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. . . as the Bhagavad-Gita teaches, one

achieves knowledge and indifference at

the same time.—Andre Weil.

Definability is like a wormhole from

one field of logic to another.—Jouko

Väänänen, 2013.

1 Introduction

Finitism, intuitionism, constructivism, formalism, predicativism, structural-

ism, objectivism, platonism; foundationalism, anti-foundationalism, first or-

derism; constructive type theory, Cantorian set theory, proof theory; top

down principles or building up from below—framework commitments, that is,

ideology, permeates the logician’s mathematical life. Such commitments set

∗This paper is based on a series of conversations with Jouko Väänänen.
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in early and are—usually—final: lines are drawn in the sand, and a working

life is mapped out.

Of course, not all logicians are attracted to dogma. Some are fascinated

by the space between theories, by points of data downplayed by this or that

theoretical stance, or left out altogether. Their approach is pantheistic and

ecumenical, and, with respect to foundations in particular, opportunistic and

localized. Their attitude is critical, not toward any particular logical method,

but toward the idea of omniscience. Neutrality is not a goal in itself; border-

crossing logicians are willing to take ideology seriously where they find it

effective—it is just that they rarely find it so.

We might call such a perspective the “Logic without Borders” point of

view. In the below we will recount some episodes in border-crossing, pieces

of mathematics chosen almost arbitrarily from the work, career and conver-

sation of the dedicatee of this volume, Jouko Väänänen.

We will see that a key concept turns out to be definability—and indeed,

what is more important than the question of what we can say? As Väänänen

puts it in his “Pursuing Logic without Borders”:1

We were persuaded by the idea that model theory, set theory and

recursion theory are just different approaches to the same goal,

understanding definability.

2 First Episode: Model Theory

Should model theory have borders? Countability, or more precisely, the bor-

der between the “genuinely” uncountable as opposed to the “only apparently”

uncountable, separates pure model theory, i.e. that part of the subject which

is relatively free of entanglement with set theory, from the rest. Logicians

1in this volume
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on one side ask the question: why resort to set theory for studying the ap-

parently marginal, the outlying cases, when there is so much work to do in

the cases where set-theoretic methods are (in general) not needed, i.e. in the

area of (sufficiently) stable and also in the area of o-minimal models? While

the border-crossing logician will take a different view of the term “marginal,”

at least insofar as it is used as a synonym for “entangled with set theory.”

In Shelah’s classification theory, for example, uncountable models of a suf-

ficiently stable first order theory2 can be analyzed in terms of dimension-like

invariants, somewhat reminiscent of analyzing a vector space in terms of the

size of its basis. Since countable first order theories with infinite models have

models in all uncountable cardinalities, just as there are vector spaces and

algebraically closed fields of any dimension, the (only apparently) uncount-

able cardinalities of such models must arise from their dimensions, in a kind

of stretching from the countable case. This places constraints on how compli-

cated such models can be. On the other hand, countable complete first order

theories which fail to be sufficiently stable3 have, in every sufficiently large

cardinality, models which are non-isomorphic, but they are so close to each

other that one cannot imagine analyzing the models in terms of dimension-

like invariants. What “so close to each other” means can be expressed in

exact terms in several ways. Originally Shelah showed that such models of

size κ can be L∞κ-equivalent.4 Using the method of transfinite Ehrenfeucht-

Fräıssé games and their approximations by trees5 the original result of Shelah

has been greatly improved. In recent work by Kangas-Hyttinen-Väänänen

such models are constructed in suitable cardinalities which are even L2
κω-

equivalent.6 This is the best possible result in the sense that for the classifi-

2i.e. superstable, NDOP, NOTOP
3i.e. they are unstable, or stable but unsuperstable, or superstable with DOP or OTOP
4See [14].
5a method developed by the Helsinki Logic Group in cooperation with Saharon Shelah
6See [4].
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able case each model of cardinality κ (for suitable κ) can be characterized in

L2
κω up to isomorphism.

The phrase “problematic set-theoretical content” occurs in the literature

in connection with debates about the foundational role of second order logic;7

but it also seems to have been found useful in connection with the question,

which structures should one study? Following standard mathematical prac-

tice, for model theorists avoiding pathological cases—however this may be

defined in a particular context—has become the rule.

