
Version April 27, 2020
09/06/15

DISCRETE CHI-SQUARE METHOD FOR DETECTING MANY SIGNALS

L. Jetsu
Department of Physics, P.O. Box 64, FI-00014 University of Helsinki, Finland

Version April 27, 2020

ABSTRACT

Unambiguous detection of signals superimposed on unknown trends is difficult for unevenly spaced
data. Here, we formulate the Discrete Chi-square Method (DCM) that can determine the best model
for many signals superimposed on arbitrary polynomial trends. DCM minimizes the Chi-square for
the data in the multi-dimensional tested frequency space. The required number of tested frequency
combinations remains manageable, because the method test statistic is symmetric in this tested fre-
quency space. With our known tested constant frequency grid values, the non-linear DCM model
becomes linear, and all results become unambiguous. We test DCM with simulated data containing
different mixtures of signals and trends. DCM gives unambiguous results, if the signal frequencies
are not too close to each other, and none of the signals is too weak. It relies on brute computational
force, because all possible free parameter combinations for all reasonable linear models are tested.
DCM works like winning a lottery by buying all lottery tickets. Anyone can reproduce all our results
with the DCM computer code.a We also present one preliminary real use case, where DCM is applied
to the observed (O) minus the computed (C) eclipse epochs of a binary star, XZ And. This DCM
analysis reveals evidence for the possible presence of a third and a fourth body in this system. One
recent study of a very large sample of binary stars indicated that the probability for detecting a fourth
body from the O-C data of eclipsing binaries is only about 0.00005.
Subject headings: methods: data analysis – methods: numerical – methods: statistical

1. INTRODUCTION

The Discrete Fourier Transform (DFT), also called the
power spectrum method, is one of the most frequently
applied period analysis methods in natural sciences (e.g.
Lomb 1976; Scargle 1982; Zechmeister & Kürster 2009).
The above DFT versions rely on the assumption that the
data contains no trends, and the correct model is one si-
nusoidal signal. In the Lomb-Scargle version, the mean
of the data is removed before DFT computation, while
the Zechmeister-Kürster version gives an unambiguous
value for this mean. Systematic trends in the data must
be removed before DFT analysis, like in the Kepler satel-
lite light curve detrending pipelines PDC-MAP (Murphy
2012) or ARC2 (Aigrain et al. 2017). However, this re-
moval of trends is not trivial, and it can seriously mislead
the period analysis (e.g. Olspert et al. 2018).

Since DFT searches for one period at the time, we call
it a one-dimensional period finding method. All trends
in the data must be removed before applying DFT. After
this detrending, the DFT search for many pure sinusoidal
signals usually relies on “pre-whitening”. In this tech-
nique, the highest DFT periodogram peak gives the best
period for the detrended original data. The sinusoidal
model with this best period is subtracted from these de-
trended data. The next second best period is determined
with the DFT analysis of the residuals. This second best
period gives the sinusoidal model for the residuals, and
the next residuals for DFT analysis.

Countless DFT studies have been published in natural

lauri.jetsu@helsinki.fi
a This python program dcm.py and the other three necessary files

are freely available in Zenodo database: doi 10.5281/zen-
odo.3661072. All files, variables and other program code re-
lated items are printed in magenta colour. Our Appendix gives
detailed instructions for using dcm.py.

sciences. Since Astrophysics Data System (ADS) alone
contains over four thousand citations to the DTF version
by Scargle (1982), we mention only some recent astro-
nomical DFT studies: Analysis of Kepler satellite light
curves (e.g. Reinhold & Reiners 2013), Planet detection
from radial velocities (e.g. Mayo et al. 2019), Variable
star identification in large surveys (e.g. Pawlak et al.
2019) and Stellar pulsations (e.g. Mellon et al. 2019).

There are other period finding methods that can search
for more complicated models than a simple sinusoid, like
the Three Stage Period Analysis (Jetsu & Pelt 1999,
TSPA) or the Continuous Period Search (Lehtinen et al.
2011, CPS). However, these methods can also only detect
one signal at the time.

