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Abstract

Assume (Ng,N1) = (A, A1). Assume M is a model of a first order
theory T of cardinality at most AT in a language L£(T') of cardinality
< A. Let N be a model with the same language. Let A be a set of first
order formulas in £(7') and let D be a regular filter on A. Then M is
A-embeddable into the reduced power N*/D, provided that every A-
existential formula true in M is true also in N. We obtain the following
corollary: for M as above and D a regular ultrafilter over A\, M*/D is
AT T-universal. Our second result is as follows: For i < u let M; and N;
be elementarily equivalent models of a language which has cardinality
< \. Suppose D is a regular filter on A and (R, 81) — (A, AT) holds.
We show that then the second player has a winning strategy in the
Ehrenfeucht-Fraisse game of length A* on [, M;/D and [], N;/D.
This yields the following corollary: Assume GCH and A regular (or
just (No,®;) = (A, AT) and 2* = A1), For L, M; and N; be as above,
if D is a regular filter on A, then [[, M;/D =[], N;/D.
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1 Introduction

Suppose M is a first order structure and F' is the Frechet filter on w. Then
the reduced power M¥/F is N;-saturated and hence Ny-universal ([6]). This
was generalized by Shelah in [10] to any filter F' on w for which B¥/F is
R;-saturated, where B is the two element Boolean algebra, and in [8] to all
regular filters on w. In the first part of this paper we use the combinatorial
principle 0% of Shelah [11] to generalize the result from w to arbitrary ),
assuming (o, X;) — (A, AT). This gives a partial solution to Conjecture 19 in
[3]: if D is a regular ultrafilter over A, then for all infinite M, the ultrapower
M?/D is AT -universal.

The second part of this paper addresses Problem 18 in [3], which asks if
it is true that if D is a regular ultrafilter over A, then for all elementarily
equivalent models M and N of cardinality < A in a language of cardinality
< ), the ultrapowers M*/D and N*/D are isomorphic. Keisler [7] proved
this for good D assuming 2* = A*. Benda [1] weakened “good” to “contains
a good filter”. We prove the claim in full generality, assuming 2* = A\* and
(No, N1) = (A, A1),

Regarding our assumption (R, ;) — (A, AT), by Chang’s Two-Cardinal
Theorem ([2]) (Ro,R;) — (X, AT) is a consequence of A = A<*. So our
Theorem 2 settles Conjecture 19 of [3], and Theorem 13 settles Conjecture 18
of [3], under GCH for A regular. For singular strong limit cardinals (Rg, 8;) —
(\, A1) follows from O, (Jensen [5]). In the so-called Mitchell’s model ([9])
(Ng, V1) A (N, Ny), so our assumption is independent of ZFC.

2 Universality

Definition 1 Suppose A is a set of first order formulas of the language L.
The set of A-existential formulas is the set of formulas of the form

1. 32, (PL A oo A ),

where each ¢; is in A. The set of weakly A-existential formulas is the set
of formulas of the above form, where each ¢; is in A or is the negation of a
formula in A. If M and N are L-structures and h : M — N, we say that h
is a A-homomorphism if h preserves the truth of A-formulas. If h preserves
also the truth of negations of A-formulas, it is called a A-embedding.



Theorem 2 Assume (Rg,R;) = (A, AT). Let M be a model of a first order
theory T of cardinality at most \*, in a language L of cardinality < X and
let N be a model with the same language. Let A be a set of first order
formulas in L and let D be a reqular filter on X\. We assume that every

weakly A-existential sentence true in M is true also in N. Then there is a
A-embedding of M into the reduced power N*/D.

By letting A be the set of all first order sentences, we get from Theorem 2:

Corollary 3 Assume (Ro,N;) — (M AT). If M is a model with language
< A, and D is a regular ultrafilter on X\, then M*/D is \*T-universal, i.e. if
M' is of cardinality < AT, and M' = M, then M' is elementarily embeddable
into the ultrapower M*/D.

We can replace “weakly A-existential” by “A-existential” in the Theorem,
if we only want a A-homomorphism.

The idea behind the proof of Theorem 2 is roughly as follows: suppose
M = {a; : ¢ < AT}. We associate to each ¢ < A* finite sets uf C(i< A,
and represent the formula set A as a union of finite sets A;. The proof
involves a simultaneous recursion over A* and \. At stage 7, for each { < A
we consider the A;-type of those elements a, of the model whose indices lie
in the set u$, ¢ < At. This will yield a witness f,(i) in N at stage i, 7.
Naturally, the sets uf have to have some coherence properties in order for
this to work. Our embedding is then given by a, — (f; (i) : i < A\)/D.

