

Engaging volunteers and Red list evaluation

Aleksi Lehikoinen
The Helsinki Lab of Ornithology, HellO
Finnish Museum of Natural History aleksi.lehikoinen@helsinki.fi

Outline

- Engaging volunteers
- International networks
- Red list evaluation (making science matter)

Online tools: reporting and feedback

- $>80 \%$ of reports come through online systems
- Some automatic and manual control checking

LAJIFI
SUOMEN LAJITIETOKESKUS FINLANDS ARTDATACENTER FINNISH BIODIVERSITY INFO FACILITY

$29201 \quad 27469202 \quad 159$

lajia

Online tools: reporting and feedback

- $>80 \%$ of reports come through online systems
- Some automatic and manual control checking
- Directly to the databases
- Updates the feedback pages

$29201 \quad 27469202 \quad 159$
laja csco havaintoa Mata y aineistoa

Online tools: reporting and feedback

Talvi 2016/2017 $\boldsymbol{\wedge}$ Laskenta Talvi \uparrow Näytä

Laji (suomi / tiet.)	Reittilkm	Ykslkm
Yhteensä	604	304762
kuikka	1	1
pikku-uikku	2	2
härkälintu	1	1
merimetso	14	288
harmaahaikara	12	38
kyhmyjoutsen	74	3725
laulujoutsen	53	756
metsähanhi	3	6
kanadanhanhi	2	2
valkoposkihanhi	4	8
tavi	3	11
sinisorsa	138	13415
jouhisorsa	1	1
lapasorsa	1	1
punasotka	1	1
tukkasotka	44	21593
lapasotka	8	40
haahka	1	1
alli	29	13158
mustalintu	10	475
pilkkasiipi	17	202
telkkä	83	7344
uivelo	22	275
tukkakoskelo	10	82
isokoskelo	102	8590
merikotka	109	472
varpushaukka	88	96
kanahaukka	101	140
hiirihaukka	20	32
piekana	8	9
maakotka	5	5

Feedpack (web-pages)

- General population trends
- Information of own route

Varpunen - Talvilaskenta (25.12.-7.1.)
Havaittujen lintujen määrä jaettuna kyseisellä laskentakaudella laskettujen reittien määrällä.

Feedpack

- General population trends
- Information of own route
- Press releases, articles

Varpunen - Talvilaskenta (25.12.-7.1.)
Havaittujen lintujen määrä jaettuna kyseisellä laskentakaudella laskettujen reittien määrällä.

Feedpack

- General population trends
- Information of own route
- Press releases, articles
- Social media

$$
\text { IL Tykkää S Seuraa } \quad \rightarrow \text { Jaa }
$$

LUOMUS Linnustonseuranta
Julkaisija: Päivi Sirkiä [?] • 31. lokakuuta kello 10:47 • 아
Talvilintulaskennat alkavat keskiviikkona 1.11. syyslaskentajaksolla! Tulevien parin viikon aikana sadat uutterat laskijat kiertävät vuodesta toiseen samoina pysyvät laskentareittinsä. Kun kaikki havaitut linnut lasketaan, saadaan hyvä käsitys lajien runsauksien vaihtelusta.
Syyslaskenta paljastaa muun muassa kuinka paljon muuttolintuja on jäänyt viivyttelemään ja kuinka paljon marjoille persoja tilhiä ja rastaita on eri puolilla maata. Talvilintulaskenta on hauska tapa harrastaa lintuja muuten hiljaisena vuodenaikana ja osallistua samalla arvokkaaseen seurantaan. Lisätietoja talvilintulaskennoista:
https://www.luomus.fi/fi/talvilintulaskennat

Feedpack

- General population trends
- Information of own route
- Press releases, articles
- Social media

- Monitoring news, birding societies

```
|LTykkää \) Seuraa \ Jaa ...
```

```
vomus Linnustonseuranta
    Julkaisija: Päivi Sirkiä [?] · 31. lokakuuta kello 10:47 - C
```

Talvilintulaskennat alkavat keskiviikkona 1.11. syyslaskentajaksolla! Tulevien parin viikon aikana sadat uutterat laskijat kiertävät vuodesta toiseen samoina pysyvät laskentareittinsä. Kun kaikki havaitut linnut lasketaan, saadaan hyvä käsitys lajien runsauksien vaihtelusta.
Syyslaskenta paljastaa muun muassa kuinka paljon muuttolintuja on jäänyt viivyttelemään ja kuinka paljon marjoille persoja tilhiä ja rastaita on eri puolilla maata. Talvilintulaskenta on hauska tapa harrastaa lintuja muuten hiljaisena vuodenaikana ja osallistua samalla arvokkaaseen seurantaan. Lisätietoja talvilintulaskennoista:
https://www.luomus.fi/fi/talvilintulaskennat

