On regular reduced products*

Juliette Kennedy †
Department of Mathematics
University of Helsinki
Helsinki, Finland

Saharon Shelah [‡]
Institute of Mathematics
Hebrew University
Jerusalem, Israel

March 20, 2002

Abstract

Assume $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$. Assume M is a model of a first order theory T of cardinality at most λ^+ in a language $\mathcal{L}(T)$ of cardinality $\leq \lambda$. Let N be a model with the same language. Let Δ be a set of first order formulas in $\mathcal{L}(T)$ and let D be a regular filter on λ . Then M is Δ -embeddable into the reduced power N^{λ}/D , provided that every Δ -existential formula true in M is true also in N. We obtain the following corollary: for M as above and D a regular ultrafilter over λ , M^{λ}/D is λ^{++} -universal. Our second result is as follows: For $i < \mu$ let M_i and N_i be elementarily equivalent models of a language which has cardinality $\leq \lambda$. Suppose D is a regular filter on λ and $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$ holds. We show that then the second player has a winning strategy in the Ehrenfeucht-Fraisse game of length λ^+ on $\prod_i M_i/D$ and $\prod_i N_i/D$. This yields the following corollary: Assume GCH and λ regular (or just $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$ and $2^{\lambda} = \lambda^+$). For L, M_i and N_i be as above, if D is a regular filter on λ , then $\prod_i M_i/D \cong \prod_i N_i/D$.

^{*}This paper was written while the authors were guests of the Mittag-Leffler Institute, Djursholm, Sweden. The authors are grateful to the Institute for its support.

[†]Research partially supported by grant 1011049 of the Academy of Finland.

[‡]Research partially supported by the Binational Science Foundation. Publication number 769.

1 Introduction

Suppose M is a first order structure and F is the Frechet filter on ω . Then the reduced power M^{ω}/F is \aleph_1 -saturated and hence \aleph_2 -universal ([6]). This was generalized by Shelah in [10] to any filter F on ω for which B^{ω}/F is \aleph_1 -saturated, where B is the two element Boolean algebra, and in [8] to all regular filters on ω . In the first part of this paper we use the combinatorial principle $\square_{\lambda}^{b^*}$ of Shelah [11] to generalize the result from ω to arbitrary λ , assuming $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$. This gives a partial solution to Conjecture 19 in [3]: if D is a regular ultrafilter over λ , then for all infinite M, the ultrapower M^{λ}/D is λ^{++} -universal.

The second part of this paper addresses Problem 18 in [3], which asks if it is true that if D is a regular ultrafilter over λ , then for all elementarily equivalent models M and N of cardinality $\leq \lambda$ in a language of cardinality $\leq \lambda$, the ultrapowers M^{λ}/D and N^{λ}/D are isomorphic. Keisler [7] proved this for good D assuming $2^{\lambda} = \lambda^{+}$. Benda [1] weakened "good" to "contains a good filter". We prove the claim in full generality, assuming $2^{\lambda} = \lambda^{+}$ and $\langle \aleph_{0}, \aleph_{1} \rangle \to \langle \lambda, \lambda^{+} \rangle$.

Regarding our assumption $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$, by Chang's Two-Cardinal Theorem ([2]) $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$ is a consequence of $\lambda = \lambda^{<\lambda}$. So our Theorem 2 settles Conjecture 19 of [3], and Theorem 13 settles Conjecture 18 of [3], under GCH for λ regular. For singular strong limit cardinals $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$ follows from \square_{λ} (Jensen [5]). In the so-called Mitchell's model ([9]) $\langle \aleph_0, \aleph_1 \rangle \not\to \langle \aleph_1, \aleph_2 \rangle$, so our assumption is independent of ZFC.

2 Universality

Definition 1 Suppose Δ is a set of first order formulas of the language L. The set of Δ -existential formulas is the set of formulas of the form

$$\exists x_1 ... \exists x_n (\phi_1 \land ... \land \phi_n),$$

where each ϕ_i is in Δ . The set of weakly Δ -existential formulas is the set of formulas of the above form, where each ϕ_i is in Δ or is the negation of a formula in Δ . If M and N are L-structures and $h: M \to N$, we say that h is a Δ -homomorphism if h preserves the truth of Δ -formulas. If h preserves also the truth of negations of Δ -formulas, it is called a Δ -embedding.

Theorem 2 Assume $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$. Let M be a model of a first order theory T of cardinality at most λ^+ , in a language L of cardinality $\leq \lambda$ and let N be a model with the same language. Let Δ be a set of first order formulas in L and let D be a regular filter on λ . We assume that every weakly Δ -existential sentence true in M is true also in N. Then there is a Δ -embedding of M into the reduced power N^{λ}/D .