We need first an important lemma, reminiscent of Proposition 5.1 in [11]:

Lemma 4 Assume (R, R1) = (A, AT). Let D be a regular filter on . There
exist sets ué and integers n; for each ¢ < AT and i < X\ such that for each 1,

(i) [uf| <m

(i) uf C ¢

(iii) Let B be a finite set of ordinals and let  be such that B C ( < \T.
Then {i: B Cus} € D

¢

(iv) Coherency: v € ué = u) = u N~y



Assuming the lemma, and letting M = {a; : ( < A"} we now define, for
each (, a function f¢: A +— N.

Let A = {¢o : @« < A} and let {A, : @ < A} be a family witnessing the
regularity of D. Thus for each i < A, the set w; = {«: 7 € A,} is finite. Let
A; ={¢q : @ € w;}, and let uf, n; be as in the lemma.

We define a sequence of formulas essential to the proof: suppose { < A™
and i < \. Let m$ = |u$| and let

/U'ZC = {6471.71’ Y £<,z7mf}

be the increasing enumeration of ug (We adopt henceforth the conven-
tion that any enumeration of uf that is given is the increasing enumera-

tion.) Let 6 be the A;-type of the tuple (ag,, ,, g ) in M. (So every

¢(z1,...,x, ) € A; or its negation occurs as an element of éf, according to
whether ¢(ag. , ,, ...,agcmg) or =d(ag,, ...,agg,i,mg) holds in M.) We define

My

the formula 65 for each i by downward induction on m¢ as follows:

Case 1: m$ +1 =n;. Let 5 = \6°.

Case 2: mS +1 < n;. Let 6° be the conjunction of §¢ and all formulas of
the form 3,05 (21, ..., T, ¢, Tme ), Where € satisfies uf = ué U {¢} and hence
ms = mf + 1. If no such € exists, 01-4 is just the conjunction of gf.

An easy induction, based on the fact that there is a uniform bound n; on
the sizes of the sets uf, shows that for a fixed ¢+ < A, the cardinality of the
set {05 : ¢ < At} is finite.

Let i < X be fixed. We define f.(i) for € € u$ by induction on ¢ < AT in
such a way that the following condition remains valid:

(IH) If ¢* < ¢ and u$ = {re;, ..., 7e, }, then N = 05 (fey (), oy foo (0)).

Actually, f.(i) gets defined once and for all at the first stage ¢ such that
e € ut. To define f,(i) for e € u, we consider different cases:
Case 1: n; = ng + 1.

Case 1.1: n; = 1. Then there is nothing to prove, since uf is empty.

Case 1.2: n; > 1. Let uf = {&,...,&, ¢} Since mZ-C + 1 = n;, the formula
65 is the A-type of the elements {ag,...,a¢  }. By assumption v = ¢ ¢ is

the maximum element of uf We note that for € € uf N, fe(i) is already



defined. By coherency, u] = u$ Ny = {&,,. .. ,€ ¢ .} Since v < ¢, we know
by the induction hypothesis that

N ): GZ(fgl(i), - -afingil(i))'

As ué = u] U {y} and m] < n; — 1, the formula ¢} contains the formula
Az, c0%(z1,..., 2 _¢) as a conjunct. Thus

N ): axmfeic(fil (7’)’ T fﬁmg_l(i)’ xmf)

Now let b € N witness this formula and set f, (i) = b.

Case 2: m¢+1 < n;. Let u$ = {&, ... & ¢}. We have that M = Gf(a&, !
and therefore M |= 3z, 05 (ag,, ..., a¢ . o T,0). Let y = max(uf)=¢ ¢. By
coherency u; = uf N v and therefore since v < ( again by the induction
hypothesis we have that

N ): QZ(fﬁl(i): R f§mg_1(i))'
But then as in case 1.2 we can infer that

N ): Elxmfezg(ffl (Z)a sy f§mg71(i)’ xmf)

Asin case 1 choose an element b € N to witness this formula and set f, (i) = b.

It remains to be shown that the mapping a — (f¢(¢) : ¢ < A)/D satisfies
the requirements of the theorem, i.e. we must show, for all ¢ such that ¢ € A
or ~¢ € A:

M = q&(a&,...,agk) ={i: N ¢(f§1(z)aﬂf€k(7’))} €D.

