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Abstract

Constant orbital period ephemerides of eclipsing binaries give the computed eclipse epochs (C). These
ephemerides based on the old data cannot accurately predict the observed future eclipse epochs (O). Predictability
can be improved by removing linear or quadratic trends from the O−C data. Additional companions in an
eclipsing binary system cause light-time travel effects that are observed as strictly periodic O−C changes.
Recently, Hajdu et al. estimated that the probability of detecting the periods of two new companions from the
O− C data is only 0.00005. We apply the new discrete chi-square method to 236 yr of O−C data of the eclipsing
binary Algol (β Persei). We detect the tentative signals of at least five companion candidates having periods
between 1.863 and 219.0 yr. The weakest one of these five signals does not reveal a “new” companion candidate,
because its 680.4± 0.4 day signal period differs only 1.4σ from the well-known 679.85± 0.04 day orbital period
of Algol C. We detect these same signals also from the first 226.2 yr of data, and they give an excellent prediction
for the last 9.2 yr of our data. The orbital planes of Algol C and the new companion candidates are probably
coplanar because no changes have been observed in Algol’s eclipses. The 2.867 day orbital period has been
constant since it was determined by Goodricke.

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Eclipsing binary stars (444); Algol
variable stars (24); Time series analysis (1916); Multiple stars (1081)

1. Introduction

The oldest preserved historical document of the discovery of
a variable star is the ancient Egyptian papyrus Cairo 86637,
where naked-eye observations of Algol’s eclipses have been
recorded into the Calendar of Lucky and Unlucky days
(Porceddu et al. 2008, 2018; Jetsu et al. 2013; Jetsu &
Porceddu 2015). Montanari re-discovered its variability in the
year 1669. Goodricke (1783) determined the orbital period
Porb= 2 867 of this eclipsing binary (EB). The close-orbit
eclipsing stars are Algol A (B8 V) and Algol B (K2 IV). Curtiss
(1908) discovered the 1. y863 wide-orbit third companion
Algol C (K2 IV). Direct interferometric images of these three
members have been obtained (e.g., Zavala et al. 2010; Baron
et al. 2012).

Periodic long-term changes occur in the observed (O) minus
the computed (C) primary eclipse epochs of EBs. The most
probable causes are a third body (e.g., Li et al. 2018), a
magnetic activity cycle (e.g., Applegate 1992), or an apsidal
motion (e.g., Borkovits et al. 2005). Hajdu et al. (2019)
searched for third bodies in a large sample of 80,000 EBs. They
detected 992 triple systems from the O− C data, and only 4
candidates that may have a fourth body. Their fourth-body
detection rate was 4/80,000= 0.00005. Recently, Jetsu (2020,
hereafter Paper I) formulated the new discrete chi-square
method (DCM). He applied DCM to the O−C data of XZ And
and detected the periods of a third and a fourth body.

In Algol, the mass transfer from the less massive Algol B
(0.8me) to the more massive Algol A (3.7me) should cause a
long-term Porb period increase (Kwee 1958), which should
have been observed as quadratic long-term O−C changes
(Kiseleva et al. 1998). Long-term Porb increase or quadratic
O−C changes have not been observed in Algol since its
period was determined 238 yr ago. However, its orbital period
modulation does cause negative and positive O−C changes.
The short-term low amplitude O− C changes follow 1. y863

orbital motion cycle of Algol C, while the high-amplitude
O− C changes follow 30y and 200y quasi-periodic activity
cycles (Applegate 1992). The physical origin of period changes
is not fully understood, because Algol’s puzzling O− C
diagram contains unknown signals and trends (e.g., Frieboes-
Conde et al. 1970; Applegate 1992). We apply DCM to Algol’s
O− C data because this method can detect many signals
superimposed on unknown trends.
Kim et al. (2018) note that their TIDAK database O− C

ephemerides “cannot be used for the prediction of future times
of the primary or secondary minima.” These ephemerides are
determined by eliminating linear or quadratic trends from the
available O− C data (Kreiner et al. 2001). They usually need
to be redetermined when new data are obtained. Although the
O− C changes caused by a third body are strictly periodic, the
predictions usually fail to separate aperiodic trends from
periodic signals (e.g., Bours et al. 2014; Lohr et al. 2015; Song
et al. 2019). Furthermore, the detection rate of third bodies
from O−C data is extremely low (e.g., Hajdu et al. 2019).
Against this background, it is totally unexpected that we can
detect numerous periods in Algol’s O−C data, as well as
predict its O− C changes.
We present our most important results in main text

Figures 1–3 and Table 1. We describe Figures A1–A3 and
Tables A1–A3 inthe beginning of our Appendix. The
remaining appendix Figures A4–A15 and Tables A4–A15 are
described in the main text.

2. Data

The epochs of the observed light-curve minima give the
observed (O) values. We obtained the n= 2238 observed
eclipse epochs of Algol from the 2018 version of the TIDAK
database (Kim et al. 2018). These eclipse epochs have been
determined by hundreds of astronomers during the past two
centuries. The nights when these eclipses could be observed
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were known beforehand. Every eclipse lasted eight hours. Both
dimming and brightening took four hours. The probability for a
negative or positive mid-eclipse epoch error was the same,
because the eclipse light curve was symmetric. It is therefore
probable that the observational errors follow a Gaussian
distribution, the epoch values contain no observational trends,
and the observational errors are not heteroskedastic. Naturally,
the accuracy of these data improves toward modern times,
because the observational techniques have improved. We study
only the primary minimum epochs when the dimmer Algol B
eclipses the brighter Algol A. Therefore, we reject all 14
secondary minima, because they occur Porb/2 after the primary
minima. We analyze only the remaining n= 2224 primary
minima between 1782 November 12 and 2018 October 18.
These data are given in Table A4 (ΔT= 86171d= 236y). We
obtain the computed (C) epoch values from the TIDAK

database ephemeris:

+ EHJD 2445641.5135 2.86730431 . 1( )

This ephemeris predicts that all Algol’s primary eclipses occur
at multiples HJD 2445641.5135+ E× Porb, where Porb=
2 86730431 is the orbital period of Algol and E is an integer
number. This constant orbital period ephemeris “model” is
quite accurate, because all O−C values are between− 0 24
and+ 0 15 during 236 yr.
Out of all 2224 estimates, only 197 have an error estimate.

For example, none of the 1226 rst older estimates has anerror
estimate. However, this does not mean that these values
without error estimates are unreliable or inconsistent. The error
estimates are available for only about 10% of data. These are
all new observations after the year 1921. The range of these
known errors is between 0 0002 and 0 013. The most accurate

Figure 1. All data: eccentric orbit analysis (Section 5.1.2). (a) Best five-signal = 3 + 6 model, the sum of the three-signal model = 3 for original data and two-
signal = 6 model for residuals (green continuous curve), is overplotted on all O − C data (red dots). Residuals (blue dots) are offset to level −0.3 (horizontal line).
Notice the tiny flickering caused by 127 rotations of Algol C around Algol AB. The vertical dotted line marks the last observation (2018 October 18), where prediction
for the next 10 yr begins. (b) Previous 5 yr of data and residuals (red and blue circles). Residuals are offset to level +0.10 (horizontal line). Continuous and dotted
green lines denote the = 3 + 6 model and its ± 3σ error limits. Units are [t] = HJD and [O − C] = (days).
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TIDAK database O−C values have four decimals. Because
the errors are not known for over 90% of observations, we use
arbitrary errors σi= 0 00010 for all O− C values. These
arbitrary numerical values do not influence our results, because
we use the same weight s= -wi i

2 for every observation, and
we compute the DCM test statistic z from the sum of squared
residuals (Equation (8)). We will also show that a weighted
DCM search, where the O− C data accuracy improves toward
modern times, does not alter our results (Section 5.4).

We also analyze shorter subsamples of all data (Table A5).
In Section 5.2, we apply DCM to the first 226.2 yr of all data
(First 226y data). This gives us a prediction for the last 9.2 yr of
all data (Last 9y data). In Section 5.2, the same DCM
procedures are also applied to the first 185.5 yr of all data (First
185y data), and the last 50 yr of all data (Last 50y data).

3. DCM Method

The DCM notations for the data are yi= y(ti)± σi, where ti
are the observing times and σi are the errors (i= 1, 2, ..., n).

The time span of the data is ΔT= tn− t1. The midpoint of data
is tmid= t1+ΔT/2.
We analyze these data with DCM, which can detect many

signals superimposed on arbitrary trends. Detailed instructions
for using the DCM python code were given in the appendix of
Paper I. In this current study, we provide all necessary
information for reproducing our DCM analysis of Algol data.1

DCM model is

= = +g t g t K K K h t p t, , , . 21 2 3( ) ( ) ( ) ( ) ( )

It is a sum of periodic and aperiodic functions

å= =
=

h t h t K K h t, , 3
i

K

i1 2
1

1

( ) ( ) ( ) ( )

å p p= +
=

h t B jf t C jf tcos 2 sin 2 4i
j

K

i j i i j i
1

, ,

2

( ) ( ) ( ) ( )

Figure 2. First 226y data eccentric orbit analysis (Section 5.2). (a) Model  = 3 + 6 (Table A10). Otherwise as in Figure 1(a). (b) Prediction for Last 9y data.
Otherwise as in Figure 1(b).

1 All necessary files for reproducing our results are published in the Zenodo
database: doi 10.5281/zenodo.5082125.
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The periodic h(t) function is a sum of K1 harmonic hi(t) signals
having frequencies fi. The signal order is K2. These signals are
superimposed on the aperiodic K3-order polynomial trend p(t).

In the original DCM version, the p(t) terms were
DM t T2k

k[( ) ] (Paper I: Equation (5)) and the first time point
t1 was subtracted from all time points ti before modeling. For
odd and even k values, every DM t T2k

k[( ) ] term could only
increase or decrease monotonically during the whole ΔT
interval, because the argument (2t)/ΔT was always positive. In
our new formulation (Equation (6)), the even k= 2, 4, K terms

- DM t t T2k
k

mid[ ( ) ] can now both increase and decrease
during the whole ΔT interval. This increases the flexibility of
the model. Furthermore, it is no longer necessary to subtract the
first observing time t1 before the modeling. Note that the

2(t− tmid)/ΔT argument equals −1 at t1, and +1 at tn. Hence,
the scale of polynomial Mk coefficients (Equation (6)) is
comparable to the scale of trigonometric Bi,j and Ci,j

coefficients (Equation (4)). This change of p(t) trend terms
from = Dp t M t T2k k

k( ) [( ) ] to = - Dp t M t t T2k k
k

mid( ) [ ( ) ]
does not change the detected signal periods in any of the
analyzed O− C samples.
Our abbreviation “modelK K K, ,1 2 3” refers to a g(t) model having

orders K1, K2, and K3. The free parameters are b b b= , , ...1 2
¯ [ ,

βη]= [B1,1, C1,1, f1, ..., BK K,1 2, C f, ,K K K,1 2 1
M M, ..., K0 3], where

η=K1× (2K2+ 1)+ K3+ 1 is the number of free parameters.
We divide the free parameters b̄ into two groups, bI

¯ and bII
¯ .

The first group of free parameters are the frequencies
b = f f, ...,I K1 1
¯ [ ]. These frequencies make the g(t) model
nonlinear, because all free parameters are not eliminated from
all partial derivatives ∂g/∂βi. If the bI

¯ frequencies are fixed to
constant known tested numerical values, the model becomes
linear, because all partial derivatives ∂g/∂βi no longer contain
any free parameters. In this case, the solution for the remaining

Figure 3. First 185y data eccentric orbit analysis (Section 5.3). (a) Model = 4 + 6 (Table A11). Otherwise as in Figure 1(a). (b) Prediction for Last 50y data.
Otherwise as in Figure 1(b).
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Table 1
Third-body Circular Orbits (Section 5.5)

Periods Amplitudes =m i
3

90 =a i
3

90 =m i
3

60 =a i
3

60 =m i
3

30 =a i
3

30

(days) (yr) (days) (me) (au) (me) (au) (me) (au) Name

p6 79,999 ± 1216 219.0 ± 3.3 A6 0.287 ± 0.005 2.50 ± 0.02 44.7 ± 0.4 3.03 ± 0.03 42.6 ± 0.3 6.94 ± 0.08 32.2 ± 0.2 Algol H
p5 24,246 ± 872 66.4 ± 2.4 A5 0.018 ± 0.002 0.27 ± 0.02 26.1 ± 0.5 0.31 ± 0.02 25.9 ± 0.5 0.56 ± 0.04 25.0 ± 0.5 Algol G
p4 12,294 ± 109 33.7 ± 0.3 A4 0.018 ± 0.001 0.43 ± 0.03 16.19 ± 0.04 0.50 ± 0.04 16.06 ± 0.01 0.91 ± 0.07 15.2 ± 0.05 Algol F
p3 10,145 ± 30 27.78 ± 0.08 A3 0.0097 ± 0.0004 0.26 ± 0.01 14.596 ± 0.002 0.30 ± 0.01 14.50 ± 0.01 0.54 ± 0.02 14.053 ± 0.005 Algol E
p2 7290 ± 29 19.96 ± 0.08 A2 0.007 ± 0.001 0.24 ± 0.03 11.72 ± 0.07 0.28 ± 0.04 11.67 ± 0.08 0.49 ± 0.07 11.34 ± 0.12 Algol D
p1 680.4 ± 0.4 1.863 ± 0.001 A1 0.0064 ± 0.0007 1.2 ± 0.1 2.14 ± 0.04 1.4 ± 0.2 2.09 ± 0.04 2.8 ± 0.4 1.82 ± 0.07 Algol C

Note. Periods (p1, ...p6) and amplitudes (A1, ..., A6) used to compute the third mass m3 and semimajor axis a3 estimates (Equations (18) and (19)). Inclination alternatives are i = 90°, 60°, and 30°. The last column gives
our tentative object names. We emphasize that our approximate m3 and a3 estimates are based on four assumptions. (1) All six signals are caused by the LTTE of wide-orbit candidates. (2) Correct hierarchical system
alternative is Configuration 1 (Figure A15). (3) All orbits are circular. (4) Every candidate can be treated as a “third body.” In other words, the effects of other candidates inside the “third-body” orbit can be ignored in
Equations (18) and (19).
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second group of free parameters, bII
¯ = [B1,1C1,1, ..., B C, ,K K K K, ,1 2 1 2

M M, ..., K0 3], is unambiguous. We refer to this type of model and
their free parameter solutions when we use the concepts “linear
model” and “unambiguous result.”

The DCM model residuals are

= - = - y t g t y g . 7i i i i i( ) ( ) ( )

For every combination b = f f f, , ...,I K1 2 1
¯ [ ] of tested frequen-

cies, we compute the DCM test statistic

= =z z f f f R n, , ..., 8K1 2 1
( ) ( )

from the sum of squared residuals = å = R i
n

i1
2 of a

nonweighted linear model least-squares fit. We use this
nonweighted test statistic, because the errors for the data are
unknown.