By letting Δ be the set of all first order sentences, we get from Theorem 2:

Corollary 3 Assume $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$. If M is a model with language $\leq \lambda$, and D is a regular ultrafilter on λ , then M^{λ}/D is λ^{++} -universal, i.e. if M' is of cardinality $\leq \lambda^+$, and $M' \equiv M$, then M' is elementarily embeddable into the ultrapower M^{λ}/D .

We can replace "weakly Δ -existential" by " Δ -existential" in the Theorem, if we only want a Δ -homomorphism.

The idea behind the proof of Theorem 2 is roughly as follows: suppose $M = \{a_{\zeta} : \zeta < \lambda^{+}\}$. We associate to each $\zeta < \lambda^{+}$ finite sets $u_{i}^{\zeta} \subseteq \zeta$, $i < \lambda$, and represent the formula set Δ as a union of finite sets Δ_{i} . The proof involves a simultaneous recursion over λ^{+} and λ . At stage i, for each $\zeta < \lambda^{+}$ we consider the Δ_{i} -type of those elements a_{τ} of the model whose indices lie in the set u_{i}^{ζ} , $\zeta < \lambda^{+}$. This will yield a witness $f_{\tau}(i)$ in N at stage i, τ . Naturally, the sets u_{i}^{ζ} have to have some coherence properties in order for this to work. Our embedding is then given by $a_{\tau} \mapsto \langle f_{\tau}(i) : i < \lambda \rangle / D$.

We need first an important lemma, reminiscent of Proposition 5.1 in [11]:

Lemma 4 Assume $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$. Let D be a regular filter on λ . There exist sets u_i^{ζ} and integers n_i for each $\zeta < \lambda^+$ and $i < \lambda$ such that for each i, ζ

- (i) $|u_i^{\zeta}| < n_i$
- (ii) $u_i^{\zeta} \subseteq \zeta$
- (iii) Let B be a finite set of ordinals and let ζ be such that $B \subseteq \zeta < \lambda^+$. Then $\{i : B \subseteq u_i^{\zeta}\} \in D$
- (iv) Coherency: $\gamma \in u_i^{\zeta} \Rightarrow u_i^{\gamma} = u_i^{\zeta} \cap \gamma$

Assuming the lemma, and letting $M = \{a_{\zeta} : \zeta < \lambda^{+}\}$ we now define, for each ζ , a function $f_{\zeta}: \lambda \mapsto N$.

Let $\Delta = \{\phi_{\alpha} : \alpha < \lambda\}$ and let $\{A_{\alpha} : \alpha < \lambda\}$ be a family witnessing the regularity of D. Thus for each $i < \lambda$, the set $w_i = \{\alpha : i \in A_\alpha\}$ is finite. Let $\Delta_i = \{\phi_\alpha : \alpha \in w_i\}, \text{ and let } u_i^{\zeta}, n_i \text{ be as in the lemma.}$

We define a sequence of formulas essential to the proof: suppose $\zeta < \lambda^+$ and $i < \lambda$. Let $m_i^{\zeta} = |u_i^{\zeta}|$ and let

$$u_i^{\zeta} = \{\xi_{\zeta,i,1}, ..., \xi_{\zeta,i,m_i^{\zeta}}\}$$

be the increasing enumeration of u_i^{ζ} . (We adopt henceforth the convention that any enumeration of u_i^{ζ} that is given is the increasing enumeration.) Let $\bar{\theta}_i^{\zeta}$ be the Δ_i -type of the tuple $\langle a_{\xi_{\zeta,i,1}},...,a_{\xi_{\zeta,i,m}^{\zeta}} \rangle$ in M. (So every $\phi(x_1,...,x_{m_i^{\zeta}}) \in \Delta_i$ or its negation occurs as an element of $\bar{\theta}_i^{\zeta}$, according to whether $\phi(a_{\xi_{\zeta,i,1}},...,a_{\xi_{\zeta,i,m_{\xi}^{\zeta}}})$ or $\neg\phi(a_{\xi_{\zeta,i,1}},...,a_{\xi_{\zeta,i,m_{\xi}^{\zeta}}})$ holds in M.) We define the formula θ_i^{ζ} for each i by downward induction on m_i^{ζ} as follows:

Case 1: $m_i^{\zeta} + 1 = n_i$. Let $\theta_i^{\zeta} = \bigwedge \overline{\theta}_i^{\zeta}$.

Case 2: $m_i^{\zeta} + 1 < n_i$. Let θ_i^{ζ} be the conjunction of $\bar{\theta}_i^{\zeta}$ and all formulas of the form $\exists x_{m_i^{\epsilon}} \theta_i^{\epsilon}(x_1, ..., x_{m_i^{\zeta}}, x_{m_i^{\epsilon}})$, where ϵ satisfies $u_i^{\epsilon} = u_i^{\zeta} \cup \{\zeta\}$ and hence $m_i^{\epsilon} = m_i^{\zeta} + 1$. If no such ϵ exists, θ_i^{ζ} is just the conjunction of $\bar{\theta}_i^{\zeta}$.

