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1 The Arithmetic Hierarchy

Our language or signature is 〈+, ·, <, 0, ′〉, denoted LPA. PA− is the theory of the positive

part of discretely ordered rings in this language, consisting of e.g. the commutative,

associate and distributive laws, the recursion equations for addition and multiplication,

and ordering axioms. (See [2] page 16 for the exact definition of PA−.) The arithmetic

hierarchy is a family of formula classes within PA and is defined as follows:

• The ∆0 (= Σ0 = Π0) formulas consist of atomic formulas closed under Boolean

connectives and bounded quantifiers, i.e. quantifiers of the form ∃~x < t and ∀~x < t,

where t is any LPA-term.

• Σn+1 formulas are those of the form ∃~xφ(~x, ~y), where φ is Πn,

• Πn+1 formulas are those of the form ∀~xφ(~x, ~y), where φ is ,

• A formula is ∆n if it is provably (in PA) equivalent to both a Σn formula and a

Πn formula.

A corresponding hierarchy of theories within PA is defined by restricting the induction

axiom to a fixed level of the arithmetic hierarchy. Specifically we define IΣn as PA−

together with the induction schema for Σn formulas; IΠn and I∆n are defined similarly.

The first fact which we observe is that the arithmetic hierarchy is strict. (Note: this

does not imply that the IΣn hierarchy is also strict. It may not be! But see below.):

Theorem 1 There is an LPA formula Ψ(x) which is Πn but not provably equivalent to

a Σn formula, and an LPA formula Θ(x) which is Σn but not provably equivalent to a

Πn formula.

1



Proof There is a truth definition for Σn formulas in Σn, i.e. for each n there is a Σn

formula SatΣn(x, y) such that for all LPA formulas φ(x), which are Σn,

IΣn ` ∀z[SatΣn(pφ(y)q, z)↔ φ(z)].

It is alot of work to write this down, but the idea is simple: just formalize the Tarski

truth conditions. To show that the definition has all the properties you want it to have,

you use induction on n. (See section 9.3 of [2] for the details.) But now we are almost

done, for let φ(x) = ¬SatΣn(x, x). We claim that φ(x) is (up to equivalence) Πn but not

Σn. Why? Suppose it is Σn. Then we could apply SatΣn to φ to obtain

SatΣn(pφ(x)q, pφ(x)q)↔ ¬SatΣn(pφ(x)q, pφ(x)q).

The other half of the claim follows similarly, i.e. this time let φ(x) = ¬SatΠn(x, x) and

apply SatΠn(x, x) to obtain a contradiction. �

Recall that we defined the theory IΣn as PA− together with the schema

[φ(0, ~y) ∧ ∀x(φ(x, ~y)→ φ(x+ 1, ~y))]→ ∀xφ(x, ~y),

where φ is a Σn formula; IΠn was defined similarly.

Theorem 2 The theories IΣn and IΠn are equivalent.

Proof We prove the “left to right” direction by induction on n. The case n = 0 is

trivial. So suppose n > 0 and φ is a Πn formula. We work model theoretically; that is

we fix a model M of IΣn and suppose that

M |= [φ(0) ∧ ∀x(φ(x)→ φ(x+ 1))] ∧ ¬φ(a),

for some a in M (suppressing parameters in φ). We claim that M must satisfy the

following Σn formula:

∀z(z ≤ a→ ¬φ(a− z)).

Note that we are done if we can prove the claim, as then since a ≤ a, we must have

¬φ(0). But this is a contradiction and therefore we must have M |= ∀xφ(x).

