
consequences of Cohen’s result. In particular I don’t think realists
need expect any permanent ramifications (see bottom of p. 8) as long
as they are guided, in the choice of the axioms, by mathematical
intuition and by other criteria of rationality.188

The fact that (like many others) Church was so impressed by the independence
of CH from ZFC as to conclude from it to a kind of relativism in set theory may
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well have had its ground in the unprecedented scope and success of ZFC as a
foundation of classical mathematics.

For Gödel, however, there is no fundamental relativity in set theory. Set the-
ory describes a certain (part of abstract) reality, which is therefore the theory’s
intended model. Cognitive access to that reality is provided by mathematical
intuition. Like Brouwer, Gödel holds that mathematical intuition is separate
from language, and that language has a practical but not fundamental role to
play in obtaining intuitions of mathematical objects:

Language is useful and even necessary for fixing our ideas. But this
is a purely practical affair. Our mind is more inclined to sensual
objects, which help to fix our attention on abstract objects. This is
the only importance of language.189

Proofs that certain statements (or classes of statements) are independent of a
given formalism, or that given a given formalism admits of non-intended mod-
els, or that formalisms as such have intrinsic limitations, do not, in principle,
stand in the way of our mind’s capacity to obtain knowledge of the mathemat-
ical realm. This explains Gödel’s remark to Church about Cohen’s proof. To
Gödel, the independence of CH from (for example) ZFC is no reason whatsoever
to doubt that a decision of CH is in principle possible. These considerations
are not meant to suggest that Gödel did not credit the practical value of for-
mal systems and formalization. In what is now referred to as his “lecture at
Zilsel’s,” held in 1938, he acknowledged that “If the original Hilbert program
could have been carried out, that would have been without any doubt of enor-
mous epistemological value.”190 (Note that he does not add “ontological”; it is
not immediate that for a realist the epistemological success of Hilbert’s program
would also have entailed an ontological reduction.191) That program of course
did not succeed in its original form, but there were other benefits to formal
systems; in a letter of December 1918, 1968, to Dana Scott, Gödel remarks:

In my opinion the formalistic spirit is extremely important for math-
ematics as a technique of solving problems. Also, I perfectly agree
with you that formalization, in practice, is an indispensable aid to
understanding.192

5.4 Maximality

As we have seen above, Cohen’s result cleared a path for considering axioms
deciding CH along grounds which were no longer constrained by knowing only
that CH was consistent. From a practical point of view this means that axioms
implying ¬CH are going to be ”in play” in a way they would not have been
otherwise.

Though as we have seen, Gödel was interested in axioms of many different
kinds, as far as his concrete attempts to solve the continuum problem however,
in what can be said to be his last work of a technical nature, it was to Haus-
dorff’s scale axioms that he turned (see the next section). These are prima facie
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maximality principles, in that some maximal family of functions is asserted to
exist, relative to the particular scale involved. But they are at the same time of
a somewhat different flavor from what were thought to be maximality principles
at the time (see below).

The “set of” operation on which the iterative concept of set is based is
“opened forward,” so to speak. In footnote 23 of the 1964 version of the paper,
while discussing the idea that CH might be decided on the basis of axioms about
definability p. 262, Gödel remarks that this is known for the type of definability
known as constructibility:

On the other hand, from an axiom in a sense opposite to this one,
the negation of Cantor’s conjecture could perhaps be derived. I am
thinking of an axiom which (similar to Hilbert’s completeness axiom
in geometry) would state some maximum property of the system of
all sets, whereas axiom A [V = L ] states a minimum property. Note
that only a maximum property would seem to harmonize with the
concept of set explained in footnote 14.193

Footnote 14, as we saw above, asserts that the existence of multitudes is inde-
pendent of whether we can define them in a finite number of words or whether
they are random. So sets are what they are independent of their definitions
(which goes some way toward arguing against restricting the notion of set to
that of constructible set). Gödel is explicit that a maximality property of this
type “harmonizes” with the basic concept. It is not clear that the choice of that
particular word should be taken to mean that such a property is not actually
contained in the pure concept of set. Recall that although V = L (which is
quite the opposite of a maximality principle) is in a way a natural extension
of ZFC, its particular naturalness may not persist in a further unfolding of the
concept of set.

This period saw Gödel begin to concentrate on maximality principles. Al-
ready in the late 1950’s Gödel wrote to Stanislaw Ulam about a maximality
principle of von Neumann:

The great interest which this axiom has lies in the fact that it is a
maximality principle, somewhat similar to Hilbert’s axiom of com-
pleteness in geometry. For, roughly speaking, it says that any set
which does not, in a certain well defined way, imply an inconsis-
tency exists. Its being a maximum principle also explains the fact
that this axiom implies the axiom of choice. I believe that the basic
problems of set theory, such as Cantor’s continuum problem, will
be solved satisfactorily only with the help of stronger axioms of this
kind, which in a sense are opposite or complimentary to the con-
structivistic interpretation of mathematics.194

To Wang, Gödel reaffirmed this assent to von Neumann’s principle by saying
that for him, completeness means that every consistent set exists.195
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6 1970–1975: Gödel’s concrete attempts to set-
tle CH

In the 1970’s Gödel made several efforts at deciding CH. These were based on
axioms (and axiom schemas) about infinite sequences of integers and scales of
functions. We will not go into the technical details here, but give a brief account
of this episode.196

¿From a letter he wrote to Cohen in January 1964,197, it becomes clear
that Gödel had the basic idea for one of these axioms already then. “I always
suspected that, in contrast to the continuum hypothesis, this proposition is
correct and perhaps even demonstrable from the axioms of set theory.” Whether
the fact that a few years later he took this to be an axiom reflects a failed attempt
to prove it or simply a shortcut we do not know. Neither do we know whether
the scale axioms were the outcome of a conceptual analysis of the kind described
in 1947 and 1964.

