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Abstract

In the early 1970’s S.Tennenbaum proved that all countable mod-
els of PA− + ∀1 − Th(N) are embeddable into the reduced product
N
ω/F , where F is the cofinite filter. In this paper we show that

if M is a model of PA− + ∀1 − Th(N), and |M | = ℵ1, then M is
embeddable into Nω/D, where D is any regular filter on ω.
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1 Preliminaries

Let LA, the language of arithmetic, be the first order language with non-
logical symbols +, ·, 0, 1,≤. N denotes the standard LA structure. We shall
be concerned with the following theories: The theory ∀1-Th(N), defined
as the set of all universal formulas true in the standard LA structure N.
Henceforth we refer to theories satisfying ∀1-Th(N) as Diophantine correct.
We will also refer to the theory PA−, which consists of the following axioms
(x < y abbreviates x ≤ y ∧ x 6= y):

1.) ∀x, y, z((x+ y) + z = x+ (y + z))
2.) ∀x, y(x+ y = y + x)
3.) ∀x, y, z((x · y) · z = x · (y · z))
4.) ∀x, y(x · y = y · x)
5.) ∀x, y, z(x · (y + z) = x · y + x · z)
6.) ∀x((x+ 0 = x) ∧ (x · 0 = 0))
7.) ∀x(x · 1 = x)
8.) ∀x, y, z((x < y ∧ y < z)→ x < z)
9.) ∀x(x ≤ x)
10.) ∀x, y(x < y ∨ x = y ∨ y < x)
11.) ∀x, y, z(x < y → x+ z < y + z)
12.) ∀x, y, z(0 < z ∧ x < y → x · z < y · z)
13.) ∀x, y(x < y → ∃z(x+ z = y))
14.) 0 < 1 ∧ ∀x(x > 0→ x ≥ 1)
15.) ∀x(x ≥ 0).

Thus the theory PA− is the theory of nonnegative parts of discretely
ordered rings. For interesting examples of these models see [2].

2 The Countable Case

We begin by presenting the two embedding theorems of Stanley Tennen-
baum, which represent countable models of PA− by means of sequences of
real numbers. We note that Theorems 1 and 3 follow from the ℵ1-saturation
of the structures Nω/F and Aω/F ([1]), however we present Tennenbaum’s
construction as it constructs the embeddings directly:

We consider first the reduced power (of LA structures) Nω/F , where F
is the cofinite filter in the boolean algebra of subsets of N. Let A be the
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standard LA structure with domain all nonnegative real algebraic numbers.
We also consider the reduced power Aω/F .

If f is a function from N to N, let [f ] denote the equivalence class of f in
N
ω/F . We use a similar notation for Aω/F . When no confusion is possible,

we will use f and [f ] interchangeably.

Theorem 1 (Tennenbaum) Let M be a countable Diophantine correct model
of PA−. Then M can be embedded in Nω/F .

Proof. Let m1,m2, . . . be the distinct elements of M . Let P1, P2, . . . be
all polynomial equations over N in the variables x1, x2, . . . such that M |=
Pi(x1/m1, x2/m2, . . .). Each system of equations P1∧· · ·∧Pn has a solution
in M . Thus, by Diophantine correctness, there is a sequence of natural
numbers v1(n), v2(n), . . . for which

N |= (P1 ∧ · · · ∧ Pn)(x1/v1(n), x2/v2(n), . . .).

Note that if the variable xi does not appear in P1∧· · ·∧Pn, then the choice
of vi(n) is completely arbitrary. Our embedding h : M −→ N

ω/F is given
by:

mi 7−→ [λn.vi(n)].

In the figure below, the i-th row is the solution in integers to P1∧· · ·∧Pn,
and the i-th column “is” h(mi).

m1 m2 . . . mn . . .
P1 v1(1) v2(1) . . . vn(1) . . .
P2 v1(2) v2(2) . . . vn(2) . . .
...

...
...

...
Pn v1(n) v2(n) . . . vn(n) . . .
...

...
...

...

Note that if me is the element 0M of M , then the polynomial equation
xe = 0 appears as one of the P ’s. It follows that, for n sufficiently large,
ve(n) = 0. Thus h(0M) is the equivalence class of the zero function. Simi-
larly, h maps every standard integer of M to the class of the corresponding
constant function.