Important oppositions, such as those between tame and nontame, classi-

fiable and nonclassifiable, o-minimal or not, admitting geometric invariants

or not, decidable and undecidable, or sometimes simply countable and un-

countable, emerge and become harmonized with the oppositions between

“nonpathological” and “set-theoretical,” or, finally, “interesting” and “too

general.” But this is precisely where ideological borders emerge. As to un-

decidability, the border-crossing logician sees undecidability as a richness,

a welcome elaboration of the basic picture. As for “interesting” and “too

general,” for the border-crossing logician “too general” is never a term of

criticism, if all that is meant by “too general” is that one’s reply to the

question, what structures should one study? is simply “all of them.”

2.1 A Remark of Sacks

Sacks expressed the conundrum thus in 1972:

B. Dreben. . . once asked. . . “Does model theory have anything to

do with logic?” It is true that model theory bears a disheartening

resemblence to set theory, a fascinating branch of mathematics

with little to say about fundamental logical questions, and in

particular to the arithmetic of cardinals and ordinals. But the

7See below.
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resemblance is more of manners than of ideas, because the central

notions of model theory are absolute, and absoluteness, unlike

cardinality, is a logical concept.8

Among other things Sacks is referring to the fact that when one analyzes

countable models in terms of finite partial isomorphisms, one uses countable

ordinals as invariants and the set-theoretic aspect is submerged, because the

concept of an ordinal is absolute.9 In detail, consider the Ehrenfeucht-Fräıssé

game of length ω between non-isomorphic countable models A and B. Clearly

player I10 has a winning strategy because he can enumerate the models in ω

moves and then he must win because no isomorphism exists. Consider now

the restriction to games of finite length, not to any fixed finite length, but

modifying the game by adding the clause that player I has to count down an

ordinal α while he plays. This ordinal is like a clock which ticks down from

the ordinal α and stops when it hits zero. He can count down only finitely

many steps so the game is finite, but it is potentially infinite in the sense

that there is no bound on the length of the game.11 In general, for “small”

α player I will not have a winning strategy. So how big must α be in order

that I wins this harder game? A simple argument shows that if player II12

has a winning strategy for all countable α, then II has a winning strategy

in the original Ehrenfeucht-Fräıssé game of length ω, and the models are

isomorphic. As the models are not isomorphic, there must be a countable α

such that player II does not have a winning strategy, and then by the Gale-

Stewart theorem, which implies that these games are determined, player I

does have a winning strategy. The smallest such α measures the distance

8[11]
9See Scott, [12].

10the anti-isomorphism player, sometimes called the “spoiler”
11The idea of thinking of ordinals as measures of potential infinity and of trees as

measures of potential countability, is presented first in [6]; see also [17].
12the isomorphism player, sometimes called the “duplicator”
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of the models A and B from being isomorphic. The bigger α is the closer

they are to being isomorphic. This gives a hierarchy in terms of countable

ordinals. On each level α of the hierarchy there are the pairs of countable

models where α is the “watershed,” the boundary where the advantage in the

Ehrenfeucht-Fräıssé game slides from player II to player I. With all clocks

less than α player II, the “isomorphism player,” is able to survive without

losing, but once the clock is started from α (or bigger), player I is able to find

the difference in the models and manifest the non-isomorphism by winning

the game. All elements of this game are quite absolute.

The point is that this fails in uncountable models. When one uses count-

able partial isomorphisms to investigate uncountable models, one needs trees

(an analogue of ordinals) which have non-trivial set theoretic properties. So

set theory becomes entangled here with model theory.

To see this, consider the Ehrenfeucht-Fräıssé game of length ω1 between

non-isomorphic models A and B of cardinality ℵ1. Clearly player I has a

winning strategy, as before, because he can list the models in ω1 moves and

then he must win because no isomorphism exists. In analogy to the countable

case we again modify the game by adding the clause that player I has to go

up a tree, which has no uncountable branches, while he plays. This tree is

like a clock which ticks up the tree and stops when the branch ends. He

can go up only countably many steps so the game is countable, but it is

potentially uncountable in the sense that there is no bound on the countable

length of the game. As before, in general, for small trees player I will not

have a winning strategy. How big must the tree be in order that I wins this

harder game? It can be shown that for any non-isomorphic A and B there

are trees such that player I wins, and of course there are trees S such that

II wins (because one can start with small trees). Clearly we are thinking

of trees here as analogues of ordinals. How far this analogy reaches is an

interesting set-theoretical question. The structure of the class of trees with
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no uncountable branches is much more complicated than the structure of

the class of all ordinals but as before, there is a hierarchy in terms of such

trees and one can use properties of such trees to chart the area where the

advantage in the Ehrenfeucht-Fräıssé game (with a tree as a clock) moves

from II to I. Interestingly, there is a gray area where neither player has a

winning strategy because the Gale-Stewart theorem (or Borel Determinacy)

does not give determinacy for these games.