We prove the claim by induction on z. The case z = 0 is true, since we already have

¬φ(a). Now suppose u ≤ a→ ¬φ(a− u) for all u ≤ z0, and suppose z0 + 1 is ≤ a. Then

z0 is ≤ a and therefore by the induction hypothesis (and Modus Tollens) we must have

¬φ(a − (z0 + 1)). By Σn induction we now have ∀z(z ≤ a → ¬φ(a − z)). The right to

left direction is proved similarly. �

2



Have we proved that the IΣn hierarchy does not collapse? Not yet. As was mentioned

in class, one way to do this is to show that the consistency statement for IΣn is provable

in IΣn+1, for all n ≥ 0. (For a hint how to do this, see [2] page 140, exercise 10.8.) Then

recall that for no n do we have IΣn ` Con(IΣn).

We mentioned that certain special principles such as the Pigeon Hole Principle, the

principle that there are infinitely many primes, and others, generate interesting sub-

systems of PA. (See [2], [3] and [1] for more details, on this and other points from

the lecture.) One such principle is Collection or Coll, which resembles the replacement

axiom from ZF set theory:

Definition BΣn is the theory I∆0 together with the following axiom scheme (suppress-

ing extra parameters as usual, for the sake of readability):

∀u[(∀x ≤ u∃yφ(x, y))→ (∃v∀x ≤ u∃y ≤ vφ(x, y))], φ ∈ Σn.

Coll is the axiom scheme “for all n, BΣn.”

The following is an interesting fact about the collection scheme:

Theorem 3 BΣn+1 is between IΣn+1 and IΣn, i.e. IΣn+1 → BΣn+1 → IΣn. Moreover,

the implications are all strict.

Proof Strictness is shown by model theoretic methods. (See e.g. [3]. Note that this

gives another proof that the IΣn hierarchy is strict.)

We first prove that BΣn+1 → IΣn, by induction on n. (Here and in the remainder

of the proof, the “→” in e.g. IΣn+1 → BΣn+1 denotes semantic implication, i.e. any

model of IΣn+1 is a model of BΣn+1.) The case n = 0 is trivial. Now suppose n > 0

and φ(x) = ∃zψ(x, z), where ψ ∈ Πn−1. We assume

φ(0) ∧ ∀x(φ(x)→ φ(x+ 1)).

We wish to show ∀xφ(x). As before we work model theoretically. Accordingly let

M |= BΣn+1 and let a ∈M . We wish to show ∀x ≤ aφ(x). (For then we are done, since

a was an arbitrary element of M .) Note that

M |= ∀x(φ(x)→ φ(x+ 1)) → ∀x ≤ a(φ(x)→ φ(x+ 1))

→ ∀x ≤ a(∃zψ(x, z)→ ∃zψ(x+ 1, z))

→ ∀x ≤ a(∃zψ(x, z)→ ∃wψ(x+ 1, w))

→ ∀x ≤ a∃w∀z(ψ(x, z)→ ψ(x+ 1, w)).

Note that the subformula ∀z(ψ(x, z) → ψ(x + 1, w)) is Πn and therefore by BΣn+1 we

get
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∃v∀x ≤ a∃w ≤ v∀z(ψ(x, z)→ ψ(x+ 1, w)).

Choose b in M to witness this last formula:

∀x ≤ a∃w ≤ b∀z(ψ(x, z)→ ψ(x+ 1, w)). (1)

Without loss of generality, b can be chosen so that M |= ∃w ≤ bψ(0, z). (Why?

because we already have φ(0).) We now claim that

M |= ∀x ≤ a∃w ≤ bψ(x,w).

We prove this by Πn−1-induction on x (which we have by the induction hypothesis). Case

x = 0 is true, by choice of b. Now assume the claim holds for x ≤ a (so ∃w ≤ bψ(x,w)

holds inM) and assume x+1 ≤ a. We wish to show thatM |= ∃w ≤ bψ(x+1, w). Choose

c ∈M to witness ∃w ≤ bψ(x,w) i.e. ψ(x, c). By (1) we must have ∃w ≤ bψ(x+1, w). But

then we are done, since then we haveM |= ∀x ≤ a∃w ≤ bψ(x,w), orM |= ∀x ≤ a∃wψ(x,w),

or M |= ∀x∃wψ(x,w) or finally ∀xφ(x), as a was arbitrary.