We show that h is a homomorphism. Suppose M |= mi+mj = mk. Then
the polynomial xi+xj = xk must be one of the P ’s, say Pr. If n ≥ r, then by
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construction vi(n)+vj(n) = vk(n). Hence Nω/F |= h(mi)+h(mj) = h(mk),
as required. A similar argument works for multiplication. Suppose M |=
mi ≤ mj. By an axiom of PA−, for some k, M |= mi +mk = mj. Thus, as
we have shown, h(mi) + h(mk) = h(mj). It follows from the definition of
the relation ≤ in N that h(mi) ≤ h(mj).

To see that h is one to one, suppose that mi 6= mj. Since in models of
PA− the order relation is total, we may assume that mi < mj. Again by
the axioms of PA−, we can choose mk such that mi + mk + 1 = mj. As
we have shown, Nω/F |= h(mi) + h(mk) + h(1) = h(mj). Since h(1) is the
class of the constant function 1, it follows that h(mi) 6= h(mj). 2

Corollary 2 Let M be a countable model of the ∀1-Th(N). Then M can
be embedded in Nω/F .

Proof. The models of the ∀1-Th(N) are precisely the substructures of mod-
els of Th(N). Thus, M extends to a model of PA−, which can be embedded
in Nω/F as in Theorem 1. 2

Before turning to the theorem for the non-Diophantine correct case, we
observe first that the given embedding depends upon a particular choice of
enumeration m1,m2, . . . of M , since different enumerations will in general
produce different polynomials. We also note that different choices of solution
yield different embeddings. Also, as we shall see below, we need not restrict
ourselves to Diophantine formulas: we can carry out the construction for
LA formulas of any complexity which hold in M .

We state the non-Diophantine correct case of the theorem:

Theorem 3 (Tennenbaum) Let M be a countable model of PA−. Then M
can be embedded in Aω/F .

Proof. Given an enumeration m1,m2, . . . of M , we form conjunctions of
polynomial equations Pn exactly as before. We wish to produce solutions
of P1 ∧ · · · ∧ Pn in the nonnegative algebraic reals for each n. We proceed
as follows: The model M can be embedded in a real closed field F by a
standard construction. (Embed M in an ordered integral domain, then form
the (ordered) quotient field, and then the real closure.) Choose k so large
that x1, . . . , xk are all the variables that occur in the conjunction P1∧· · ·∧Pn.
The sentence ∃x1 . . . xk(P1 ∧ · · · ∧ Pn ∧ x1 ≥ 0 ∧ x2 ≥ 0 · · · ∧ xk ≥ 0) is true
in M , hence in F. It is a theorem of Tarski that the theory of real closed
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fields is complete. Thus, this same sentence must be true in the field of
real algebraic numbers. This means we can choose nonnegative algebraic
real numbers v1(n), v2(n) . . . satisfying the conjunction P1 ∧ · · · ∧ Pn. Let
h : M −→ A

ω/F be given by

mi 7−→ [λn.vi(n)].

The proof that h is a homomorphism, and furthermore an embedding, pro-
ceeds exactly as before, once we note that the equivalence classes all consist
of nonnegative sequences of real algebraic numbers. 2

Remark 4 Under any of the embeddings given above, if M |= PA− then
nonstandard elements of M are mapped to equivalence classes of functions
tending to infinity. Why? If f is a function in the image of M , and f
does not tend to infinity, then choose an integer k such that f is less than k
infinitely often. Since M |= PA−, either [f ] ≤ [k] or [k] ≤ [f ]. The second
alternative contradicts the definition of ≤ in N . Hence [f ] ≤ [k], i.e., [f ]
is standard.

Remark 5 Let F be a countable ordered field. Then F is embedded in
R
ω/F , where R is the field of real algebraic numbers. The proof is mutatis

mutandis the same as in Theorem 3, except that due to the presence of
negative elements we must demonstrate differently that the mapping obtained
is one to one. But this must be the case, since every homomorphism of fields
has this property.

Remark 6 For any pair of LA structures A and B satisfying PA−, if A
is countable and if A satisfies the ∀1-Th(B) then there is an embedding of
A into Bω/F . In particular, if M is a model of PA−, then every countable
extension of M satisfying the ∀1-Th(M) can be embedded in Mω/F .

Remark 7 Given Theorem 1, one can ask, what is a necessary and suffi-
cient condition for a function to belong to a model of arithmetic inside N?
For a partial solution to this question, see [3].