An easy induction, based on the fact that there is a uniform bound n_i on the sizes of the sets u_i^{ζ} , shows that for a fixed $i < \lambda$, the cardinality of the set $\{\theta_i^{\zeta}: \zeta < \lambda^+\}$ is finite.

Let $i < \lambda$ be fixed. We define $f_{\epsilon}(i)$ for $\epsilon \in u_i^{\zeta}$ by induction on $\zeta < \lambda^+$ in such a way that the following condition remains valid:

(IH) If
$$\zeta^* < \zeta$$
 and $u_i^{\zeta^*} = \{r_{\epsilon_1}, ..., r_{\epsilon_k}\}$, then $N \models \theta_i^{\zeta^*}(f_{\epsilon_1}(i), ..., f_{\epsilon_k}(i))$.

Actually, $f_{\epsilon}(i)$ gets defined once and for all at the first stage ζ such that $\epsilon \in u_i^{\zeta}$. To define $f_{\epsilon}(i)$ for $\epsilon \in u_i^{\zeta}$, we consider different cases:

Case 1: $n_i = m_i^{\zeta} + 1$.

Case 1.1: $n_i = 1$. Then there is nothing to prove, since u_i^{ζ} is empty. Case 1.2: $n_i > 1$. Let $u_i^{\zeta} = \{\xi_1, \dots, \xi_{m_i^{\zeta}}\}$. Since $m_i^{\zeta} + 1 = n_i$, the formula

 θ_i^{ζ} is the Δ_i -type of the elements $\{a_{\xi_1},\ldots,a_{\xi_{m_i^{\zeta}}}\}$. By assumption $\gamma=\xi_{m_i^{\zeta}}$ is the maximum element of u_i^{ζ} . We note that for $\epsilon \in u_i^{\zeta} \cap \gamma$, $f_{\epsilon}(i)$ is already defined. By coherency, $u_i^{\gamma} = u_i^{\zeta} \cap \gamma = \{\xi_1, \dots, \xi_{m_i^{\zeta}-1}\}$. Since $\gamma < \zeta$, we know by the induction hypothesis that

$$N \models \theta_i^{\gamma}(f_{\xi_1}(i), \dots, f_{\xi_{m_i^{\zeta}-1}}(i)).$$

As $u_i^{\zeta} = u_i^{\gamma} \cup \{\gamma\}$ and $m_i^{\gamma} < n_i - 1$, the formula θ_i^{γ} contains the formula $\exists x_{m_i^{\zeta}} \theta_i^{\zeta}(x_1, \dots, x_{m_i^{\zeta}})$ as a conjunct. Thus

$$N \models \exists x_{m_i^{\zeta}} \theta_i^{\zeta}(f_{\xi_1}(i), \dots, f_{\xi_{m_i^{\zeta}-1}}(i), x_{m_i^{\zeta}}).$$

Now let $b \in N$ witness this formula and set $f_{\gamma}(i) = b$.

Case 2: $m_i^{\zeta} + 1 < n_i$. Let $u_i^{\zeta} = \{\xi_1, \dots, \xi_{m_i^{\zeta}}\}$. We have that $M \models \theta_i^{\zeta}(a_{\xi_1}, \dots, a_{\xi_{m_i^{\zeta}}})$, and therefore $M \models \exists x_{m_i^{\zeta}} \theta_i^{\zeta}(a_{\xi_1}, \dots, a_{\xi_{m_i^{\zeta}-1}}, x_{m_i^{\zeta}})$. Let $\gamma = \max(u_i^{\zeta}) = \xi_{m_i^{\zeta}}$. By

coherency $u_i^{\gamma}=u_i^{\zeta}\cap\gamma$ and therefore since $\gamma<\zeta$ again by the induction hypothesis we have that

$$N \models \theta_i^{\gamma}(f_{\xi_1}(i), \dots, f_{\xi_{m_i^{\zeta}-1}}(i)).$$

But then as in case 1.2 we can infer that

$$N \models \exists x_{m_i^{\zeta}} \theta_i^{\zeta}(f_{\xi_1}(i), \dots, f_{\xi_{m_{\zeta-1}^{\zeta}}}(i), x_{m_i^{\zeta}}).$$

As in case 1 choose an element $b \in N$ to witness this formula and set $f_{\gamma}(i) = b$. It remains to be shown that the mapping $a_{\zeta} \mapsto \langle f_{\zeta}(i) : i < \lambda \rangle / D$ satisfies the requirements of the theorem, i.e. we must show, for all ϕ such that $\phi \in \Delta$ or $\neg \phi \in \Delta$:

$$M \models \phi(a_{\xi_1}, \dots, a_{\xi_k}) \Rightarrow \{i : N \models \phi(f_{\xi_1}(i), \dots, f_{\xi_k}(i))\} \in D.$$