So let such a ¢ be given, and suppose M = ¢(ag,,...,ag). Let I, = {3 :
N = o¢(fe,(2),..., fe, (1)) }. We wish to show that I, € D. Let a < A so that
¢ is ¢, or its negation. It suffices to show that A, C I. Let ( < AT be such

that {&1,...,&,} € (. By Lemma 4 condition (iii), {7 : {&1,...,&.} C uf} eD.
So it suffices to show

Ao N i {&, . &} Cus} C I

Let i € A, such that {£,...,&,} C uf. By the definition of #¢ we know that
N = 605 (fe, (i), - -, fe, (). But the Aj-type of the tuple (ag,, ..., ag,) occurs
as a conjunct of 65, and therefore N = ¢(fe, (i), . . ., fe, (1)) O



3 Proof of Lemma 4

We now prove Lemma 4. We first prove a weaker version in which the filter
is not given in advance:

Lemma 5 Assume (Ro,¥;) — (M AT). Then there exist sets (u§ : ( <
At i < cof(N)), integers n; and a regular filler D on A, generated by X\ sets,
such that (i)-(iv) of Lemma 4 hold.

Proof. By [11, Proposition 5.1, p. 149] the assumption (Rg,R;) — (A, A1)
is equivalent to:

0% : There is a A*-like linear order L, sets (C$ : a € L, < c¢f(\)), equiva-
lence relations (E¢ : ¢ < c¢f())), and functions (f(f,b (< ANa€eLbe
L) such that
(1) UC C$ = {b:b <y a} (an increasing union in ().
(ii) If b € CS, then Cg = {c € CS : ¢ <y, b}.
(iii) E¢ is an equivalence relation on L with < A equivalence classes.
(iv) If ¢ <& < cf()), then E® refines ES.
(v) If aE°b, then fib is an order-preserving one to one mapping from
C¢ onto Cf such that for d € CS, dECfib(d).

(vi) If ¢ < € < cf(A) and aE%b, then fS, C f5 .
(vii) If £,(ar) = by, then f5 , C f5,.
(viil) If a € C§ then =E¢(a,b).

This is not enough to prove Lemma 5, so we have to work a little more.
Let
Ec={a/ES:a € L}.

We assume, for simplicity, that ¢ # £ implies 2, N Z¢ = (. Define for
tl, tg € EC:
t1 <¢ ty <— (3&1 € tl)(HGQ € tg)(a1 € ng).

Proposition 6 (=, <;) is a tree order with cf(\) as the set of levels.



Proof. We need to show (a) t1 < t2 <¢ t3 implies t; <, t3, and (b) t; < t3
and ty <¢ t3 implies ¢; <¢ ty or to <¢ t; or t; = to. For the first, ¢t </ o
implies there exists a; € ¢; and ay € ¢, such that a; € CS,. Similarly ¢, <¢ t3
implies there exists by € t, and b3 € t3 such that by € C'bCS. Now ayE¢b, and
hence we have the order preserving map fcf%b2 from C§, onto C’,i. Recalling
a € C5,, let fg , (a1) = bi. Then by (vi), a1 E%b; and hence by € t;. But
then b; € Cj, implies b; € Cy,, by coherence and the fact that by € C . But
then it follows that ¢; <, t3.

Now assume ?; <¢ t3 and ¢, <¢ t3. Let a; € t; and a3 € t3 be such that
a; € C’gs, and similarly let by and b3 be such that by € C,fs. a3 E¢bs implies we
have the order preserving map facg,b3 from 053 to C’bCS. Letting f(fs,bs(al) = by,
we see that b; € Cy,. If by <p, by, then we have Cy = Cy N{c: ¢ < by} which
implies b, € Cbg, since, as f§37b3 is order preserving, by <r, bo. Thus t; <¢ to.
The case by <y, by is proved similarly, and b; = b, is trivial. O

For a <z, b let
¢(a,b) = min{¢ : a € C}}.

Denoting &(a, b) by &, let
tp(a,b) = (a/E¢,b/E*).
Ifa <p ... <1 Ay, let

tp({ai, ..., an)) = {{I,m, tp(a;, am))|1 <1 <m < n}

and
I'={tp(a@):de <“L}.

For t = tp(a@),a € "L we use n; to denote the length of a.
Proposition 7 If ag <p, ... <r a,, then
max{{(a;, am) : 0 <1 <m <n}=max{{(a;,a,):0<1<n}.

