

Citizen science,
common bird monitoring and red listing of species

The Helsinki Lab of Ornithology, Hell:-
Finnish Museum of Natural History aleksi.lehikoinen@helsinki.fi

Outline

- National monitoring schemes
- Engaging volunteers
- International networks
- Making citizen science matter

- Red list evaluation

Monitoring schemes (7 staff members)

 http://www.luomus.fi/fi/linnustonseuranta- Winter bird censuses
- Winter feeding monitoring
- Archipelago bird censuses (SYKE, Metsähallitus)
- Breeding waterbird counts (together with LUKE)
- Landbird point counts
- Line transects (standardized 2006->)
- Breeding bird atlases (last 2006-2010)
- Nest card scheme
- Raptor grid monitoring
- Ringing
- Migration counts

Monitoring schemes (7 staff members)

http://www.luomus.fi/fi/linnustonseuranta

- Winter bird censuses
- Winter feeding monitoring
- Archipelago bird censuses (SYKE, Metsähallitus)
- Breeding waterbird counts (together with LUKE)
- Landbird point counts
- Line transects (standardized 2006->)
- Breeding bird atlases (last 2006-2010)
- Nest card scheme
- Raptor grid monitoring
- Ringing
- Migration counts

Monitoring schemes (7 staff members)

 http://www.luomus.fi/fi/linnustonseuranta- Winter bird censuses
- Winter feeding monitoring
- Archipelago bird censuses (SYKE, Metsähallitus)
- Breeding waterbird counts (together with LUKE)
- Landbird point counts
- Line transects (standardized 2006->)
- Breeding bird atlases (last 2006-2010)
- Nest card scheme
- Raptor grid monitoring
- Ringing
- Migration counts

1. Winter Bird Counts in Finland

 http://www.luomus.fi/fi/talvilintulaskennat- Early winter 1.-14.11. (1976-)
- Mid-winter 25.12.-7.1. (1957-)
- Late winter 21.2.-6.3. (1966-)

1. Winter Bird Counts in Finland

http://www.luomus.fi/fi/talvilintulaskennat

- Early winter 1.-14.11. (1976-)
- Mid-winter 25.12.-7.1. (1957-)
- Late winter 21.2.-6.3. (1966-)
- N. 10 km long own route
- Free choice location

1. Winter Bird Counts in Finland

http://www.luomus.fi/fi/talvilintulaskennat

- Early winter 1.-14.11. (1976-)
- Mid-winter 25.12.-7.1. (1957-)
- Late winter 21.2.-6.3. (1966-)
- N. 10 km long own route
- Free choice location
- All birds are counted
- 8 habitat categories since 1986

1. Winter Bird Counts in Finland

http://www.luomus.fi/fi/talvilintulaskennat

- Early winter 1.-14.11. (1976-)
- Mid-winter 25.12.-7.1. (1957-)
- Late winter 21.2.-6.3. (1966-)
- N. 10 km long own route
- Free choice location
- All birds are counted
- 8 habitat categories since 1986
- C. 550 routes/a, c. 1000 volunteers

1. Winter Bird Counts in Finland

http://www.luomus.fi/fi/talvilintulaskennat

- Effort is known: length of the route in different habitats
- Maps digitized

1. Winter Bird Counts in Finland

http://www.luomus.fi/fi/talvilintulaskennat

- Effort is known: length of the route in different habitats
- Maps digitized
- Crop size of trees 1986-> (spruce, pine and rowanberry)
- Sex ratios of species 2010->
- Mammals 2014->

1. Winter Bird Counts in Finland

http://www.luomus.fi/fi/talvilintulaskennat

- Effort is known: length of the route in different habitats
- Maps digitized
- Crop size of trees 1986-> (spruce, pine and rowanberry)
- Sex ratios of species 2010->
- Mammals 2014->
- Often done in teams
- Training of new volunteers

Online tools: reporting and feedback

- >90\% of reports come through online systems
- Some automatic and manual control checking

Online tools: reporting and feedback

- >90\% of reports come through online systems
- Some automatic and manual control checking
- Directly to the databases
- Updates the feedback pages

Online tools: reporting and feedback

Talvi 2016/2017 \& Laskenta Talvi へ Näytä

Feedpack (web-pages)

- General population trends
- Information of own route

Varpunen - Talvilaskenta (25.12.-7.1.)
Havaittujen lintujen määrä jaettuna kyseisellä laskentakaudella laskettujen reittien määrällä.