The global periodogram minimum is at

= ¼z z f f f, , , , 9min 1,best 2,best K ,best1
( ) ( )

where ¼f f f, , ,1,best 2,best K ,best1
are the frequencies of the best

DCM model for the data. Every scalar value of this z
periodogram is computed from K1 frequency values. For
example, the K1= 2 periodogram could be plotted like a map,
where f1 and f2 are the coordinates, and z= z( f1, f2) represents
the height. However, a graphical presentation for K1� 3 is
impossible, because it requires more than three dimensions. In
Paper I, we solved this problem by presenting only the
following one-dimensional slices of the full periodograms:

=

=

= ¼

=

=

=

z f z f f f

z f z f f f f

z f z f f f f f

z f z f f f f f f

z f z f f f f f f

z f z f f f f f f

, , ...,

, , , ...,

, , , , ,

, , , , ,

, , , , ,

, , , , , . 10

1 1 1 2,best K ,best

2 2 1,best 2 3,best K ,best

3 3 1,best 2,best 3 4,best K ,best

4 4 1,best 2,best 3,best 4 5,best K ,best

5 5 1,best 2,best 3,best 4,best 5 K ,best

6 6 1,best 2,best 3,best 4,best 5,best 6

1

1

1

1

1

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

In the above K1= 2 map analogy, z1( f1) would represent the
height at the f1 coordinate when moving along the constant line
f2= f2,best that crosses the global minimum zmin.

DCM determines the following hi(t) signal parameters:

= =
=

=
=
=
=

P f

A
t

t

t

t

1 Period

Peak to peak amplitude
Deeper primary minimum epoch
Secondary minimum epoch if present
Higher primary maximum epoch
Secondary maximum epoch if present ,

i i

i

i,min,1

i,min,2

i,max,1

i,max,2

( )

( )

and the Mk parameters of the p(t) trend. For us, the most
interesting parameters are the signal periods Pi and the signal
amplitudes Ai, and the p(t) trend coefficient M1.

We determine the DCM model parameter errors with the
bootstrap procedure (Efron & Tibshirani 1986, 1994). During
each bootstrap round, we select a random sample *¯ from the
residuals ̄ of the DCM model (Equation (7)). Each òi can be
chosen as many times as the random selection happens to favor
it. This gives the artificial bootstrap data sample

= + y g .i i i* *

The DCM model for each y*¯ sample gives one estimate for
every model parameter. For each particular model parameter,
its error estimate is the standard deviation of all estimates
obtained from all y*¯ bootstrap samples. We have already used
this same bootstrap procedure in our TSPA and CPS methods
(Jetsu & Pelt 1999; Lehtinen et al. 2011). Finally, we note that
our bootstrap procedure cannot assess the bias in the yi input
data, which first contaminates the òi values and then also the  i
and yi values.
We use the Fisher test to compare any pair g1(t) and g2(t) of

simple and complex models. Their number of free parameters
(η1< η2) and their sums of squared residuals (R1, R2) give the
test statistic

h
h h

= -
- -

-
F

R

R

n
1

1
. 11R

1

2

2

2 1

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

Our null hypothesis is

H0: “The complex model g2(t) does not provide a significantly
better fit to the data than the simple model g1(t).”

Under H0, the test statistic FR has an F distribution with (ν1, ν2)
degrees of freedom, where ν1= η2− η1 and ν2= n− η2
(Draper & Smith 1998). The probability for FR reaching values
higher than F is called the critical level QF= P(FR� F). We
reject the H0 hypothesis if

g< =Q 0.001, 12F F ( )

where γF is the preassigned significance level. It represents the
probability of falsely rejecting H0 when it is in fact true. The H0

rejection means that we rate the complex g2(t) model better
than the simple g1(t) model.
The QF critical level becomes smaller when FR increases. In

other words, the H0 hypothesis rejection probability increases
for larger FR values. The basic idea of the Fisher test is simple.
The sum of complex model residuals R2 decreases when the η2
number of free parameters increases. When the complex model
has more η2 free parameters, the first (R1/R2− 1) term
increases FR (Equation (11)), but at the same time, the second
(n− η2− 1)/(η2− η1) penalty term decreases FR. In conclu-
sion, this second penalty term prevents overfitting.
The key ideas of DCM are

1. The nonlinear DCM model g(t) of Equation (2) becomes
linear when the frequencies f f, ..., K1 1

are fixed to their
tested numerical values. These linear models give
unambiguous results.

2. DCM tests a dense grid of all possible frequency
combinations > > >f f f... K1 2 1

. For every frequency
combination, the linear model least-squares fit gives the
test statistic

c s

s

=

=

z n

z R n

if errors are known

if errors are unknown,

i

i

2

where c s= å i
n

i i
2 2 2, = å R i

n
i
2 and òi= yi− gi are

the model residuals.
3. The > > >f f f... K1 2 1

grid combination of the best DCM
model minimizes the z-test statistic.

4. The bootstrap method gives the error estimates for all
model parameters.
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5. All different K1-, K2-, and K3-order nested models are
compared using the Fisher test, which reveals the best one
of all models (Draper & Smith 1998; Allen 2004).

In short, DCM applies the following robust and well-tested
statistical approaches: linear least-squares fits (Idea 1), χ2- and
R-test statistic (Idea 2), dense tested frequency grids (Idea 3),
bootstrap utilizing residuals (Idea 4), and Fisher test compar-
ison of nested models (Idea 5).

The caveats of DCM are as follows:

1. DCM is designed for periodicity detection, but it gives no
direct significance estimates for these detected periodi-
cities. In this sense, DCM resembles our former TSPA and
CPS methods (Jetsu & Pelt 1999; Lehtinen et al. 2011).
DCM utilizes indirect Fisher test significance estimates to
identify the best model among all tested models, but it
gives no significance estimates for the detected periodi-
cities of this best model. We will later discuss our indirect
significance estimates, especially in connection with the
look-elsewhere effect (Section 6.6).

2. The best frequency combination can be missed if the tested
grid is too sparse (Idea 3). However, an adequately dense
tested frequency grid eliminates the possibility for this
kind of an error. The caveat is that denser grids require
more computation time.

For example, all three-signal z1, z2, and z3 period-
ograms for the original data are continuous and display no
abrupt jumps, because the periodogram values for all close
tested frequencies correlate (see Figure A6). Because the
frequencies of the minima of all these periodograms are
accurately determined, there is no need to test an even denser
grid (i.e., more trials), because this would not alter the final
result of the nonlinear iteration (Paper I: Equation (18)). In
other words, the detected period values would no longer
change if we increased the number of of tested frequencies
(Paper I: nL and nS trials). Because DCM gives no direct
significance estimates for the detected periods (Caveat 1),
there is no need to determine the number of independent
trials, like, for example, the number of independent tested
frequencies (e.g., Jetsu & Pelt 2000, their Equation (A.1)).

3. If the grid of each tested > > >f f f... K1 2 1
frequency

contains nf values, the total number of tested frequency
combinations is proportional toµnf

K1. For example, it took
about one month for an ordinary PC to compute the four-
signal DCM model4,2,1 search, and to analyze its 20
bootstrap samples (Table A7, model= 4).

4. Some DCM models are unstable because they are simply
wrong models for the data. For example, a wrong p(t) trend
order K3, or a search for too many K1 signals, can cause
such instability. In this paper, we denote such unstable
models with “Um.” We denote the two signatures of such
unstable models with

“Ad”=Dispersing amplitudes=Amplitudes and/or amplitude
errors disperse.

“If”= Intersecting frequencies=At least two model frequen-
cies are too close to each other.

Both of the above instabilities were defined in Paper I
(Section 4.3), where a typical example of the wildly
oscillating signals was also shown in Figure 6 of Paper I.

DCM tests all reasonable alternative linear models for the data
and determines the unambiguous results for the best values of
their free parameters. This brute numerical approach finds the

best model among all alternative models. DCM “works like
winning a lottery by buying all lottery tickets” (Paper I).

4. Third-body O− C Changes

The light-time travel effect (LTTE) caused by a third body is
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(Irwin 1952). This relation gives the EB orbit around the
common center of mass of all three stars. The orbit parameters
are the semimajor axis ([a]= au), the orbital plane inclination
([i]= rad), the eccentricity of orbit (e), the longitude of
periastron ([ω]= rad), the true anomaly ([ν]= rad), and the
amplitude of the light-time travel effect:

=K A 2, 15( )

which is half of the peak to peak amplitude A of the observed
O− C changes ([A]= days).
We compute the true anomaly from the Fourier expansion

n = + -

+ + +
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p
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p
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p( )
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( )

is the mean anomaly (Mueller 1995; Roy 2005). The other
parameters are the EB orbit pericenter epoch ([tp]=HJD), the
third-body orbital period ([p]= days) and the omitted fourth-
order terms ([O(e4)]= rad).
If the orbit is circular (e= 0), the third -body mass m3 can be

solved from the mass function

=
+ +

=f m
m i

m m m

A

p

sin 173.15 2
, 183

3
3

1 2 3
2

3

2
( )

( )
[ ( )] ( )

where m1 and m2 are the masses of EB (Wolf et al. 1999;
Zasche & Wolf 2007; Manzoori 2016; Esmer et al. 2021). The
semimajor axis of the third-body orbit is

=
+

a a
m m

m
, 193

1 2

3

( ) ( )

where =a A i173.15 2 sin( ) .
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For a circular third-body orbit, the suitable O−C curve
DCM model order is K2= 1, the pure sinusoid (Equation (13):
e= 0). For an eccentric e> 0 third-body orbit, the O− C curve
is not a pure sinusoid, and the suitable DCM model order is
K2= 2 (Hoffman et al. 2006).

5. Results

Here, we present separately the DCM period search results
for all data (Section 5.1), First 226y data (Section 5.2), and First
185y data (Section 5.3). We also make some additional
experiments (Section 5.4).

5.1. All Data

5.1.1. All Data: Trend

In Table A6, the Fisher test is used to compare the results for
all data in 12 separate DCM period searches between

=P 6000min
d and =P 80000max

d. These models have one,
two, or three signals (K1= 1, 2, or 3). The third-body orbits can
be eccentric (K2= 2≡ e> 0). The alternative tested p(t) trends
are K3= 0, 1, 2, or 3. Table A6 contains many “–” because it
makes no sense to compare the same pair of models twice, nor
to compare the model to itself. The total number of compared
pairs is (12× 11)/2. For example, the Fisher test comparison
of the one-signal= 1 and= 2 models gives a large test
statistic value F= 2821. The critical level QF of this F value
falls below the computational2 accuracy of 10−16 (Table A6:
QF< 10−16). This means that the linear K3= 1 trend model1,2,1
is absolutely certainly a better model than the constant K3= 0
trend model1,2,0. The upward arrow “ ↑ ” indicates this result.
Note that Table A6 contains numerous “QF< 10−16

” cases,
where the identification of the better model is absolutely
certain.

All column= 10 arrows point upwards ( ↑ ), and all line
= 10 arrows point leftwards (← ) in Table A6. Hence, this
stable = 10 model is better than all other 11 alternative
models. This best DCM model3,2,1 for all data is a sum of
K1= 3 signals having an order K2= 2 and a linear K3= 1
trend. We use this K3= 1 linear trend in all analysis of original
data. The meaning of this linear trend is discussed later
(Section 6.4, Equation (27)). We will also show that all data
contain only three K2= 2 order signals between 8000 and
80,000 days (Section 5.1.2).

Four of the 12 models are unstable “Um” (Table A6:= 3,
5, 8, and 9). There are three models where the detected period
exceeds ΔT time span of data (Table A6: = 2, 3, and 7).
They are denoted with the symbol “Lp”= Leaking period=At
least one detected period exceeds ΔT time span of data.

5.1.2. All Data: Eccentric Orbits

In Table A6, we compared (12× 11)/2 pairs of models
against each other. The better model in each pair was identified
with the Fisher test: the complex model above “ ↑ ,” or the
simple model on the left “← .”

The structure of our Table A7 is more complicated, because
we squeeze all DCM eccentric orbit search results for all data
into this single table. We search for periods between 8000 and
80,000 days. The left side of this table gives the detected
periods and amplitudes. The right side gives the Fisher test

comparison results. For example, the one-signal= 1 model
period and amplitude are P1= 88183d± 816d and
A1= 0 313± 0 004. The next six “–” notations for this
= 1 model mean that it has no other periods P2, P3, or P4,
nor amplitudes A2, A3 or A4. A Fisher test comparison between
this one-signal model1,2,1 (= 1) and the two-signal
model2,2,1 (= 2) gives an extreme test statistic value
F= 183. The critical level QF< 10−16 confirms that = 2
model is certainly the better one in this pair of models. A
comparison of the = 1 model to the = 3 and = 4
models gives the same result.
For the next= 2, 3, and 4 models, the number of detected

periods and amplitudes increases one by one. The number of
Fisher tests decreases one by one, because it is unnecessary to
test the same pair of models twice (“–”), nor to compare any
model to itself (“–”).
The periods and amplitudes for the one-, two-, and three-

signal models are consistent (Table A7:= 1–3). When we
detect a new signal, we redetect the same old earlier signal
periods and amplitudes for models having less signals. The
one-signal= 1 model shows a leaking period “Lp,” because
the P1= 88183d period exceeds the ΔT= 86171d time span of
data. The two- and the three-signal= 2 and= 3 models
are stable, but the= 4 model is not (“Um”).
The one-dimensional z1( f1), z2( f2), z3( f3), and z4( f4) period-

ogram slices (Equation (10)) of the= 4 model are shown in
Figure A4. The transparent diamonds denote the locations of
the red z1( f1), the blue z2( f2), the green z3( f3), and the yellow
z4( f4) periodogram minima. These minima are clearly
separated.
The four-signal= 4 model is unstable because it suffers

from the amplitude dispersion “Ad” effect. The periodograms
of this model do not betray this effect (Figure A4), but the
exceedingly high-amplitude green h3(t) and yellow h4(t) signals
do (Figure A5). The errors of both A3 and A4 amplitudes are
large. The P4= 55172d period is about two times longer than
the P3= 26846d period. DCM exploits the antiphase sum of
these two dispersing high-amplitude signals for modeling
all data.
The stable three-signal= 3 model is a better model for all

data than the failing unstable “Um” four-signal= 4 model.
The Fisher test reveals with an absolute certainty of
QF< 10−16 that this three-signal = 3 model is also better
than the = 1 model or the = 2 model (Table A7: two
times “ ↑ ” in Col. 8).
Model = 3 periodogram minima are also clearly

separated (Figure A6, lower panel). When all three period-
ograms are plotted in the same scale, the two z1( f1) and z2( f2)
periodogram minima appear to be shallower than the z3( f3)
periodogram minimum, because the high-amplitude h3(t) signal
dominates in this three-signal= 3 model (Figure A6, upper
panel). This 79999d period h3(t) signal has a much bigger
impact on the sum of squared residuals R than the two lower-
amplitude 20358d period h1(t) and 24742d period h2(t) signals.
This three-signal = 3 model is shown in Figure A7. The
level of residuals, denoted by blue dots, is stable and there are
no trends. Each hj(ti) signal

= - -y y g t h t 20i j i i j i, [ ( ) ( )] ( )

is also shown separately (Figure A8). The red h1(t) and the blue
h2(t) curves show two minima and two maxima, but the green

2 This is the computational QF estimate accuracy for the f.cdf subroutine in
the scipy.optimize Python library.
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large-amplitude h3(t) curve shows only one minimum and one
maximum.