Our DCM can detect many signals superimposed on
arbitrary polynomial trends. While DFT can detect only
first order harmonic signals of pure sinusoids, our DCM
can also detect much more complicated signals composed
of any arbitrary order harmonics. We formulate DCM in
Sects. 2 and 3, and test it with simulated data in Sect.
4. We demonstrate how DCM can unambiguously detect
a sum of three sinusoids superimposed on a second order
polynomial trend (Sect. 4.1), and how this best model
can be identified among many alternative nested models
for the data (Sect. 4.2). The consequences of searching
for too many, or too few, signals are discussed (Sects.
4.3 and 4.4). Finally, we determine the data constraints
for an unambiguous DCM analysis (Sect. 4.5). All these
results can be reproduced with the DCM program code
input and output specified in our appendix (Table A1).
One DCM real use case is also presented (Sect. 5).

2. MODEL

The data are yi = y(ti)±σi, where ti are the observing
times and σi are the errors (i = 1, 2, ..., n). The time
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span of data is ∆T = tn−t1. The notations for the mean
and the standard deviation of yi are my and sy. Before
modelling, we subtract the first observing time t1 from
all observing times ti. Hence, the zero point in time,
t = 0, is at t1. Our model is

g(t) = g(t,K1,K2,K3) = h(t) + p(t), (1)

where

h(t) =h(t,K1,K2) =

K1∑
i=1

hi(t) (2)

hi(t) =

K2∑
j=1

Bi,j cos (2πjfit) + Ci,j sin (2πjfit) (3)

p(t) =p(t,K3) =

K3∑
k=0

pk(t) (4)

pk(t) =Mk

[
2t

∆T

]k
. (5)

This model searches for two patterns in the data: the
periodic h(t) pattern that repeats itself, and the aperi-
odic p(t) pattern that does not. The K1 harmonic hi(t)
signals have a frequency fi and an order K2. The sum of
these signals is superimposed on the K3 order polynomial
trend. The number of free parameters is

p = K1 × (2K2 + 1) +K3 + 1. (6)

They are β̄ = [β1, β2, ..., βp] = [B1,1, C1,1, f1, ..., BK1,K2 ,
CK1,K2

, fK1
, M0, ...,MK3

]. The first group of free param-
eters, the frequencies β̄I = [f1, ..., fK1

], make this g(t)
model non-linear. If these β̄I are fixed to constant known
numerical values, the model becomes linear, and the so-
lution for the remaining second group of free parameters,
β̄II = [B1,1C1,1, ..., BK1,K2 , CK1,K2 , M0, ...,MK3 ], is un-
ambiguous.

The 2t/∆T argument in pk(t) ensures that the scale
in the polynomial coefficients M0, ...,MK3

is the same as
in the amplitudes B1,1, C1,1, ..., BK1,K2 , CK1,K2 of hi(t)
harmonics. With this scaling, the higher polynomial or-
ders can not dominate pk(t) >> hi(t), nor become in-
significant pk(t) << hi(t), for any arbitrary unit of time
t. Therefore, the simulated values of all these free pa-
rameters β̄II can later be drawn from the same uniform
random distribution (Sect. 4: Eq. 26).

The model residuals

εi = y(ti)− g(ti) = yi − gi (7)

give the Chi-square

χ2 =

n∑
i=1

ε2i
σ2
i

(8)

and the sum of squared residuals

R =

n∑
i=1

ε2i . (9)

For each hi(t) signal, we determine the parameters

Pi = 1/fi = Period

Ai = Peak to peak amplitude

ti,min,1 = Deeper primary minimum epoch

ti,min,2 = Secondary minimum epoch (if present)

ti,max,1 = Higher primary maximum epoch

ti,max,2 = Secondary maximum epoch (if present)

The first observing time t1, which is removed before mod-
elling, is added back to the above four epochs. The Pi
and Ai values are the same for any zero point t = 0.

In our figures, we use the same colours for the frequen-
cies, the amplitudes, the curves and the periodograms of
the same hi(t) signal. We give those colours in Table 1.

3. METHOD

If the errors σi are known, the test statistic of our
period finding method is

z = z(f1, f2, ..., fK1
) =

√
χ2

n
, (10)

where χ2 is minimized for the linear g(t) model having
the fixed tested β̄I = [f1, f2, ..., fK1 ] frequencies.