Feedpack

- General population trends
- Information of own route
- Press releases, articles
- Social media

- Monitoring news, birding soci
- Meetings for observers
- Personal feedback


```
IL Tykkää \ Seuraa }->\mathrm{ Jaa ...
```

```
uomus Linnustonseuranta
    Julkaisija: Päivi Sirkiä [?] · 31. lokakuuta kello 10:47 · C
```

Talvilintulaskennat alkavat keskiviikkona 1.11. syyslaskentajaksolla! Tulevien parin viikon aikana sadat uutterat laskijat kiertävät vuodesta toiseen samoina pysyvät laskentareittinsä. Kun kaikki havaitut linnut lasketaan, saadaan hyvä käsitys lajien runsauksien vaihtelusta.
Syyslaskenta paljastaa muun muassa kuinka paljon muuttolintuja on jäänyt viivyttelemään ja kuinka paljon marjoille persoja tilhiä ja rastaita on eri puolilla maata. Talvilintulaskenta on hauska tapa harrastaa lintuja muuten hiljaisena vuodenaikana ja osallistua samalla arvokkaaseen seurantaan. Lisätietoja talvilintulaskennoista:
https://www.luomus.fi/fi/talvilintulaskennat

Observer training:

Observer training: Birdid.no

Birds

News	
40000 media!	21.11 .2017
Server Problems:FIXED	06.11 .2017
Server upgrade	14.02 .2017

Mammals
News

1000 new photos!	18.11 .2016
Improved mammal quiz	15.10 .2015

Mammal identification
17.04.2013

Tracks

News	
Software updates	23.02 .2017
Track identification	17.04 .2013

International monitoring networks

- Finnish winter bird counts are part of the International Waterbird Counts (IWC)

Wetlands
 INTERNATIONAL

International monitoring networks

- Finnish winter bird counts are part of the International Waterbird Counts (IWC) Wetlands
INTERNATIONAL
- IWC are conducted >140 countries
- Largest BD monitoring scheme in globe

International monitoring networks

- Finnish winter bird counts are part of the International Waterbird Counts (IWC)

Wetlands

INTERNATIONAL

- IWC are conducted >140 countries
- Largest BD monitoring scheme in globe
- National and local coordinators (NGOs, Universities, research centres etc)
- WI coordination team

International monitoring networks

- Coordinators meet
regularly

International monitoring networks

- Coordinators meet regularly
- Enables large scale studies

Lehikoinen et al., 2013 Global Change Biol

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information
- Provide guidance for monitoring schemes, including softwares
- Capacity building in developing countries

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information
- Provide guidance for monitoring schemes, including softwares
- Capacity building in developing countries
- $2^{\text {nd }}$ European Breeding Bird Atlas

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information
- Provide guidance for monitoring schemes, including softwares
- Capacity building in developing countries
- $2^{\text {nd }}$ European Breeding Bird Atlas
- Pan-European Common Bird Monitoring Scheme

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information
- Provide guidance for monitoring schemes, including softwares
- Capacity building in developing countries
- $2^{\text {nd }}$ European Breeding Bird Atlas
- Pan-European Common Bird Monitoring Scheme
- Tens of thousands of volunteers

International monitoring networks

- Breeding evidence in $50 \times 50 \mathrm{~km}$ grids

EBCC

International monitoring networks

- Breeding evidence in $50 \times 50 \mathrm{~km}$ grids
- Aggregation of national atlases

EBCC

International monitoring networks

- Breeding evidence in $50 \times 50 \mathrm{~km}$ grids
- Aggregation of national atlases
- 2013-2017
- EU 2020 BD targets

International monitoring networks

- Breeding evidence in $50 \times 50 \mathrm{~km}$ grids
- Aggregation of national atlases
- 2013-2017
- EU 2020 BD targets

Making citizen science matter

Eurasian Skylark (Alauda arvensis)

Population index (\%) 1980-2015, Europe.
Trend classification: Moderate decline (explanation)

List of Countries

Source of the data: EBCC/BirdLife/RSPB/CSO

- Population trends of
>170 bird species in Europe

Making citizen science matter

Common Farmland Bird Indicator, Europe, 2017 update

- Biodiversity indicators

Making citizen science matter

Common Farmland Bird Indicator, Europe, 2017 update

- Biodiversity indicators
- Efficiency of EU farmland policy

Making citizen science matter

Common Farmland Bird Indicator, Europe, 2017 update

- Biodiversity indicators
- Efficiency of EU farmland policy
- National indicators