The proof in the other direction, that is to prove that IΣn+1 → BΣn+1, also uses

induction on n and is left as an exercise. Note that for the case n = 0 it is enough to

show that IΣ1 → BΣ0, for trivially BΣ0 → BΣ1. (The extra existential quantifier can

be “peeled off” so to speak.) �

Note that this theorem gives the following nice characterization of Peano:

Corollary 4 I∆0+ Coll is equivalent to PA.

2 Parikh’s Theorem and Related Matters

We will now prove a few theorems about the theory I∆0, a very interesting subtheory of

Peano. Of the principles we mentioned before, which generate other interesting subthe-

ories of Peano, we know for example that I∆0 + exp ` PHP , where “exp” is the axiom

stating that the exponential function is provably total, and “PHP” is the Pigeon Hole

Principle. We also know that I∆0 + exp proves that there are infinitely many primes;

it also proves the MRDP theorem, i.e. the theorem stating that Σ1 formulas are Dio-

phantine, that is, definable using only existential quantifiers with a polynomial equation

matrix. There are many interesting open questions concerning how weak a theory can

be and still prove certain of these principles, e.g. the exact complexity of PHP is to date

not known.

By the way, why do we need to add the axiom “exp” to I∆0? Are the two theories

I∆0 and I∆0+exp really different? The answer is: Yes! Parikh’s Theorem states that the
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exponential function is not provably total in I∆0. (Though expontiation is ∆0 definable,

by a result of Bennett (see [2]).) This means that there are lots of interesting models of

this theory, namely models in which exponentiation fails to be a total function.

Another interesting, if not astonishing, fact about I∆0 is the following: the Gödel

Incompleteness Theorems generalize to I∆0, so that I∆0 does not prove (or refute for

that matter) its own consistency statement Con(I∆0). This is interesting but in itself

perhaps not surprising. But in fact I∆0 cannot even prove Con(Q) and in fact even

I∆0 + exp does not prove Con(Q). (See [4].) This is very surprising in light of the fact

that Q is much weaker than I∆0 in that it has no induction scheme.

Before proving Parikh’s Theorem, we need the following

Definition Let M be a model of a theory extending PA−. We say that a subset I of

M is a cut in M , denoted I ⊆e M , if it is closed downwards, i.e. x ∈ I → ∀y ≤ x(y ∈ I),

and closed under the successor function, i.e. x ∈ I → (x+ 1) ∈ I.

We also need the following lemma:

Lemma 5 Let M |= I∆0 and let I be a cut in M which is closed under + and ·. Then

I |= I∆0.

Proof We first show that under our assumption I �∆0 M , that is to say, I is a ∆0

elementary substructure of M .

The proof is by induction on the complexity of φ, defined to be the number of

connectives and quantifiers occurring in φ. The case n = 0 is clear, as for all ~a ∈ I,

I |= φ(~a) iff M |= φ(~a),

if φ is atomic. Now suppose φ(~x) = ψ1(~x) ∧ ψ2(~x), and the induction hypothesis holds

for each conjunct. Then if ~a ∈ I, M |= φ(~a) iff M |= ψi(~a), for i = 1, 2, iff I |= ψi(~a),

for i = 1, 2 (by the induction hypothesis), iff I |= φ(~a). Conjunction and negation work

similarly.

Now suppose φ is ∀y ≤ t(~x)ψ(~x, y) and again ~a ∈ I. Then by assumption t(~a) ∈ I, since

I is closed under addition and multiplication. We claim that

{b ∈ I|I |= b < t(~a)} = {b ∈M |M |= b < t(~a)},

and leave it to you to prove the claim. (It’s easy!) But then

I |= φ(~a) iff

for all b ∈ I such that b < t(~a), I |= ψ(~a, b), iff
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for all b ∈M such that b < t(~a), M |= ψ(~a, b),

by what you have just shown and by the induction hypothesis. But then M |= φ(~a) and

we are done.