It takes about one month for an ordinary PC to compute the
results for the four-signal= 4 model, as well as to analyze
at 20 twenty bootstrap samples (Table A7: model4,2,1). The
computation of a five-signal model would take several months.
Fortunately, there is no fourth or fifth signal between 8000 and
80,000 days in all data, because the= 4 model is unstable
(“Um”). The three-signal= 3 model is the best model for all
data. Therefore, we can search for additional periods shorter
than 8000 days from the= 3 model residuals.

Because the = 3 model residuals contain no trends, we
analyze them by using K3= 0 models having a constant p(t)
level. The period search between 500d and 8000d gives two
new periods, 680 4 and 7290d (Table A7, model = 6). In
the three-signal = 7 model, the periods P2= 7124d and
P3= 7698d give - = - - -P P 95541 139022

1
3

1 1 d d[ ] , which is
equal to the time span ΔT= 86171d of all data (Table A7:
= 7). In other words, the difference between the real
P2= 7124d and the spurious P3= 7698d period is one round
during ΔT. Our symbol for this type of spurious periods is
“Sp”= Spurious period= unreal periods caused by the data
time span and real periodicity.

Therefore, we reject the= 7 model, and the best model
for residuals is the= 6 model. In this analysis of residuals,
DCM again consistently redetects the same periods and
amplitudes of earlier models having fewer signals. The model
= 6 periodograms, and the model itself, are shown in
Figures A9 and A10. The last two 680 4 and 7290d signals
detected from the residuals are shown in Figure A11. As
expected of a real O− C signal, both curves have only one
minimum and one maximum. These two signals are 44.8 and
41.0 times weaker than the strongest first-detected 79999d

signal.
For the original data, DCM detects simultaneously the three

signals and the trend of the= 3 model. For the residuals, the
same applies to the two signals and the trend of the = 6
model. In this sense, DCM differs from the “prewhitening”
technique, which requires that the trend must be determined
and removed before even one signal at the time can be detected
(e.g., Reinhold et al. 2013). This “‘prewhitening” technique,
which applies the discrete Fourier transform (DFT), was
compared to DCM in Paper I (Section 6).

We conclude that DCM detects five signals from all data
(n= 2224). The full model for all Algol’s O−C data is the
sum of the= 3 model for the original data and the= 6
model for the residuals (Table A7). Our notation for this sum

+model model3,2,1 2,2,0

of two models in Table A7 is simply the “= 3+ 6 model.”
This model is denoted by the green continuous line in
Figures 1(a) and (b). Its standard deviation of residuals is
0 011. We also give a 10 yr prediction for Algol’s O− C
changes after our last observation on 2018 October 18
(Figure 1(b)).

5.1.3. All Data: Circular Orbits

In our Appendix, we show that if an eccentric orbit O− C
curve has a period p, then this curve is a sum of two circular
orbit O−C curves having periods p and p/2. For this reason,
the DCM period search results obtained for circular orbits in

this section can be used to check the eccentric orbit results
presented earlier in Section 5.1.2, and vice versa (Table A13).
For a third-body circular orbit, the correct DCM model hi(t)

signal order is K2= 1 (Equation (13): e= 0). We fix the p(t)
trend to K3= 1 and search for the correct K1 number of circular
orbit sinusoidal signals in all data. Two alternative approaches
are tested. We will show that both approaches give the same
results.
In the first alternative approach, we search for one, two,

three, and four sinusoidal circular orbit signals having periods
between 8000 and 80,000 days in all data (Table A8). The one-
signal= 1 model is stable. The two-, three-, and four-signal
= 2, = 3, and = 4 models are unstable (“Um”)
because they all suffer from dispersing amplitudes “Ad.” The
largest periods (“Lp”) in these three models exceed the all data
time span ΔT= 86171d.
From the = 4 model residuals, we detect the fifth

sinusoidal signal period 10175d (Table A8:= 5). The next
= 6 model is unstable (“Um”), and it is also rejected with
the Fisher test criterion (Equation (12)).
DCM detects signatures of five sinusoidal signals having

periods longer than 8000 days. Therefore, we search for shorter
periods from the = 5 model residuals. This reveals three
additional sinusoidal = 9 model signals (Table A8). The
next four-signal model= 10 is rejected with the Fisher test
criterion (Equation (12)).
In our first alternative approach, the best circular orbit model

is the= 4+ 5+ 9 model (Table A8).
Our typical number of tested periods is nL= 80 in the long

search and nS= 40 in the short search. We use these dense
grids to eliminate the “trial factor” error (Section 3: Caveat 2).
Computation time is proportional to µn K

L
1 and µn K

S
1. For a

larger number of signals, our dense tested grids take a long time
to compute. For example, the computation of the four-signal
model for all data, and its 20 bootstrap samples, takes about
one month for an ordinary PC.
In the second alternative approach we also search for circular

orbit periods between 8000 and 80,000 days. However, we
reduce the computation time dramatically by testing only
nL= 30 and nS= 8 frequencies. In this case, an ordinary PC
can perform the six-signal DCM search in about one week.
Unlike in the first alternative approach, we do not need to
search for the fifth and sixth signals from the four-signal model
residuals. We can perform the five- and the six-signal DCM
search directly in all original data. The four-, five-, and six-
signal circular orbit model results for all original data are given
in Table A9. All= 1, 2, and 3 models suffer from amplitude
dispersion “Ad,” as well as from leaking periods “Lp,” because
their largest detected periods exceed ΔT. Model = 3 also
suffers from intersecting frequencies (“If”). We reject it with
the Fisher test criterion (Equation (12)). The best circular orbit
model for all original data is the five-sinusoidal-signal= 2
model. The = 2 model periodogram is shown in
Figure A12. The periodogram minimum of the largest
P5= 120740d period is real, because the violet z5( f5) curve
in the lower panel turns upwards at smaller tested frequencies
(i.e., periods larger than ΔT). The= 2 model itself is shown
in Figure A13.
From model = 2 residuals, we find two periods shorter

than 8000 days (Table A9:= 5). We reject model= 6,
because the periods P1= 7034d± 148d and P2= 7478d± 82d

give - = - - -P P 118469 467551
1

2
1 1 d d( ) . Hence, the spurious
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“Sp” period P1 is connected to the real period P2 and the time
span ΔT= 86171d of all data.

The second alternative approach best circular orbit model is
the= 2+ 5 model (Table A9).

We compare the results of our two alternative approach
circular orbit DCM analyses in Table A12. All results are
consistent. The periods and amplitudes agree within their error
limits. We detect the same five longer sinusoidal signal periods
from the original data and the same two shorter period
sinusoids from the residuals. We get these consistent results
even after dramatically reducing the number of tested
frequencies. Hence, these two analyses do not suffer from the
“trial factor” effect (Section 3: Caveat 2). The dispersing
amplitudes “Ad” or the leaking periods “Lp” do not mislead
this analysis either.

5.2. First 226y Data

The eccentric orbit DCM search results for the subsample
First 226y data are given in Table A10. The one-signal= 1
model and two-signal = 2 model suffer from leaking
periods (“Lp”). The stable three-signal = 3 model is the
best one for the original data, because the four-signal = 4
model is unstable (“Um”).

For the= 3 model residuals, the best model is the= 6
model. We reject model = 7, because the relation

- = - - -P P 81963 135942
1

3
1 1 d d[ ] reveals that the third

P3= 7757d period is a spurious “Sp” period connected to the
real period P2= 7078d and the time span ΔT= 82602d of data.

The best model for First 226y data is the= 3+ 6 model
(Table A10). This model is shown in Figure 2. It gives an
excellent prediction for the next 9 yr of the Last 9y data
(Figure 2(b)). The standard deviation of prediction residuals is
only 0 0078 (n= 50). It is smaller than the standard deviation
0 011 of the predictive= 3+ 6 model residuals (n= 2174).
However, the larger errors of the older observations can explain
this contradiction. The main conclusion is that our 9 yr
prediction succeeds.

5.3. First 185y Data

The eccentric orbit DCM search results for the shortest
subsample First 185y data are given in Table A11. The one-
signal = 1 model is stable. The two- and three-signal
= 2 and = 3 models are unstable (Table A11: “Um”).
The best model for First 185y data is the stable four-signal
= 4 model.

For the= 4 model residuals, the stable= 6 model is
the best one, because the= 7 model is unstable (“Um”)

The best= 4+ 6 model for the First 185y data is shown
in Figure 3. Our 50 yr prediction succeeds only for the first few
years (Figure 3(b)). However, this is no surprise, because the
time span of predictive data is only ΔT= 67680d= 185y. For
this reason, the longest and the strongest detected predictive
signal period is P4= 62992d= 172y (Table A11:= 4). This
high-amplitude signal determines the long-term prediction
trend for the Last 50y data. We have already shown that the
correct period for this long-term trend would be 219y

(Table A7: = 3, Table A10: = 3). The short 185y time
span of the First 185y data prevents the detection of this correct
219y period. The correct 219y signal trend turns upwards more
slowly than the wrong 172y signal trend. This is the simple

reason for the failure of our 50 yr prediction for the First 185y

data.
The Last 50y data prediction error shows a peculiarity that

seems to defy the laws of statistics. First, the± 3σ prediction
error increases, as one would expect (Figure 3(b): green dotted
lines). Surprisingly, this prediction error then begins to
decrease, and the prediction becomes very accurate close to
HJD 2450000. After this, the prediction error begins to increase
again. This peculiarity certainly requires an explanation.
The reason for this peculiarity could already be inferred from

the black interference curve in Figure A3 (lowest right panel:
P1= 24771). The scatter of the g(t) interference curve is not the
same at all phases. In this particular case, this scatter increases
close to the maxima, but it decreases close to the minima. The
largest and the smallest scatter coincides with the phases when
the first time derivative fulfills =g t 0( ) .
However, the above-mentioned effects in Figure A3 are

caused by interference of only two signals, while the peculiar
error limit effect in Figure 3 occurs in the = 4+ 6 model
sum of six signals. We show this model for 20 bootstrap
samples in Figure A14 (red dotted curves). The scatter of these
curves increases when the predictive data end at the dotted
black vertical line. However, all dotted red curves converge
close to the vertical continuous black line at HJD 2450000.
After this line, they diverge again. Before this line, the data
show an increasing trend, but the positive slope is decreasing
(Figure 3(a): red circles). A suitable model would be >g t 0( )
and <g t 0̈( ) . After this line, this slope is still positive, but it is
increasing. Now, the suitable model would be >g t 0( ) and

>g t 0̈( ) . This means that there is a turning point =g t 0( )
close to this HJD 2450000 epoch, where the g ẗ( ) sign changes
from negative to positive. The second-derivative sign change of
any function forces this function to change its direction twice.
This = 4+ 6 model turning point forces the bootstrap
model solutions to converge. This simple effect explains why
the prediction error increases, decreases, and again increases
(Figure 3: green dotted lines).
Our turning-point hypothesis would explain the gap in

O− C data close to HJD 2450000 (Figure A14: vertical
continuous line). There are no such gaps in Algol’s modern
O− C data, not even during the two world wars. The TIDAK
database contains only four O− C values between
HJD 2448288 and HJD 2449988 (≡4.6 yr). Even today, one
of these four is still marked “unpublished” (1997, Drozdz:
HJD 2449317.4171). Close to the above-mentioned turning
point, the O−C data no longer supported the well-established
expected long-term >g t 0( ) and <g t 0̈( ) trend. Perhaps for
this reason, contradictory new data were not published at that
time. Only when the new >g t 0( ) and >g t 0̈( ) trend was
securely established did the continuous flow of supporting
O− C observations begin again.
We conclude that, except for the first few years, our Last 50y

data prediction fails. However, our turning-point epoch predic-
tion of HJD 2450000 is excellent.

5.4. Additional Experiments

We divide all original data into two parts. Both halves are
too short for the detection of the long 219 yr period. This
hampers their period analysis. In the first low-accuracy half, we
detect only one signal of about 137 yr. From the more accurate
second half, we detect four signals of 1.86 30.9, 39.7, and
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103.3 yr. The shortest one is equal to the orbital period of
Algol C.

We also test two alternatives, where the weights of
observations increase linearly. In two alternative experiments,
the weights are doubled or quadrupled during the time span of
all data. In both cases, the five strongest signals detected from
the weighted data are identical to those detected from
nonweighted data (Table A7,= 3+6 model).

5.5. Signals Identified in All Data

The eccentric orbit analysis indicates that all data contains
five signals (Table A7, = 3+6). Here, we argue that the
correct number of signals may also be six. We use bold letters
p1, p2, p3, p4, p5, and p6 for the periods of these signals
(Table 1). This notation helps the readers to separate these six
periods from the numerous other P1, P2, K, P6, p, p1, p2, p3,
and ¢p periods. We use the tentative names Algol C, Algol D,
Algol E, Algol F, Algol G, and Algol H for the objects possibly
connected to these periods. The corresponding peak to peak
amplitudes are A1, A2, A3, A4, A5, and A6.

Our six-signal argument relies on two tables. The first table
compares the eccentric and circular orbit analysis periods for all
data (Table A13). The second table compares the periods
detected in three different samples: All data, First 226y

data, and First 185y data (Table A14).
In our Appendix, we apply DCM to simulated O− C data

(Equation (13)). We show that the four following different
effects are encountered when the O−C data contains either
one period p, or two periods p1 and p2.

“Correct-p”: DCM detects the correct period p.
“Half-p”: DCM detects the spurious period p/2.
“Double-p”: DCM detects the spurious period 2p.
“Interference- ¢p ”: DCM detects the spurious period ¢p caused

by p1 and p2 interference (Equation (A7)).

The “Half-p” and “Double-p” effects can mislead the DCM
analysis of low-eccentricity O− C curves, which resemble pure
sinusoids.

There is only one minimum and one maximum in the real
O−C curve caused by the LTTE of a single third body. This
third body can approach and recede only once during one
orbital period p. Hence, the O−C “ ¢p interference” curves
having two minima and two maxima cannot be caused by one
body alone, but they may indicate the presence of more than
one body.

In Sections 5.5.1–5.5.5, we illustrate one p1, p2, p3, p4, p5,
and p6 signal at a time and how the four effects mentioned
above can explain all eccentric and all circular orbit DCM
period search results.

5.5.1. Signal p6 = 79999d = 219y.0

The circular orbit signal period Pc,7= 120740d± 41002d

differs by about ±1σ from the eccentric orbit period
p6= Pe,5= 79999d± 1216d (Table A13). Hence, the circular
and eccentric orbit analyses give the same correct p6 period
(“Correct-p” effect).

This p6 period is two times longer than the next circular orbit
period Pc,6= 42422d± 640d (“Half-p” effect). The p6= 219y

signal curve shows only one minimum and one maximum
(Figure A8: lowest panel, green curves), because the two
strongest circular orbit Pc,7 and Pc,6 signals are “in phase.”

These results confirm that DCM succeeds in detecting the p and
p/2 regularities illustrated in Figure A1 and Table A3.
DCM detects the p6= 219y signal in all data and First 226y

data (Table A14). The too-short First 185y data time span
prevents the detection of the p6 period. Therefore, the largest
detected P4= 62992d± 2499d period differs by more than ±3σ
from p6.
We use an amplitude estimate A6= Ae,5= 0 287± 0 005

for this p6= 219y signal (Table A13).