Feedpack

- General population trends
- Information of own route
- Press releases, articles

Feedpack
 - General population trends
 - Information of own route
 - Press releases, articles
 - Social media

womus Linnustonseuranta
Julkaisija: Päivi Sirkiä [?] - 31. lokakuuta kello 10:47 - ©

Talvilintulaskennat alkavat keskiviikkona 1.11. syyslaskentajaksolla! Tulevien parin viikon aikana sadat uutterat laskijat kiertävät vuodesta toiseen samoina pysyvät laskentareittinsä. Kun kaikki havaitut linnut lasketaan, saadaan hyvä käsitys lajien runsauksien vaihtelusta.
Syyslaskenta paljastaa muun muassa kuinka paljon muuttolintuja on jäänyt viivyttelemään ja kuinka paljon marjoille persoja tilhiä ja rastaita on eri puolilla maata. Talvilintulaskenta on hauska tapa harrastaa lintuja muuten hiljaisena vuodenaikana ja osallistua samalla arvokkaaseen seurantaan. Lisätietoja talvilintulaskennoista:
https://www.luomus.fi/fi/talvilintulaskennat

Feedpack
 - General population trends
 - Information of own route
 - Press releases, articles
 - Social media

BirdLife
SUOMI•FINLAND

- Monitoring news, birding societies

Feedpack

- General population trends
- Information of own route
- Press releases, articles
- Social media
- Monitoring news, birding societies
- Meetings for observers
- Personal feedback

2. Standardized line transects

- Monitoring of breeding bird species
- Systematic sampling

2. Standardized line transects

- Monitoring of breeding bird species
- Systematic sampling
- 566 transects, since 2006
- Whole Finland 25 km interval 6 km long ($1 \times 2 \mathrm{~km}$ rectangle)

2. Standardized line transects

- Monitoring of breeding bird species
- Systematic sampling
- 566 transects, since 2006
- Whole Finland 25 km interval. 6 km long ($1 \times 2 \mathrm{~km}$ rectangle)

2. Standardized line transects

- Monitoring of breeding bird species
- Systematic sampling
- 566 transects, since 2006
- Whole Finland 25 km interval 6 km long ($1 \times 2 \mathrm{~km}$ rectangle)
- Counted in June, c. $4-9$ a.m.
- 200-300 repeated annually, 100t volunteers
- Safety instructions

2. Line transect counts

- Walking along the line

2. Line transect counts

- Walking along the line
- 50 metres habitat blocks

Wader densities according to the type of the open mire

2. Line transect counts

- Walking along the line
- 50 metres habitat blocks
- Type of observation: singing, calling, seen etc

2. Line transect counts

- Walking along the line
- 50 metres habitat blocks
- Type of observation: singing, calling, seen etc
- GPS handy tool, some borrowed from UH

Change in the central gravity of breeding landbirds

Lehikoinen \& Virkkala 2016: Global Change Biol 22: 1121-1129

Change in the central gravity of breeding landbirds

Change in the central gravity of breeding landbirds ($\approx 16 \mathrm{~km}$ NNE / decade)
 b)
 c)
 d)

a)

1970-1989

2000-2012
Blackbird

1970-1989

2000-2012

Lehikoinen \& Virkkala 2016: Global Change Biol 22: 1121-1129

2. Line transect counts

- Online booking system

2. Line transect counts

- Online booking system
- Observers can book their favourite transects

2. Line transect counts

- Online booking system
- Observers can book their favourite transects
- Not many "own" routes
- Gap routes highlighted

2. Line transect counts

- Online booking system
- Observers can book their favourite transects
- Not many "own" routes
- Gap routes highlighted
- Whatsapp group for observers 2017: shared guidance and fun!

3. Atlas work

- What is a probability that species is breeding in $10 \times 10 \mathrm{~km}$ square?