Gödel wrote a manuscript based on the scale axioms titled “Some consider-
ations leading to the probable conclusion that the true power of the continuum
is ℵ2.” He planned to submit it to the Proceedings of the National Academy of
Sciences and in 1970 first sent it to Tarski to solicit comments. D.A. Martin
found that the argument was incorrect, as it contradicted a result of Robert
Solovay. Tarski sent the paper back to Gödel, simply saying that he would soon
hear more about it.

Gödel then wrote another manuscript, this time not meant for publication
but for his own use (‘nur für mich geschieben’), titled “A proof of Cantor’s
continuum hypothesis from a highly plausible axiom about orders of growth.”
In it, he said that the argument presented there “gives much more likelihood to
the truth of Cantor’s continuum hypothesis than any counterargument set up to
now gave to its falsehood.”198 Remarkably, and for the first time, Gödel had at
least briefly convinced himself that CH is true instead of false. The manuscript
establishes, correctly, an equivalence between a particular instantiation of one
of the axiom schemas and CH.

In an unsent letter to Tarski of 1970, Gödel said about the paper he had
sent him that

Unfortunately my paper, as it stands, is no good. I wrote it in a
hurry shortly after I had been ill, had been sleeping very poorly
and had been taking drugs impairing the mental functions. [. . .] My
conviction that 2ℵ0 = ℵ2 of course has been somewhat shaken. But
it still seems plausible to me. One of my reasons is that I don’t
believe in any kind of irrationality such as, e.g., random sequences
in an absolute sense.199

Interestingly, ℵ2 is also the value that some set theorists today think is
correct (see below).

According to the diaries of Gödel’s friend Oskar Morgenstern, Gödel kept
working on the problem, apparently again to show that the power of the con-
tinuum is ℵ2; in what is presumably the last of Morgenstern’s reports, from
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late 1975, Gödel had become convinced of having a correct proof, according to
which the power of the continuum was “not ℵ2, but rather ‘different from ℵ1.’
”200

From Gödel’s first manuscript a correct proof for a weaker proposition has
been reconstructed by Paul Larson, Jörg Brendle and Stevo Todorcevic.201 They
have formulated three new axioms that are implicit in Gödel’s original paper
that together imply that 2ℵ0 ≤ ℵ2. The problem is that there is no reason to
find these new axioms self-evident and accordingly they have not led to a new
credible extension of ZFC.

7 A theme in contemporary set theory

It is a very striking fact that today one begins to encounter the view, by no means
unanimously held but nevertheless expressed by a number of set theorists, that
the period (in set theory) of proving the consistency of incompatible statements
is coming to an end,202 and that CH has been solved, or if not, is once again
considered an open problem. Already in 1980, Kreisel noted that the suggestion
that CH may fail to have a definite truth value for the intended interpretation
at all—a suggestion motivated by lack of progress in spite of many attempts
from different directions—simply overlooks that there are “infinitely many false
starts, perhaps due to a systematic oversight, for any problem.”203 In 2000
Woodin echoed Kreisel’s observation:

There is a tendency to claim that the Continuum Hypothesis is in-
herently vague and that this is simply the end of the story. But any
legitimate claim that CH is inherently vague must have a mathemat-
ical basis, at the very least a theorem or collection of theorems. My
own view is that the independence of CH from ZFC, and from ZFC
together with large cardinal axioms, does not provide this basis [. . .]
Instead, for me, the independence results for CH simply show that
CH is a difficult problem.204

7.1 Generic Absoluteness

The main method for studying the incompleteness phenomenon in set theory
is (at present) the forcing method. Forcing does not change the first order
arithmetic of integers; the arithmetic of integers is “forcing absolute,” i.e., any
arithmetic statement true in a model M of ZFC remains true in any generic
extension M [G] of M . Strictly speaking this is merely a consequence of the fact
that forcing does not introduce new ordinals. As a consequence, no arithmetic
statement can decide or be decided by the CH. For, suppose some arithmetic
sentence φ did decide the CH. Then if we extend a model of CH to one in which
CH is false, by forcing, then φ should no longer hold in the forcing extension,
contradicting the forcing absoluteness of φ. A similar argument shows that
the converse also holds, i.e. neither the CH nor its negation has arithmetic
consequences.
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This is contrary to what Gödel conjectured in the 1964 supplement to Cantor
paper, namely:

The generalized continuum hypothesis, too, can be shown to be ster-
ile for number theory . . . whereas for some other assumption about
the power of 2ℵα this is perhaps not so.205