Here is an example of a non-trivial and novel set-theoretical analysis which

was and is needed to work out the properties of such trees, and this has

immediate implications for the model theory of uncountable structures. For

example, as the work of Hyttinen, Shelah, Tuuri and others has shown, the

extent to which the non-isomorphism of uncountable elementarily equivalent

models can measured by trees is closely related to the stability theoretic

properties of the first order theory of the models.13

3 Second Episode: The Symbiosis between

Model Theory and Set Theory

Symbiosis is the relationship between model theory and set theory in which

one on the one hand exploits set-theoretical results to prove theorems in

model theory, and on the other hand, one uses model-theoretic considerations

to force interesting concepts and problems in set theory out into the open.

Symbiosis was developed by Väänänen in order to, as he puts it, “expose

the nature of the logic”; to “uncover the set-theoretical commitments of the

logic, its content, its strength, even its reference.” Symbiosis signifies co-

dependence—in the benign sense of the term—and is a form of entanglement.

Recent debates about the foundational virtues of second order logic vs. set

13See [5].
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theory, for example, decry the entanglement of set theory with second order

logic, insofar as it is admitted to exist at all.14 In fact, as Väänänen shows,

not only is there nothing pernicious here, second order logic (denoted SOL)

is actually symbiotic with set theory, even in the technical sense of the term

defined below—a predicament, possibly, for those who feel compelled, on

foundational grounds, to make a choice between the two formalisms.15

The technical definition of symbiosis is as follows. First some notation.

By a “predicate” we mean a formula of set theory, typically “x is a cardinal”

or “x is the power-set of y”. If a predicate P is added to the language of

set theory as a (definable) new symbol, then a Σ1(P )-predicate means a Σ1-

formula in the vocabulary {∈, P}. A ∆1(P )-predicate is a Σ1(P )-predicate

Q(x1, . . . , xn) for which there is another Σ1(P )-predicate Q′(x1, . . . , xn) such

that ∀x1 . . . xn(Q(x1, . . . , xn) ↔ Q′(x1, . . . , xn)) is true (in V ). If ϕ is a

sentence of a logic L∗ and L′ is a subset of the (many-sorted) vocabulary of

ϕ, then the projection of ϕ to L′ is the class of reducts of models of ϕ to L′.

A model class is said to be ∆-definable in L∗ if it is a projection of a sentence

of L∗ and also its complement is. Now the definition:

Definition 1. A logic L∗ is symbiotic with a predicate P of set theory if

the predicate “ϕ ∈ L∗” and the predicate “M |=L∗ ϕ” are Σ1(P ) and ∆1(P )

respectively, and in addition, a model class KP describing P (see below) is

∆-definable in L∗.

What symbiosis tells us about a logic L∗ is that its truth predicate is

“recursive” in the predicate P , in the generalized sense of being ∆1(P ). The

class KP is defined as follows:

Definition 2. Suppose P is n-ary. The model class KP consists of mod-

els (M,E, a1, ..., an) isomorphic to some (M ′,∈, a′1, ..., a′n) such that M ′ is a

14See for example [13].
15See below for the proof that SOL is symbiotic with set theory. See also [15].
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transitive set and P (a′1, ..., a
′
n) holds.

Barwise’s concept of an absolute logic is related to symbiosis but is not

the same.16 An absolute logic as defined by Barwise requires the satisfaction

predicate to be ∆1, but without extra predicates. In the generalization of

the concept introduced by Väänänen one adds the predicate P as a kind of

“oracle.”