3. Atlas work

- What is a probability that species is breeding in $10 \times 10 \mathrm{~km}$ square?
i) Possible
ii) Probable
iii) Confirmed

3. Atlas work

- 3 atlas in Finland
- Latest 2006-2010 online

3. Atlas work

- 3 atlas in Finland
- Latest 2006-2010 online
- Gap areas

http://atlas3.lintuatlas.fi/

3. Atlas work

- 3 atlas in Finland
- Latest 2006-2010 online
- Gap areas
- >5000 participants

3. Atlas work

- 3 atlas in Finland
- Latest 2006-2010 online
- Gap areas
- >5000 participants
- One coordinator

3. Atlas work

- Not abundance data
- Observation effort may be difficult to measure

3. Atlas work

- Not abundance data
- Observation effort may be difficult to
measure
- Very very popular!!

Observer training:

Observer training: Birdin.no

International monitoring networks

- Finnish winter bird counts are part of the International Waterbird Counts (IWC)

Wetlands

INTERNATIONAL

International monitoring networks

- Finnish winter bird counts are part of the International Waterbird Counts (IWC)
Wetlands
INTERNATIONAL
- IWC are conducted >140 countries
- Largest BD monitoring scheme in globe

International monitoring networks

- Finnish winter bird counts are part of the International Waterbird Counts (IWC)

Wetlands
INTERNATIONAL

- IWC are conducted >140 countries
- Largest BD monitoring scheme in globe
- National and local coordinators (NGOs, Universities, research centres etc)
- IW coordination team

International monitoring networks

- Coordinators meet regularly

INTERNATIONAL

International monitoring networks

- Coordinators meet regularly
- Enables large scale studies

Lehikoinen et al., 2013 Global Change Biol

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information
- Provide guidance for monitoring schemes, including softwares
- Capacity building in developing countries

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information
- Provide guidance for monitoring schemes, including softwares
- Capacity building in developing countries
- $2^{\text {nd }}$ European Breeding Bird Atlas

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information
- Provide guidance for monitoring schemes, including softwares
- Capacity building in developing countries
- 2nd European Breeding Bird Atlas
- Pan-European Common Bird Monitoring Scheme

International monitoring networks

- European Bird Census Council, ebcc.info
- Gathers European census information
- Provide guidance for monitoring schemes, including softwares
- Capacity building in developing countries
- $2^{\text {nd }}$ European Breeding Bird Atlas
- Pan-European Common Bird Monitoring Scheme
- Tens of thousands of volunteers

International monitoring networks

- Breeding evidence in $50 \times 50 \mathrm{~km}$ grids

EBCC 青

International monitoring networks

- Breeding evidence in $50 \times 50 \mathrm{~km}$ grids
- Aggregation of national atlases

Enropean Bird Census Council

International monitoring networks

- Breeding evidence in $50 \times 50 \mathrm{~km}$ grids
- Aggregation of national atlases
- 2013-2017
- EU 2020 BD targets

European Bird Census Council

©EBCC

Making citizen science matter

Eurasian Skylark (Alauda arvensis)
Population index (\%) 1980-2015, Europe.
Trend classification: Moderate decline (explanation)

List of Countries

Source of the data: EBCC/BirdLife/RSPB/CSO

- Population trends of
>170 bird species in Europe

Making citizen science matter

Common Farmland Bird Indicator, Europe, 2017 update

- Biodiversity indicators

Making citizen science matter

Common Farmland Bird Indicator, Europe, 2017 update

- Biodiversity indicators
- Efficiency of EU farmland policy

Making citizen science matter

Common Farmland Bird Indicator, Europe, 2017 update

- Biodiversity indicators
- Efficiency of EU farmland policy
- National indicators

Impact of land use changes

- Change in habitat quality
- National habitat specific indicators

Impact of land use changes

- Change in habitat quality
- National habitat specific indicators

Red listing of Finnish species

The latest published in 2019 punainenkirja.laji.fi

IUCN criteria (vol. 3.1)