3 The Uncountable Case

We now show that some of the restrictions of Theorem 1 can be to some
extent relaxed, i.e. we will prove Theorem 1 for models M of cardinality
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ℵ1 and with an arbitrary regular filter D in place of the cofinite filter. We
note that for filters D on ω for which Bω/D is ℵ1-saturated, where B is the
two element Boolean algebra, this follows from the result of Shelah in [5],
that the reduced power Nω/D is ℵ1-saturated, by a simple model-theoretic
argument.

Our strategy is similar to the strategy of the proof of Theorem 1, in
that we give an inductive proof on larger and larger initial segments of the
elementary diagram of M . However we must now consider formulas whose
variables are taken from a set of ℵ1 variables. This requires representing
each ordinal α < ω1 in terms of finite sets uαn, which sets determine the
variables handled at each stage of the construction. The other technicality
we require is the use of the following function g(x, y), which bounds the size
of the formulas handled at each stage of the induction.

Let h(n,m) = the total number of non-equivalent Diophantine formulas
φ(x1, . . . xm) of length ≤ n. Define

g(n, n) = h(n, 0)

g(n,m− 1) = 2 + h(g(n,m),m) · (g(n,m) + 3), for m ≤ n.

Theorem 8 Let M be a model of PA− of cardinality ℵ1 which is Diophan-
tine correct and let D be a regular filter on ω. Then M can be embedded in
N
ω/D.

For a result concerning arbitrary structures and other cardinals, see [4].

Proof. Let M = {aα : α < ω1}. Let {An}n∈ω be a family witnessing the
regularity of D. We define, for each α < ω1 a function fα ∈ NN. Our
embedding is then aα 7→ [fα]. We need first a lemma:

Lemma 9 There exists a family of sets uαn, with α < ω1, and n ∈ N, such
that for each n, α

(i) |uαn| < n+ 1

(ii) α ∈ uαn ⊆ uαn+1

(iii)
⋃
n u

α
n = α + 1
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(iv) β ∈ uαn ⇒ uβn = uαn ∩ (β + 1)

(v) limn→∞
|uαn|
n+1

= 0

Suppose we have the lemma and suppose we have defined fβ for all
β < α. We choose fα ∈ NN componentwise, i.e. we choose fα(n) for each n
separately so that fα(n) satisfies the following condition:

(∗)α,n: If φ = φ(..., xβ, ...)β∈uαn is a Diophantine formula, such that the
length of φ is ≤ g(n, |uαn|), then

M |= φ(..., aβ, ...)β∈uαn ⇒ N |= φ(..., fβ(n), ...)β∈uαn .

(A formula φ is said to be Diophantine if it has the form

∃x0, . . . ,∃xn−1(t1(x0, . . . , xn−1) = t2(x0, . . . , xn−1)),

where t1 and t2 are LA-terms.) Now suppose α = 0, n > 0. By (ii) and (iii),
u0
n = {0} for all n. We claim that (∗)0,n holds for each n. To see this, fix n

and let

Φ = {φ(x) |M |= φ(a0),where φ is Diophantine with |φ| ≤ g(n, 1)}.

This is – up to equivalence – a finite set of formulas. Also, M |= ∃x
∧
{φ(x) |

φ ∈ Φ} and therefore by Diophantine correctness N |= ∃x
∧
{φ(x) | φ ∈ Φ}.

If k witnesses this formula, set f0(n) = k. Clearly now (∗)0,n holds.
Now assume (∗)β,n holds for all β < α and for each n. We choose fα(n)

for each n as follows. Fix n < ω and let

Φ = {φ(x0, x1, . . . xk) |M |= φ(aα, ..., aβ, ...)β∈uαn\{α}),

where φ is Diophantine and |φ| ≤ g(n, |uαn|)},

for k = |uαn| − 1 (the case that |uαn| ≤ 1 reduces to the previous case). This
is again a finite set of formulas, up to equivalence. Now

M |=
∧
{φ(aα, 〈aβ〉β∈uαn\{α})|φ ∈ Φ}
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and therefore
M |= ∃x

∧
{φ(x, 〈aβ〉β∈uαn\{α})|φ ∈ Φ}.

Let φ′(x1, . . . , xk) ≡ ∃x
∧
{φ(x, x1, . . . , xk)|φ ∈ Φ}. Note that

|φ′| ≤ 2 + h(g(n, |uαn|), |uαn|) · (g(n, |uαn|) + 3) = g(n, |uαn| − 1).