We now claim that I is itself a model of I∆0. For suppose not. Then for some a ∈ I,

and for some ∆0 formula φ,

I |= φ(0) ∧ ∀x(φ(x)→ φ(x+ 1)) ∧ ¬φ(a).

Now

I |= (z ≤ a ∧ φ(z))→ (z ≤ a ∧ φ(z + 1)),

or

I |= ∀z ≤ a(φ(z)→ φ(z + 1)),

and therefore, since I �∆0 M ,

M |= ∀z ≤ a(φ(z)→ φ(z + 1)).

Since M |= I∆0 we must have that M |= ∀z ≤ aφ(z). But then M |= φ(a) and therefore

I |= φ(a), a contradiction. So I is a model of I∆0 and we are done. �

We are now ready to prove Parikh’s Theorem:

Theorem 6 Let θ(~x, y) be a ∆0 formula and suppose I∆0 ` ∀~x∃yθ(~x, y). Then for some

term t(~x), I∆0 ` ∀~x∃y < t(~x)θ(~x, y).

Proof Suppose I∆0 ` ∀~x∃yθ(~x, y) but for no term t(~x) do we have I∆0 ` ∀~x∃y < t(~x)θ(~x, y).

We adjoin new constants c1, . . . cn to LPA, where n is the arity of the vector ~x, and we

consider the theory T defined

T = I∆0 + {∀y ≤ t(~c)¬θ(~c, y)|t any LPA term}.

We claim that T is consistent and leave it to you to prove the claim. (It’s easy!) We

now let M |= T and let I ⊆ M be defined as b ∈ I ↔ b ∈ M and M |= b < t(~c), for

some LPA term t. (Note that I use the same symbol ~c both for the tuple of constants ci
and for their interpretation in M .) I is a cut in M ; moreover I is closed under addition

and multiplication. Therefore by the above lemma I |= I∆0 and thus I |= ∀~x∃yθ(~x, y).

Let b ∈ I be such that I |= θ(~c, b). Let t(~c) be a term such that I |= b ≤ t(~c). Note

that I |= T (because I �∆0 M) and therefore I |= ∀y ≤ t(~c)¬θ(~c, y). But this is a

contradiction and so we are done. �
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We mention just one application of Parikh’s theorem:

Theorem 7 Suppose IΣ0 + Ω1 `MRDP . Then NP = co−NP .

Proof (Sketch. For the details see p.261 of [1].) The problem of solving ax2 + by = c in

the positive integers is well known to be an NP -complete problem (with input a, b, c).

Therefore deciding

φ(a, b, c) = ∀x, y ≤ c(ax2 + by 6= c)

is co-NP -complete. We wish to show that under our assumption that IΣ0+Ω1 `MRDP ,

this problem is in NP . By our assumption

IΣ0 + Ω1 ` ∀u, v, w[φ(u, v, w)↔ ∃~zψ(u, v, w, ~z)],

where ψ is a polynomial equation. Hence

IΣ0 + Ω1 ` ∀u, v, w∃~z[φ(u, v, w)→ ψ(u, v, w, ~z)],

Now by the discussion on p. 273 of [1] Parikh’s theorem holds in IΣ0 + Ω1. Therefore

the existential quantifier “∃~z” in the above is bounded by a polynomial p(u, v, w) (by

Parikh’s theorem) and therefore we have

IΣ0 + Ω1 ` ∀u, v, w∃~z ≤ p(u, v, w)[φ(u, v, w)→ ψ(u, v, w, ~z)].

That is,

IΣ0 + Ω1 ` ∀u, v, w[φ(u, v, w)↔ ∃~z ≤ p(u, v, w)ψ(u, v, w, ~z)].

But ∃~z ≤ p(u, v, w)ψ(u, v, w, ~z)] is NP in u, v, w. That is, to check whether such ~z exists

we need only guess ~z for which ~z ≤ p(u, v, w), and this is NP .
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