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Lecture outline

* DNA barcoding

* Nuclear genes

* Genome assembly

* Genomics / museomics




Objectives of the lecture

* To understand the importance of biological collections in
taxonomic research

* To understand what type of data can be obtained from
collection specimens and samples, with a focus on sequence
and genome-level characters

* To learn how the state-of-the-art DNA technology works for
museum samples and how it can serve present and future
taxonomic research



Taxonomic research

* The science of naming, defining (circumscribing) and classifying groups of
biological organisms on the basis of shared characteristics

Thyris fenestrella

Mathoris loceusalis
Striglina cii 7]

Rhodoneura terminalis

Morova subfasciata

_l: Prerodecta felderi
Pterothysanca sp.

0.54

2
=
- - - - 1 Baronia brevicornis g
Parnassius phoebe —
* Understanding biodiversit i e
0.98 Eurytides branchus £
| Puapilio glaucus
1 Parides iphidamas
Troides helena o
| Macrosoma tipulata 3 ’1 ‘Q
Macrosoma bahiata = PSAAN Ty
! Hasora chromus = X »
l0.50 Achlyodes busiris 3 £ ™
! ! E chivodes busi 2 7 |
—_ Pyrgus malvae \
{ Jemadia pseudognetus
{099} 0.99 r"\‘\”i(izl ambigua 2 =
[ Urbanus dorantes =
. (.86 Trapezites symmomus =
Euschemon rafflesia 2
0671 Carterocephalus silvicola %
1 Thymelicus lineola o
{h hlodes faunus
1 Dismaorphia spio
—|. 1 Leptidea sinapis .
— 1 Colias palaeno o - §
| Eurema hecabe _';3 r 47
3 Pseudopontia paradoxa =
0.89 | Pieris rapae 2 / N\
1 Delias belladonna A § ’
° . Aporia crataegi
. I e L Ty P A T
any applications
— Calinaga buddha
1 Charaxes castor
1 = 071 1 e Eyebia oeme o
= 1 Aphantopus hyperanthus =
. T | pr—— Amathusia phidippus =
073 1 . Morpho helenor s
. . ’ 1 — OpOptera syme —:;
| [ Limenitis reducta 1=
pr———1 ~ Argynnis paphia 7"
| =L Altinole siratonice =
— e Heliconins hecale
- Biblis hyperia
Apatura iris
1 Marpesia orsilochus
— Melitaea cinxia
e Colobura dirce
. 1 1 pe——— Vanessa atalanta
UC Berkely, Jepson Herbarium S Nsmphais polschloros
097" Hypanartia paullus /
[r—— SO lasia chrysippe 2 %
p— 1 v infeornnnlic - s




Evolution of DATA used in taxonomic research

DNA barcoding

Nuclear genes

High throughput
sequencing (HTS)
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List of nuclear genes

e ArgKk  arginine kinase

e CAD carbamoylphosphate
synthetase

e RpS5  ribosomal protein S5

e |IDH Isocitrate
dehydrogenase

e EF1-a Elongation factor 1
alpha

e WGL  wingless

e Nex9 sorting nexin-9-like
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e whole genome sequencing
e reduced representation
sequencing (e.g., RAD-seq,
anchored enrichment)




Integrative approach

* Morphology
* DNA barcodes
* Genomic data (ddRAD-seq)
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Abstract

The taxonomic status of the European Hoplodrina octogenaria (Goeze, 1781) is discussed and its partly
sympatric sister species, Hoplodrina alsinides (Costantini, 1922) sp. rev., is separated and re-described
based on morphological and molecular taxonomic evidence. The adults and their genitalia are illustrated




DNA barcoding

 DNA barcodes is a short sequence that can be used to identify
an organism to species

 Standardised DNA region (500-1000 bp)

* Different gene regions are used to
identify the different organismal
groups (e.g., mitochondrial COl for
animals, ITS for fungi, rbcL for plants)




maternal inheritance
Cytochrome oxidase | gene (COI)

DNA barcoding — i A —

\ 648 bp /
ca. 1500 bp

How does DNA Barcoding work ?
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< CCDB
DNA barcoding >

* Inside the core lab
facility at the CCDB

* Virtually all automated

M

— -
o~
e B

> »

RELIABLE AND
COMPREHENSIVE

Processing over 20,000
samples per week
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| Iz CCDB
DNA barcoding o Ginadian Centefor

* Data management

BARCODE OF LIFE DATA * BOLD system
ANRGRgbiodersiy science through ONA based sp (www.boldsystems.org)

EXPLORE THE DATA
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BOLD is a cloud-based data storage and analysls platform developed at the Centre for Blodiversity Genamics in Canada. it consists of four main modudes, a data portal, an
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A custom platform for educ
students to explore barcode data anc
contribute novel barcodes 1o BOLD
database.