If the σi errors are unknown, we use

z = z(f1, f2, ..., fK1) =

√
R

n
. (11)

The core of DCM approach is that the test statistic z
in Eqs. 10 and 11 refers indirectly to the reduced Chi-
square (Barlow 1993; Andrae et al. 2010). Our DCM
computer code dcm.py minimizes z. For any data, the
possible alternative nested models that can be tested
with dcm.py are

0 ≤ K1 ≤ 6 ≡ From one to six periodic signals

1 ≤ K2 ≤ 2 ≡ Harmonic signal orders

0 ≤ K3 ≤ 6 ≡ Polynomial trend orders.

Any arbitrary pair, g1(t) and g2(t), of these nested mod-
els can be compared. We use the number of free param-
eters (p1 < p2), the Chi-squares (χ2

1, χ
2
2), and the sum of

squared residuals (R1, R2) of these two models to deter-
mine which one of them is a better model for the data.
If the errors σi are known, our test statistic is

Fχ=

(
χ2

1

χ2
2

− 1

)(
n− p2 − 1

p2 − p1

)
. (12)

If these errors are unknown, we use

FR =

(
R1

R2
− 1

)(
n− p2 − 1

p2 − p1

)
. (13)

The Fχ or FR test statistic is used to identify the better
model for the data. The null hypothesis is

H0: “The model g2(t) does not provide a signifi-
cantly better fit to the data than the model g1(t).”

Under H0, both Fχ and FR have an F distribution with
(ν1, ν2) degrees of freedom, where ν1 = p2 − p1 and
ν2 = n − p2 (Draper & Smith 1998). The probability



Discrete Chi-square Method (DCM) 3

for F = Fχ or F = FR reaching a fixed level F0 is called
the critical level QF = P (F ≥ F0). We reject the H0

hypothesis, if

QF < γF = 0.001, (14)

where γF is a pre-assigned significance level.
For K1 = 2 signals, the z(f1, f2) = z(f2, f1) symmetry

requires only the testing of f1 > f2 combinations. The
six respective symmetries z(f1, f2, f3) = z(f1, f3, f2) =
z(f2, f1, f3) = z(f2, f3, f1) = z(f3, f1, f2) = z(f3, f2, f1)
for K1 = 3 signals require only the f1 > f2 > f3 tests
(e.g. Fig. 1d). Hence, we test only the f1 > f2 > f3 >
f4 > f5 > f6 combinations.

In our long frequency interval search, we test an evenly
spaced long grid of nL frequencies between fmin = P−1

max

and fmax = P−1
min (Figs. 1a-f: higher longer rows). The

best frequency candidates f1,mid, ..., fK1,mid at the z min-
imum give the mid points for the denser evenly spaced
short grids of nS tested frequencies (Fig. 1: diamonds).
The intervals of these short grids are

[fi,mid − a, fi,mid + a]. (15)

The suitable values are a = c (fmax− fmin)/2, where the
width is 5% ≡ 0.05 ≤ c ≤ 0.20 ≡ 20% of the long test
interval (Figs. 1a-f: lower shorter rows). The best fre-
quencies are at the global minimum of the periodogram

zmin = z(f1,best, f2,best, ..., fK1,best). (16)

Some graphical presentation of the full z periodogram
would be possible only for the one z(f1), the two z(f1, f2)
and the three z(f1, f2, f3) dimensional cases. We solve
these dimensional problems by presenting only the fol-
lowing one-dimensional slices of the full periodograms

z1(f1) = z(f1, f2,best, ..., fK1,best)

z2(f2) = z(f1,best, f2, f3,best, ..., fK1,best)

z3(f3) = z(f1,best, f2,best, f3, f4,best, ..., fK1,best) (17)

z4(f4) = z(f1,best, f2,best, f3,best, f4, f5,best, fK1,best)

z5(f5) = z(f1,best, f2,best, f3,best, f4,best, f5, fK1,best)

z6(f6) = z(f1,best, f2,best, f3,best, f4,best, f5,best, f6)

All best frequencies fulfill fi,best > fi+1,best, because we
test only frequencies f1 >f2 >f3 >f4 >f5 >f6. There-
fore, every zi(fi) periodogram ends at the minimum of
the next zi+1(fi+1) periodogram (e.g. Fig. 2: upper
panel).