5.5.2. Signals p5 = 24247d = 66.y4 and p4 = 12294d = 33.y7

The connection between the eccentric orbit
p5= Pe,4= 24,742d± 141d signal and the circular orbit
Pc,5= 24,747d± 872d signal is definitely the “Correct-p” effect
(Table A13). The “Half-p” effect certainly connects this p5
signal also to circular orbit Pc,4= 12,294d± 109d signal.
However, two questions need to be answered. Why does the

p5= 66.y4 signal show two minima and two maxima
(Figure A8: midpanel, blue curves)? This is impossible for
any single third-body eccentric orbit. Why are the Ac,5 and Ac,4

amplitudes of the two circular orbit Pc,5 and Pc,4 signals
practically equal (Table A13)?
The easiest answer to both questions would be that the

p5= 66. y4 and p4= 33. y7 signals represent two separate
independent signals, which are “off phase.” Their “Interfer-
ence- ¢p ” effect could induce the two unequal minima and two
unequal maxima of the blue O− C curve (Figure A8), which
resembles the black interference curve in Figure A3. In this
case, the circular orbit Pc,4= 12294d± 109d signal could
represent a real fourth independent p4= 33. y7 signal.
The p5= 66. y4 signal is detected in all data and First 226y

data (Table A14). This p5 signal is not detected in the shortest
First 185y data sample, but the p4= 33. y7 signal is. We
conclude that the p5= 66. y4 and p4= 33. y7 signals are most
probably two independent real signals.
The amplitudes of the circular orbit Pc,5 and Pc,4 signals

give our A5= Ac,5= 0 018± 0 002 and A4= Ac,4= 0 018±
0 001 amplitude estimates for the p5 and p4 signals
(Table A13).
Here, we have shown that the eccentric orbit p5= 66.y4

signal may arise from the “Interference- ¢p ” effect of two
circular orbit p5= 66. y4 and p4= 33. y7 sinusoids. Later, we
will present an alternative explanation (Figure A15: Config-
urations 2 and 3).

5.5.3. Signal p3 = 10,144d = 27.y8

None of the eccentric orbit periods is close to the circular
orbit period Pc,3= 10,144d± 30d= 27. y8± 0. y1 (Table A13).
However, the “Double-p” effect certainly connects this Pc,3

period to the eccentric orbit period Pe,3= 20358d± 128d. This
Pe,3 signal shows two maxima and two minima (Figure A8:
lower panel, red curves). These two equal maxima and two
equal minima are symmetric. This kind of symmetry is detected
in our simulations of low-eccentricity spurious double
sinusoids (Table A2: “Dp”≡ ”Double-p” effect). Therefore, the
Pc,3 period probably represents a real signal p3= 27.y8.
The eccentric orbit Pe,3= 20,358d signal is detected in all

data, First 226y data, and First 185y data (Table A14). This
means that DCM detects the p3≈ Pe,3/2 signal in all three
different samples.
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Our amplitude estimate for this p3= 27.y8 signal is
A3= Ac,3= 0 0097± 0 0004 (Table A13).

In this section, we have shown that the eccentric orbit
Pe,3= 56.y0 signal probably represents the “double wave” of
the p3= 27.y8 signal. We will later present an alternative
explanation (Figure A15: Configuration 3).

5.5.4. Signal p2 = 7269d = 20.y0

The eccentric orbit p2= Pe,2= 7269d± 29d signal and the
circular orbit Pc,2= 7395d± 37d signal are certainly connected
(Table A13: “Correct-p” effect).

Like any real third-body O−C curve, this p2= 20. y0 signal
shows only one minimum and one maximum (Figure A11:
lower panel blue curves). DCM detects this p2= 20.y0 signal in
all data and First 226y data (Table A14). In the shortest First
185y data sample, this p2 period may be connected to its double
period P3= 15429d± 222d (Table A14: “Double-p” effect).

Our amplitude estimate for this p2= 20. y0 signal is
A2= Ae,2= 0 007± 0 001 (Table A13).

5.5.5. Signal p1 = 680.4d = 1.y86

The eccentric orbit and circular orbit DCM searches give the
same p1= 680 4± 0 4= 1. y863± 0. y001 signal (Table A13:
“Correct-p” effect).

DCM detects this p1= 1. y863 signal from all three samples
(Table A14). Like any real O−C curve, this signal shows only
one minimum and one maximum (Figure A11: higher panel red
curves).

We use A1= Ae,1= 0 0064± 0 0007 (Table A13). This
signal is discussed later in greater detail (Section 6.3).

5.5.6. Two Weakest Signals

DCM detects indications of two additional weaker signals
Pc,2= 2986d± 39d (Table A12) and P2= 3387d± 17d

(Table A14). They could be separate signals because their
±3σ error limits do not overlap. They are 0.80 and 0.45 weaker
than the weakest detected p1= 1. y863 signal. We cannot
confirm whether these two weakest signals are real or spurious.

6. Discussion

Applegate’s (1992) mechanism cannot explain the numerous
strictly periodic O− C signals of Algol, because quasi-periodic
activity cycles are never regular. Apsidal motion follows only
one period. The LTTE of Algol’s companion candidates could
cause these numerous strictly periodic cycles. Assuming
circular orbits, we use m1= 3.7me and m2= 0.8me (Zavala
et al. 2010) to compute the m3 mass and the a3 semimajor axis
estimates for these tentative companion candidates (Table 1).
These approximate mass and semimajor axis estimates are
obtained by assuming that each candidate is a “third”
component. The effects of other candidates inside the orbit of
the “third” component are ignored in Equations (18) and (19).

6.1. Hierarchical Structure

We call the eclipsing Algol A and Algol B pair the central
eclipsing binary (cEB). Algol C is called a wide-orbit star
(WOS), as well as all other new tentative companion
candidates. We use the same hierarchical system diagrams as
Tokovinin (2021).

Our first hierarchical system diagram shows the circular orbit
i= 90° inclination case of Table 1 (Figure A15: Configuration
1). The eight members in this configuration are cEB and six
WOSs. The orbital periods of WOS candidates are between
1.863 and 219.0 yr. The most massive (m3= 2.50me)
companion candidate, Algol H, is also the most distant one
(a3= 44.7 au). The four other WOS candidates are low-mass
stars (0.23me�m3� 0.43me). The closest ==m m1.16i

3
90


companion candidate has an orbital period p1= 680 4± 0 4,
which is close to the known orbital period Porb= 679 85±
0 04 of Algol C (Zavala et al. 2010). We will discuss this
probable detection of Algol C later in Section 6.3.
Our second hierarchical system diagram shows one alter-

native for Configuration 1 (Figure A15: Configuration 2). The
seven members are cEB and five WOSs. We have already
shown that the sum of “off-phase” sinusoidal p5= 66. y4 and
p4≈ p5/2= 33. y7 signals can cause the p5= 66. y4 period
double wave (Section 5.5.2). However, a single p5= 66. y4
long-period binary can cause a similar effect if the masses of its
members are unequal. These unequal masses could also explain
the two unequal maxima and minima of the blue O− C curve
in Figure A8. The red lines in our Configuration 2 diagram
show this hypothetical long-period p5= 66.y4 binary having an
orbital period p6= 219.y0 around the barycentre of the whole
system (Figure A15).
Our third hierarchical system diagram is a minor modifica-

tion of Configuration 2 (Figure A15: Configuration 3). The
seven members are, again, cEB and five WOSs. Now we take
the five periods of the= 3+ 6 model as such. Signal 66. y4
is not separated into two signals (Section 5.5.2). We use the full
Pe,3= 55. y8 signal period, not the half of this period
(Section 5.5.3). This Pe,3= 55. y8 signal could also represent
a long-period binary, where the masses of both components are
approximately equal. In Configuration 3, the two long-period
p5= 66. y4 and Pe,3= 55. y8 binaries orbit each other during
p6= 219. y0. This may be the most stable one of our three
configuration alternatives, because the cEB and the remaining
two inner-orbit WOSs would only weakly perturb the two
hypothetical long-period binaries, and vice versa. This type of
quintuple binary system has been discovered (e.g., Zasche &
Uhlar ̌ 2013, their Figure 2 of V994 Her).

6.2. Detectability

In binaries, the radial velocity observations can reveal the
presence of a third body, like in the discovery of Algol C
(Curtiss 1908). For nearby hierarchical systems, combined
astrometric orbit and radial velocity observations can be used to
solve their detailed structure (e.g., Tokovinin 2021). When
Hajdu et al. (2019) searched for WOSs from the O− C data of
80,000 EBs, they detected 992 systems having one WOS, but
only 4 systems possibly had two WOSs. Our DCM analysis of
Algol’s O− C data suggests the presence of five or six WOSs.
These O− C data cannot reveal a lot about the structure of this
hierarchical system, not even the exact number of stars
(Figure A15: Configurations 1, 2, or 3). However, we can
give some ideas that may help in the detection of Algol’s WOS
candidates. Here, we assume that the candidate orbits are
circular and their orbital plane inclinations are i3= 90°
(Table 1). In Configuration 1, the observed maximum and
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minimum radial velocities of WOS candidates are

p
= +v v

a

p

2
21max 0

3

3

( )

p
= -v v

a

p

2
, 22min 0

3

3

( )

where v0= 4.0 km s−1 is Algol’s radial velocity (Wilson 1953).
The angular distance between Algol and its WOSs changes

constantly. We compute these angular distance changes in
Algol’s cEB frame of rest. At the O− C curve minima and
maxima, the largest distance changes are

pD D = Da t a t p2 sin 23max 3 3( ) ( ) ( )

during a time interval Δt� p3/2. For longer time intervals, we
use Δt= p3/2, which gives D =a a2max 3. The smallest

pD D = - Da t a t p1 cos 24min 3 3( ) [ ( )] ( )

distance changes coincide with the O−C curve mean level.
This relation holds for t0� p3. For longer time intervals, we use
Δt= p3, which gives D =a a2min 3.

The proper motion of Algol is μ0= 2.49 mas yr−1 (van
Leeuwen 2007). The minimum and maximum proper motion of
each candidate is

m m m= - 25cmin 0 ( )
m m m= + , 26cmax 0 ( )

where m = D D =a t 1c max
y( ) is the maximum proper motion

during 1 yr. Note that m = 0min for every candidate, because
their μc> μ0.

We emphasize that our Damin and Damax estimates refer to
the candidate distance changes with respect to cEB, while our
mmin and mmax estimates refer to the proper motion of all
members in the sky.

All parameters of Equations (21)–(26) are given in
Table A15. The two estimates for Damin and Damax are
computed for observations spanning 5 or 20 yr. This
information is useful for future searches of our Algol member
candidates.

In 2020 December, the latest third Gaia data release (DR3)
confirmed no certain detections  ¢¢4 around Algol and only
one certain ¢¢40 detection. In their analysis of Gaia DR3 data,
Torra et al. (2020) note that “most problems come from the
bright sources and the strange image profiles.” They rejected
8159.3 million bright sources, 158.0 million very bright
sources, and 4066.7 million odd window profiles. Algol is
definitely “too bright.” Its brightness profile is constantly
changing due to the movement of the known members Algol A,
Algol B, and Algol C, let alone due to the primary and
secondary eclipses. Therefore, Gaia could not have measured
the positions and movements of the objects in our Table A15.

The Algol H candidate would be easiest to detect because its
distance from the cEB is the largest. This most massive
candidate is very probably also the brightest candidate. At the
moment, its O− C curve is close to the mean level (Figure A8:
left-hand lowest panel green h3(t) curve). Hence, Algol H
would be close to its projected maximum a3= 1569 mas
distance from cEB. The cEB is receding from us because its
O−C values are increasing for the next 50 yr. Currently,
Algol H would be approaching us at its minimum radial
velocity = -v 2min km s−1 (Table A15). The distance changes

between cEB and Algol H would be small, only D =a 4min or
64 mas during the next 5 or 20 yr.
Direct interferometric images have been obtained of

Algol A, Algol B, and Algol C (e.g., Zavala et al. 2010; Baron
et al. 2012). If Algol B and Algol C really are less massive than
our distant Algol H candidate, why did the earlier interfero-
metric imaging not reveal the presence of this massive
candidate? First, this Algol H candidate is about 20 times
farther away from the cEB than Algol C, which means that the
area of interferometric imaging should have been about
20× 20= 400 larger. Second, this Algol H candidate could
be a long-period binary, where both members are much less
massive and much dimmer than a single 2.50me star
(Figure A15: Configurations 2 and 3). One or two members
of this long-period binary could be an evolved object, like a
white dwarf. Third, Zavala et al. (2010) and Baron et al. (2012)
applied a three-star model. Algol H’s contribution to their
modeled total flux would have remained constant because its
position did not change during their observations (Table A15).
We conclude that using an over 400 times larger imaging area,
and a model of at least four stars, may lead to the
interferometric detection of this distant Algol H candidate.
The detection of the other four less massive candidates with
this technique is much more challenging (Table 1: i= 90°,
0.23me�m3� 0.43me). However, the Damin and Damax

values of these less massive candidates show that their
movements are easier to detect even during shorter periods of
observations (Table A15).
Powell et al. (2021) studied the sextuple-eclipsing binary

system TIC 168789840 with the speckle interferometry
technique. They could resolve this hierarchical system of three
eclipsing binaries. Their estimate for the outer period in this
hierarchical system was about 2000 yr. Algol is about 20 times
closer to us than TIC 168789840 (d≈ 570 pc). The orbital
period of our Algol H candidate is about 200 yr. Hence, it
might be possible to detect Algol H with speckle
interferometry.

6.3. Algol C Detection

DCM detects the weakest p1= 680 4± 0 4 signal in all
three samples: all data, First 226y data, and First 185y data. This
p1 signal is 44.8 times weaker than the strongest p6 signal
(Table 1). DCM detects this weakest p1 signal although it is
buried under the interference of five stronger p2, p3, p4 p5, and
p6 signals and a linear p(t) trend. The period of this p1 signal
differs only 1.4σ from the known orbital period
Porb= 679 85± 0 04 of Algol C (Zavala et al. 2010). This
indicates that all other five detected stronger signals are real
periodicities, but it does not irrefutably prove this idea. Our
O− C data contains 127 rounds of Algol C around Algol AB,
and this orbit is known to be stable (Zavala et al. 2010; Baron
et al. 2012; Jetsu et al. 2013). Our lower limit for the mass of
Algol C (Table 1: i= 90° and 1.2me) is smaller than the
interferometric estimates by Zavala et al. (2010, i= 83°.7± 0°.1
and 1.5± 0.1me) and Baron et al. (2012, i= 83°.66± 0°.03 and
1.76± 0.15me). This indicates that not even DCM can retrieve
the full amplitude of this weak Algol C signal when it is buried
under five stronger signals and a linear trend.
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6.4. Stability

All detected signals are strictly periodic because they are
also detected in the 9.2 yr shorter subsample First 226y data.
Except for the p2 and p5 signals, the other four signals are also
detected in the 50 yr shorter subsample First 185y data. This
apparent absence of these two p2 and p5 signals in First 185y

data could be explained by the “Half-p” and “Double-p” effects
(Table A14). However, strict periodicity alone does not prove
that Algol’s hierarchical system is stable.