The Barcode of Life Datasystem (BOLD) is an online workbench and database that supports the assembly and use of DNA
barcode data. It is a collaborative hub for the scientific community and a public resource for citizens at large.


http://www.boldsystems.org/

DNA barcoding

* Provides high resolution in shallow relationships (species/population level)

Cryptic (=hidden) diversity / Deep split

Limnephilus, Trichoptera
(caddisfly)
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L. sericeus | ARin-2014F 141
L. sericeus | JSIk-2015F191
L. sericeus | ARin-2016F047
100 L. sericeus | JSk-2016R004
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L. centralis | JSIk-2017R001

100 L. centralis | JSIk-2016R006
L. centralis | JSIk-2017R002

L. flavicornis | TRIFI-2015F20

92| L. flavicornis | TRIFI-2015F23

L. flavicornis | TRIFI-2015F21

L. marmeratus | ARin-2014F129

L. marmoratus | ARin-2016R010

L. flavicornis | JSIk-2015M002

L. flavicornis | JSIk-2015M003

L. flavicornis | JSIk-2015M001

Salokannel et al. 2021

DNA barcode sharing

Uul0040 P. fulvipes
UUI0050 P. sphagnicola
UuI0049 P. fulvipes
UUI0038 P. fulvipes
391 UUI0033 P. fulvipes
UuI0035 P. fulvipes
UUI0036 P. fulvipes
UUI0039 P. fulvipes
55| UUI0042 P. sphagnicola
UuI10043 P. sphagnicola
Uul0025 P. sphagnicola
uul0062 P. prativaga
UUI0046 P. sphagnicola
UUI0058 P. prativaga
UUI0037 P. fulvipes
UUI0061 P. prativaga
UuI0054 P. prativaga
UUI0090 P. riparia

571 UUI0089 P. riparia
89 || UUI0086 P. riparia
UUI0051 P. riparia
Uu10084 P. riparia.
UUI0056 P. pullata™
UuI0030 P. pullata
UuI0029 P. pullata

Pardosa, Lycosidae
(spider)
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AKO0001652 P. schenkeli

UUI0074 P. agricola
UUI0070 P. palustris
UUI0066 P. hyperborea
UUI0068 P. lugubris

UUI0072 P. eiseni
UuI0071 P. maisa

93

uulooe0P.pullata_____________________

UU10064 Acantholycosa lignaria

fulvipes,
prativaga,
riparia,
sphagnicola
complex

Pardosa

P. pullata

UUI0069 P. amentata -

Ivanov et al. 2018



Nuclear genes

* Homologous recombination

* Provide high resolution in deeper relationships
(genus, tribe, family, order level)

* List of most commonly used genes

Genes Length (bp)  Reference

ArgK arginine kinase 388 Wahlberg et al. 2016
Nex9 sorting nexin-9-like 420

CAD carbamoylphosphate synthetase 826 Wahlberg & Wheat 2008
RpS5 ribosomal protein S5 603

IDH Isocitrate dehydrogenase 722

EFl-a Elongation factor 1 alpha 1047

WGL wingless 400

MDH cytosolic malate dehydrogenase 407

Sihvonen et al. 2020



Nuclear genes

Empria longicornis group
(sawflies)

K=9

o — s Mitochondrial COI

* DNA barcoding VS. nuclear data Nuclear DNA
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Development of new methods to extract DNA
fromm museum specimens

e e.g. from very old samples or specimens in formaldehyde
* Non-destructive methods (e.g. TYPE specimens)




High-throughput sequencing (HTS)

* Genomics and museomics — also known as next-generation
sequencing (NGS)

* Rapid and cost-effective

e HTS techs enable hundre
sequenced at a time

National Human Genome
Research Institute

genome.gov/sequencingcosts

* Enable more reliable phy

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017




High-throughput sequencing (HTS)

* Whole genome segeuncing (WGS)

* Reduced representation sequencing

- Restriction-site associated DNA sequencing (RAD-seq or ddRAD-seq)

- Target enrichment (TE)




WGS vs Genome reduction method
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Genome assembly

* De novo assembly — not reference based
* Reference-based assembly

* NCBI (SRA) database N
e
—_—— \
//%Q Next-genergn
Genomic DNA DNA sequencing
RESEQUENCING
o ¥

Align reads to reference genome
and identify variants

...CATTCAGTAG... ...AGCCATTAG...
...GGTAGTTAG... ...GGTAGTTAG...
...AGCCATTAG... ...GGTAAACTAG...