We perform a linear least squares fit to the data
with the fixed numerical values of the best frequen-
cies β̄I,Initial = [f1,best, f2,best, ..., fK1,best] detected in the
short interval search. This gives us the unambiguous
estimates for the values of the other free parameters
β̄II,Initial. We determine the final estimates for the free
parameters with the standard non-linear least squares
iteration

β̄Initial → β̄Final, (18)

where β̄Initial = [β̄I,Initial, β̄II,Initial].
The errors for the model parameters are determined

with the bootstrap procedure (Efron & Tibshirani 1986;
Jetsu & Pelt 1999). For the original data, we test all
frequency combinations within the short intervals of Eq.
15. During each bootstrap round, we select a random

Fig. 1.— Arbitrary tested frequencies. (a) Six highest longer
rows show tested frequencies f1 > f2 > f3 > f4 > f5 > f6 for

K1 = 6 signals and nL = 40 in a long search between P−1
max and

P−1
min (vertical red lines). Six lower shorter rows show short search

frequencies for nS = 10 and c = 0.10, where diamonds denote
best frequency candidates fi,mid detected in long search. Symbol
colours are given in Table 1. (b-f) Arbitrary tested frequencies for
K1 = 5, 4, 3, 2 and 1 signals with given nL, nS and c combinations.

sample ε̄∗ from the residuals ε̄ of this best g(t) model
for the original data ȳ (Eq. 7). Any εi value can enter
into this random sample ε̄∗ as many times as the random
selection happens to favour it. These random residuals
give the artificial data sample

y∗i = gi + ε∗i (19)

during each bootstrap round. The best model for each
artificial ȳ∗ random data sample gives one estimate for
every model parameter. The error estimate for each par-
ticular model parameter is the standard deviation of all
estimates obtained for this parameter in all bootstrap
rounds.

4. SIMULATED DATA

We test our method with simulated data.

4.1. One simulated model

Here, we show that our method can detect the cor-
rect model parameter values. We illustrate this with the
following model having known free parameter values

gS1(t) =h(t) + p(t) =

K1∑
i=1

hi(t) +

K3∑
k=0

pk(t) (20)

hi= (Ai/2) sin [2πfi(t− Ti)]

pk(t) =Mk

[
2t

∆T

]k
,

where K1 = 3 and K3 = 2. The order of the three sinu-
soidal hi(t) signals is K2 = 1. The adopted known free
parameter values f1 =1/P1, f2 =1/P2, f3 =1/P3, T1, T2,
T3, A1, A2, A3, M0, M1 and M2 are given in Table 2.
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Fig. 2.— Model 19 long and short search periodograms for Table
3 data. Colours for z1(f1), z2(f2) and z3(f3) are given in Table 1.

The simulated n? = 500 time points t?i are drawn from
a uniform random distribution

U(0,∆T, n?) (21)

between 0 and ∆T = 4.
Evenly spaced observations yi coinciding with the si-

nusoid gi = a sin 2πti fulfill a = 23/2sy, where sy is
the standard deviation of yi = gi (Jetsu et al. 2013).
The peak to peak amplitude of such a sinusoid fulfills
A = 2a = 25/2sy. This relation also holds for cosine,
double sine and double cosine curves. Therefore, we com-
pute an estimate for the peak to peak amplitude A of the
simulated periodic signal from the standard deviation s?y
of the sum h(t?i ) of all hi(t

?
i ) signals in Eq. 20. If σm is

the mean of all data errors σi, the signal to noise ratio
SN = A/σm = 25/2s?y/σm gives

σm = 25/2s?y/SN (22)

for the accuracy of simulated data. For our chosen fixed
SN = 100 level, we draw the simulated data errors σ?i
from a Gaussian distribution

N(m?, s?, n?), (23)

where m? = 0 and s? = σm. The numerical values for
one arbitrary sample of simulated data1

y?i = gS1(t?) + σ?i (24)

are given in Table 3.
We perform the period analysis for the simulated data

of Table 3 over the long tested period interval between
Pmin = 1 and Pmax = 2. The test statistic z of Eq. 10 is
computed for the g(t,K1 = 3,K2 = 1,K3 = 2) model of
Eq. 1, which will be later referred to as “model 19” (see
Table 4). The z1(f1), z2(f2) and z3(f3) periodograms
are shown in Fig. 2, where all three minima are clearly
separated. The simulated input and the detected output
model parameter values are given in Table 2. They agree
perfectly. This best detected model 19 for the simulated