The perturbations of WOS can cause periodic cEB orbital
plane changes (Soderhjelm 1975, Equation (27)). Such long-
term orbital plane changes with respect to the line of sight may
even stop the eclipses completely, or at least reduce the depth
of eclipses, as in the case of AYMus (Soderhjelm 1974).
However, the cEB orbital plane is stable for Ψ= 0° or 90°,
where Ψ is the angle between the cEB and WOS orbital planes.
This is the case for Algol C, the only currently known WOS of
Algol (Baron et al. 2012, Ψ= 90°.20± 0°.32). No changes have
been observed in the eclipses of Algol in modern times, and
these events were most probably also observed over 3000 yr
ago (Jetsu et al. 2013). This is possible only if all WOSs have
Ψ= 0° or 90°. If the orbital planes of all WOS are coplanar,
then all WOSs must have Ψ= 90°, because this is the known
case for Algol C. If all WOS orbits were not coplanar, this
would certainly reduce the stability of this system and perhaps
also weaken or stop the observed eclipses.

The mass transfer from the less massive Algol B to the more
massive Algol A should increase the orbital period (Kwee 1958,
Equation (5)). The numerous published mass transfer rate
estimates range from 10−13 me yr−1 to 10−7 me yr−1 (Jetsu
et al. 2013, Section 4). However, no regular long-term period
increase has been observed since Goodricke (1783) discovered
Algol’s periodicity. All WOSs can also perturb the cEB by
other physical mechanisms, like the Kozai effect (Kozai 1962),
or the combination of the Kozai cycle and tidal friction
(Fabrycky & Tremaine 2007). Against this background, our
linear K3= 1 trend result for p(t) is surprising (Section 5.1.1).
For 236 yr, Algol’s orbital period has been constant,

= -
D
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-

P
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where P0= 2 86730431 (Equation (1)) and M1= 0.1278 is the
p(t) coefficient for the= 3 model in Table A7. This causes
the linear O− C change of 0 256 in Figure A7 (upper panel:
dotted line). It also means that LTTE effects alone can explain
all observed O− C changes. No additional effects, like the
quadratic K3= 2 trend caused by mass transfer, are needed to
explain these O− C data.

In the future, long-term integrations may confirm the
dynamical stability of this system. Currently, even the exact
number of WOS candidates remains unknown, because three
different hierarchical system diagrams can explain the detected
WOS periods (Figure A15: Configurations 1, 2, and 3). For any
WOS period p3, the correct m3, e3, a3, i3, ω3, and Ψ3 initial
value combinations for the long-term integrations are also
unknown. Therefore, our O−C data cannot give an unambig-
uous solution for this stability problem. Whether or not this
system is stable, we can determine the p3 periods that are
observed today.

6.5. Predictability

We admit that an unambiguous identification of all
individual signals from the interference sum of numerous
signals is not always possible. One example is the p5 and p4
signal identification in Section 5.5.2. However, this whole
identification problem is irrelevant from the predictability point
of view. The sum of identified signals is equal to the sum of
unidentified signals. Both alternatives give the same prediction.
The linear and quadratic EB ephemerides cannot predict the

exact epochs of future eclipses (e.g., Kreiner et al. 2001; Kim
et al. 2018). For O−C changes caused by a third body, these
predictions also usually fail, as in Bours et al. (2014, their
Figure 7), Lohr et al. (2015) or Song et al. (2019, their
Figure 1). Different O−C subsets can give different periods,
but this does not mean that there is something wrong with the
period search methods themselves, like DCM. Our 9.2 yr
O− C prediction for Algol is based on First 226y data
(Figure 2). Strict periodicity can explain why this prediction
succeeds. Predictability is impossible without strict periodicity.
This prediction would fail, if even one of our detected signals
were not strictly periodic, or if the K3= 1 linear p(t) trend were
wrong.
Our next 50 yr prediction is based on First 185y data. Except

for the first few years, this long-term prediction fails (Figure 3).
The reason for this failure is simple. The longest 172y period
detected from First 185y data is not correct. The short
ΔT= 185 yr time span of this sample prevents the detection
of the correct signal period 219y. This correct signal can be
detected only from all data and First 226y data. Together with
the 0 26 trend p(t), this highest 0 29 amplitude dominating
219y signal determines all long-term O−C predictions. The
insignificant long-term trend contribution of all other weaker
signals is always less than± 0 03, because the sum of their
amplitudes is 0 06. Although our 50 yr prediction for the
O− C level fails (Figure 3), we get an excellent prediction for
the turning-point epoch at HJD 2450000 (Figure A14).
New O−C data after 2018 October can already be used to

test our prediction for the next 10 yr (Figure 1(b)). These
predictions should improve in the future, when all orbital
period estimates become more accurate. Predictability should
ultimately prove that all these signals are orbital periods. At the
moment, we cannot prove this. In the history of astronomy, the
seasons of the year posed a similar problem. Their 1 yr
periodicity was detected easily, but the reasons for it were
understood much later: the orbit of Earth around the Sun, and
the tilted axis of Earth. However, it was possible to predict the
seasons without understanding their origin. Our detected
periods of Algol are certainly there, and for some reason or
another, they can be used for predictions.

6.6. Look-elsewhere Effect

We test over 30 models having free parameters between
η= 6 and 22 (Tables A6–A11). The total number of free
parameters is even higher when the model for the original
data is added to the model for the residuals. For example, the
best = 3+ 6 model for all data has η= 17+ 11= 28 free
parameters (Figure 1). Our search for the correct model over a
vast parameter space increases the probability for finding
spurious apparently significant signals. This is called the “look-
elsewhere effect” (e.g., Miller 1981; Bayer & Seljak 2020).
There are statistical methods that can account for the
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“look-elsewhere effect” and give direct significance estimates S
for the periods of models having different degrees of freedom
(e.g., Bayer & Seljak 2020, their Equation (3.12)).

DCM applies the Fisher test to compare the significance of
all pairs of simple and complex models. The Fisher test
identifies the best model among all tested models
(Equations (11) and (12)). This approach does not account
for the “look-elsewhere effect”, because it gives no direct
significance estimate S for the periodicities of this best model.
Nevertheless, we can present several arguments indicating that
the “look-elsewhere effect” has no significant impact on our
results.

1. We apply the robust Fisher test to compare any complex
model having more signals than any simple model. We
use the preassigned significance level γF= 0.001 to reject
the simple model (Equation (12)). This prevents over-
fitting because the probability that this best model
selection fails is always smaller than 1 out of 1000. In
many cases, the extreme QF< 10−16 critical levels
confirm that the complex model is absolutely certainly
better than the simple model. This confirms that the data
contain more signals than those present in the simple
model. Our indirect QF significance estimates confirm the
presence of additional complex model periodicities, but
they do not give us direct S significance estimates for
these periodicities. Regardless of the “look-elsewhere
effect”, the Fisher test can confirm that the five-signal
= 3+ 6 model is the best model for all data.

2. The z periodogram values of close tested frequencies
correlate and display no sudden jumps (see Section 3:
Caveat 2). At some tested frequency grid density level,
this means that the detected period values no longer
depend on the number of tested periods (Paper I: nL and
nS). These unambiguous best period values are obtained
from linear models. Increasing the number of tested
periods does not change the values of these detected
periods. Hence, the tested frequency grid density is not a
trial factor effect (“look-elsewhere effect”) that can
change the five-period values of our best = 3+ 6
model.

3. For all O− C data, we use the Fisher test to compare
constant, linear, quadratic, and cubic p(t) trends for one-,
two-, and three-signal models (Table A6). The linear
K3= 1 trend is the best one. This means that if the O− C
data had been computed with the period 2 86732870
(Equation (27)), the best trend would have been the
constant K3= 0 trend. After exploring numerous trend
and signal combination alternatives in the vast free
parameter space, we arrive at this simplest alternative: no
trend at all in the O− C data! Although the “look-
elsewhere effect” is certainly present, DCM detects this
simplest trend alternative for our five-signal = 3+ 6
model.

4. Our= 3+ 6 model prediction is excellent (Figure 2).
This indicates that the “look-elsewhere effect,” or any
other spurious effect, does not mislead DCM periodicity
detection.

6.7. Uncertainties

The time span of our data is “only” 236 yr. Our biggest
uncertainty is therefore the longest detected 219 yr periodicity.

It has been claimed that the DFT can sometimes detect clear
signal periods slightly longer than the ΔT time span of data,
“but with poor resolution” (Horne & Baliunas 1986). The
detection of periods close to ΔT depends strongly on the
signal-to-noise ratio of the data. Such detections may not
always succeed in our case, because we detect the 172 yr
period from the shortest sample of 185 yr. This period is shorter
than the time span of this particular sample. We do not detect
this “old” 172 yr period from the longer samples of 226 and
236 yr, but we do detect the “new” 219 yr period. New
additional O− C data may, or may not, confirm that this 219 yr
period of ours is correct.
The direct discovery of Algol H would solve the above

problem for good. Eggen (1948) analyzed Algol’s O− C data.
He arrived at an orbital period of 188.4 yr for this hypothetical
distant companion. Irwin (1952) estimated its orbital elements.
We argue that this distant Algol H candidate may be currently
found about 1 6 away from the cEB, the eclipsing pair Algol A
and Algol B.
As for other uncertainties, we cannot determine the exact

number of stars in this hierarchical system, but this does not
prevent us from presenting an excellent 9.2 yr prediction based
on the first 226 yr of O−C data (Figure 2). We admit that our
longer 50 yr prediction fails because our 172 yr period detected
in the shortest 185 yr sample is wrong (Figure 3). However, our
turning point in this same prediction would explain the 4 yr gap
in the published O− C data around the year 1995
(Figure A14). It will be interesting to see how well we can
predict future O− C data after 2018 October (Figure 1(b)).

7. Conclusions

The ephemerides of EBs can be improved by removing
linear or quadratic trends from the observed (O) minus
computed (C) eclipse epochs (e.g., Kreiner et al. 2001; Kim
et al. 2018). However, even such improved ephemerides cannot
predict the exact epochs of future eclipses. The LTTE of a third
body causes strictly periodic predictable O− C changes
(Irwin 1952). The typical third- and fourth-body detection
rates from O−C data are low, only 992/80,000 and 4/80,000,
respectively (Hajdu et al. 2019). Eclipse epoch predictions
based on linear or quadratic trends, and LTTEs, usually fail
because aperiodic trends mislead the detection of periodic
signals (e.g., Bours et al. 2014; Lohr et al. 2015; Song et al.
2019).
Considering this general background, it is unprecedented

that our new DCM can detect five strictly periodic signals from
236 yr of Algol’s O−C data (Figure 1(a)). These tentative
companion candidate orbital periods are between 1.863 and
219.0 yr. One of these periods is definitely not a surprise,
because our 680.4± 0.4 day period estimate for the weakest
detected signal differs only 1.4σ from the well-known
679.85± 0.04 day orbital period of Algol C. From our O− C
data alone, we cannot determine the exact number of
companions in Algol’s hierarchical system or the stability of
this system.
From the shorter 226.2 yr subsample, we detect these same

five above-mentioned strictly periodic signals. They give an
excellent prediction for the last 9.2 yr of our O−C data
(Figure 2(b)). Although it is impossible to detect the longest
219 yr period from our shortest analyzed subsample of 185 yr,
we can still predict the O− C data turning-point epoch in the
year 1995 (Figure 3(b)). This unexpected turning-point event
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could explain the odd publication gap in the otherwise
continuous modern O−C data of Algol.

We detect the linear O− C trend, which confirms that
Algol’s orbital period has not changed since it was discovered
by Goodricke (1783). The orbital planes of Algol C and the
new other wide-orbit star candidates are probably coplanar
because Algol’s eclipses were observed already in ancient
Egypt (Jetsu et al. 2013; Jetsu & Porceddu 2015; Porceddu
et al. 2018).

In the bigger picture, the predictions for complex nonlinear
models rarely succeed. We give a prediction for the next
decade of Algol’s O− C changes after 2018 October 18
(Figure 1(b)). These future O−C changes may prove that the
abstract DCM approach works for complex nonlinear models
and that Algol’s data merely allowed us to check this.
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Appendix
DCM Analysis of Simulated O− C Data

We describe Figures A1–A3 and Tables A1–A3 in the
beginning of this Appendix, and Figures A4–A15 and
Tables A4–A15 in the main text. If the third-body orbit is
circular (e= 0), the suitable DCM model order is K2= 1,
because the O−C curve is a pure sinusoid (Equation (13):
e= 0). If the third-body orbit is not circular (e> 0), the O− C
curve is not a pure sinusoid. In this case, the suitable DCM
model order for these eccentric orbits is K2= 2 (Hoffman et al.
2006). Our notations for circular (e= 0) and eccentric (e> 0)
orbit O− C curves are

- =O C A1e 0( ) ( )
- >O C . A2e 0( ) ( )

These (O−C)e>0 and (O−C)e=0 curves have the same peak-
to-peak amplitude A for any p, tp, e, and ω combination
(Equations (13)–(17)). Our notation for their difference curve is

- = - - -> =O C O C O C A3e ediff 0 0( ) ( ) ( ) ( )

having a peak to peak amplitude Adiff. The amplitude ratio is

D =A A A. A4diff ( )

We also determine the phase differences

fD = -t t p A5min 2nd.min 1st.min( ) ( )

fD = -t t p, A6max 2nd.max 1st.max( ) ( )

of two first minimum t t,1st.min 2nd.min( ) and maximum
t t,1st.max 2nd.max( ) epochs of the (O−C)diff curve.
We simulate three cases of artificial O− C data (Table A1:

Cases I, II, and III). The simulated O− C values are computed
for the real data time points ti from Table A4 (n= 2224). We

add 0 005 Gaussian random errors to these simulated O− C
values. A DCM period search for these simulated O−C data is
performed between 8000 and 80,000 days. We also use the
same period interval in our DCM analysis of real data
(Sections 5.1–5.4)

A.1. Case I: Simulated Eccentric Orbit Data

In this section, we use p, A, tp, e, and ω values of Case I
(Table A1). Our Figure A1 shows all 40 (O− C)e>0 and
(O−C)e=0 curve pairs, as well as their (O−C)diff difference
curves. We study only cases with e� 0.4 because our ν(t)
Fourier expansion (Equation (16)) does not give the exact
quantitative ν(t) values for higher eccentricities. However, our
ν(t) estimates are sufficient for illustrating how eccentric orbit
(O−C)e>0 curves deviate from purely sinusoidal circular orbit
(O−C)e=0 curves.
The ΔA, fD min, and fD max values for 40 eccentric

(O−C)e>0 curves are given above each panel of Figure A1.
When the eccentricity e increases, the amplitude ratio ΔA
increases. At the same time, the (O− C)diff curve symmetry
decreases, because the fD min and fD max values deviate more
from 0.5. Both of these effects confirm that when eccentricity
increases, the (O−C)e>0 curve deviates more from the pure
(O−C)e=0 sinusoid. One symmetry remains: adding 180° to ω
reverses the fD min and fD max pair values.