However Gödel notes the forcing argument in the postscript to that paper:

Shortly after the completion of the manuscript of the second edition
of this paper the question whether Cantor’s continuum hypothesis is
decidable from the von Neumann-Bernays axioms of set theory (the
axiom of choice included) was settled in the negative by Paul J. Co-
hen . . . It turns out that for all ℵτ defined by the usual devices and
not excluded by König’s theorem . . . the equality 2ℵ0 = ℵτ is con-
sistent in the weak sense (i.e. it implies no new number-theoretical
theorem).206

The forcing absoluteness of arithmetic statements is perhaps an explanation
of what may be called the “empirical completeness” of ZFC as far as arithmetic
is concerned; the idea behind this being that incompleteness phenomena are
reduced to “residual incompleteness” or incompleteness arising from ad hoc
sentences such as the Gödel sentences.207 That no new, non ad hoc independent
arithmetical statements have emerged is evidence for empirical completeness.208

CH of course is a different matter. Not only it is not a question about inte-
gers, it is even not about reals,209 but about sets of reals. As forcing determines
statements like CH in various ways, any attempt to find an extension of ZFC
which settles CH will have to address the “essential variability in set theory”210

due to forcing—it must attack forcing head-on, so to speak.
In forcing, the class of formulas taken and the type of forcing are parameters

and can be varied. The contemporary notion of generic absoluteness studies the
preservation of different classes of formulas under different forcings.

The first formulation of a general generic absoluteness principle for other
than arithmetic statements, is due to Jonathan Stavi and Jouko Väänänen and
dates from the late 1970’s.211 Note that the idea that any set that can exist,
does exist, may turn out to be inconsistent if the meaning of the highly ambigu-
ous “can” is not carefully specified; for example, both the CH and its negation
state the existence of sets which can exist in a generic extension. Stavi and
Väänänen state the following principle: any formula with parameters of heredi-
tary cardinality less than the continuum that can be made true by c.c.c. forcing
and that cannot be falsified later by c.c.c. forcing, is already true. The approach
was motivated by the study of generalized quantifiers and the idea that the con-
tinuum is or should be “as large as possible.” One of the main results in that
paper is that Martin’s axiom is equivalent to a very natural weakening of this.
This was discovered independently by Joan Bagaŕıa.212

The maximality principle “what can be forced and remains true in fur-
ther forcing, is true” was rediscovered in 2003 by Joel Hamkins213 following
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an idea found in 1999 by C. Chalons, a doctoral student of Boban Velickovic
in Paris, whose work has remained unpublished, apart from an electronic an-
nouncement.214

Finally, some fundamental results pertaining to generic absoluteness, due to
Hugh Woodin, are cited below.

7.2 The Woodin Program

The approach associated with the Woodin school seeks to identify the largest
possible class of forcing immune statements. In pursuit of this goal they have
identified extensions of ZFC which decide a large family of statements, including
CH itself.215

A key result was obtained in 1984, when Woodin proved,216 based on work
of Foreman, Magidor and Shelah,217 that the first order theory of the structure
(H(ω1), ε) is invariant under any kind of forcing, relative to a certain large
cardinal assumption, namely the existence of a proper class of so-called Woodin
cardinals. Here H(ω1) is the set of hereditarily countable sets, i.e. the set of
sets which are countable, all elements are countable, all elements of elements
are countable, etc. H(ω1) can be in effect identified with the set of all real
numbers. This effectively lifts the forcing absoluteness of arithmetic statements
in the presence of ZFC to forcing absoluteness of the theory of the reals, more
exactly of H(ω1) in the presence of sufficiently large cardinals.

The next step was to formulate an axiom which would lift this result from
H(ω1) to H(ω2), the set of sets of hereditary cardinality at most ω1. Thus the
new goal is to guarantee the forcing absoluteness of the first order theory of
(H(ω2), ε), in the presence of some new axioms. Note that both ω and ω1 are
elements of H(ω2) and therefore the theory of H(ω2) decides CH. Namely, CH
states the existence of a bijection between ω1 and all reals. Such a bijection
would be an element of H(ω2). Thus the existence can be stated as a first order
property of H(ω2). This observation leads to an important point: no large
cardinal axiom can fix the theory of H(ω2), as we can always change the value
of 2ℵ0 without affecting large cardinals. So something different was needed.

This next step was carried out by the following theorem, due to Woodin:
The theory of H(ω2) is forcing absolute relative to the theory ZFC + an axiom
that Woodin calls the ‘(?)-axiom’.218 Moreover, the (?)-axiom implies 2ℵ0 = ℵ2.
Whatever the (?)-axiom is, Woodin proves that the mere existence of an axiom
which fixes the theory of H(ω2) in (Woodin’s Ω-logic) violates the CH.