1 Simulated Table 3 data are in file TestData.dat in Zenodo.

data is shown in Fig. 3a. The residuals are stable and
show no systematic trends (Fig. 3b: blue circles). The
results for the frequencies (f1, f2, f3) and the amplitudes
(A1, A2, A3) of this best model are shown in Fig. 4. The
bootstrap estimates for the frequencies and the ampli-
tudes show linear correlations. These linear correlations
indicate that any shift away from the correct model in
one frequency or amplitude is compensated by a shift in
all other frequencies and amplitudes.

4.2. Identifying the best model

Here, we show how the best model for the data can be
identified among the many alternative nested models. In
the previous Sect. 4.1, we simulated the data of Table
3 with a model having K1 = 3, K2 = 1 and K3 = 2
(Eq. 20). Since we knew that this model was used in
creating these data, we used the test statistic z for the
g(t, 3, 1, 2) model in our period analysis. If the simulated
data were real data, we would not necessarily know this
correct K1 = 3, K2 = 1 and K3 = 2 combination.

Let us assume that the data of Table 3 were real data,
and the correct K1,K2 and K3 combination would be
unknown. In that case, we would have to test numerous
alternative models. Therefore, we test all 1 ≤ K1 ≤ 4,
1 ≤ K2 ≤ 2 and 0 ≤ K3 ≤ 3 combinations for the data
of Table 3. These 32 alternative models are compared in
Table 4, where we compute the values for their statistical
parameters χ2, Fχ and QF . We compare the “correct
model 19” to all other 31 alternative models.

This correct model 19 has p2 = 12 free parameters.
The fifteen alternative models 1-13 and 17-18 have p1<
p2 =12. The critical levels for all these fifteen alternative
models are so low that they fall below the computational2

accuracy of 10−16 (Table 4: QF < 10−16). Hence, any
correct model must have at least p = 12 free parameters,
and we have to reject the better model H0 hypothesis
presented in Sect. 3. The correct model 19 is certainly
better than any of these fifteen alternative models.

We give no Fχ or QF estimate (Eqs. 12 and 14) for
model 14, because it has the same number of free pa-
rameters as the correct model 19. However, model 19 is
definitely better, because its χ2 = 496.10 is smaller than
the χ2 = 750.28 for the alternative model 14 (Table 4).

All remaining fifteen alternative models have more free
parameters than the correct model 19. Hence, the num-
ber of free parameters for this model 19 becomes p1 = 12
in Eq. 12, while that for the other models becomes p2.

The correct model 19 is better than the following four
alternative models 15, 21, 25 and 26, because they all
have higher χ2 values (Table 4). We refer to these four
models as Fχ < 0, and use QF = 1 for their critical level,
because there is certainly no reason to reject the better
model H0 hypothesis presented in Sect. 3.

The remaining eleven alternative models 16, 20, 22-24
and 27-32 have lower χ2 values than the correct model
19. However, their critical levels QF are far above γF =
0.001 (Eq. 14). This means that the better model H0

hypothesis is not rejected, and the correct model 19 is
also better than all these eleven alternative models.

In general, the χ2 = 496.10 value for model 19 is al-
ready so close to n− p1 = 500− 12 = 488 that it is sta-

2 We refer to the computational accuracy of f.cdf subroutine in
scipy.optimize python library.
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Fig. 3.— Model 19 for Table 3 data. (a) Data yi ± σ1 (black circles), and g(t) and p(t) curves. (b) Data minus p(t), h(t), h1(t), h2(t)
and h3(t) curves. Residuals (blue circles) are offset to y = −1.6 level. Colours of all curves are given in Table 1

TABLE 1
Figure notations and colours.

Frequencies, Amplitudes Functions Periodograms
Colour i fi, Ai Symbol Figs. hi(t) Symbol Figs. zi(t) Symbol Figs.