Proof. Clearly the right hand side is < the left hand side. To show the
left hand side is < the right hand side, let | < m < n be arbitrary. If
E(ay, an) < &(am,ay), then &(ay, am) < &(am,an). On the other hand, if
&(ay, an) > &(am,ay), then &(ay, an) < &(ar,a,). In either case &(ay, ay) <
max{&(ag,a,) : 0 <k <n}. O



Let us denote max{&(a;,a,) : 0 < I < n} by £(@). We define on I' a
two-place relation < as follows:

t1 <r o

if there exists a tuple (ag, - - - an,, 1) realizing ¢ such that some subsequence
of the tuple realizes t;.
Clearly, (I', <r) is a directed partial order.

Proposition 8 Fort € T', t = tp(by,...b,—1) and a € L, there ezists at
most one k < n such that by E¢®obn-1)g,

Proof. Let ( = &(bg,...,ba_1) and let by, # by, be such that by, E°a and
b, E¢a, ki, ky < n — 1. Without loss of generality, assume by, < by,. Since
E¢ is an equivalence relation, by, ESb, and thus we have an order preserving
map fl§k2,bk1 from C,f}w to C,fkl. Also by, € C§k2, by the definition of { and by

coherence, and therefore f,szjbkl (b, ) E¢by, . But this contradicts (viii), since
¢ ¢
fbkz,bkl (br,) € Cbkl' o

Definition 9 Fort € T', t = tp(by,...b, 1) and a € L suppose there ezists
k < n such that by E¢®or-ta=1)g.  Then let ul = {f(f’(bio"“’b"_l)(bl) 1l < k}
Otherwise, let uf = ().

Finally, let D be the filter on I generated by the A sets

We can now see that the sets uf, the numbers n; and the filter D satisfy
conditions (i)-(iv) of Lemma 4 with L instead of A™: Conditions (i) and (ii)
are trivial in this case. Condition (iii) is verified as follows: Suppose B is
finite. Let a € L be such that (Vz € B)(z <z a). Let @ enumerate B U {a}
in increasing order and let t* = ¢p(@). Clearly

tEFZt* :>B§u?

Condition (iv) follows directly from Definition 9 and Proposition 8.
To get the Lemma on A" we observe that since L is AT-like, we can assume
that (A1, <) is a submodel of (L, <). Then we define v® = u@N{F: 5 < a}.



Conditions (i)-(iv) of Lemma 5 are still satisfied. Also having D a filter on
[ instead of on A is immaterial as [T'| = \. O

Now back to the proof of Lemma 4. Suppose ug,ni and D are as in

Lemma 5, and suppose D' is an arbitrary regular filter on \. Let {A, : o < A}
be a family of sets witnessing the regularity of D', and let {Z, : o < A} be
the family generating D. We define a function h : A — X as follows. Suppose

1 < A. Then let
h(i) € [ Zali € A}
¢

Now define v$ = Up(o)- Define also ng = np(e). Now the sets v and the
numbers n, satisfy the conditions of Lemma 4. O

4 Is Dg* needed for Lemma 57?7

In this section we show that the conclusion of Lemma 5 (and hence of
Lemma 4) implies 0% for singular strong limit A\. By [11, Theorem 2.3 and
Remark 2.5], EI’/’\* is equivalent, for singular strong limit A, to the following
principle:

Sy : There are sets (C% : a < AT,7 < ¢f(A)) such that
(i) If i < j, then Ci C CJ.
(i1) U, CL = a.
(iii) If b € C%, then C} = C: Nb.
(iv) sup{otp(C%) :a < AT} < .

Thus it suffices to prove:

Proposition 10 Suppose the sets uf and the filter D are as given by Lemma 5
and X\ is a limit cardinal. Then Sy holds.

Proof. Suppose A = {A, : @ < A} is a family of sets generating D. W.l.o.g.,
A is closed under finite intersections. Let A be the union of the increasing
sequence (A, : a < c¢f(A)), where \g > w. Let the sequence (I'y, : @ < cf()))
satisfy:

(a) Tal < Aq



(b) T, is continuously increasing in o with A as union
(c) If By, ..., Bn € Ty, then there is v € T, such that

Ay =Ag N...NAg,.

The sequence (I', : a < cf(\)) enables us to define a sequence that will
witness S). For a < ¢f(\) and { < AT, let

Ve={6<(: (FyeTa)(A, C{i:Eeu})}.

Lemma 11 (1) (V& : a < )) is a continuously increasing sequence of
subsets of C, [V < Ao, and U{VE 1 a < cf(N)} = (.