Finally, more recently Woodin has extended his approach to an argument
against formalism and the view that the truth or falsity of CH has lost its
meaning.219

It would be beyond the scope of this paper to indicate why Woodin’s fun-
damental results, some of which we have cited, constitute a convincing solution
to the continuum problem in the eyes of a number of set theorists. Clearly
it is distinguished from other proposed extensions of ZFC, in that Woodin’s
extensions handle their forcing extensions already, whereas any other kind of
canonical extension one may propose must still confront this kind of variability.
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Interestingly, a number of different people have obtained results which point
to the same conclusion about the value of the continuum. To cite just a few:
Velickovic and Todorcevic have shown that the Proper Forcing Axiom PFA
implies 2ℵ0 = ℵ2.220 PFA states that if P is a “proper forcing,” where the
definition of properness is somewhat technical but generalizes both CCC forcings
and countably closed forcings, and D is a set of dense open subsets of P with
|D| ≤ ℵ1, then there is a generic filter on P which meets every dense set in D.
Justin Moore has recently shown that a very plausible bounded version of PFA,
the so-called Bounded Proper Forcing Axiom BPFA implies the same.221

In the opinion of Kennedy, what is particularly interesting about BPFA in
addition to its solving the continuum problem in the direction Gödel antici-
pated, is that it has the form of a reflection principle, principles which were
very important to Gödel:

All the principles for setting up the axioms of set theory should be re-
ducible to Ackermann’s principle: The Absolute is unknowable. The
strength of this principle increases as we get stronger and stronger
systems of set theory. The other principles are only heuristic prin-
ciples. Hence, the central principle is the reflection principle, which
presumably will be understood better as our experience increases.
Meanwhile, it helps to separate out more specific principles which
either give some additional information or are not yet seen clearly to
be derivable from the reflection principle as we understand it now.222

In the opinion of Van Atten, on the other hand, reflection principles such as
BPFA are not an example of what Gödel is speaking about here, for the following
reasons: 1) Gödel here does not speak of reflection principles in the plural, but
only about the most general principle ‘The Absolute is unknowable’; 2) unlike
BPFA, that principle is by its nature not completely formalizable (which makes
possible the repeated application that Gödel speaks of here); 3) the general
principle has, for a realist, an immediate plausibility on philosophical grounds
(as was noted by Cantor, who first used it223) that cannot be claimed for BPFA.

It is in any case tempting to infer that the results such as the ones we have
cited on PFA and BPFA are results Gödel would have ascribed clear significance
to, including them under the category of inductive evidence. But a comprehen-
sive review of recent results in set theory would be needed in order to evaluate
whether these results are not anomalous.

There is a straightforward connection between a central aspect of Woodin’s
approach to CH and phenomenology. One of the ideas in Husserl’s genetic
analysis of judgement (as presented in Formal and Transcendental Logic, and in
Experience and Judgement) is that the kinds of judgements that can legitimately
be made in a domain of objects depend on the type of the objects. This leads to
the idea that with different domains are associated different logics (which will
be extensions of the minimal logic, defined by its applicability to all domains).
(Robert Tragesser has developed this idea systematically in his book Logic and
Phenomenology, mentioned above.) Woodin delineates the domain in which CH
“lives,” so to speak, and then searches for the most appropriate or most specific
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logic for that domain (more specific than first order logic which (classically
speaking) is domain-independent). Thus, Woodin asks:

Can the theory of the structure 〈H(ω2), ε〉 be finitely axiomatized
(over ZFC) in a (reasonable) logic which extends first order logic?224

One may even say that a positive answer to this question would be an in-
stance of unfolding the concept of set, or the subconcept of set in the structure
H(ω2), in the sense that it determines what ways of reasoning (i.e. what logic)
certain sets allow for. In other words, unfolding the notion of set need not result
only in axioms (of the form “There exists a set with property P”) but can also
yield principles of (formal) reasoning.

The criticism of Woodin’s project given so far225 indicates that various sup-
porting facts would need to be established in order for the solution to be univer-
sally, or perhaps, more, accepted. For example, the Ω-conjecture, a statement
to the effect that Woodin’s Ω-logic satisfies a natural completeness theorem, has
not been proved.

Furthermore, any evaluation of the solution must take into account the priv-
ileged role that forcing plays in the construction of models of set theory. The
Woodin program rests on the judgement that forcing is the only model con-
struction technique to be considered; thus finding the canonical model for set
theory means, principally, finding a reasonable way to “disable” forcing. Empir-
ical completeness suggests that forcing plays this role already for the arithmetic
statements. But this is an ambitious plan; in fact another one of Shelah’s “Log-
ical Dreams”226, number 4.4, is: “Find additional methods for independence
results (in addition to forcing and large cardinals/consistency) or prove the
uniqueness of these methods.” Empirical completeness suggests that this holds
for the arithmetic statements. As no new independence results have come from
other quarters sofar, it is reasonable to conjecture that forcing must be the only
phenomenon which introduces variability.

We have suggested that Woodin’s work is something of a beginning toward
the project of reducing the variability in set theory to so-called residual incom-
pleteness. But are there any convincing arguments for the notion that residual
incompleteness really is “residual,” that is, not a meaningful phenomenon math-
ematically?

We saw that Gödel gives an exact criterion for when the question of truth
of an axiom A to be added to a theory T loses its meaning; just when T + A
and T + ¬A are weak extensions of T , meaning definable in a ground model
of T . It is interesting that Gödel does not consider the question whether one
obtains strong or weak extensions from taking A to be con(T ). And perhaps
if the terms weak and strong extension are interpreted loosely, con(T ) gives a
weak extension, whereas ¬con(T ) does not.