A.1.1. Case I: Correct Model Analysis

In Case I, the correct one-signal DCM model for simulated
data has an order K2= 2≡ e> 0 (model1,2,0). The number of
signals (K1= 1) and the signal order (K2= 2) are both correct.
The results for the DCM search with this correct model are
given in Table A2. This table has the same structure as
Figure A1. For example, the results for combination e= 0.05
and ω= 0° are given in the upper-left corner of both Table A2
and Figure A1.
DCM always detects the correct period p, because the ratio

P1/p is close to unity for all 40 e and ω combinations. The
amplitude ratio A1/A is close to unity for lower eccentricities
e� 0.2. This ratio decreases for higher eccentricities. Yet, even
in these cases the amplitude ratio is A1/A� 0.95. The
inaccuracy of our ν(t) Fourier expansion (Equation (16)) may
partly explain this A1/A ratio decrease. DCM can certainly
detect the correct simulated signal period p= 45976d and
amplitude A= 0 0994. Our abbreviation for this correct p
period detection is “Correct-p” effect.
For eccentricities close to e= 0, the (O−C)e>0 curves for

P1= p and P1= 2p periods are nearly identical. We use the
abbreviation “Dp” to highlight all P1 values for lower
eccentricities e� 0.1 (Table A2). In these cases, the spurious
double-period P1= 2p detection is possible, if the grid of tested
frequencies is too sparse. The probability for detecting this
spurious P1= 2p period would of course decrease if our chosen
simulated data error 0 005 were smaller. We call this spurious
2p period detection “Double-p” effect.

A.1.2. Case I: Wrong Model Analysis

Here, we analyze again the same one-signal simulated
eccentric orbit (O− C)e>0 data of Case I, but our two-signal
DCM model2,1,0 is wrong. The number of signals (K1= 2) and
the signal order (K2= 1) are both wrong. In other words, we
make the false assumption that the one-signal eccentric orbit
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(O−C)e>0 curve is a sum of two circular orbit (O− C)e=0

curves. The results for this wrong model analysis are given in
Table A3. Note that this table also has the same structure as
Table A2 and Figure A1.

The correct period P2= p is always detected because the
P2/p ratio is very close to unity for all 40 e and ω

combinations. The period of the weaker detected signal is
always P1≈ P2/2≈ p/2. Furthermore, the accuracy of this
approximation increases when e increases! Both of the p and p/
2 periods are certainly detected at larger eccentricities e� 0.2.
The A2/A1 amplitude ratio of these p and p/2 signals decreases
for higher eccentricities. This happens at the expense of the P2

signal, because A2/A decreases by about 10% when eccen-
tricity increases from e= 0.05 and 0.40. All these effects are
also illustrated in Figure A1.

For nearly circular orbits e� 0.10, the A2/A1 signal
amplitude ratio is between 19 and 47. We use the abbreviation
“Hp” to highlight the cases where the detection of weaker
spurious p/2 period signal requires a denser tested frequency
grid (Table A2). Our abbreviation for this spurious p/2 period
detection is “Half-p” effect.
Some ω values can eliminate the symmetry of the

(O−C)e>0 curve even at these low e� 0.10 eccentricities,
like the e= 0.10 and ω= 45° combination (O− C)e>0 curve
that shows no “Hp” effect.
It is important to realize that every real eccentric orbit

(O−C)e>0 curve can be presented as a sum of a purely
sinusoidal circular orbit (O− C)e=0 curve and a nearly
sinusoidal (O−C)diff curve. The respective periods of these
curves are p, p, and∼ p/2. All three curves are “in phase,” and

Table A1
Cases I, II, and III

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7
(days) (days) (HJD) Dimensionless (°) Figure Table

Case I p = 45,976 A = 0.0994 tp = 2373019.94 e = 0.05, 0.10, 0.20, 0.30 or 0.40 ω = 0, 45, 90, 135, 180, 225, 270 or 315 A1 A2, A3

Case II p1 = 12,295 A1 = 0.0174 tp1 = 2375140.04 e1 = 0 ω1 = 0 A2 L
p2 = 46,159 A2 = 0.1024 tp2 = 2372653.76 e2 = 0 ω2 = 0

Case III p1 = 12,304 A1 = 0.0187 tp1 = 2374760.75 e1 = 0 ω1 = 0 A3 L
p2 = 25,274 A2 = 0.020 tp2 = 2380427.13 e2 = 0 ω2 = 0

Note. Cols. 1–5 give the O − C curve period (p), peak-to-peak amplitude (A), pericenter epoch (tp), eccentricity (e), and periastron longitude (ω)
(Equations (13)–(17)). Cols. 6–7 give the connected figures and tables.

Table A2
Case I: Correct Model Results

ω = 0° ω = 45° ω = 90° ω = 135° ω = 180° ω = 225° ω = 270° ω = 315°

e = 0.05 P1 45978 Dp 45933 Dp 45996 Dp 45968 Dp 46082 Dp 45946 Dp 45976 Dp 46001 Dp
A1 0.0995 0.0995 0.0996 0.0990 0.0990 0.0998 0.0993 0.0995
P1/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A1/A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

e = 0.10 P1 46016 Dp 45952 Dp 45874 Dp 45920 Dp 45997 Dp 45921 Dp 45943 Dp 45981 Dp
A1 0.0996 0.0995 0.0990 0.0986 0.0990 0.0994 0.0990 0.0991
P1/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A1/A 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

e = 0.20 P1 46004 46057 46058 45990 46020 46038 46093 45970
A1 0.0990 0.0984 0.0977 0.0985 0.0987 0.0983 0.0976 0.0984
P1/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A1/A 1.00 0.99 0.98 0.99 0.99 0.99 0.98 0.99

e = 0.30 P1 46074 46056 46004 45937 45980 46053 45959 46001
A1 0.0977 0.0964 0.0964 0.0975 0.0978 0.0968 0.0960 0.0981
P1/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A1/A 0.98 0.97 0.97 0.98 0.98 0.97 0.96 0.99

e = 0.40 P1 46084 46251 45930 45934 46079 46292 45929 45882
A1 0.0954 0.0939 0.0930 0.0960 0.0948 0.0932 0.0935 0.0960
P1/p 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00
A1/A 0.96 0.94 0.94 0.96 0.95 0.94 0.94 0.96

Note. Simulated (O − C)e>0 data signal period is p = 45,976d. Signal peak-to-peak amplitude is A = 0 0994. For different e and ω combinations, the one-signal
DCM model1,2,0 search detects periods P1 and peak-to-peak amplitudes A1. The abbreviation “Dp” denotes Double-p effect cases, where spurious period P1 ∼ 2p may
be detected if the tested frequency grid is too sparse.
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therefore the eccentric orbit (O− C)e>0 sum curve has only one
minimum and one maximum.

A.2. Case II: Correct Model Analysis

In Case II, the simulated data contains a sum of two
sinusoidal circular orbit (O−C)e=0 signals having periods
p1= 12,295d and p2= 46,159d (Figure A2). The other para-
meters can be found in Table A1 (Case II). The higher-
amplitude p2 signal dominates over the lower-amplitude p1
signal. These red and blue (O− C)e=0 curves, and their black
(O−C)1+2 interference curve, are shown in Figure A2.
In Case II, the correct circular orbit model is DCM

model2,1,0. This model has the correct number of signals
(K1= 2) and the correct order (K2= 1). DCM detects the

Table A3
Case I: Wrong Model Results

ω = 0° ω = 45° ω = 90° ω = 135° ω = 180° ω = 225° ω = 270° ω = 315°

e = 0.05 P1 24823 Hp 23076 Hp 24924 Hp 24927 Hp 24793 Hp 23813 Hp 24554 Hp 24867 Hp
A1 0.0021 0.0025 0.0026 0.0021 0.0024 0.0024 0.0028 0.0021
P2 46032 46032 46018 45973 46003 46072 46055 45982
A2 0.0990 0.0994 0.0994 0.0991 0.0995 0.0990 0.0995 0.0994

P2/P1 1.85 1.99 1.85 1.84 1.85 1.93 1.88 1.85
A2/A1 47.1 39.8 38.2 47.2 41.4 41.2 35.5 47.3
P2/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A2/A 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

e = 0.10 P1 24993 Hp 22788 23172 24840 Hp 25051 Hp 23170 24418 Hp 24900 Hp
A1 0.0044 0.0052 0.0048 0.0044 0.0044 0.0052 0.0051 0.0045
P2 46043 45996 45937 45998 46032 46025 46121 45993
A2 0.0988 0.0992 0.0992 0.0986 0.0993 0.0987 0.0987 0.0988

P2/P1 1.84 2.02 1.98 1.85 1.84 1.99 1.89 1.85
A2/A1 22.4 19.1 20.7 24.2 22.6 19.0 19.4 22.0
P2/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A2/A 0.99 1.00 1.00 0.99 1.00 0.99 0.99 0.99

e = 0.20 P1 23010 23029 22848 22899 23024 23044 22863 22879
A1 0.0098 0.0089 0.0092 0.0095 0.0096 0.0096 0.0097 0.0094
P2 45953 46029 45973 45955 46000 46074 45941 45962
A2 0.0974 0.0975 0.0981 0.0974 0.0973 0.0974 0.0978 0.0973

P2/P1 2.00 2.00 2.01 2.01 2.00 2.00 2.01 2.01
A2/A1 9.9 11.0 10.7 10.2 10.1 10.1 10.1 10.4
P2/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A2/A 0.98 0.98 0.99 0.98 0.98 0.98 0.98 0.98

e = 0.30 P1 22977 23116 22833 22996 23098 23048 22806 23085
A1 0.0135 0.0135 0.0139 0.0139 0.0135 0.0134 0.0140 0.0141
P2 46069 46073 45987 46018 46060 46030 45942 45976
A2 0.0940 0.0944 0.0962 0.0949 0.0940 0.0947 0.0961 0.0949

P2/P1 2.00 1.99 2.01 2.00 1.99 2.00 2.01 1.99
A2/A1 7.0 7.0 6.9 6.8 7.0 7.1 6.9 6.7
P2/p 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
A2/A 0.94 0.95 0.97 0.95 0.94 0.95 0.97 0.95

e = 0.40 P1 22998 23119 22916 22899 23068 23210 22909 22976
A1 0.0166 0.0166 0.0167 0.0178 0.0165 0.0164 0.0170 0.0174
P2 45997 46089 45978 45961 46054 46267 45983 45917
A2 0.0901 0.0909 0.0938 0.0922 0.0898 0.0904 0.0934 0.0920

P2/P1 2.00 1.99 2.01 2.01 2.00 1.99 2.01 2.00
A2/A1 5.4 5.5 5.6 5.2 5.4 5.5 5.5 5.3
P2/p 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00
A2/A 0.91 0.91 0.94 0.93 0.90 0.91 0.94 0.92

Note. Simulated (O − C)e>0 signal period is p = 45,976d. Signal peak-to-peak amplitude is A = 0 0994. For different e and ω combinations, the two-signal DCM
model2,1,0 search detects signals having periods P1 and P2, and peak-to-peak amplitudes A1 and A2. The abbreviation “Hp” highlights the Half-p effect cases, where
the detection of a weaker P1 ∼ p/2 signal requires a denser tested frequency grid.

Table A4
O − C Data

t y σy
(days) (days) (days)

2372238.35100 −0.17216 0.00010
2372284.23700 −0.16303 0.00010
2372301.39700 −0.20686 0.00010

Note. Only the first three of all n = 2224 values are shown. The arbitrary
0 00010 errors give the correct format for our data file (file1), because dcm.py
requires that the third column of file1 contains some numerical values for the
errors. Because these errors are unknown, we use equal weights for all
observations, and the numerical values of these errors are irrelevant (see the
appendix of Paper I: TestStat ≠ 1).
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correct simulated P1= 12286d± 18d and P2= 46122d± 57d

signal periods, as well as the correct amplitudes
A1= 0 0170± 0 0004 and A2= 0 1019± 0 0003. In short,
DCM succeeds in detecting both simulated circular orbit
(O−C)e=0 signals.

A.3. Case II: Wrong Model Analysis

Here, we analyze Case II simulated data using the wrong
eccentric orbit one-signal DCM model1,2,0. Both the number of
signals (K1= 1) and the model order (K2= 2) are wrong. We
detect the P1= 46,400d± 81d period signal having a peak-to-
peak amplitude A1= 0 1015± 0 0005. Because the
p2= 46,159d period of the stronger signal dominates in the
black (O− C)1+2 interference curve of Figure A2, this detected
P1 period is close to, but slightly larger than, the p2 period. Our
DCM search result for P1 is confirmed by the distance between
the black (O− C)1+2 interference curve minima, which is
indeed longer than the distance between the dominating blue
(O−C)2 curve minima (Figure A2).

A.4. Case III: Correct Model Analysis

In Case III, the simulated sinusoidal (O− C)e=0 signal
periods are p1= 12,304d and p2= 25,274d (Figure A3). The
signal amplitudes are nearly equal (Table A1: Case II). The
correct model for these simulated data is the DCM model2,1,0,
which searches for the sum of two circular orbit (O− C)e=0

curves (K1= 2, K2= 1). DCM detects the correct

P1= 12,322d± 20d and P2= 25,259d± 89d signals, as well
as the correct amplitudes A1= 0 0190± 0 0004 and
A2= 0 020± 0 0003. Again, DCM succeeds in detecting
both simulated circular orbit (O−C)e=0 signals.

A.5. Case III: Wrong Model Analysis

Finally, the same simulated Case III data are analyzed by
using the wrong eccentric DCM model1,2,0. In other words, we
search for only one eccentric orbit (O−C)e>0 signal when the
data contains two circular orbit (O− C)e=0 signals. DCM
detects a signal having P1= 24,771d± 34d and A1= 0 0319±
0 0005. The simulated p1 and p2 signals’ interference period is

¢ = -- - -p k p p , A71
1

2
1 1( ) ( )

where k=±1, ±2,... is the phase difference during ¢p . In this
particular case, k= 1 gives ¢ =p 23976d. This black double
wave (O−C)1+2 curve is shown in Figure A3. DCM detects
this “correct” interference signal period ¢p , which is repeated
throughout the whole data. We call this spurious interference
period ¢p detection “Interference- ¢p ” effect.
The black ¢p interference (O− C)1+2 curve shows two

minima and two maxima because the red p1 period and the blue
p2 period sinusoids are “off phase” (Figure A3). Therefore, this
black (O− C)1+2 curve cannot represent a real eccentric orbit
(O−C)e>0 curve.