Red listing of Finnish birds

IUCN criteria (vol. 3.1)

- Species listed in categories:
i) Extinct (EX)
ii) Extinct in the wild (EW)
iii) Critically endangered (CR)
iv) Endangered (EN)
v) Vulnerable (VU)
vi) Nearly threatened (NT)
vii) Least concern (LC)
viii) Data deficient (DD) (no data)
ix) Not evaluated (NE) (non-native)

IUCN criteria (vol. 3.1)

- Species listed in categories:
i) Extinct (EX)
ii) Extinct in the wild (EW)
iii) Critically endangered (CR)
iv) Endangered (EN)
v) Vulnerable (VU)
vi) Nearly threatened (NT)
vii) Least concern (LC)
viii) Data deficient (DD) (no data)
ix) Not evaluated (NE) (non-native)

IUCN criteria (vol. 3.1)

- Species listed in categories:
i) Extinct (EX)
ii) Extinct in the wild (EW)
iii) Critically endangered (CR)
iv) Endangered (EN)
v) Vulnerable (VU)
vi) Nearly threatened (NT)
vii) Least concern (LC)
viii) Data deficient (DD) (no data)
ix) Not evaluated (NE) (non-native)

IUCN criteria (vol. 3.1)

- Five main criteria:
A) Decline in population size
B) Small geographical range and fragmented or declining population
C) Small population size and decline
D) Very small population size
E) Quantitative analysis showing probability of extinction
http://www.iucnredlist.org/technical-documents/categories-andcriteria

IUCN criteria (vol. 3.1)

- Five main criteria:
A) Decline in population size
B) Small geographical range and fragmented or declining population
C) Small population size and decline
D) Very small population size
E) Quantitative analysis showing probability of extinction
http://www.iucnredlist.org/technical-documents/categories-andcriteria

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in CR,
ii) $\geq 50 \%$ in EN,
iii) $\geq 30 \%$ in VU over the last 10 years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in CR,
ii) $\geq 50 \%$ in EN,
iii) $\geq 30 \%$ in VU over the last $\mathbf{1 0}$ years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in CR,
ii) $\geq 50 \%$ in EN,
iii) $\geq 30 \%$ in VU over the last 10 years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

A. Decline in population size

- based on (and specifying) any of the following:
(a) direct observation
(b) an index of abundance appropriate to the taxon
(c) a decline in area of occupancy, extent of occurrence and/or quality of habitat
(d) actual or potential levels of exploitation
(e) the effects of introduced

A. Decline in population size

- based on (and specifying) any of the following:
(a) direct observation
(b) an index of abundance appropriate to the taxon
(c) a decline in area of occupancy, extent of occurrence and/or quality of habitat
(d) actual or potential levels of exploitation
(e) the effects of introduced

A. Decline in population size

Examples

Ortolan bunting:
Generation length 3.6
years * 3 = 11 years,
e.g. 2006-2017

Decline in breeding counts -80\%
=>

$$
\begin{aligned}
& \geq 80 \% \text { in } \mathrm{CR} \\
& \geq 50 \% \text { in } \mathrm{EN} \\
& \geq 30 \% \text { in } \mathrm{VU}
\end{aligned}
$$

A. Decline in population size

Examples

Ortolan bunting:
Generation length 3.6
years * 3 = 11 years,
e.g. 2006-2017

Decline in breeding
counts -80\%
=> CR

$\geq 80 \%$ in CR
$\geq 50 \%$ in EN
$\geq 30 \%$ in VU

A. Decline in population size

Examples

Curlew: Generation
length 10.4 years*3 = 31 years, e.g. 19862017

Decline in breeding counts -22\%
=>

$\geq 80 \%$ in CR
$\geq 50 \%$ in EN
$\geq 30 \%$ in VU

A. Decline in population size

Examples

Curlew: Generation
length 10.4 years*3 $=$ 31 years, e.g. 19862017
Decline in breeding counts -22\%
=> NT

$\geq 80 \%$ in CR
$\geq 50 \%$ in EN
$\geq 30 \%$ in VU

A. Decline in population size

Examples

Willow tit: Generation length 4.6 years * 3 = 14 years, e.g. 20032017
Decline in breeding counts -53\%, winter counts -68\%
=>
$\geq 80 \%$ in CR
$\geq 50 \%$ in EN
$\geq 30 \%$ in VU