That is to say, adding solutions of new Diophantine equations, i.e., elements
which witness statements about inconsistency, would give strong extensions.
But this means there is an asymmetry present resembling the asymmetry in-
duced when we considered extending the ZFC axioms by inaccessibles. So the
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question of whether an axiom of this type A is true, where A denotes the con-
sistency of a theory T , is meaningful by Gödel’s own criterion, and therefore
perhaps not “residual.” But this does not seem right. Believing in those par-
ticular (weak) extensions, i.e. assuming consistency, must be warranted in any
case: consistency is the minimum assumption.227 The insight that forms the
basis of Feferman’s analyses of hierarchies of reflection principles is also needed
here: belief in the consistency of a set of axioms is supervenient on the belief
in the axioms themselves. That is to say, believing in consistency should not
commit us epistemologically to any principles beyond the axioms themselves.

This very brief sketch of Woodin’s approach together with some of the crit-
icism it has provoked is necessarily only too brief. The interested reader is
referred to the literature.228

8 Other Developments

Once the independence of all non-trivial statements about the size of 2ℵ0 were
established by Cohen, attention immediately turned to other cardinals, e.g. to
2ℵn and even to 2ℵω . It turned out that the power sets of regular cardinals like
ℵn could have any non-trivial cardinality and such statements were also inde-
pendent from each other229. The case of singular cardinals remained a puzzle.
For example, if 2ℵn = ℵn+1 for all n, does it follow that 2ℵω = ℵω+1? The
Singular Cardinal Hypothesis, SCH, states that if κ is a singular strong limit
cardinal then 2κ = κ+. Ronald Jensen showed in a penetrating study230 that
SCH cannot be decided by forcing over L, or, more exactly, without forcing
over models of set theory with large cardinals. Magidor231 then showed that
the independence can be established by forcing over models with large cardinals
in them. This perhaps vindicates Gödel’s idea that large cardinals are needed
and can be used to “solve” problems about cardinal arithmetic. Nowadays
set-theoretical axioms are known which imply SCH. We mention as an exam-
ple Chang’s Conjecture.232 (ℵα+1,ℵα) → (ℵ1,ℵ0) A recent result of Matteo
Viale233 shows PFA implies SCH.

9 Concluding remark: Gödel’s modernism

Recently, Aki Kanamori has pointed out that after Zermelo had clearly sepa-
rated set theory from logic, Gödel was the one who was prepared to take the
linguistic turn and study uninterpreted formal systems from a set-theoretical
point of view.234 This is one sense in which Gödel can be called modern; here
is another:

Gödel was nearing the end of his career when generic absoluteness emerged
in the 1970’s. On his view, reality fixes the intended model of set theory, and we
have access to this mathematical reality by intuition. Results about the limits
of formalization and formal systems he will therefore ultimately not interpret
as revealing limits to the capability of reason to grasp mathematical reality. We
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saw a particular example of this viewpoint above, in his reaction to Cohen’s
independence result. On the other hand, formalizations of mathematics will
give formal approximations to reason. In that sense, it would be natural for
Gödel to see in generic absoluteness a strong justification of his realism and its
correlate on the side of the subject, rationalistic optimism. This is primarily
because once incompleteness can be explained away as a residual phenomenon,
once the statements that we really care about are decided by a theory we in some
sense “like,” and once the “essential variability in set theory due to forcing” has
been explained, then we are on our way to a sufficiently adequate description
of the intended model. These results also say something about the robustness
of ZFC: namely, it is, after all, a theory which both captures the intuitions of
classical mathematicians about sets, and provides a domain for deciding high
order questions about sets, in spite of what the incompleteness phenomena may
have led people, in the beginning, to believe.

Once again, what is missing in the generic absoluteness approach we have
considered here, is, as Shelah points out, to show the uniqueness of forcing.
Still, we hoped to draw attention to this sea change in set theory; point out that
things are moving along the lines that Gödel anticipated they would. His iron
belief in the decidability of the Continuum Hypothesis, radical as it at times
seemed, may have been vindicated—by the set theorists.
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Notes

1All of Gödel’s published papers and selections from his unpublished papers
and correspondence have been published in five volumes: K. Gödel, Collected
Works, eds. S. Feferman et al. (Oxford: Oxford University Press). I: Publi-
cations 1929–1936 (1986); II: Publications 1938–1974 (1990); III: Unpublished
essays and lectures (1995); IV: Correspondence A-G (2003); V: Correspondence
H-Z (2003). We will refer to these volumes as CW I, etc. The Brown University
lecture is in CW III:175–185.