Black - - - - g(t) Continuous line 3a, 6a, 9a - - -
Black - - - - p(t) Dotted line 3a, 6a, 9a - - -
Black - - - - h(t) Continuous line 3b, 6b, 9b - - -
Red 1 f1, A1 Circles 1, 4, 7, 10, 11 h1(t) Continuous line 3b, 6b, 9b z1(f1) Continuous line 2, 5, 8
Blue 2 f2, A2 Circles 1, 4, 7, 10, 11 h2(t) Continuous line 3b, 6b, 9b z2(f4) Continuous line 2, 5, 8
Green 3 f3, A3 Circles 1, 4, 7, 11 h3(t) Continuous line 3b, 6b z3(f3) Continuous line 2, 5
Yellow 4 f4, A4 Circles 1, 7 h4(t) Continuous line 6b z4(f4) Continuous line 5
Magenta 5 A5, f5 Circles 1 h5(t) Continuous line - z5(f5) Continuous line -
Cyan 6 f6, A6 Circles 1 h6(t) Continuous line - z6(f6) Continuous line -

tistically impossible to reach significant high Fχ values
with more complex p2 > p1 models, because increasing
p2 can not actually decrease χ2 a lot.

The second best model for the data is model 20 reach-
ing QF = 0.078 (Table 4). It resembles the correct model
19. Except for the third order polynomial coefficient M3,
the other free parameters of this model 20 are exactly the
same as those of the correct model 19 (Table 2). As ex-
plained in Sect. 2, the scale of all polynomial trend p(t)
coefficients M1, M2 and M3 is the same, which means

that equal absolute values for these coefficients cause the
same p(t) change during ∆T . The |M3| = 0.21 coeffi-
cient of model 20 is much smaller than the |M1| = 1.1
and |M2| = 1.8 coefficients, which means that the first
and second order trends dominate over the third order
trend. The P1 = 1.104± 0.003 period of model 20 agrees
with the simulated P1 = 1.1 period of the gS1(t) model,
but the results for the P2 and P3 periods do not. These
results confirm that even a minor deviation away from
the correct p(t) trend can mislead the period analysis.
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Fig. 4.— Model 19 frequencies (f1, f2, f3) and amplitudes
(A1, A2, A3). Original model results are denoted with larger blue
circles and bootstrap results with smaller red circles. Dotted lines
denote one, two and three sigma error limits.

TABLE 2
Simulated model. Column 1 gives parameters of Eq. 20.
Column 2 gives simulated values. Columns 3 and 4 give

detected values for models 19 and 20.

Simulated Detected
Parameter gS1(t) Model 19 Model 20

1/f1 = P1 1.1 1.100± 0.001 1.104± 0.003
A1 0.9 0.90± 0.01 0.95± 0.03

t1,min 0.325 0.325± 0.001 0.322± 0.002
t1,max 0.875 0.875± 0.001 0.874± 0.001

1/f2 = P2 1.4 1.40± 0.01 1.50± 0.04
A2 1.0 1.00± 0.02 1.8± 0.3

t2,min 0.050 0.50± 0.01 1.441± 0.003
t2,max 0.75 0.7500± 0.006 0.69± 0.02

1/f3 = P3 1.9 1.90± 0.01 1.73± 0.07
A3 1.1 1.10± 0.03 1.94± 0.3

t3,min 0.425 0.426± 0.008 0.54± 0.05
t3,max 1.375 1.375± 0.002 1.41± 0.01
M0 1.8 1.800± 0.002 1.74± 0.02
M1 -1.5 −1.500± 0.003 −1.1± 0.2
M2 -1.2 −1.201± 0.001 −1.8± 0.2
M3 - - 0.21± 0.08

TABLE 3
Simulated dataa of Eq. 24. Only first two observations of

all n? = 500 observations are shown below.

a This data file TestData.dat is given in Zenodo.

t?i y?i σ?i
0.001954782 1.285584396 0.053913136
0.008301549 1.222326656 0.082413098

... ... ...

We conclude that the best model 19 for the data can be
unambiguously identified among all alternative 32 nested
models.

4.3. Searching for too many signals

The simulated data of Table 3 contains only three sig-
nals. Here, we check what happens, if four signals (i.e.
too many signals) are searched for in these data.