For example, there is a symbiosis between the Härtig-quantifier and the

predicate x = Cd(y) (“the cardinality of y is x”). First of all, as Lindström

showed in [9], the class of well-ordered models is a relativized reduct (i.e. a

reduct in the sense of many-sorted logic) of a model class definable by means

of the Härtig-quantifier, for a linear order (A,<) is a well-order if and only

if there are sets Xa, a ∈ A, such that for all a, b ∈ A: a < b ↔ |Xa| <
|Xb|. The satisfaction predicate “the assignment s satisfies the formula ϕ in

the model M” for the extension of first order logic by the Härtig-quantifier

can be defined in set theory by a Σ1(Cd)-formula. On the other hand, the

class of models (up to isomorphism) of the form (M,∈, a, b), where M is

transitive and a = |b|, is ∆-definable in the extension of first order logic by

the Härtig-quantifier. We get hold of transitive models (M,∈) because we

can characterise well-foundedness. We can make sure that a = |b| because

we can use the Härtig-quantifier.

Let us take an example of an application of set theory in model theory

via symbiosis. One of the cornerstones of set theory is the Levy Reflection

Principle, which states that the hereditarily countable sets (denoted HC)

form a Σ1 elementary submodel of V. One can now observe that if a logic

L∗ is symbiotic with set theory per se (i.e. without any added predicate),

then it has the Löwenheim-Skolem Theorem down to ℵ0. To see this, note

that if ϕ ∈ L∗ ∩ HC has a model, then the statement “ϕ has a model”

is a true Σ1-sentence of set theory, hence it is true in HC. Hence ϕ has

16See [2].
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a countable model. In general, if symbiosis exists with a predicate, then

we have a Löwenheim-Skolem Theorem down to κ as soon as H(κ)17 has

enough reflection. For example, we noted that there is a symbiosis between

the Härtig-quantifier and the predicate x = Cd(y) (“the cardinality of y is

x”). Thus as soon as H(κ), which is always a Σ1 submodel of V , is also a

Σ1(Cd)-elementary submodel of V, we have a Downward Löwenheim-Skolem

theorem for the Härtig quantifier: If ϕ ∈ L(H) has a model, then ϕ has a

model of cardinality < κ.

Let us consider an example in the other direction, from model theory to

set theory. The compactness of the infinitary language Lκκ is a well-known

case. This logic is symbiotic with the predicate “x is the set of sequences of

length < κ of elements of y”. There are two different versions of compactness

for this logic. The first says that any theory T of size κ all subsets of smaller

cardinality of which have a model, has itself a model. The other drops the

cardinality assumption that T has size κ. The first concept leads to the

concept of a weakly compact cardinal, the second leads to the concept of

strongly compact cardinal. Both concepts have become important in set

theory, independently of the relation to infinitary languages.

A kind of ultimate symbiosis is the symbiosis of second order logic with

the power-set operation “x is the power set of y,” as was mentioned, and as

is proved below.

Once one begins to look for symbiosis, one finds it everywhere! For exam-

ple, as Väänänen points out, symbiosis is not limited to infinite models, but

happens in the area of finite models too. To see this, recall that a class of

finite models is recursive iff it is ∆-definable in the above sense in first order

logic (denoted FO) in the context where all models considered are finite.

So here a computational definability concept, namely “recursive,” coin-

cides with a model-theoretic definability concept. Moreover, due to a result

17H(κ) denotes the set of sets of hereditary cardinality less than κ. Thus HC is H(ℵ1).
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of Fagin, a class of finite models is existential second order definable iff it is

NP.18 Finally, a class of finite ordered models is definable in Fixpoint logic

iff it is PTIME.19

A beautiful case of symbiosis for a logic which is strictly between first

order logic and second order logic is the extension of first order logic by the

well-ordering quantifier

WxyA(x, y)↔ {(a, b) : A(a, b)}is a well-ordering

denoted FO(W ). This logic is symbiotic with set theory per se, i.e. with

the predicate x = x. This is because a model class is ∆1 if and only if it is

∆-definable in FO(W ). The well-ordering quantifier is simple and yet it hits

exactly the ∆1 level in set theory.

Symbiosis often goes deeper than just the level of model classes. In many

examples model-theoretic invariants, such as Löwenheim number, Hanf num-

ber, decision problems and so on have natural set theoretic characterizations.

For example, the Löwenheim number of second order logic is the supremum

of all Π2-definable ordinals, and similar results hold for the Hanf number and

the decision problem of second order logic. Conversely, in many cases set-

theoretic invariants such as cardinals where one has reflection, have natural

model theoretic applications. For example, by a result of Magidor, the first

supercompact cardinal is the first cardinal where second order logic has a

strong form of a Löwenheim-Skolem Theorem.20 The symbiosis here is in-

formal, but what is also interesting is that in each case one can look at the

symbiosis more carefully and sharpen the results about Löwenheim-Skolem

Theorems, Hanf numbers and so on to be able to prove symbiosis in the

technical sense also.