2CH is the hypothesis that 2ℵ0 = ℵ1. GCH is its generalization 2ℵα = ℵα+1.
Georg Cantor had first stated a weaker form of CH in 1878 and then CH in 1883.
GCH was formulated by Felix Hausdorff in 1908. For the history of (G)CH, see
in particular J. Dauben, Georg Cantor. His Mathematics and Philosophy of the
Infinite (Princeton: Princeton University Press, 1990), M. Hallett, Cantorian
Set Theory and Limitation of Size (Oxford: Clarendon Press, 1984), and the
introductions to the relevant papers in K. Gödel, Collected Works. II: Publi-
cations 1938–1974, eds. S. Feferman et al. (Oxford: Oxford University Press,
1990) and K. Gödel, Collected Works. III: Unpublished essays and lectures, eds.
S. Feferman et al. (Oxford: Oxford University Press, 1995). We will henceforth
refer to these volumes by their title and number only, e.g., Collected Works II.
We will sometimes refer to papers by their year, following the system of CW ;
the year of unpublished papers is preceded by an asterisk, there is a letter suffix
in case different papers appeared in the same year (e.g., *1940a), and there is
a question mark if the year is not certain. For more general histories of set
theory, see A. Kanamori, “The Mathematical Development of Set Theory from
Cantor to Cohen,” The Bulletin of Symbolic Logic 2(1) (1996), pp.1–71, and J.
Ferreiros Dominguez, Labyrinth of Thought: A History of Set Theory and Its
Role in Modern Mathematics (Boston: Birkhäuser, 1999).

3ZFC is Zermelo-Fraenkel set theory with the Axiom of Choice.

4Kurt Gödel. Wahrheit und Beweisbarkeit. Band 1: Dokumente und his-
torische Analysen., eds. E. Köhler et al. (Wien: öbv & hpt, 2002), pp. 127–128;
translation from the German ours.

5According to CW I, p. 41, the Brown lecture was on November 15, not 14.

6By their characteristic logic based on their characteristic notion of truth,
according to intuitionists there are no absolutely undecidable propositions. For
assume that φ is absolutely undecidable. Then in particular the assumption
that φ has been proved must lead to a contradiction. But if it does, this, on
the intuitionistic conception of negation, is to say that ¬φ holds, which decides
φ and thereby contradicts the assumption. But by the same idiosyncracies
of intuitionistic logic, this little argument does not show that therefore every
proposition is decidable. In fact intuitionists consider that as highly unlikely,
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given that on their interpretation that would mean that one knows a universal
method to decide all mathematical propositions.

7CW II, pp. 269-70

8In an explicitly typed system, adding higher types means that, besides vari-
ables for individuals (e.g. numbers, or sets), there will also be variables for sets
of individuals, sets of sets of individuals, and so on, together with appropriate
axioms that govern formation of sets of these types. In the cumulative hierarchy
of sets, adding higher types is just adding more levels to the hierarchy.

9CW III, p. 341n.20.

10See the remarkable reflections on the topic by Emil Post in the appendix to
a manuscript from 1941 titled “Absolutely Unsolvable Problems and Relatively
Undecidable Propositions,” first published in The Undecidable, ed. M. Davis
(Hewlett NY: Raven Press, 1965), pp. 340–433; the appendix starts on p. 41.

11Through the device of contextual definitions, statements may arise that are
not meant to be taken at face value, yet are equivalent to ones that should.
Gödel *1940a, CW III, p. 176 simply defines meaningfulness as being part of
mathematics proper (or translatable into mathematics proper). The relation to
practice that we will be concerned with is not thematized there.

12CW II, p. 257 and p. 256.

13CW II, p. 257 and p. 256.

14CW III, p. 35.

15See CW I, p. 180, footnote 48a.

16T. Skolem, “Einige Bemerkungen zur axiomatischen Begründung der Men-
genlehre”, in Selected Works in Logic, ed. J.E. Fenstad (Oslo: Universitetsfor-
laget, 1970), p. 149n2.

17D. Hilbert, “Über das Unendliche,” Mathematische Annalen 95 (1926),
pp. 161–190.

18CW II, p. 157. The references are to A. Fraenkel, Einleitung in die
Mengenlehre, 3rd, revised edition (Berlin: Springer, 1923) and Luzin’s talk
at the Bologna conference, “Sur les voies de la théorie des ensembles”, Atti
del Congresso Internazionale dei Matematici, Bologna 3–10 settembre 1928
(Bologna:Zanichelli), I, pp. 295–299.

19We thank Paolo Mancosu for this last detail.

20In A. Tarski, Collected Papers. Vol.1: 1921–1934, eds. S.R. Givant and
R.N. McKenzie (Boston: Birkhäuser, 1986), pp. 233–241. We thank Göran
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Sundholm for bringing this passage to our attention.

21Incidentally, Gödel in 1931 does refer to Hilbert’s paper from 1926, but in
a different context. See footnote 48a on p. 180/181 of CW I.