Table A5
Samples

n t1 tn
ΔT

Sample L (HJD) (HJD) (days) (yr) file1

All data 2224 2372238.351 2458409.7612 86,171.4102 235.9 1hjdAlgol.dat
First 226y -data 2174 2372238.351 2454839.9189 82,601.5679 226.2 2hjdAlgol.dat
Last 9y data 50 2455063.566 2458409.7612 3346.1952 9.2 L
First 185y data 1731 2372238.351 2439918.358 67,680.007 185.3 3hjdAlgol.dat
Last 50y data 493 2440144.8771 2458409.7612 18,264.8841 50.0 L

Note. Number of observations (n), first observing time (t1), last observing time (tn), time span (ΔT), and data file (file1).
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Table A6
All Data Trend (Section 5.1.1): One-, Two-, and Three-signal (K1 = 1, 2 and 3) Models () Have Eccentric Third-body Orbits (K2 = 2 ≡ e > 0)

Period Analysis: All Original Data = 1hjdAlgol.dat

 = 2  = 3  = 4  = 5  = 6  = 7  = 8  = 9  = 10  = 11  = 12

 Model model1,2,1 model1,2,2 model1,2,3 model2,2,0 model2,2,1 model2,2,2 model2,2,3 model3,2,0 model3,2,1 model3,2,2 model3,2,3 dcm.dat

1 model1,2,0 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R120S.dat

η = 6 F = 2821 F = 1542 F = 1154 F = 684 F = 815 F = 702 F = 623 F = 498 F = 503 F = 461 F = 427

R = 1.0678 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16

2 model1,2,1 – ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R121S.dat

η = 7 – F = 116 F = 142 F = 67 F = 183 F = 154 F = 137 F = 106 F = 120 F = 109 F = 101

Lp R = 0.4698 – QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16

3 model1,2,2 – – ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R122S.dat

Um η = 8 – – F = 161 F = 34 F = 190 F = 154 F = 134 F = 100 F = 115 F = 103 F = 95
Ad, Lp R = 0.4468 – – QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16

4 model1,2,3 – – – ← ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R123S.dat

η = 9 – – – F = − 7.4 F = 186 F = 142 F = 119 F = 85 F = 102 F = 90 F = 82

R = 0.4165 – – – QF = 1 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16

5 model2,2,0 – – – – ↑ ↑ ↑ ↑ ↑ ↑ ↑ 1hjd13R220S.dat

Um η = 11 – – – – F = 629 F = 319 F = 222 F = 134 F = 148 F = 127 F = 112

Ad R = 0.4270 – – – – QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16 QF < 10−16

6 model2,2,1 – – – – – ← ↑ ↑ ↑ ↑ ↑ 1hjd13R221S.dat

η = 12 – – – – – F = 7.3 F = 15 F = 7.7 F = 41 F = 34 F = 30

R = 0.3324 – – – – QF = 0.0068 QF = 2.9 × 10−7 QF = 3.4 × 10−6 QF < 10−16 QF < 10−16 QF < 10−16

7 model2,2,2 – – – – – – ↑ ↑ ↑ ↑ ↑ 1hjd13R222S.dat

η = 13 – – – – – – F = 23 F = 7.8 F = 49 F = 39 F = 34

Lp R = 0.3313 – – – – – QF = 1.8 × 10−6 QF = 3.3 × 10−5 QF < 10−16 QF < 10−16 QF < 10−16

8 model2,2,3 – – – – – – – ← ↑ ↑ ↑ 1hjd13R223S.dat

Um η = 14 – – – – – – – F = 0.34 F = 57 F = 43 F = 36

Ad R = 0.3279 – – – – – – – QF = 0.71 QF < 10−16 QF < 10−16 QF < 10−16

9 model3,2,0 – – – – – – – – ↑ ↑ ↑ 1hjd13R320S.dat

Um η = 16 – – – – – – – – F = 170 F = 86 F = 59

Ad, If R = 0.3277 – – – – – – – – QF < 10−16 QF < 10−16 QF < 10−16

10 model3,2,1 – – – – – – – – – ← ← 1hjd13R321S.dat

η = 17 – – – – – – – – – F = 0.72 F = 2.9

R = 0.3042 – – – – – – – – – QF = 0.39 QF = 0.055

11 model3,2,2 – – – – – – – – – – ← 1hjd13R322S.dat
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Table A6
(Continued)

Period Analysis: All Original Data = 1hjdAlgol.dat

 = 2  = 3  = 4  = 5  = 6  = 7  = 8  = 9  = 10  = 11  = 12

 Model model1,2,1 model1,2,2 model1,2,3 model2,2,0 model2,2,1 model2,2,2 model2,2,3 model3,2,0 model3,2,1 model3,2,2 model3,2,3 dcm.dat

η = 18 – – – – – – – – – – F = 5.1

R = 0.3041 – – – – – – – – – – QF = 0.024

12 model3,2,3 – – – – – – – – – – – 1hjd13R323S.dat

η = 19 – – – – – – – – – – –

R = 0.3034 – – – – – – – – – – –

Note. Trend orders K3 = 0, 1, 2, and 3 for p(t) are compared. The Fisher test is used to compare DCM search results between 8000 and 80,000 days. Notations are “ ↑ ” ≡ complex model above is better than left-side
simple model, and “ ← ” ≡ left-side simple model is better than the complex model above. Parameters are F = Fisher test statistic and QF = critical level. The control file is dcm.dat. Unstable models are denoted with
“Um.” They have dispersing amplitudes “Ad,” or intersecting frequencies “If.” Some models have leaking periods “Lp” larger than ΔT = 86,171d. The best DCM model for all data is a linear trend K3 = 1 order
model3,2,1.
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Table A7
All Data Eccentric Orbits (Section 5.1.2)

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10
Search between 8000 and 80,000 days

Period Analysis: All Original Data = 1hjdAlgol.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) P4 and A4(days) model2,2,1 model3,2,1 model4,2,1 dcm.dat

1 model1,2,1 88183 ± 816 Lp L L L ↑ ↑ ↑ 1hjd14R121S.dat
η = 7 0.313 ± 0.004 L L L F = 183 F = 120 F = 90

Lp R = 0.4698 QF < 10−16 QF < 10−16 QF < 10−16

2 model2,2,1 24984 ± 99 80087 ± 744 L L L ↑ ↑ 1hjd14R221S.dat
η = 12 0.0316 ± 0.0008 0.288 ± 0.004 L L L F = 41 F = 31

R = 0.3324 L QF < 10−16 QF < 10−16

3 model3,2,1 20358 ± 128 24742 ± 142 79999 ± 1216 L L L ↑ 1hjd14R321S.dat
η = 17 0.013 ± 0.001 0.029 ± 0.001 0.287 ± 0.005 L L L F = 19

R = 0.3042 L L QF < 10−16

4 model4,2,1 14912 ± 165 20984 ± 232 26846 ± 250 55172 ± 528 L L L 1hjd14R421S.dat
Um η = 22 0.020 ± 0.004 0.039 ± 0.003 0.4 ± 0.6 Ad 0.5 ± 0.6 Ad L L L
Ad R = 0.2913 L L L

Search between 500 and 8000 days
Period analysis: Three-signal residuals = 1hjd14R321SResiduals.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) model2,2,0 model3,2,0 dcm.dat

5 model1,2,0 680.3 ± 0.4 L L ↑ ↑ 1hjd58R120S.dat
η = 6 0.0062 ± 0.0006 L L F = 17 F = 12

R = 0.2950 QF < 10−16 QF < 10−16

6 model2,2,0 680.4 ± 0.4 7290 ± 29 L L ↑ 1hjd58R220S.dat
η = 11 0.0064 ± 0.0007 0.007 ± 0.001 L L F = 6.3

R = 0.2840 L L QF = 8.1 × 10−6

7 model3,2,0 680.1 ± 0.3 7124 ± 43 7698 ± 75 Sp L L 1hjd58R320S.dat
Um η = 16 0.0065 ± 0.0009 0.0066 ± 0.0007 0.005 ± 0.001 L L
Sp R = 0.2800 L L

Note. Col. 1: Model number. Col. 2: modelK K K, ,1 2 3, η= number of free parameters and R = sum of squared residuals. Cols. 3–6: period analysis results: detected periods P1, ..., P4 and amplitudes A1, ..., A4. Cols.
7–9: Fisher test results. Col. 10: control file is dcm.dat. Model = 3 + 6 is the best one for all data.
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Table A8
All Data Circular Orbits (Section 5.1.3: First Alternative)

Search between 8000 and 80,000 days

Period Analysis: All Original Data = 1hjdAlgol.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) P4 and A4(days) model2,1,1 model3,1,1 model4,1,1 dcm.dat

1 model1,1,1 59474 ± 255 L L L ↑ ↑ ↑ 1hjd14R111S.dat
η = 5 0.199 ± 0.001 L L L F = 863 F = 598 F = 503

R = 0.9998 QF < 10−16 QF < 10−16 QF < 10−16

2 model2,1,1 45204 ± 350 145483 ± 13700 Lp L L L ↑ ↑ 1hjd14R211S.dat
Um η = 8 0.091 ± 0.003 0.8 ± 0.2 Ad L L L F = 154 F = 149
Ad, Lp R = 0.4610 L QF < 10−16 QF < 10−16

3 model3,1,1 12338 ± 55 45423 ± 424 145456 ± 15326 Lp L L L ↑ 1hjd14R311S.dat
Um η = 11 0.0177 ± 0.0006 0.094 ± 0.004 0.8 ± 0.2 Ad L L L F = 120
Ad,Lp R = 0.3814 L L QF < 10−16

4 model4,1,1 12352 ± 58 24773 ± 562 42610 ± 556 145456 ± 16180 Lp L L L 1hjd14R411S.dat
Um η = 14 0.0188 ± 0.0006 0.018 ± 0.001 0.088 ± 0.004 0.9 ± 0.2 Ad L L L
Ad,Lp R = 0.3280 L L L

Search between 8000 and 80,000 days
Period analysis: Four-signal residuals = 1hjd14R411SResiduals.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) model2,1,0 dcm.dat

5 model1,1,0 10175 ± 83 L ← 1hjd56R110S.dat
η = 4 0.0087 ± 0.0005 L F = 2.6

R = 0.3072 QF = 0.047

6 model2,1,0 9248 ± 302 If 10175 ± 160 If L 1hjd56R210S.dat
Um η = 7 0.021 ± 0.002 0.009 ± 0.002 L
If R = 0.3061 L

Search between 500 and 8000 days
Period analysis: Five-signal residuals = 1hjd56R110SResiduals.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) model2,1,0 model3,1,0 model4,1,0 dcm.dat

7 model1,1,0 680.5 ± 0.6 L L ↑ ↑ ↑ 1hjd710R110S.dat
η = 4 0.0056 ± 0.0006 L L F = 22 F = 14 F = 11

R = 0.2984 QF = 3.8 × 10−14 QF = 2.2 × 10−16 QF < 10−16

8 model2,1,0 680.7 ± 0.3 7354 ± 61 L L ↑ ↑ 1hjd710R210S.dat
η = 7 0.0057 ± 0.0008 0.0056 ± 0.0008 L L F = 6.9 F = 5.9

R = 0.2897 L QF = 0.00012 QF = 3.6 × 10−6

9 model3,1,0 680.7 ± 0.4 2986 ± 39 7360 ± 55 L L L ← 1hjd710R310S.dat
η = 10 0.0057 ± 0.0006 0.0031 ± 0.0008 0.0056 ± 0.0006 L L L F = 4.9

R = 0.2870 L L QF = 0.0021

10 model4,1,0 680.5 ± 0.5 3560 ± 21 6964 ± 113 7449 ± 58 L L L 1hjd710R410S.dat
η = 13 0.0057 ± 0.0006 0.0031 ± 0.0006 0.0036 ± 0.0009 0.0056 ± 0.0009 L L L

R = 0.2851 L L L

Note. Otherwise as in Table A7.
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Table A9
All Data Circular Orbits (Section 5.1.3: Second Alternative)

Search between 8000 and 80,000 days

Period analysis: All original data = 1hjdAlgol.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) P4 and A4(days) P5 and A5(days) P6 and A6(days) model5,1,1 model6,1,1 dcm.dat

1 model4,1,1 12377 ± 50 24633 ± 578 42318 ± 240 120817 ± 31482 Lp L L ↑ ↑ 1hjd16R411S.dat

Um η = 14 0.0188 ± 0.0008 0.018 ± 0.004 0.085 ± 0.004 0.6 ± 0.7 Ad L L F = 57 F = 31

Ad, Lp R = 0.3284 L L QF < 10−16 QF < 10−16

2 model5,1,1 10144 ± 30 12294 ± 109 24247 ± 872 42422 ± 640 120740 ± 41002 Lp L ← 1hjd16R511S.dat

Um η = 17 0.0097 ± 0.0004 0.018 ± 0.001 0.018 ± 0.002 0.08 ± 0.01 0.6 ± 0.5 Ad L F = 4.6

Ad, Lp R = 0.3047 L QF = 0.0032

3 model6,1,1 10778 ± 256 If 11219 ± 206 If 11368 ± 182 If 23475 ± 625 42617 ± 267 96213 ± 20664 Lp L 1hjd16R611S.dat
Um η = 20 0.08 ± 0.02 Ad 0.3 ± 0.1 Ad 0.28 ± 0.08 Ad 0.016 ± 0.001 0.078 ± 0.006 0.4 ± 0.2 Ad L
If, Ad, Lp R = 0.3015 L L

Search between 500 and 8000 days

Period analysis: Five-signal residuals = 1hjd16R511SResiduals.dat Fisher Test
 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) model2,1,0 model3,1,0 dcm.dat

4 model1,1,0 680.6 ± 0.4 L L ↑ ↑ 1hjd710R110L.dat

η = 4 0.0055 ± 0.0008 L L F = 26 F16

R = 0.2962 QF < 10−16 QF < 10−16

5 model2,1,0 680.7 ± 0.5 7395 ± 37 L L ↑ 1hjd710R210L.dat

η = 7 0.0057 ± 0.0009 0.0061 ± 0.0006 L L F = 6.2

R = 0.2861 L QF = 0.00032

6 model3,1,0 680.5 ± 0.5 7034 ± 148 If, Sp 7478 ± 82 If L L 1hjd710R310L.dat

Um η = 10 0.0056 ± 0.0008 0.003 ± 0.001 0.006 ± 0.001 L L
If, Sp R = 0.2837 L L

Note. Otherwise as in Table A7.
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Table A10
First 226y Data Eccentric Orbits (Section 5.2)

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10
Search between 8000 and 80,000 days

Period analysis: All original data=2hjdAlgol.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) P4 and A4(days) model2,2,1 model3,2,1 model4,2,1 dcm.dat

1 model1,2,1 92489 ± 1016 Lp L L L ↑ ↑ ↑ 2hjd14R121S.dat
η = 7 0.320 ± 0.004 L L L F = 160 F = 104 F = 77

Lp R = 0.4443 QF < 10−16 QF < 10−16 QF < 10−16

2 model2,2,1 26623 ± 107 84215 ± 1466 Lp L L L ↑ ↑ 2hjd14R221S.dat
η = 12 0.028 ± 0.001 0.300 ± 0.005 L L L F = 35 F = 26

Lp R = 0.3243 L QF < 10−16 QF < 10−16

3 model3,2,1 20592 ± 172 24870 ± 190 78589 ± 2004 L L L ↑ 2hjd14R321S.dat
η = 17 0.014 ± 0.002 0.030 ± 0.008 0.282 ± 0.007 L L L F = 17

R = 0.3000 L L QF = 2.2 × 10−16

4 model4,2,1 14911 ± 125 20739 ± 242 26644 ± 99 53512 ± 806 L L L 2hjd14R421S.dat
Um η = 22 0.0206 ± 0.0004 0.0420 ± 0.0006 2.9 ± 1.6 Ad 3.0 ± 1.6 Ad L L L
Ad R = 0.2887 L L L

Search between 500 and 8000 days
Period analysis: Three-signal residuals = 2hjd14R321SResiduals.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) model2,2,0 model3,2,0 dcm.dat

5 model1,2,0 680.1 ± 0.6 L L ↑ ↑ 2hjd58R120S.dat
η = 6 0.0061 ± 0.0006 L L F = 15 F = 11

R = 0.2914 QF = 1.5 × 10−14 QF < 10−16

6 model2,2,0 680.3 ± 0.3 7287 ± 40 L L ↑ 2hjd58R220S.dat
η = 11 0.0063 ± 0.0008 0.007 ± 0.001 L L F = 6.2

R = 0.2816 L L QF = 9.8 × 10−6

7 model3,2,0 679.9 ± 0.4 7080 ± 46 7757 ± 87 Sp L L 2hjd58R320S.dat
Um η = 16 0.0066 ± 0.0006 0.006 ± 0.001 0.006 ± 0.001 L L
Sp R = 0.2775 L L