(2) If€ € V2, then VE = VENE,

Proof. (1) is a direct consequence of the definitions. (2) follows from the
respective property of the sets uf d

Lemma 12 sup{otp(V) : ( < A*} < AL

Proof. By the previous Lemma, [V < A,. Therefore otp(V) < A7 and
the claim follows. O

The proof of the proposition is complete: (i)-(iii) follows from Lemma 11,
(iv) follows from Lemma 12 and the assumption that A is a limit cardinal. O

More equivalent conditions for the case A singular strong limit, D a regular
ultrafilter on A, are under preparation.

5 Ehrenfeucht-Fraissé-games

Let M and N be two first order structures of the same language L. All
vocabularies are assumed to be relational. The Fhrenfeucht-Fraissé-game of
length v of M and N denoted by EFG, is defined as follows: There are two
players called I and II. First I plays zo and then II plays 1,. After this I
plays z, and II plays y;, and so on. If ((zg,y5) : f < «) has been played
and « < 7, then I plays z, after which II plays y,. Eventually a sequence
((zg,yp) : B < <) has been played. The rules of the game say that both
players have to play elements of M U N. Moreover, if I plays his 23 in M

10



(N), then IT has to play his yg in N (M). Thus the sequence ((xg,y) : B < )
determines a relation 7 C M x N. Player II wins this round of the game if 7
is a partial isomorphism. Otherwise I wins. The notion of winning strategy
is defined in the usual manner. We say that a player wins EFG, if he has a
winning strategy in EFG,.

Note that if IT has a winning strategy in EFG, on M and N, where M
and N are of size < ||, then M = N.

Assume L is of cardinality < A and for each ¢ < A let M; and N; be
elementarily equivalent L-structures. Shelah proved in [12] that if D is a
regular filter on A, then Player II has a winning strategy in the game EFG,
on [[, M;/D and [], N;/D for each v < A*. We show that under a stronger
assumption, IT has a winning strategy even in the game EFG,+. This makes
a big difference because, assuming the models M; and N; are of size < AT,
2* = AT, and the models [[, M;/D and [, N;/D are of size < AT. Then by
the remark above, if IT has a winning strategy in EFG,+, the reduced powers
are actually isomorphic. Hyttinen [4] proved this under the assumption that
the filter is, in his terminology, semigood.

Theorem 13 Assume (Rg,N;) — (A, AT). Let L be a language of cardinality
< X and for each i < X let M; and N; be two elementarily equivalent L-

structures. If D is a reqular filter on X\, then Player II has a winning strategy
in the game EFG,+ on [[, M;/D and [, N;/D.

Proof. We use Lemma 4. If 1 < A, then, since M; and N; are elementarily
equivalent, Player IT has a winning strategy o; in the game EFG,,, on M; and
N;. We will use the set uf to put these short winning strategies together into
one long winning strategy.

A “good” position is a sequence ((f¢, g¢) : ¢ < &), where £ < AT, and for
all ( < & we have f¢ € [[, M;, g¢c € [, Vs, and if ¢ < A, then ((fc(¢), gc(4)) :
e € ut U {(¢}) is a play according to o;.

Note that in a good position the equivalence classes of the functions f,
and g. determine a partial isomorphism of the reduced products. To see
this, suppose ((f¢,9¢) : ¢ < &) is a good position, ¢(x1,...,x;) is atomic
and Iy = {i : M; = &(fa(?),..., fa,(4))} € D. We wish to show that
I ={i: Ni & ¢(ga,(9),---,9a,(7))} € D. By Lemma 4, if v < A* is such
that B = {ai,...,ax} C 7, then J,={i: BCul} € D. Thus J,NIs € D,
and for each i € J,, ((fe(i), gc(?)) : € € u]) is part of the play according to o;.
Thus for each such i, i € Iy <> i € I§ie J,NIy=J, NI, whence I} € D.

11



The strategy of player II is to keep the position of the game “good”, and
thereby win the game. Suppose £ rounds have been played and II has been
able to keep the position “good”. Then player I plays f.. We show that
player II can play g so that {(f¢, gc) : ¢ < &) remains “good”. Let ¢ < A
Let us look at ((f.(i), ge(i)) : € € u}). We know that this is a play according
to the strategy o; and |u;| < n;. Thus we can play one more move in EF,,
on M; and N; with player I playing f¢(¢). Let g¢(i) be the answering move
of IT in this game according to o;. The values g¢(i), ¢ < A, constitute the
function g.. We have shown that II can maintain a “good” position. O

Corollary 14 Assume GCH and X regular (or just (Ro, Ry} — (A, A7) and
2X = \*). Let L be a language of cardinality < X and for each i < X let M;

and N; be two elementarily equivalent L-structures. If D is a reqular filter
on A, then [[, M;/D =[], N;/D.
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