22H. Wang, Popular Lectures on Mathematical Logic (New York: Dover,
1993), p. 128. “Jetzt, Mengenlehre,” Gödel is alleged to have said around that
time (“And now, [on to] set theory”): J. Dawson, Logical Dilemmas. The Life
and Work of Kurt Gödel (Wellesley: A K Peters, 1997), p. 108n18. Gödel’s
interest in set theory may have begun to develop as early as 1928 when he
requested at the library the volume containing Skolem’s talk in Helsinki (men-
tioned at the beginning of this section), as Dawson notes (p. 120). It is worth
adding to this that very likely Gödel did not actually get the volume: the library
slip in question has a large question mark at the title of the book, the stamp
“Ausleihe” is missing, and the smaller part has not, as would have been usual
in case of loan, been detached. This library slip therefore does not constitute
evidence that Gödel had seen that book at that time (For a more comprehensive
discussion of the archive material and how this corroborates Gödel’s statements
about his completeness theorem and Skolem, see M. van Atten, “On Gödel’s
awareness of Skolem’s Helsinki lecture” History and Philosophy of Logic, 26(4)
(2005) pp. 321–326.). Be that as it may, Dawson goes on to mention that in
1930 Gödel requested from libraries various works on (or related to) set theory:
Hilbert’s list of open problems from 1900 (published in the Nachrichten von der
Königlichen Gesellschaft der Wissenschaften zu Göttingen of the same year)—of
which the first is CH—, Fraenkel’s Einleitung in die Mengenlehre from 1919—in
which Gödel will have noticed Fraenkel’s skepticism about Hilbert’s attempted
proof of CH—, the text of Skolem’s Helsinki lecture again, and von Neumann’s
papers “Über die Definition durch transfinite Induktion und verwandte Fragen
der allgemeine Mengenlehre” and “Die Axiomatisierung der Mengenlehre”, both
from 1928.

23p. 610 of G. Kreisel, “Review of K. Gödel’s Collected works, Vol. II,” Notre
Dame Journal of Formal Logic 31(4) (1990) pp. 602–641.

24P. 195 of G. Kreisel, “Kurt Gödel. 28 April 1906–14 January 1978,” Bio-
graphical Memoirs of Fellows of the Royal Society (1980), pp. 149–224.

25For a discussion of Gödel’s ideas on impredicativity (and of a number of
other topics), see W. Tait, “Gödel’s Unpublished Papers on Foundations of
Mathematics,” Philosophia Mathematica 9 (2001), pp. 87–126.

26For finite sets it makes of course no difference whether one uses this notion
of definability or the classical power set as the operation to generate higher
levels; one can always simply define a finite set by enumerating its elements.
For the infinite case this may well be different (and is in general believed indeed
to be.)

49



27Wang, Popular Lectures, p.129.

28For this paragraph, see Wang, Popular Lectures, p. 129, and also Gödel’s
remarks in H. Wang, A Logical Journey. From Gödel to Philosophy (Cambridge:
MIT Press, 1996), p. 251: 8.1.7, 8.1.8, 8.1.9.

29CW III, p. 178.

30P. 158 of G. Kreisel, “Gödel’s Excursions into Intuitionistic Logic,” in Gödel
Remembered. Salzburg 10-12 July 1983, eds. P. Weingartner and L. Schmetterer
(Napoli: Bibliopolis, 1987), pp. 65–179

31K. Menger, “Memories of Kurt Gödel,” in his Reminiscences of the Vienna
Circle and the Mathematical Colloquium, eds. L. Golland, B. McGuinness and
A. Sklar (Dordrecht: Kluwer, 1994), p. 214.

32He wrote in his notebook “Kont.Hyp. im wesentlichen gefunden in der Nacht
zum 14 und 15 Juni 1937’ (essentially found the [consistency proof of the gen-
eralized] Continuum Hypothesis during the night of 14 to 15 Juni 1937) CW I,
p. 36, note s.

33CW IV, pp. 112–115.

34CW II, pp. 26–27.

35CW III, p. 155.

36P.J. Cohen, “The Independence of the Continuum Hypothesis. I,” Proceed-
ings of the National Academy of Sciences, U.S.A. 50, pp. 1143–1148.

37J.C. Shepherdson, “Inner Models for Set Theory III,” The Journal of Sym-
bolic Logic 18(2), pp. 145–167. The existence of a minimal model was rediscov-
ered by Cohen in 1963 CW IV, p. 376.

38CW II, pp. 26–27.

39See also 1946 in CW II, p. 151.

40H. Wang, From Mathematics to Philosophy (London: Routledge and Kegan
Paul, 1974), p.204. Also Wang, Logical Journey, p.263.

41CW II, p. 260n20. D.S. Scott, “Measurable Cardinals and Constructible
Sets,” Bulletin de l’Académie polonaise des sciences, série des sciences
mathématiques, astronomiques, et physiques 9 (1961), pp. 521–524. S. Ulam,
“Zur Masstheorie in der algemeinen Mengenlehre,” Fundamenta Mathematicae
16 (1930), pp. 140–150.

42CW V, p. 273; original emphasis.

43CW III, *1939b, pp. 126–155.
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44CW III, p. 155.

45CW II, pp. 266–267.

46CW III, p. 184.

47CW II, p. 129.

48One suggestion, by John Dawson in CW III, p. 163, is that it was prepared
with the aim of being presented to the September 1940 International Congress
of Mathematicians. That meeting was cancelled due to the outbreak of World
War II, and in any case, Gödel never delivered the lecture.

49CW III, p. 165.

50CW III, p. 164.

51CW III, p. 175.

52CW III, p. 164.

53Our footnote: In “Über die Unabhängigkeit der Kontinuumhypothese”, Di-
alectica 23 (1969), pp. 66–78, Paul Finsler argues that undecidability of CH
is a phenomenon that only presents itself in the context of a strict axioma-
tization, for the “formal continuum.” For criticism of this proposal, see e.g.
Bernays’ remarks on that paper in “Zum Symposium über die Grundlagen der
Mathematik”, Dialectica 25 (1971), pp. 171–195.