- Species listed in categories:
i) Extinct (EX)
ii) Extinct in the wild (EW)
iii) Critically endangered (CR)
iv) Endangered (EN)
v) Vulnerable (VU)
vi) Nearly threatened (NT)
vii) Least concern (LC)
viii)Data deficient (DD) (no data)
ix) Not evaluated (NE) (non-native)

IUCN criteria (vol. 3.1)

- Species listed in categories:
i) Extinct (EX)
ii) Extinct in the wild (EW)
iii) Critically endangered (CR)
iv) Endangered (EN)
v) Vulnerable (VU)
vi) Nearly threatened (NT)
vii) Least concern (LC)
viii)Data deficient (DD) (no data) ix) Not evaluated (NE) (non-native)

IUCN criteria (vol. 3.1)

- Species listed in categories:
i) Extinct (EX)
ii) Extinct in the wild (EW)
iii) Critically endangered (CR)
iv) Endangered (EN)
v) Vulnerable (VU)
vi) Nearly threatened (NT)
vii) Least concern (LC)
viii)Data deficient (DD) (no data) ix) Not evaluated (NE) (non-native)

IUCN criteria (vol. 3.1)

- Five main criteria:
A) Decline in population size
B) Small geographical range and fragmented or declining population
C) Small population size and decline
D) Very small population size
E) Quantitative analysis showing probability of extinction
http://www.iucnredlist.org/technical-documents/categories-andcriteria

IUCN criteria (vol. 3.1)

- Five main criteria:
A) Decline in population size
B) Small geographical range and fragmented or declining population
C) Small population size and decline
D) Very small population size
E) Quantitative analysis showing probability of extinction
http://www.iucnredlist.org/technical-documents/categories-andcriteria

IUCN criteria (vol. 3.1)

- Five main criteria:
A) Decline in population size
B) Small geographical range and fragmented or declining population
C) Small population size and decline
D) Very small population size
E) Quantitative analysis showing probability of extinction
http://www.iucnredlist.org/technical-documents/categories-andcriteria

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in CR ,
ii) $\geq 50 \%$ in EN ,
iii) $\geq 30 \%$ in VU over the last 10 years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in CR ,
ii) $\geq 50 \%$ in EN ,
iii) $\geq 30 \%$ in VU over the last 10 years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in CR ,
ii) $\geq 50 \%$ in EN ,
iii) $\geq 30 \%$ in VU over the last 10 years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

A. Decline in population size

- based on (and specifying) any of the following:
(a) direct observation
(b) an index of abundance appropriate to the taxon
(c) a decline in area of occupancy, extent of occurrence and/or quality of habitat
(d) actual or potential levels of exploitation
(e) the effects of introduced

A. Decline in population size

- based on (and specifying) any of the following:
(a) direct observation
(b) an index of abundance appropriate to the taxon
(c) a decline in area of occupancy, extent of occurrence and/or quality of habitat
(d) actual or potential levels of exploitation
(e) the effects of introduced

A. Decline in population size

Examples
Ortolan bunting
Peltosirkku

Generation length $3: 6$ years * $3=11$ years, elg. 2006-2017
Decline in breeding counts 80%

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in Critically endangered (CR)
ii) $\geq 50 \%$ in Endangered (EN)
iii) $\geq 30 \%$ in Vulnerable (VU)
over the last 10 years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

A. Decline in population size

Examples

Willow tit, Hömótiainen

Generation length 4.6 years * $3=14$ years, e.g. 2003-2017

Decline in breeding counts -53%, winter counts 68%

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in Critically endangered (CR)
ii) $\geq 50 \%$ in Endangered (EN)
iii) $\geq 30 \%$ in Vulnerable (VU)
over the last 10 years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

A. Decline in population size

Examples

Sedge Warbler, Ruokokerttunen
Generation length 3.6 years * $3=11$ years, e.g. 2006-2017

Decline in breeding counts -22%

A. Decline in population size

- An observed, estimated, inferred or suspected population size reduction of
i) $\geq 80 \%$ in Critically endangered (CR)
ii) $\geq 50 \%$ in Endangered (EN)
iii) $\geq 30 \%$ in Vulnerable (VU)
over the last 10 years or three generations, where the reduction or its causes may not have ceased OR may not be understood OR may not be reversible