So let such a ϕ be given, and suppose $M \models \phi(a_{\xi_1}, \ldots, a_{\xi_k})$. Let $I_{\phi} = \{i : N \models \phi(f_{\xi_1}(i), \ldots, f_{\xi_k}(i))\}$. We wish to show that $I_{\phi} \in D$. Let $\alpha < \lambda$ so that ϕ is ϕ_{α} or its negation. It suffices to show that $A_{\alpha} \subseteq I_{\phi}$. Let $\zeta < \lambda^+$ be such that $\{\xi_1, \ldots, \xi_n\} \subseteq \zeta$. By Lemma 4 condition (iii), $\{i : \{\xi_1, \ldots, \xi_n\} \subseteq u_i^{\zeta}\} \in D$. So it suffices to show

$$A_{\alpha} \cap \{i : \{\xi_1, ..., \xi_n\} \subseteq u_i^{\zeta}\} \subseteq I_{\phi}.$$

Let $i \in A_{\alpha}$ such that $\{\xi_1, ..., \xi_n\} \subseteq u_i^{\zeta}$. By the definition of θ_i^{ζ} we know that $N \models \theta_i^{\zeta}(f_{\xi_1}(i), ..., f_{\xi_k}(i))$. But the Δ_i -type of the tuple $\langle a_{\xi_1}, ..., a_{\xi_k} \rangle$ occurs as a conjunct of θ_i^{ζ} , and therefore $N \models \phi(f_{\xi_1}(i), ..., f_{\xi_k}(i)) \square$

3 Proof of Lemma 4

We now prove Lemma 4. We first prove a weaker version in which the filter is not given in advance:

Lemma 5 Assume $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$. Then there exist sets $\langle u_i^{\zeta} : \zeta < \lambda^+, i < cof(\lambda) \rangle$, integers n_i and a regular filter D on λ , generated by λ sets, such that (i)-(iv) of Lemma 4 hold.

Proof. By [11, Proposition 5.1, p. 149] the assumption $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$ is equivalent to:

 $\square_{\lambda}^{b^*}$: There is a λ^+ -like linear order L, sets $\langle C_a^{\zeta} : a \in L, \zeta < cf(\lambda) \rangle$, equivalence relations $\langle E^{\zeta} : \zeta < cf(\lambda) \rangle$, and functions $\langle f_{a,b}^{\zeta} : \zeta < \lambda, a \in L, b \in L \rangle$ such that

- (i) $\bigcup_{\zeta} C_a^{\zeta} = \{b : b <_L a\}$ (an increasing union in ζ).
- (ii) If $b \in C_a^{\zeta}$, then $C_b^{\zeta} = \{c \in C_a^{\zeta} : c <_L b\}$.
- (iii) E^{ζ} is an equivalence relation on L with $\leq \lambda$ equivalence classes.
- (iv) If $\zeta < \xi < cf(\lambda)$, then E^{ξ} refines E^{ζ} .
- (v) If $aE^{\zeta}b$, then $f_{a,b}^{\zeta}$ is an order-preserving one to one mapping from C_a^{ζ} onto C_b^{ζ} such that for $d \in C_a^{\zeta}$, $dE^{\zeta}f_{a,b}^{\zeta}(d)$.
- (vi) If $\zeta < \xi < cf(\lambda)$ and $aE^{\xi}b$, then $f_{a,b}^{\zeta} \subseteq f_{a,b}^{\xi}$.
- (vii) If $f_{a,b}^{\zeta}(a_1) = b_1$, then $f_{a_1,b_1}^{\zeta} \subseteq f_{a,b}^{\zeta}$.
- (viii) If $a \in C_b^{\zeta}$ then $\neg E^{\zeta}(a, b)$.

This is not enough to prove Lemma 5, so we have to work a little more. Let

$$\Xi_{\zeta} = \{ a/E^{\zeta} : a \in L \}.$$

We assume, for simplicity, that $\zeta \neq \xi$ implies $\Xi_{\zeta} \cap \Xi_{\xi} = \emptyset$. Define for $t_1, t_2 \in \Xi_{\zeta}$:

$$t_1 <_{\zeta} t_2 \iff (\exists a_1 \in t_1)(\exists a_2 \in t_2)(a_1 \in C_{a_2}^{\zeta}).$$

Proposition 6 $\langle \Xi_{\zeta}, <_{\zeta} \rangle$ is a tree order with $cf(\lambda)$ as the set of levels.