54CW III, p. 164.

55Parsons, “ Platonism and Mathematical Intuition”, p.67.

56P. 50 of C. Parsons, “Platonism and Mathematical Intuition in Kurt Gödel’s
thought,” The Bulletin of Symbolic Logic 1(1) (1995), pp. 44–74.

57CW III, p. 185.

58CW III, p. 176.

59V = L can be violated “high up” by adding a generic, hence non-
contructible, subset to a large regular cardinal, e.g., i(ω + 1). The forcing
notion used has closure properties which imply that no new subsets of heredi-
tary cardinality i+

ω are added. Thus all Πm
n statements are preserved by this

forcing for all m and n. This technique was used e.g. in W.B. Easton, “Powers
of regular cardinals,” Annals of Mathematical Logic 1 (1970), pp. 139–178.

60E.g., F. Drake, Set Theory. An Introduction to Large Cardinals (Amster-
dam: North-Holland, 1974), p. 164.

61See CW III, p. 163.
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62CW III, p. 175.

63CW III, p. 163 and CW II, p. 158, respectively.

64Kreisel, “Gödel’s Excursions,” p. 158.

65CW II, p. 27.

66CW III, p. 163.

67E.g. CW II, p. 81.

68CW II, p. 184n22. On Gödel’s use of the term “axiom” in the Cantor
papers, see also H. Wang, Reflections on Kurt Gödel (Cambridge: MIT Press,
1988), pp. 205,294. On p. 205, Wang offers an alternative solution to ours:
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the allowance for new axioms to be discovered) implicit in G’s concept of the
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out to be a false proposition and, therefore, not really an axiom’. But for the
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69CW III, p. 133.

70CW II, p. 186.
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72CW II, p. 185–186.

73Menger’s ‘1938’ on p. 220 of his Reminiscences must be a slip of the pen.

74Menger, Reminiscences, p. 222.

75Menger, Reminiscences, p. 210; original emphasis.

76CW II, p. 182.

77CW II, p. 260n20.

78Parsons, Platonism and mathematical intuition, p.50.

79CW II, p. 179.
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scribed in R. Carnap, “Die Antinomien und die Unvollständigkeit der Mathema-
tik,” Monatshefte für Mathematik und Physik 41 (1934), pp. 263–284: certain
metamathematical notions can be defined in a given system, but others (notably,
truth) cannot. The difference with conceptual incompleteness is that such in-
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81From the editorial note on p. 428 of CW II, we gather that notebook XIV
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82CW III, pp. 433–435.

83CW II, p. 183.

84CW II, p. 181.

85Kreisel, Review, p. 607.

86Wang, From Mathematics to Philosophy, p. 196.

87CW III, p. 379.

88CW II, p. 181.

89CW II, p. 180.

90Wang, Logical Journey, p. 238.

91CW II, p. 181.
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93CW II, p. 182.

94In the 1964 version, Gödel amended this sentence to read “but also that it
can be supplemented without arbitrariness by new axioms which only unfold the
content of the concept of set explained above,” which perhaps reflects the study
of phenomenology that he had begun in between the two versions of the Cantor
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very common terms. Note that Gödel had spoken of “explicating the content of
the general concept of set” already in version III of his paper on Carnap, CW
III, p. 353n43.

95CW II, p. 150–153.

96CW II, p. 151.

97CW II, p. 140–141.

98Wang, Reflections, p. 173.
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and introduced by H. Sinaceur, “Address at the Princeton University Bicen-
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148CW II, pp. 268–9.
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corrected by himself.

179R. Laver, “The left distributive law and the freeness of an algebra of ele-
mentary embeddings,” Advances in Mathematics 91(2) (1992), pp. 209–231.

180P. Dehornoy, “Elementary embeddings and algebra.” Invited chapter in the
forthcoming Handbook of Set Theory, eds. M. Foreman, A. Kanamori, and M.
Magidor.

58



181D.A. Martin, “Borel Determinacy,” Annals of Mathematics 102 (1975),
pp. 363-371.

182D.A. Martin, “Measurable Cardinals and Analytic Games,” Fundamenta
Mathematicae 66 (1969/1970), pp. 287–291.

183We note also here Jeff Paris’s result that Pi04-determinacy is provable in
ZFC. Paris, J. B. “ZF `

∑0
4 determinateness,” The Journal of Symbolic Logic

37 (1972), pp. 661–667.

184The further, aesthetic issue, having to do with simplicity, we do not com-
ment on here. The axiom asserting the existence of a measurable was simply
fruitful in yielding a powerful result about Borel games.

185Y. Moschavakis, Descriptive Set Theory (Amsterdam: North-Holland 1980),
p. 357.

186CW IV, p. 378.

187Van Atten and Kennedy, “On the Philosophical Development of Kurt
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188CW IV, p. 372. Gödel’s page reference is to the text of Church’s talk “Paul
J. Cohen and the Continuum Problem,” published in 1968 in the Proceedings of
the International Congress of Mathematicians (Moscow-1966), pp. 15–20; p. 8
of the manuscript corresponds to p. 18 of the publication.

189Wang, Logical Journey, p. 180.

190CW III, p. 113.
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