B. Geographic range

1. Extent of occurrence estimated to be less than 1000 km 2 (CR), $5,000 \mathrm{~km} 2$ (EN), 20,000 km2 (VU), and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at no more than five locations.
b. Continuing decline, observed, inferred or projected,
c. Extreme fluctuations
2. Area of occupancy estimated to be less than 10 km 2 (CR), 500 km 2 (EN), 2000 km 2 (VU) and estimates indicating at least two of a-c:
a. Severely fragmented or known to exist at no more than five locations.
b. Continuing decline, observed, inferred or projected
c. Extreme fluctuations

B. Geographic range

Figure 2. Two examples of the distinction between extent of occurrence and area of occupancy. (A) is the spatial distribution of known, inferred or projected sites of present occurrence. (B) shows one possible boundary to the extent of occurrence, which is the measured area within this boundary. (C) shows one measure of area of occupancy which can be achieved by the sum of the occupied grid squares.

C. Population size and decline

- C. Population size estimated to number fewer than 250 (CR), 2500 (EN) or 10000 (VU) mature individuals and either:

1. An estimated continuing decline
i) 25% in 3 years $/ 1$ generation (CR)
ii) 20% in 5 years/2 generations (EN)
iii) 10% within certain 10 years/ 3 generations (VU)

OR
2. A continuing decline, observed, projected, or inferred, in numbers of mature individuals AND at least one of the following (a-b):
a. Population structure in the form of one of the following: (i) no subpopulation estimated to contain more than 50 mature individuals, OR (ii) at least 90% of mature individuals in one subpopulation.
b. Extreme fluctuations in number of mature individuals.

D. Small population size

- Population size estimated to number fewer than
i) 50 mature individuals (CR)
ii) 250 mature individuals (EN)
iii) 1000 mature individuals (VU)

D. Small population size, examples

- Population size estimated to number fewer than
i) 50 mature individuals (CR)

Breeding population less than 25 pairs: very rare breeding species, which have had breeding population for some time:
Greater spotted eagle, snowy owl, black tern, turtle dove, kingfisher

D. Small population size, examples

- Population size estimated to number fewer than
i) 50 mature individuals (CR)

Populations recently colonized (edge populations) are upgraded: e.g.
Citril wagtail (->EN), Savi's warbler (->EN)

D. Small population size

- Population size estimated to number fewer than
iii) 1000 mature individuals (VU)

Relatively rare species: quail, eagles, moorhen, great reed warbler, barred warbler, bearded tit

D. Small population size

- Population size estimated to number fewer than
i) 50 mature individuals (CR)
ii) 250 mature individuals (EN)
iii) 1000 mature individuals (VU)

D. Small population size

- Population size estimated to number fewer than
i) 50 mature individuals (CR)
ii) 250 mature individuals (EN)
iii) 1000 mature individuals (VU)

E. Quantitative analysis

- Quantitative analysis showing the probability of extinction in the wild is
i) at least 50% within 10 years or three generations (CR)
ii) at least 20\% within 20 years or five generations (EN)
iii) at least 10% within 100 years (VU)

Problematic species

- Uncommon species with poor monitoring data: bean goose (VU in 2015), little ringed plover (NT)
- Borderline species e.g. decline 29-31\%
- Contrasting data: one show clear decline other not.

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Importance of national coordinators

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Importance of national coordinators
- Many ways to encourage volunteers

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Importance of national coordinators
- Many ways to encourage volunteers
. Feedback on multiple levels mportant

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Importance of national coordinators
- Many ways to encourage volunteers
- Feedback on multiple levels mportant
- Strength of international networks

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Importance of national coordinators
- Many ways to encourage volunteers
- Feedback on multiple levels important
- Strength of international networks
- Societal importance inc. Redlisting

Take home messages

- Common Bird Monitoring is a key example of long-term citizen science
- Importance of national coordinators
- Many ways to encourage volunteers
- Feedback on multiple levels important
- Strength of international networks
- Societal importance inc. Redlisting
- Every bird counts!