Note. Otherwise as in Table A7.
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Table A11
First 185y Data Eccentric Orbits (Section 5.3)

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10
Search between 8000 and 80,000 days

Period analysis: All original data=3hjdAlgol.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) P4 and A4(days) model2,2,1 model3,2,1 model4,2,1 dcm.dat

1 model1,2,1 64454 ± 880 L L L ↑ ↑ ↑ 3hjd14R121S.dat
η = 7 0.258 ± 0.005 L L L F = 118 F = 69 F = 50

R = 0.3407 QF < 10−16 QF < 10−16 QF < 10−16

2 model2,2,1 23477 ± 144 120755 ± 24037 Lp L L L ↑ ↑ 3hjd14R221S.dat
Um η = 12 0.031 ± 0.002 0.5 ± 0.9 Ad L L L F = 16 F = 12
Ad, Lp R = 0.2534 L QF = 5.6 × 10−15 QF < 10−16

3 model3,2,1 14197 ± 134 22873 ± 289 97561 ± 23777 Lp L L L ↑ 3hjd14R321S.dat
Um η = 17 0.010 ± 0.001 0.029 ± 0.002 0.3 ± 0.8 Ad L L L F = 7.9
Ad, Lp R = 0.2424 L L QF = 2.1 × 10−7

4 model4,2,1 12370 ± 296 15429 ± 222 20037 ± 420 62992 ± 2499 L L L 3hjd14R421S.dat
η = 22 0.018 ± 0.002 0.008 ± 0.002 0.015 ± 0.002 0.25 ± 0.01 L L L

R = 0.2369 L L L

Search between 500 and 8000 days
Period analysis: Three-signal residuals = 3hjd14R421SResiduals.dat Fisher Test

 Model P1 and A1(days) P2 and A2(days) P3 and A3(days) model2,2,0 model3,2,0 dcm.dat

5 model1,2,0 679.7 ± 0.6 L L ↑ ↑ 3hjd58R120S.dat
η = 6 0.0072 ± 0.0009 L L F = 6.0 F = 5.8

R = 0.2286 QF = 1.8 × 10−5 QF = 1.2 × 10−8

6 model2,2,0 679.6 ± 0.4 3387 ± 17 L L ↑ 3hjd58R220S.dat
η = 11 0.0074 ± 0.0007 0.0051 ± 0.0008 L L F = 5.6

R = 0.2247 L L QF = 4.2 × 10−5

7 model3,2,0 676 ± 1 If 678 ± 12 If 3387 ± 18 L L 3hjd58R320S.dat
Um η = 16 0.011 ± 0.002 0.016 ± 0.004 0.0053 ± 0.0008 L L
If R = 0.2211 L L

Note. Otherwise as in Table A7.
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Table A12
All Data: Comparison of Circular Orbit Results

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6
Table A8: Circular e = 0 ≡ K2 = 1 Table A9: Circular e = 0 ≡ K2 = 1

Best model = 4 + 5 + 9 Best model = 2 + 5

(days) (days) (days) (days)

 = 4 P4 = 145456 ± 16180 Lp A4 = 0.9 ± 0.2 Ad  = 2 P5 = 120740 ± 41002 Lp A5 = 0.6 ± 0.5 Ad
 = 4 P3 = 42610 ± 556 A3 = 0.088 ± 0.004  = 2 P4 = 42422 ± 640 A4 = 0.08 ± 0.01
 = 4 P2 = 24773 ± 526 A2 = 0.018 ± 0.001  = 2 P3 = 24247 ± 872 A3 = 0.018 ± 0.002
 = 4 P1 = 12352 ± 58 A1 = 0.0188 ± 0.0006  = 2 P2 = 12294 ± 109 A2 = 0.018 ± 0.002
 = 5 P1 = 10175 ± 83 A1 = 0.0087 ± 0.0005  = 2 P1 = 10144 ± 30 A1 = 0.0097 ± 0.0004
 = 9 P3 = 7360 ± 55 A1 = 0.0056 ± 0.0006  = 5 P3 = 7395 ± 37 A3 = 0.0061 ± 0.0006
 = 9 P1 = 680.7 ± 0.4 A1 = 0.0056 ± 0.0006  = 5 P3 = 680.7 ± 0.5 A1 = 0.0057 ± 0.0009
 = 9 P2 = 2986 ± 39 A2 = 0.0031 ± 0.0008

Note. Cols. 1–3: periods and amplitudes of best model = 4 + 5 + 9 from Table A8. Cols. 4–6: periods and amplitudes of best model = 2 + 6 from Table A9.

Table A13
All Data: Comparison of Eccentric and Circular Orbit Results

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8
Table A7: Eccentric e > 0 ≡ K2 = 2 Table A9: Circular e = 0 ≡ K2 = 1 Connection Effect

 = 3 Pe,5 = 79999 ± 1216 Ae,5 = 0.287 ± 0.005  = 2 Pc,7 = 120740 ± 41002 Lp Ac,7 = 0.6 ± 0.5 Ad Pe,5 ≈ 1 × Pc,7 Correct-p
 = 2 Pc,6 = 42422 ± 640 Ac,6 = 0.08 ± 0.01 Pe,5 ≈ 2 × Pc,6 Half-p

 = 3 Pe,4 = 24742 ± 141 Ae,4 = 0.029 ± 0.001  = 2 Pc,5 = 24247 ± 872 Ac,5 = 0.018 ± 0.002 Pe,4 ≈ 1 × Pc,5 Correct-p
 = 2 Pc,4 = 12294 ± 109 Ac,4 = 0.018 ± 0.001 Pe,4 ≈ 2 × Pc,4 Half-p

 = 3 Pe,3 = 20358 ± 128 Ae,3 = 0.013 ± 0.001  = 2 Pc,3 = 10144 ± 91 Ac,3 = 0.0097 ± 0.0004 Pe,3 ≈ 2 × Pc,3 Half-p
 = 6 Pe,2 = 7269 ± 29 Ae,2 = 0.007 ± 0.001  = 5 Pc,2 = 7395 ± 37 Ac,2 = 0.0061 ± 0.0006 Pe,2 ≈ 1 × Pc,2 Correct-p
 = 6 Pe,1 = 680.4 ± 0.4 Ae,1 = 0.0064 ± 0.0007  = 5 Pc,1 = 680.7 ± 0.5 Ac,1 = 0.0057 ± 0.0009 Pe,1 ≈ 1 × Pc,1 Correct-p

Note. Cols. 1–3: eccentric orbit results (Table A7). Cols. 4–6: circular orbit results (Table A9). Col. 7: connection between eccentric and circular orbit periods. Col. 8:
Effects are explained in Section 5.5. Eccentric and circular orbit periods are denoted by subscripts “e” and “c,” respectively.

Table A14
Eccentric Orbit Results for Three Samples

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10
All data: ΔT = 86,171d, n = 2224 First 226y data: ΔT = 82602d, n = 2174 First 185y data: ΔT = 67680d, n = 1731

Table A7 Table A10 Table A11

(days) (days) (days) (days) (days) (days) Effect

 = 3 P3 = 79999 ± 1216 A3 = 0.287 ± 0.005  = 3 P3 = 78589 ± 2004 A3 = 0.282 ± 0.007  = 4 P4 = 62992 ± 2499 A4 = 0.25 ± 0.01 Correct-p
 = 3 P2 = 24742 ± 142 A2 = 0.029 ± 0.001  = 3 P2 = 24870 ± 190 A2 = 0.030 ± 0.008  = 4 P1 = 12370 ± 296 A1 = 0.018 ± 0.002 Half-p
 = 3 P1 = 20358 ± 128 A3 = 0.013 ± 0.001  = 3 P1 = 20592 ± 172 A1 = 0.014 ± 0.002  = 4 P2 = 20037 ± 420 A2 = 0.015 ± 0.002 Correct-p
 = 6 P2 = 7290 ± 29 A2 = 0.007 ± 0.001  = 6 P2 = 7287 ± 40 A2 = 0.007 ± 0.001  = 4 P3 = 15429 ± 222 A3 = 0.008 ± 0.002 Double-p
 = 6 P1 = 680.4 ± 0.4 A2 = 0.0064 ± 0.0007  = 6 P1 = 680.3 ± 0.3 A1 = 0.0063 ± 0.0008  = 6 P1 = 679.6 ± 0.4 A1 = 0.0074 ± 0.0007 Correct-p

 = 6 P2 = 3387 ± 17 A2 = 0.0051 ± 0.0008

Note. Cols. 1–3: all data eccentric orbit results (Table A7). Cols. 4–6: first 226y data eccentric orbit results (Table A10). Cols. 7–9: first 185y data eccentric orbit results (Table A11). Col. 10:
first 185y data period effect explained in Section 5.5.

Table A15
Detection Limits (Section 6.2)

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10 Col. 11 Col. 12 Col. 13
m3 p3 a3 a3 vmin vmax Damin Damax Damin Damax mmin mmax

Table 1 During Δt = p3 During Δt = 5y During Δt = 20y During Δt = 1y

Candidate (me) (yr) (au) (mas) (km s−1) (km s−1) (mas) (mas) (mas) (mas) (mas yr−1) (mas yr−1)

Algol H 2.50 219.0 44.7 1569 −2 10 4 225 64 888 0 47
Algol G 0.27 66.4 26.1 911 −8 16 25 427 379 1479 0 89
Algol F 0.43 33.7 16.2 572 −10 18 61 515 739 1144 0 109
Algol E 0.26 27.8 14.6 510 −12 20 79 547 835 1020 0 118
Algol D 0.24 20.0 11.7 416 −14 22 123 591 832 832 0 133
Algol C 1.2 1.9 2.1 75 −30 38 151 151 151 151 0 153

Note. Col. 1: candidate. Cols. 2–5: mass, period, and semimajor axis (m3, p3, and a3). Cols. 6–7: radial velocity limits during Δt = p3 (Equations (21)–(22): v v,min max). Cols. 8–11: distance
change limits during Δt = 5y and Δt = 20y (Equations (23)–(24): Damin, Damax). Cols. 12–13: proper motion limits (Equations (25)–(26): m m,min max).
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Figure A2. Case II: Interference of two circular orbit (O − C)e=0 curves. Red and blue curve periods are p1 = 12,295d and p1 = 46,159d, respectively. Other
parameters are given in Table A1. The black curve shows the combined (O − C)1+2 effect having a period P1 = 46,122d. All curves are shown as a function of time
(left-hand panels: t) and phase (right-hand panels: f). Left-hand panel units are [t] = HJD and [O − C] = days. Right-hand panel units are [f] = dimensionless and
[O − C] = days.

Figure A1. Case I. Black lines show 40 eccentric orbit O − Ce>0 curves (Equation (A2)) having parameters specified in Table A1 (Case I). Red lines show the
respective circular orbit O − Ce=0 curves (Equation (A1)). Blue lines denote the difference curves (O − C)diff (Equation (A3)). Parameters ΔA, fD min, and fD max
(Equations (A4)–(A6)) are given above each panel. Blue and red circles denote the first two (O − C)diff curve minima and maxima. To save space, we show no
quantitative xy-axis label values, and we offset the (O − C)diff curve below the O − Ce>0 and O − Ce=0 curves. Units are [t] = HJD (x-axis) and [O − C] = days
(y-axis).

28

The Astrophysical Journal, 920:137 (35pp), 2021 October 20 Jetsu



Figure A3. Case III: Interference of two circular orbit (O − C)e=0 curves. Red and blue curve periods are p1 = 12,304d and p2 = 25,274d. The black curve shows
combined (O − C)1+2 effect having a period P1 = 24,771d. Otherwise, as in Figure A2.

Figure A4. All data: Unstable four-signal eccentric orbit model periodograms (Table A7:  = 4). The upper and lower panels show long- and short-search
periodograms (Equation (10)). Their colors are red (z1( f1)), blue (z2( f2)), green (z3( f3)), and yellow (z4( f4)). Open diamonds denote the locations of the best
frequencies. Their corresponding periods are P1 = 14,912d, P2 = 20,984d, P3 = 26,846d, and P4 = 55,172d (Table A7: = 4). Units are frequencies [f1] = , ...,
= [f4] = day−1 and periodogram slices [z1( f1)] = , ..., = [z4( f4)] = days.
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Figure A5. All data: unstable four-signal eccentric orbit model (Table A7: = 4). (a) Data (black dots), model g(t) (continuous black line), and p(t) trend (dotted
black line). (b) Data minus p(t) trend (black dots), g(t) minus p(t) (black line), g1(t) signal (red line), g2(t) signal (blue line), g3(t) signal (green line), and g4(t) signal
(yellow line). Signal periods are P1 = 14,912d, P2 = 20,984d, P3 = 26,846d, and P4 = 55,172d. Residuals (blue dots) are offset to −0.15 (dotted blue line). Units are
[t] = days and [y] = days.

Figure A6. All data: stable three-signal eccentric orbit periodograms (Table A7: = 3). The best periods are at P1 = 20,358d, P2 = 24,742d, and P3 = 79,999d.
Otherwise as in Figure A4.
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Figure A8. All data: three signals yi,j (Equation (20)) of the stable eccentric orbit model (Table A7: = 3). Each signal is plotted as a function of time (t) and phase
(f). Signal curve colors are as in Figure A7. Signal periods are P1 = 20,358d, P2 = 24,742d, and P3 = 79,999d. Left-hand panel units are [t] = days and
[h1(t)] = [h3(t)] = [h3(t)] = days. Right-hand panel units are [f] = dimensionless and [h1(t)] = [h3(t)] = [h3(t)] = days.

Figure A7. All data: stable three-signal eccentric orbit model (Table A7: = 3). Signal periods are P1 = 20,358d, P2 = 24,742d, and P3 = 79,999d. Otherwise as in
Figure A5.
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Figure A9. Periodograms for residuals of the = 3 model of all data (Figure A7, blue dots): two-signal model periodograms (Table A7: = 6). The best periods
are at P1 = 680 4 and P2 = 7290d. Otherwise as in Figure A4.

Figure A10. Model for residuals of = 3 model for all data (Figure A7, blue dots): two signals have periods P1 = 680 4 and P2 = 7290d (Table A7,  = 6
model). Otherwise as in Figure A5.
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Figure A11. Signals in residuals of the = 3 model for all data (Figure A7, blue dots): two signals yi,j (Equation (20)) have periods P1 = 680 4 and P2 = 7290d

(Table A7, = 6 model). Otherwise as in Figure A8.

Figure A12. All data: five-signal circular orbit model periodograms (Table A9:  = 2). The best periods are at P1 = 10,144d, P2 = 12,294d, P3 = 24,247d,
P4 = 42,422d, and P5 = 120,740d. Otherwise as in Figure A4.
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Figure A13. All data: five-signal circular orbit model (Table A9:  = 2). The signal periods are P1 = 10,144d, P2 = 12,294d, P3 = 24,247d, P4 = 42,422d, and
P5 = 120,740d. Otherwise as in Figure A5.

Figure A14. First 185y data eccentric orbit analysis (Section 5.3). The green line denotes the g(t) model = 4 + 6 (Figure 3). Dotted red lines show models for 20
bootstrap samples. The last 50y data prediction begins from the dotted vertical line. The continuous vertical line is the data turning point in Figure 3(b). Units are
[t] = HJD and [O − C] = days.
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