Proof. We need to show (a) $t_1 <_{\zeta} t_2 <_{\zeta} t_3$ implies $t_1 <_{\zeta} t_3$, and (b) $t_1 <_{\zeta} t_3$ and $t_2 <_{\zeta} t_3$ implies $t_1 <_{\zeta} t_2$ or $t_2 <_{\zeta} t_1$ or $t_1 = t_2$. For the first, $t_1 <_{\zeta} t_2$ implies there exists $a_1 \in t_1$ and $a_2 \in t_2$ such that $a_1 \in C_{a_2}^{\zeta}$. Similarly $t_2 <_{\zeta} t_3$ implies there exists $b_2 \in t_2$ and $b_3 \in t_3$ such that $b_2 \in C_{b_3}^{\zeta}$. Now $a_2 E^{\zeta} b_2$ and hence we have the order preserving map f_{a_2,b_2}^{ζ} from $C_{a_2}^{\zeta}$ onto $C_{b_2}^{\zeta}$. Recalling $a_1 \in C_{a_2}^{\zeta}$, let $f_{a_2,b_2}^{\zeta}(a_1) = b_1$. Then by (vi), $a_1 E^{\zeta} b_1$ and hence $b_1 \in t_1$. But then $b_1 \in C_{b_2}^{\zeta}$ implies $b_1 \in C_{b_3}^{\zeta}$, by coherence and the fact that $b_2 \in C_{b_3}^{\zeta}$. But then it follows that $t_1 <_{\zeta} t_3$.

Now assume $t_1 <_{\zeta} t_3$ and $t_2 <_{\zeta} t_3$. Let $a_1 \in t_1$ and $a_3 \in t_3$ be such that $a_1 \in C_{a_3}^{\zeta}$, and similarly let b_2 and b_3 be such that $b_2 \in C_{b_3}^{\zeta}$. $a_3 E^{\zeta} b_3$ implies we have the order preserving map f_{a_3,b_3}^{ζ} from $C_{a_3}^{\zeta}$ to $C_{b_3}^{\zeta}$. Letting $f_{a_3,b_3}^{\zeta}(a_1) = b_1$, we see that $b_1 \in C_{b_3}^{\zeta}$. If $b_1 <_L b_2$, then we have $C_{b_2}^{\zeta} = C_{b_3}^{\zeta} \cap \{c : c < b_2\}$ which implies $b_1 \in C_{b_2}^{\zeta}$, since, as f_{a_3,b_3}^{ζ} is order preserving, $b_1 <_L b_2$. Thus $t_1 <_{\zeta} t_2$. The case $b_2 <_L b_1$ is proved similarly, and $b_1 = b_2$ is trivial. \square

For $a <_L b$ let

$$\xi(a,b) = \min\{\zeta : a \in C_b^{\zeta}\}.$$

Denoting $\xi(a,b)$ by ξ , let

$$tp(a,b) = \langle a/E^{\xi}, b/E^{\xi} \rangle.$$

If $a_1 <_L \dots <_L a_n$, let

$$tp(\langle a_1, ..., a_n \rangle) = \{\langle l, m, tp(a_l, a_m) \rangle | 1 \le l < m \le n \}$$

and

$$\Gamma = \{ tp(\vec{a}) : \vec{a} \in {}^{<\omega}L \}.$$

For $t = tp(\vec{a}), \vec{a} \in {}^{n}L$ we use n_t to denote the length of \vec{a} .

Proposition 7 If $a_0 <_L ... <_L a_n$, then

$$\max\{\xi(a_l, a_m) : 0 \le l < m \le n\} = \max\{\xi(a_l, a_n) : 0 \le l < n\}.$$

Proof. Clearly the right hand side is \leq the left hand side. To show the left hand side is \leq the right hand side, let l < m < n be arbitrary. If $\xi(a_l, a_n) \leq \xi(a_m, a_n)$, then $\xi(a_l, a_m) \leq \xi(a_m, a_n)$. On the other hand, if $\xi(a_l, a_n) > \xi(a_m, a_n)$, then $\xi(a_l, a_m) \leq \xi(a_l, a_n)$. In either case $\xi(a_l, a_m) \leq \max\{\xi(a_k, a_n) : 0 \leq k < n\}$. \square

Let us denote $\max\{\xi(a_l, a_n) : 0 \le l < n\}$ by $\xi(\vec{a})$. We define on Γ a two-place relation \le_{Γ} as follows:

$$t_1 <_{\Gamma} t_2$$

if there exists a tuple $\langle a_0, \dots a_{n_{t_2}-1} \rangle$ realizing t_2 such that some subsequence of the tuple realizes t_1 .

Clearly, $\langle \Gamma, \leq_{\Gamma} \rangle$ is a directed partial order.

Proposition 8 For $t \in \Gamma$, $t = tp(b_0, \dots b_{n-1})$ and $a \in L$, there exists at most one k < n such that $b_k E^{\xi(b_0, \dots, b_{n-1})}a$.