Millions-billions of reads
~30-1,000 nucleotides

De Novo ASSEMBLY

Construct genome sequence
from overlaps between reads



Genome assembly
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Genome assembly

e Bioinformatics

- Next generation
sequencing
analysis

- Visualisation of
annotated
genomes &
assemblies

- SNP variant
analysis
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Genome assembly

e Bioinformatics

Assembly &
mapping
Reference mapping
with reliable

algorithms & de
novo assembly
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Museomics

 HTS technologies offer a promise of efficient ways of
sequencing degraded DNA

e HTS involves sequencing of short fragments of DNA, which is
characteristic of DNA extracted from old museum specimens, e.g. type
specimens

e Large volumes of sequence data from relatively small amounts of
starting material

* Museomics opens up the variety of interesting taxa
available to study & the scope of questions that can be By Do seeivescmblings:”
investigated in order to further knowledge about
biodiversity

kaamranhafeez.com



I\/I useom iCS: placing mysterious genera

Drepanoidea

Systematic
Entomology o A_kc»y;j a 7‘ Gracillarioidea
Systematic Entomology (2021), 46, 926—-937 DOI: 10.1111/syen.12503 Various small superfamilies
Tortricoidea
Gelechioidea
Museomics of a rare taxon: placing Whalleyanidae in Zygaenoidea
= = Cossoidea
the Lepidoptera Tree of Life
Thyrididae Zeuzerodes maculata
VICTORIA G. TWORT!®, JOEL MINET?®, e Thyrididae Strgina suzuki
CHRISTOPHER W. WHEAT®® and NIKLAS WAHLBERG'® 01001100 Thyriddae Pseudothyris sepucralis
'Department of Biology, Lund University, Lund, Sweden, >The Finnish Museum of Natural History Luomus, Zoology Unit, . Whalleyanidae Whalleyana vioni
University of Helsinki, Helsinki, Finland, *Muséum National d’Histoire Naturelle, ISYEB, Paris, France and *Department of 190/100/100 Callidulidae Pterodecta felderi
Zoology, Stockholm University, Stockholm, Sweden . 100/100/100 . o
Callidulidae Helicomitra puichra
100/100/100
Callidulidae Griveaudia vieui
—~ g :
* Whole genome sequencing (WGS) ! P ———————
l ) -
86/100/100 Hyblaeidae madagascanensis
approach -> 332 genes o —
1 < Mimallonoidea
* Whalleyana species collected between

1969 and 1974

* De novo genome assembly

Lasi ;
Bombycoidea
Noctuoidea

0.02



Museomics: exploring the suitability of a genome reduction

method on museum specimens

Insect Systematics and Diversity, (2021) 5(2): 6; 1-10
doi: 10.1093/isd/ixaa021
Research

Molecular Phylogenetics, Phylogenomics, and Phylogeography OXFORD

Museomics: Phylogenomics of the Moth Family
Epicopeiidae (Lepidoptera) Using Target Enrichment

Elsa Call,"5“ Christoph Mayer,>” Victoria Twort,* Lars Dietz,2” Niklas Wahlberg,"” and
Marianne Espeland*

'Department of Biology, Lund University, 22362 Lund, Sweden, *Statistical Phylogenetics and Phylogenomics, Zoological Research Museum Alexander
Koenig, 53113 Bonn, Germany, *University of Helsinki, Finnish Natural History Museum, Luomus, Helsinki, Finland, *Arthropoda Department, Zoological
Research Museum Alexander Koenig, 53113 Bonn, Germany, and *Corresponding author, e-mail: elsa.call.fr@gmail.com

* Target enrichment (TE) approach

* Museum specimens of Lepidoptera
collected between 1892 and 2001

* De novo genome assembly

Amyelois
Chilo
I minuta
dominula
—119.7/62
[ Bombyx mori
Manduca sexta
T Lyssa zampa
1
brumata
—1 Idaea sp5

96.2/89

I— Paral

Y.
Mania empedocles S59
Mania lunus

Pseudobiston pinratanai S63 (2)

Pseudobiston pinratanai S2
Deuveia banghaasi S35
Deuvela banghaasi S37 (3)

Schistomitra funeralis 15 (5)
braxas nigromacularia S25

P

54.8/81

16.2/52

Paral

Epicopeia philenora S55 (7)

8§23 (6)

arabraxas davidl §19

braxas davidi S17

Epicopeia
Epicopeia seii 851
Epicopeia hainseii 53
Epicopeia polydora S47 (11)
Epicopeia hainseii S45
Epicopeia polydora S49




Challenges in museomics

* Development of best-practices in isolating, processing, and analysing historical
DNA (hDNA) remain underexplored.