A. Decline in population size

Examples

Willow tit: Generation length 4.6 years * 3 = 14 years, e.g. 20032017
Decline in breeding counts -53\%, winter counts -68\%
=> EN

$\geq 80 \%$ in CR
$\geq 50 \%$ in EN
$\geq 30 \%$ in VU

B. Geographic range

1. Extent of occurrence estimated to be less than 1000 km 2 (CR), 5,000 km 2 (EN), 20,000 km2 (VU), and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at no more than five locations.
b. Continuing decline, observed, inferred or projected,
c. Extreme fluctuations
2. Area of occupancy estimated to be less than 10 km 2 (CR), 500 km 2 (EN), 2000 km 2 (VU) and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at no more than five locations.
b. Continuing decline, observed, inferred or projected
c. Extreme fluctuations

B. Geographic range

1. Extent of occurrence estimated to be less than 1000 km 2 (CR), $5,000 \mathrm{~km} 2$ (EN), 20,000 km2 (VU), and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at no more than five locations.
b. Continuing decline, observed, inferred or projected,
c. Extreme fluctuations
2. Area of occupancy estimated to be less than 10 km 2 (CR), 500 km 2 (EN), 2000 km 2 (VU) and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at no more than five locations.
b. Continuing decline, observed, inferred or projected
c. Extreme fluctuations

B. Geographic range

Figure 2. Two examples of the distinction between extent of occurrence and area of occupancy. (A) is the spatial distribution of known, inferred or projected sites of present occurrence. (B) shows one possible boundary to the extent of occurrence, which is the measured area within this boundary. (C) shows one measure of area of occupancy which can be achieved by the sum of the occupied grid squares.

C. Population size and decline

- C. Population size estimated to number fewer than 250 (CR), 2500 (EN) or 10000 (VU) mature individuals and either:

1. An estimated continuing decline
i) 25% in 3 years $/ 1$ generation (CR)
ii) 20% in 5 years/2 generations (EN)
iii) 10% within certain 10 years/ 3 generations (VU)

OR
2. A continuing decline, observed, projected, or inferred, in numbers of mature individuals AND at least one of the following (a-b):
a. Population structure in the form of one of the following: (i) no subpopulation estimated to contain more than 50 mature individuals, OR (ii) at least 90\% of mature individuals in one subpopulation.
b. Extreme fluctuations in number of mature individuals.

D. Small population size

- Population size estimated to number fewer than
i) 50 mature individuals (CR)
ii) 250 mature individuals (EN)
iii) 1000 mature individuals (VU)

D. Small population size, examples

- Population size estimated to number fewer than
i) 50 mature individuals (CR)

Breeding population less than 25 pairs: very rare breeding species, which have had breeding population for some time:
Greater spotted eagle, snowy owl, black tern, turtle dove, kingfisher

D. Small population size, examples

- Population size estimated to number fewer than
i) 50 mature individuals (CR)

Populations recently colonized (edge populations) are upgraded: e.g.
Citril wagtail (->EN), Savi's warbler (->EN)

D. Small population size

- Population size estimated to number fewer than
iii) 1000 mature individuals (VU)

Relatively rare species: quail, eagles, moorhen, white-backed woodpecker, great reed warbler, barred warbler, bearded tit

E. Quantitative analysis

- Quantitative analysis showing the probability of extinction in the wild is
i) at least 50% within 10 years or three generations (CR)
ii) at least 20\% within 20 years or five generations (EN)
iii) at least 10% within 100 years (VU)

Problematic species

- Uncommon species with poor monitoring data: bean goose (VU in 2019), little ringed plover (NT)
- Borderline species e.g. decline 29-31\%
- Contrasting data: one shows clear decline other not.

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Important to measure survey effort

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Important to measure survey effort
- Importance of national coordinators

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Important to measure survey effort
- Importance of national coordinators
- Feedback on multiple levels important

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Important to measure survey effort
- Importance of national coordinators
- Feedback on multiple levels important
- Strength of international networks

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Important to measure survey effort
- Importance of national coordinators
- Feedback on multiple levels important
- Strength of international networks
- Base of an objective Red List evaluation

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Important to measure survey effort
- Importance of national coordinators
- Feedback on multiple levels important
- Strength of international networks
- Base of an objective Red List evaluation
- Every bird counts!

Thank you!

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI NATURHISTORISKA CENTRALMUSEET FINNISH MUSEUM OF NATURAL HISTORY