Proof. Let $\zeta = \xi(b_0, \dots, b_{n-1})$ and let $b_{k_1} \neq b_{k_2}$ be such that $b_{k_1} E^{\zeta} a$ and $b_{k_2} E^{\zeta} a$, $k_1, k_2 \leq n-1$. Without loss of generality, assume $b_{k_1} < b_{k_2}$. Since E^{ζ} is an equivalence relation, $b_{k_2} E^{\zeta} b_{k_1}$ and thus we have an order preserving map $f_{b_{k_2},b_{k_1}}^{\zeta}$ from $C_{b_{k_2}}^{\zeta}$ to $C_{b_{k_1}}^{\zeta}$. Also $b_{k_1} \in C_{b_{k_2}}^{\zeta}$, by the definition of ζ and by coherence, and therefore $f_{b_{k_2},b_{k_1}}^{\zeta}(b_{k_1})E^{\zeta} b_{k_1}$. But this contradicts (viii), since $f_{b_{k_2},b_{k_1}}^{\zeta}(b_{k_1}) \in C_{b_{k_1}}^{\zeta}$. \square

Definition 9 For $t \in \Gamma$, $t = tp(b_0, \dots b_{n-1})$ and $a \in L$ suppose there exists k < n such that $b_k E^{\xi(b_0, \dots, b_{n-1})}a$. Then let $u_t^a = \{f_{a, b_k}^{\zeta(b_0, \dots, b_{n-1})}(b_l) : l < k\}$ Otherwise, let $u_t^a = \emptyset$.

Finally, let D be the filter on Γ generated by the λ sets

$$\Gamma_{>t^*} = \{ t \in \Gamma : t^* <_L t \}.$$

We can now see that the sets u_t^a , the numbers n_t and the filter D satisfy conditions (i)-(iv) of Lemma 4 with L instead of λ^+ : Conditions (i) and (ii) are trivial in this case. Condition (iii) is verified as follows: Suppose B is finite. Let $a \in L$ be such that $(\forall x \in B)(x <_L a)$. Let \vec{a} enumerate $B \cup \{a\}$ in increasing order and let $t^* = tp(\vec{a})$. Clearly

$$t \in \Gamma_{>t^*} \Rightarrow B \subseteq u_t^a$$
.

Condition (iv) follows directly from Definition 9 and Proposition 8.

To get the Lemma on λ^+ we observe that since L is λ^+ -like, we can assume that $\langle \lambda^+, < \rangle$ is a submodel of $\langle L, <_L \rangle$. Then we define $v_t^{\alpha} = u_t^{\alpha} \cap \{\beta : \beta < \alpha\}$.

Conditions (i)-(iv) of Lemma 5 are still satisfied. Also having D a filter on Γ instead of on λ is immaterial as $|\Gamma| = \lambda$. \square

Now back to the proof of Lemma 4. Suppose u_i^{ζ} , n_i and D are as in Lemma 5, and suppose D' is an arbitrary regular filter on λ . Let $\{A_{\alpha} : \alpha < \lambda\}$ be a family of sets witnessing the regularity of D', and let $\{Z_{\alpha} : \alpha < \lambda\}$ be the family generating D. We define a function $h : \lambda \to \lambda$ as follows. Suppose $i < \lambda$. Then let

$$h(i) \in \bigcap \{Z_{\alpha} | i \in A_{\alpha}\}.$$

Now define $v_{\alpha}^{\zeta} = u_{h(\alpha)}^{\zeta}$. Define also $n_{\alpha} = n_{h(\alpha)}$. Now the sets v_{α}^{ζ} and the numbers n_{α} satisfy the conditions of Lemma 4. \square

4 Is $\Box_{\lambda}^{b^*}$ needed for Lemma 5?

In this section we show that the conclusion of Lemma 5 (and hence of Lemma 4) implies $\Box_{\lambda}^{b^*}$ for singular strong limit λ . By [11, Theorem 2.3 and Remark 2.5], $\Box_{\lambda}^{b^*}$ is equivalent, for singular strong limit λ , to the following principle:

 $\mathcal{S}_{\lambda}:$ There are sets $\langle C_a^i: a<\lambda^+, i< cf(\lambda)\rangle$ such that

- (i) If i < j, then $C_a^i \subseteq C_a^j$.
- (ii) $\bigcup_i C_a^i = a$.
- (iii) If $b \in C_a^i$, then $C_b^i = C_a^i \cap b$.
- (iv) $\sup\{otp(C_a^i): a<\lambda^+\}<\lambda$.

Thus it suffices to prove:

Proposition 10 Suppose the sets u_i^{ζ} and the filter D are as given by Lemma 5 and λ is a limit cardinal. Then S_{λ} holds.

Proof. Suppose $\mathcal{A} = \{A_{\alpha} : \alpha < \lambda\}$ is a family of sets generating D. W.l.o.g., \mathcal{A} is closed under finite intersections. Let λ be the union of the increasing sequence $\langle \lambda_{\alpha} : \alpha < cf(\lambda) \rangle$, where $\lambda_0 \geq \omega$. Let the sequence $\langle \Gamma_{\alpha} : \alpha < cf(\lambda) \rangle$ satisfy:

(a)
$$|\Gamma_{\alpha}| \leq \lambda_{\alpha}$$

- (b) Γ_{α} is continuously increasing in α with λ as union
- (c) If $\beta_1, ..., \beta_n \in \Gamma_\alpha$, then there is $\gamma \in \Gamma_\alpha$ such that

$$A_{\gamma} = A_{\beta_1} \cap \ldots \cap A_{\beta_n}$$
.