Now let γ= max (uαn \ {α}). Then uγn = uαn \ {α}, by (iv) of the lemma.
Since (∗)γ,n holds for each n and we know that M |= φ′(〈aβ〉β∈uγn) then we
know by the induction hypothesis that N |= φ′(〈fβ(n)〉β∈uγn). Thus N |=
∃x
∧
{φ(x, ..., fγ(n), ...)β∈uγn)|φ ∈ Φ}. Let k witness this formula and set

fα(n) = k. Then (∗)α,n holds with aα 7→ [〈fα(n)〉].
This mapping is an embedding of M into Nω/D. To see this, suppose

M |= φ(aα, aβ, aγ) where φ is the formula x0 +x1 = x2. Let n = n0 be large
enough so that |φ| ≤ g(n0, |uδn0

|), where δ is chosen so that uδn0
contains

α, β, γ. Then for all n ≥ n0, (∗)δ,n holds and N |= fα(n)+fβ(n) = fγ(n), for
all n ≥ n0. Let An1 be an element of the chosen regular family of D such
that An1 ∩ {0, . . . , n0} = ∅. Then since fα(n) + fβ(n) = fγ(n), for n ≥ n0,
this holds also for n ∈ An1 . The proof that multiplication is preserved is
the same so we omit it. Finally, as in the countable case, we note that our
mapping is one-to-one and order preserving, hence an embedding.

We now prove the lemma, by induction on α. Let u0
n = {0} for all n < ω.

Case 1. α is a successor ordinal, i.e. α = β+1. Let n0 be such that n ≥ n0

implies |u
β
n|
n
< 1

2
. then we set

uαn =

{
{α} n < n0

uβn ∪ {α} n ≥ n0.

Then (i), (ii) and (iii) are trivial. Proof of (iv): Suppose γ ∈ uαn = uβn∪{α}.

Case 1.1. γ = α. Then

uγn = uαn
= uαn ∩ α + 1

= uαn ∩ (γ + 1).
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Case 1.2. γ ∈ uβn. Then by the induction hypothesis

uγn = uβn ∩ (γ + 1)

= uαn ∩ (γ + 1),

since γ ∈ uβn implies γ ≤ β.

Proof of (v):

lim
n→∞

|uαn|
n
≤ lim

n→∞

|uβn|+ 1

n
= 0,

by the induction hypothesis.

Case 2. δ is a limit ordinal > 0. Let δn be an increasing cofinal ω-sequence
converging to δ, for all δ < ω1. Let us choose natural numbers n0, n1, ...
such that δi ∈ uδi+1

ni and n ≥ ni+1 implies ni · |uδi+1
n | < n. Now we let

uαn = uδin ∪ {α}, if ni ≤ n < ni+1.

To prove (iv), let γ ∈ uαn. We wish to show that uγn = uαn ∩ (γ+ 1). Suppose
ni ≤ n < ni+1. Then uαn = uδin ∪{α}. But then γ ∈ uαn implies γ ∈ uδin ∪{α}.
If γ = α, then as before, uγn = uαn ∩ (γ + 1). So suppose γ ∈ uδin . Then

uγn = uδi ∩ (γ + 1) = uαn ∩ (γ + 1).

Finally, we prove (iii): Let γ ∈ uδn, δ a limit. Let ni be such that uαn =

uδini ∪{α}. We have uδini = u
δi+1
ni ∩ (δi + 1). Therefore γ ∈ uδi+1

ni ∪{δ} = uδn+1.
To prove (v), let ε > 0 and choose i so that ε · ni > 2. We observe that
ni ≤ n implies

lim
n→∞

|uαn|
n

= lim
n→∞

|uδin |
n

+
1

n
<

1

ni
+

1

n
< ε.

2

In [4] models of higher cardinality are considered, and embedding theo-
rems are obtained under a set theoretic assumption.

References

[1] B. Jónsson and P. Olin, Almost direct products and saturation, Com-
positio Math., 20, 1968, 125–132

9



[2] R. Kaye. Models of Peano Arithmetic. Oxford Logic Guides. Oxford:
Oxford University Press, 1991.

[3] J. Kennedy. On embedding models of arithmetic into reduced powers.
Ph.D. thesis, City University of New York Graduate Center, 1996.

[4] J. Kennedy and S. Shelah, On regular reduced products, Journal of
Symbolic Logic, to appear.

[5] S. Shelah, For what filters is every reduced product saturated?, Israel
J. Math., 12, 1972, 23–31

10