The periodograms in Fig. 5 are computed for the four
signal model 27 (Table 4: K1 = 4, K2 = 1, K3 = 2).
The red z1(f1), the blue z2(f2) and the green z3(f3) pe-

TABLE 4
Comparing 32 nested models. Parameters are K1, K2, K3
(Eq. 1), p (Eq. 6), χ2 (Eq. 8), Fχ (Eq. 12) and QF (Eq. 14).

Critical levels QF are computed for Model 19. Last
column gives failed models (Fail=Yes or No)

Model K1 K2 K3 p χ2 Fχ QF Fail

One signal
1 1 1 0 4 1.12× 108 1.37× 107 < 10−16 -
2 1 1 1 5 3.50× 106 4.91× 105 < 10−16 -
3 1 1 2 6 2.28× 106 3.73× 105 < 10−16 -
4 1 1 3 7 7.35× 105 1.44× 105 < 10−16 -
5 1 2 0 6 9.32× 107 1.53× 107 < 10−16 -
6 1 2 1 7 3.41× 106 6.69× 105 < 10−16 -
7 1 2 2 8 2.21× 106 5.42× 105 < 10−16 -
8 1 2 3 9 7.10× 105 2.32× 105 < 10−16 -

Two signals
9 2 1 0 7 7.98× 107 1.57× 107 < 10−16 Yes
10 2 1 1 8 1.87× 106 4.59× 105 < 10−16 No
11 2 1 2 9 6.94× 104 2.25× 104 < 10−16 No
12 2 1 3 10 2.02× 104 1.71× 104 < 10−16 No
13 2 2 0 11 7.38× 107 7.24× 107 < 10−16 Yes
14 2 2 1 12 750.28 - - No
15 2 2 2 13 1012 < 0 1 No
16 2 2 3 14 495.76 0.116 0.847 No

Three signals
17 3 1 0 10 1.02× 107 5.01× 106 < 10−16 Yes
18 3 1 1 11 1.05× 105 1.03× 105 < 10−16 Yes
19 3 1 2 12 496.10 - - No
20 3 1 3 13 492.94 3.116 0.078 No
21 3 2 0 16 1290 < 0 1 Yes
22 3 2 1 17 492.31 0.742 0.592 Yes
23 3 2 2 18 487.46 1.421 0.205 No
24 3 2 3 19 486.75 1.317 0.240 Yes

Four signals
25 4 1 0 13 7.22× 105 < 0 1 Yes
26 4 1 1 14 1091.33 < 0 1 Yes
27 4 1 2 15 490.95 1.692 0.168 Yes
28 4 1 3 16 490.19 1.455 0.214 Yes
29 4 2 0 21 486.61 1.036 0.410 Yes
30 4 2 1 22 486.62 0.929 0.506 Yes
31 4 2 2 23 486.60 0.844 0.595 Yes
32 4 2 3 24 486.10 0.814 0.636 Yes

riodogram levels are low and stable, and their minima
are shallow. Only the yellow z4(f4) periodogram shows
a clear minimum (Fig. 5: lower panel). The detected pe-
riods P1 = 1.16, P2 = 1.19, P3 = 1.25 and P4 = 1.97 differ
from the correct model 19 periods P1 = 1.10, P2 = 1.40
and P3 =1.90 (Table 2).

Model 27 “explodes”, because the amplitudes of the
red h1(t), the blue h2(t) and the green h3(t) signals dis-
perse, and only the amplitude of the yellow h4(t) signal
is stable (Fig. 6). We refer to this result as

Dispersing amplitudes.

These dispersing large amplitude curves nearly cancel
out each other, which gives a reasonable χ2 = 490.95
value (Table 4). The bootstrap results show that the
dotted frequency error lines intersect the thick green con-
tinuous f1 = f2 and f2 = f3 diagonal lines (Fig. 7). We



Discrete Chi-square Method (DCM) 7

Fig. 5.— Model 27 periodograms z1(f1), ..., z4(f4) for Table 3
data. Otherwise as in Fig. 2.

refer to this as

Intersecting frequencies.