18See Fagin, [3].
19See N. Immerman [7] and M. Vardi [19] and [8].
20See Magidor, [10].
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4 Third Episode: The Entanglement of Sec-

ond Order Logic with Set Theory

That second order logic is entangled with set theory, is, under this perspec-

tive, of no concern. Väänänen’s precisification of the notion of entanglement

is the above-mentioned concept symbiosis. The concept was isolated in his

1978 [?], in which the following is proved: Second order logic is symbiotic

with the predicate “y = P (x)” (the powerset operation). This means that

a model class (closed under isomorphism) is definable in set theory by a ∆1

formula in the vocabulary which includes the binary predicate “y = P (x)”

in addition to ∈, if and only if the model class is ∆-definable in second order

logic.

Why is second order logic symbiotic with the power-set operation? We

reproduce here Väänänen’s reply to this question,21 together with some of

his thoughts on the first order case:

First of all, since second order logic is closed under negation,

it is enough to show that the satisfaction predicate is Σ1 with

respect to the power-set operation. This is entirely standard.

The power-set operation is needed for the semantics of the second

order quantifiers. Conversely, we have to show that the class of

transitive sets equipped with the power-set operation is definable

in second order logic with extra predicates. The first observation

is that well-foundedness, and hence transitivity, can be defined

(up to isomorphism) in second order logic. After this is it easy to

use a second order quantifier to say that that power-set operation

on the transitive set is really the full power-set operation.

In the first order case the symbiosis of FO with set theory takes

21personal communication
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place on the level of Kripke-Platek set theory with urelements,

denoted KPU−, without the axiom of infinity.22 So a model class

is definable in first order logic (when we think the universe of each

model consisting of urelements) iff it is ∆1 in KPU−. The moral

of the story is that first order logic is so weak that its symbiosis

with set theory takes place on the level of the weak set theory

KPU−.

Another way of presenting the entanglement of second order logic with

set theory is laid out by Väänänen in his 2001 and 2012 papers [16], and

[18]. Here set theory and second order logic are presented as analogs, or

reflections of each other—avatars, to use Michael Harris’s terminology23—

kindred logical productions crystallized by the intention of the logician as

he inclines toward this or that precisification of the mathematician’s natural

language discourse. As Väänänen puts it in that paper:

We study two metatheories of mathematics: first order set theory

and second order logic. It is often said (e.g. in [13]), that second

22See J. Akkanen, [1].
23and Grothedieck’s, Deligne’s and others. Apparently the word has become a term of

art in the field. Harris quotes Grothedieck on avatars:

Inspired by certain ideas of Serre, and also by the wish to find a certain

common “principle” or “motif” for the various purely algebraic “avatars”

that were known, or expected, for the classical Betti cohomology of a complex

algebraic variety, I had introduced towards the beginning of the 60s the

notion of “motif”.

and Weil (translated from the French by Harris):

. . . those obscure analogies . . . disturbing reflections of one theory in another.”

Though as Harris notes, the reference to avatars is only implicit in the Weil quote. See

Harris’s forthcoming “Not Merely Good, True, and Beautiful,” Princeton University Press.
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order logic is better than first order set theory because it can in its

full semantics axiomatize categorically N and R, while first order

axiomatization of set theory admits non-standard, e.g. countable

models. We show below that this difference is illusory. If second

order logic is construed as our primitive logic, one cannot say

whether it has full semantics or Henkin semantics, nor can we

say whether it axiomatizes categorically N and R.24 So there is

no difference between the two logics: first order set theory is

merely the result of extending second order logic to transfinitely

high types.

The border-crossing logician does not pronounce, he proves. Which is to

say, this is just the starting point of the analysis. For example, Väänänen

asks, how do we recognize second order characterizable structures? Which

structures are second order characterizable in the first place?25 What does

it really mean to say that a theory fails to be categorical?26

We briefly consider the last two questions. Recall that a theory is κ-

categorical if all models of the theory of size κ are isomorphic. A key ob-

servation in [18] is this: the question whether arithmetic in its second order

construal is categorical is, as it stands, ill-defined. The well-defined ques-

tion is whether two Henkin models (of second order arithmetic) which have

a common expansion to a model of the Comprehension Axiom are isomor-

phic. If such an extension exists, then the two models are easily proved to

be isomorphic in that common extension, that is, without any set-theoretical

24Of course as Väänänen notes in [18], one can prove internal categoricity in these cases.