* The quality of hDNA can be largely dependent on preparation types, tissues
sources, archival ages, and collecting histories.

e Researchers still face challenges in producing and analysing data.

* Obtaining adequate sequencing coverage, minimizing missing data, correcting for
DNA degradation, and removing contaminant DNA are major challenges for
genome sequencing of hDNA samples.



Biological collections and
genetic data

Annina Kantelinen
23.8.2022



Contents

* Research examples

— Morphology
— DNA-methods

Niebla sp.
Caloplaca coralloides

Lichens are small ecosystems:
mycobiont & photobiont, but also
other fungi, algae, secondary photobionts,
protozoa and non-photosynthetic bacteria.



Collections

* Natural history museums are diverse biobanks of
biodiversity

* Many species are more accessible in collections than
in their original habitats
— remote geographical areas
— rare or endangered taxa
— extinct taxa _
— taxa that have not been seen 5 SIS N
since their initial collection R




Type specimens

* When a species is first discovered by scientists, a type
specimen is nominated. If we are later in doubt about what
are the characters of the species, we can check the type.

* 'The Type” —a song by John Hinton for the Natural History
Museum London

— https://www.youtube.com/watch?v=gfQL7bXwzvM

* Type specimens are often old and DNA-sequencing can be
difficult...



Morphology and old type

* A new character, crystalline granules, was relevant in
linking an old type specimen to fresh material

— The original M. prasina type specimen is from 1825
— Fresh material resolved into three DNA lineages

”Micarea prasina 1” M. prasina 2” M. prasina s. str.

Launis et al. 2019



Morhology and DNA barcoding

* "Deficiently known forest lichens — identification

through DNA-barcoding” 2011-2012

* Specimens were collected, morphologically
identified, sequenced, and deposited in the

herbarium and DNA databases

 DNA barcode was created for 108 lichen species

— Also scientifically new species

Puutteellisest

tunnettujen ja
uhanalaisten
» metsalajien
tutkimus-
ohjelma

m={=CD



Morphology and molecular systematics

* Sequencing hundreads of specimens is not always
possible or smart

* New article: Lichen speciation is sparked by a substrate
requirement shift and reproduction mode differentiation.
Kantelinen et al. 2022

-516 studied herbarium specimens in
Central Europe and Fennoscandia
-Reproduction mode (sexual/asexual)
-Substratum (bark/decaying wood/other)
-3 DNA loci of selected samples




Ancient DNA

* AncientDNA and museomics methods are rapidly
evolving

— Morphology is useful, but requires expertise and time

* Collections are increasingly used in biogeographical,
environmental and taxonomic studies

New article: DNA sequencing historical lichen specimens. 2019.

Kistenich et al.

-Target sequences (mtSSU)

-Samples from every 25 years from present to 150 years back in time.

-Received satisfactory DNA sequence information for 54 of 56 specimens
-Recovered full-length sequences for several more than 100-years-old specimens!



Metabarcoding

e DNA-based identification meets HTS
— 500-1000 bp, 16S rDNA

e Great for mixed species samples
— environmental samples, eg. dead wood

[ neseancuanicie '@l\hml\\-\\

— community ecology

PacBio amplicon sequencing for metabarcoding of
mixed DNA samples from lichen herbarium specimens

New article: PacBio amplicon sequencing e
for metabarcoding of mixed DNA samples -
from lichen herbarium specimens. 2019.

Gueidan, C. et al.




Genomics & lichens

 Genomic studies in lichenology are considerable
delayed due to the symbiotic nature of lichens

* Symbiosis makes it difficult to obtain myco-
/photobiont genomes by techniques
widely used in other groups of
organisms

— Researchers have tried to culture
the mycobiont, but obtaining and
maintaining such cultures is difficult
and unpredictable

By Nefronus - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/



Whole genome sequencing

 More data, wide range of research questions
— Evolution, adaptation, metabolism, genetics...

New article: The lichen symbiosis re-viewed
through the genomes of Cladonia grayi

and its algal partner Asterochloris glomerata.
Armaleo, D. et al. 2019.