The sequence $\langle \Gamma_{\alpha} : \alpha < cf(\lambda) \rangle$ enables us to define a sequence that will witness S_{λ} . For $\alpha < cf(\lambda)$ and $\zeta < \lambda^{+}$, let

$$V_{\zeta}^{\alpha} = \{ \xi < \zeta : (\exists \gamma \in \Gamma_{\alpha}) (A_{\gamma} \subseteq \{i : \xi \in u_{i}^{\zeta}\}) \}.$$

Lemma 11 (1) $\langle V_{\zeta}^{\alpha} : \alpha < \lambda \rangle$ is a continuously increasing sequence of subsets of ζ , $|V_{\zeta}^{\alpha}| \leq \lambda_{\alpha}$, and $\bigcup \{V_{\zeta}^{\alpha} : \alpha < cf(\lambda)\} = \zeta$.

(2) If
$$\xi \in V_{\zeta}^{\alpha}$$
, then $V_{\xi}^{\alpha} = V_{\zeta}^{\alpha} \cap \xi$.

Proof. (1) is a direct consequence of the definitions. (2) follows from the respective property of the sets u_i^{ζ} . \square

Lemma 12 sup{ $otp(V_{\zeta}^{\alpha}): \zeta < \lambda^{+}$ } $\leq \lambda_{\alpha}^{+}$.

Proof. By the previous Lemma, $|V_{\zeta}^{\alpha}| \leq \lambda_{\alpha}$. Therefore $otp(V_{\zeta}^{\alpha}) < \lambda_{\alpha}^{+}$ and the claim follows. \square

The proof of the proposition is complete: (i)-(iii) follows from Lemma 11, (iv) follows from Lemma 12 and the assumption that λ is a limit cardinal. \square

More equivalent conditions for the case λ singular strong limit, D a regular ultrafilter on λ , are under preparation.

5 Ehrenfeucht-Fraissé-games

Let M and N be two first order structures of the same language L. All vocabularies are assumed to be relational. The *Ehrenfeucht-Fraissé-game of length* γ of M and N denoted by EFG_{γ} is defined as follows: There are two players called I and II. First I plays x_0 and then II plays y_0 . After this I plays x_1 , and II plays y_1 , and so on. If $\langle (x_{\beta}, y_{\beta}) : \beta < \alpha \rangle$ has been played and $\alpha < \gamma$, then I plays x_{α} after which II plays y_{α} . Eventually a sequence $\langle (x_{\beta}, y_{\beta}) : \beta < \gamma \rangle$ has been played. The rules of the game say that both players have to play elements of $M \cup N$. Moreover, if I plays his x_{β} in M

(N), then II has to play his y_{β} in N (M). Thus the sequence $\langle (x_{\beta}, y_{\beta}) : \beta < \gamma \rangle$ determines a relation $\pi \subseteq M \times N$. Player II wins this round of the game if π is a partial isomorphism. Otherwise I wins. The notion of winning strategy is defined in the usual manner. We say that a player wins EFG_{γ} if he has a winning strategy in EFG_{γ} .

Note that if II has a winning strategy in EFG_{γ} on M and N, where M and N are of size $\leq |\gamma|$, then $M \cong N$.

Assume L is of cardinality $\leq \lambda$ and for each $i < \lambda$ let M_i and N_i be elementarily equivalent L-structures. Shelah proved in [12] that if D is a regular filter on λ , then Player II has a winning strategy in the game EFG_{γ} on $\prod_i M_i/D$ and $\prod_i N_i/D$ for each $\gamma < \lambda^+$. We show that under a stronger assumption, II has a winning strategy even in the game EFG_{λ^+} . This makes a big difference because, assuming the models M_i and N_i are of size $\leq \lambda^+$, $2^{\lambda} = \lambda^+$, and the models $\prod_i M_i/D$ and $\prod_i N_i/D$ are of size $\leq \lambda^+$. Then by the remark above, if II has a winning strategy in EFG_{λ^+} , the reduced powers are actually isomorphic. Hyttinen [4] proved this under the assumption that the filter is, in his terminology, semigood.

Theorem 13 Assume $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$. Let L be a language of cardinality $\leq \lambda$ and for each $i < \lambda$ let M_i and N_i be two elementarily equivalent L-structures. If D is a regular filter on λ , then Player II has a winning strategy in the game EFG_{λ^+} on $\prod_i M_i/D$ and $\prod_i N_i/D$.

Proof. We use Lemma 4. If $i < \lambda$, then, since M_i and N_i are elementarily equivalent, Player II has a winning strategy σ_i in the game EFG_{n_i} on M_i and N_i . We will use the set u_i^{ζ} to put these short winning strategies together into one long winning strategy.