See below.
25A structure M is said to be second order characterizable if there is a second order

sentence θ such that M is, up to isomorphism, the only model of θ, that is, θ categorically

characterizes M .
26p. 97, [18].
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metatheory in the background.27 If no such expansion exists, that is if the

language in question is so impoverished that it cannot describe both struc-

tures, e.g. by lacking certain predicates, then the question whether the two

structures are isomorphic makes no sense. Put another way, if we cannot

even say what the two structures are, then how can we ask whether the one

is isomorphic to the other?

Which structures are second order characterizable? Answer: almost all

of the structures the mathematician encounters in his or her working life are

second order characterizable. It is consistent that some are not, e.g. it is

consistent that the reals with a Hamel basis, when the reals are considered as

a vector space over the rationals, is not second order characterizable.28 Sec-

ond order characterizable structures actually form a hierarchy. If a structure

of cardinality κ is second order characterizable, then so is κ (as a structure

of the empty vocabulary), and all second order characterizable structures of

the same cardinality are Turing equivalent in the sense given in [18]. In fact

the following are proved in that paper:

Proposition 3. The first inaccessible (Mahlo, weakly compact, Ramsey) car-

dinal is second order characterizable. If κ is the first measurable cardinal,

then 2κ is second order characterizable. All second order characterizable car-

dinals are below the first strong cardinal.29

Proposition 4. If κ is second order characterizable, then so are κ+, 2κ, ℵκ
and iκ. More generally, if κ and λ are second order characterizable, then so

is κλ.

27This is called “internal categoricity” in [18].
28The result uses Cohen forcing. See [4] for details.
29The result concerning inaccessible cardinals is due to Zermelo, and the result on

measurable cardinals is due to D. Scott. The result concerning strong cardinals is due to

Magidor. The large cardinal sequence begins above ω. See [10].
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Thus, as Väänänen observes, the first non-second order characterizable car-

dinal is a singular strong limit cardinal.

The analysis goes deeper. One can ask, of the predicate “ϕ is a second

order characterization of a structure,” what is its complexity? It is shown

in [18] that the predicate is the conjunction of a Σ2-complete and a Π2-

complete property of ϕ. As such, it is not itself Σ2 or Π2, a fact which has

very important foundational consequences:

So recognizing whether a candidate second order sentence is a

second order characterization of some structure is so complex a

problem that it cannot (by the Proposition above) be reduced to

truth [of the form] A |= ϕ∗ in any particular second order char-

acterizable structure A. It encodes a solution to propositions of

the type 6|= ϕ∗. So in complexity it is above all the particular

truths A |= ϕ∗ and on a par with, but not equivalent to |= ϕ∗.

The whole framework of the second order view takes the concept

of a second order characterizable structure as its starting point.

In the case of familiar classical structures we can easily write the

second order characterizations. But if we write down an arbitrary

attempt at a second order characterization, the problem of decid-

ing whether we were successful is in principle harder than the

problem of finding what is true in the structure, if the sentence

indeed characterizes some structure.

This actually supports, because it emphasizes the individuality of particular

structures, forms of structuralism which specialize to the second order view

as laid out in [18]—a view which is built on the idea that second order validity

is not reducible to truth in any one second order characterizable structure.

At the same time a weakness of the view becomes visible: does the number

theorist who is looking for integer solutions to Diophantine equations really
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work with a completely different structure than the analyst who works with

complex numbers? Are not the integers rather a substructure of the complex

numbers? It seems counterintuitive that, e.g. Dedekind’s embedding of the

natural numbers into the integers, and of these into the rationals, and of

these into the reals, and finally of these into the complex numbers, is a

wrong picture.

5 Conclusion

We began with Weil’s recommendation of a passage from the Bhagavad-Gita.

We want to say that here too one achieves knowledge and indifference at the

same time—or perhaps it would be more correct to say that for the border-

crossing logician, his indifference is actually the source of his knowledge. To

him, the fine-structural, set-theoretical focus both on logic, and on logics;

the development of logical frameworks which are not so much groundings as

systems of avatars; the attempt to expose matters of reference and of content,

while all the while remaining unmoved by ideological pressures. . . this is the

logical life worth living.
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