-The first parallel genomic analysis of lichen symbionts
-From cultures




Metagenomics

e Study of ALL genomes from a mixed community of
organisms

— Environmental samples, eg. microbes
— Symbiotic organisms, e.g. lichens

* |n metagenomics the DNA present in the entire lichen
symbiosis is massively sequenced, and the mycobiont part
is recovered using computational tools

“Because of its ability to reveal the previously hidden diversity of microscopic life,
metagenomics offers a powerful lens for viewing the microbial world that has
revolutionized understanding of the entire living world”
Marco, D. 2011



Metagenomics & lichens

New(ish) articles:
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Abstract
Phylogenomic datasets continue o enhance our understanding of evelutionary relationships in many lineages of organisms.,
However, genome-scale data have not been widely implemented in reconstructing relationships in lichenized fungi. Here
we generale a data set comprised of 2556 single-copy protein-coding genes to reconstruct previously unresolved rela-
tionships in the most diverse Tamily of lichen-forming fungi, Parmeliaceae. Our sampling included 51 taxa, mainly from
the subfamily Parmelioideae. and represented six of the seven previously identified major clades within the family. Our
results provided sirong support for the monophyly of each of these major clades and most backbone relationships in the
topology were recovered with high nodal support based on concatenated dataset and species tree analyses. The alectorioid
clade was strongly supported as sister-group o all remaining clades, which were divided into two major sister-groups. In
the first major clade the anzioid and usneoid clades formed a strongly supported sister-group relationship with the
cetrunioid + hypogymnioid group. The sister-group relationship of Evesnia with the cetrarioid clide was also strongly
supported, whereas that between the anzivid and usnecid clades needs further investigation. In the second mujor clade
Crapogon and Platismatia were sister (o the parmelioid group, while the position of Gwphalora was not fully resolved.
This study demonstrates the power of genome-scale data sets to resolve long-standing, ambiguous phylogenetic rela-
tionships of lichen-forming fungi. Futthermore, the topology infemed in this study will provide a valuable framework for
better understanding diversification in the most diverse lineage of lichen-forming fungi. Parmeliaceae.

Keywords Fungi - Lecanorales -

Lichenized fungi - Parmeliaceae - Parmelioideae - Phylogeny - Systematics
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Abstract

Basidhomycete yeasts have recently been reported as stably amodated secondarny fungal symbionts of many ichens, but their role in
the symbicsis remains unknown. Attemnpts to sequence their genomes have been hamperad both by the inabiity to culture them and
their low abundance in the ichen thallus alongside two dominant eukaryotes {an ascomycete fungus and chicrophyte alga). Using
the lichen Aleciona sarmentosa, we selectively desobed the corex byer in which secondary fungal symbionts are embedded o
ennichyeast c2l abundance and sequenced DNA from the resulting slurmies as well as bulk ichen thallus. In addition to yieldng a near-
compiete genome of the filamentous ascomycete using both methods, metagenomes from cortex shernies yelded a 36- o 84-fold
inrease in coverage and near-omplete genomes for two basidiomycete spedes, members of the cdasses Cystobasidiomyretes and
Tremellomycetes. The ascomycete possesses the largest gene repertoire of the three. i & enviched in proteases often assodated with
pathogenicity and harbors the majority of predicted secondary metabolite dusters. The basidiormycete genomes posess ~35%
fewer predicted genes than the ascomycete and have reduced secretomes even compared with close relatives, while exhibiting signs
of nutrient limitation and scavenging. Furthermare, both basidiomycetes are enriched in genes coding for enzymes producing
secreted acidic polysaccharides, representing a potential contribution to the shared extracellular matric All thres fungi retain genes
invoived in dmorphic switching, despite the ascomyrete not being known to possess a yeast stage. The basidiomyrete genomes ars
an important new resource for exploration of festyle and function in fungalfungal interactions in lichen symbioses.

Key words: =dracellular matro, genome, metagenomics, Lecanoromycetes, mycoparasite, secretome, yeast




Challenges and future aspects

* HTS challenges:
— De novo assembly, because no reference data available
— Short reads are bioinformatically demanding

— Low recovery

e HTS future:

— Short reads are becoming longer (lllumina 200 bp -> PacBio
15000 bp)

* Not just what you CAN do, but what you WANT to do

— What is your research question?
— What is your research question 5 years from now?



More info about the methods

* Alecture “Fundamentals of Genome Assembly” by Jared
Simpson (Ontario Institute for Cancer Research)
https://www.youtube.com/watch?v=5wvGapmA5zM

 Workshop on Genomics, Cesky Krumlov
(www.evomics.org)


https://www.youtube.com/watch?v=5wvGapmA5zM
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Today’s group work

 Form groups of 2-3 persons

 Examine a specimen and discuss how it could be
used in research

— Are DNA-studies possible?
— What might be the challenges?
— What kind of research questions would you like to ask?
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