A "good" position is a sequence $\langle (f_{\zeta}, g_{\zeta}) : \zeta < \xi \rangle$, where $\xi < \lambda^{+}$, and for all $\zeta < \xi$ we have $f_{\zeta} \in \prod_{i} M_{i}$, $g_{\zeta} \in \prod_{i} N_{i}$, and if $i < \lambda$, then $\langle (f_{\epsilon}(i), g_{\epsilon}(i)) : \epsilon \in u_{i}^{\zeta} \cup \{\zeta\} \rangle$ is a play according to σ_{i} .

Note that in a good position the equivalence classes of the functions f_{ζ} and g_{ζ} determine a partial isomorphism of the reduced products. To see this, suppose $\langle (f_{\zeta}, g_{\zeta}) : \zeta < \xi \rangle$ is a good position, $\phi(x_1, \ldots, x_k)$ is atomic and $I_{\phi} = \{i : M_i \models \phi(f_{\alpha_1}(i), \ldots, f_{\alpha_k}(i))\} \in D$. We wish to show that $I'_{\phi} = \{i : N_i \models \phi(g_{\alpha_1}(i), \ldots, g_{\alpha_k}(i))\} \in D$. By Lemma 4, if $\gamma < \lambda^+$ is such that $B = \{\alpha_1, \ldots, \alpha_k\} \subseteq \gamma$, then $J_{\gamma} = \{i : B \subseteq u_i^{\gamma}\} \in D$. Thus $J_{\gamma} \cap I_{\phi} \in D$, and for each $i \in J_{\gamma}$, $\langle (f_{\epsilon}(i), g_{\epsilon}(i)) : \epsilon \in u_i^{\gamma} \rangle$ is part of the play according to σ_i . Thus for each such $i, i \in I_{\phi} \leftrightarrow i \in I'_{\phi}$ i.e. $J_{\gamma} \cap I_{\phi} = J_{\gamma} \cap I'_{\phi}$, whence $I'_{\phi} \in D$.

The strategy of player II is to keep the position of the game "good", and thereby win the game. Suppose ξ rounds have been played and II has been able to keep the position "good". Then player I plays f_{ξ} . We show that player II can play g_{ξ} so that $\langle (f_{\zeta}, g_{\zeta}) : \zeta \leq \xi \rangle$ remains "good". Let $i < \lambda$. Let us look at $\langle (f_{\epsilon}(i), g_{\epsilon}(i)) : \epsilon \in u_i^{\xi} \rangle$. We know that this is a play according to the strategy σ_i and $|u_i^{\xi}| < n_i$. Thus we can play one more move in EF_{n_i} on M_i and N_i with player I playing $f_{\xi}(i)$. Let $g_{\xi}(i)$ be the answering move of II in this game according to σ_i . The values $g_{\xi}(i)$, $i < \lambda$, constitute the function g_{ξ} . We have shown that II can maintain a "good" position. \square

Corollary 14 Assume GCH and λ regular (or just $\langle \aleph_0, \aleph_1 \rangle \to \langle \lambda, \lambda^+ \rangle$ and $2^{\lambda} = \lambda^+$). Let L be a language of cardinality $\leq \lambda$ and for each $i < \lambda$ let M_i and N_i be two elementarily equivalent L-structures. If D is a regular filter on λ , then $\prod_i M_i/D \cong \prod_i N_i/D$.

References

- [1] M. Benda, On reduced products and filters. Ann.Math.Logic 4 (1972), 1-29.
- [2] C. C. Chang, A note on the two cardinal problem, Proc. Amer. Math. Soc., 16, 1965, 1148–1155,
- [3] C.C. Chang and J.Keisler, Model Theory, North-Holland.
- [4] T. Hyttinen, On κ -complete reduced products, Arch. Math. Logic, Archive for Mathematical Logic, 31, 1992, 3, 193–199
- [5] R. Jensen, The fine structure of the constructible hierarchy, With a section by Jack Silver, Ann. Math. Logic, 4, 1972, 229–308
- [6] B. Jónsson and P. Olin, Almost direct products and saturation, Compositio Math., 20, 1968, 125–132
- [7] J. Keisler, Ultraproducts and saturated models. Nederl.Akad.Wetensch. Proc. Ser. A 67 (=Indag. Math. 26) (1964), 178-186.
- [8] J. Kennedy and S. Shelah, On embedding models of arithmetic of cardinality \aleph_1 into reduced powers, to appear.

- [9] W. Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic, 5, 1972/73, 21–46
- [10] S. Shelah, For what filters is every reduced product saturated?, Israel J. Math., 12, 1972, 23–31
- [11] S. Shelah, "Gap 1" two-cardinal principles and the omitting types theorem for L(Q). Israel Journal of Mathematics vol 65 no. 2, 1989, 133–152.
- [12] S. Shelah, Classification theory and the number of non-isomorphic models, Second, North-Holland Publishing Co., Amsterdam, 1990, xxxiv+705