Model 27 fails, because the data do not contain four sig-
nals, but only three. Actually, all four signal models
consistently fail. Nearly two thirds of the two, the three
and the four signal models fail (Table 4: Fail=”Yes” for
15 models out of 24). All these failed models are just
an additional proof for that model 19 is the best model
for Table 3 simulated data. In fact, we could have re-
jected these failed models without ever computing their
χ2 estimates. Furthermore, the rejected one signal mod-
els 1-8 with very high χ2 can not have Fail=”Yes” or
“No”. These one signal models simply can not have “in-
tersecting frequencies” or “dispersing amplitudes”, be-
cause this plural alternative is impossible. For these one
signal models, there is no need for applying the frequency
and the amplitude criteria, which will be introduced later
(see Eqs. 28 and 29). An unambiguous separation be-
tween the signal and the trend is easiest when the one
signal model is the correct model.

4.4. Finding too few signals

The simulated data of Table 3 contains three signals.
Yet, the two signal K1 = 2,K2 = 1 and K3 = 0 model
9 periodograms z1(f1) and z2(f2) merge, and show only
the minimum of one period (Fig. 8). The black g(t) curve
of this model 9 makes no sense (Fig. 9a). The red h1(t)
and the blue h2(t) signal curves disperse, and the blue
residuals show regular variation (Fig. 9b). The f1 and
f2 frequencies intersect, and the A1 and A2 amplitudes
disperse (Fig. 10). This model fails, because the use
of K3 = 0 order p(t) polynomial totally ignores the real
trend in the data. This idea is supported by the fact
that all two, three and four signal models having K3 = 0
consistently fail (Table 4: models 9, 13, 17, 21, 25 and
29).

These results show that even if two signals are not
detected in the data, this does not mean that the correct
number of signals can not be three or even more. The
detection of the correct number of signals depends on

Fig. 6.— Model 27 for Table 3 data. Otherwise as in Fig. 3.

Fig. 7.— Model 27 frequencies (f1, f2, f3, f4) and amplitudes
(A1, A2, A3, A4) for Table 3 data. Otherwise as in Fig. 4.

the selection of the correct trend. Wrong p(t) trend can
eliminate real signals. The results in Table 4 indicate
that the false detection of too many signals is inprobable,
because all four signal models 25-32 fail. For all 32 nested
models of Table 4, the false detection of too few signals
is more probable than the false detection of too many
signals, because the two signal models fail only two times
out of eight (only models 9 and 13), but the four signal
models fail eight times out of eight (all models 25-32)

4.5. Many simulated models

Here, we create artificial data with many simulated
models having random signal frequencies. We show that
our method can retrieve the known input parameters of
these models. The K1 simulated f?i frequencies are se-
lected from a uniform random distribution

U(fmin, fmax,K1) (25)

between fmin =1/Pmax and fmax =1/Pmin, where Pmin =
1 and Pmax =2. These random frequencies are rearranged
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Fig. 8.— Model 9 periodograms z1(f1) and z2(f2) for Table 3
data. Otherwise as in Fig. 2.

Fig. 9.— Model 9 for Table 3 data. Otherwise as in Fig. 3

Fig. 10.— Model 9 frequencies (f1, f2) and amplitudes (A1, A2)
for Table 3 data. Otherwise as in Fig. 4.

into decreasing order f?1 > f?2 ... > f?K1
. They give β̄?I =

[f?1 , f
?
2 ..., f

?
K1

] for the simulated g(t) model (Eq. 1).
The K1× 2K2 values for the amplitudes B?1,1, C

?
1,1, ...,

B?K1,K2
, C?K1,K2

of the simulated hi(t) signals, as well as
the K3 + 1 values for the coefficients M?

0 , ...,M
?
K3

of the
simulated pk(t) polynomials, are drawn from a uniform
random distribution

U(−0.5,+0.5,K1 × 2K2 +K3 + 1). (26)

The above signal amplitudes and polynomial coefficients

Fig. 11.— Thirty simulated data samples created with three sig-
nal model 18. Left hand panels show simulated fi,sim and de-
tected fi,det frequencies. Right hand panels show respective am-
plitudes. Highlighted models fulfill criteria of Eq. 28 (Transparent
diamonds) and Eq. 29 (Transparent circles). Continuous lines de-
note equal simulated and detected levels. Symbol colours are given
in Table 1.

give β̄?II for the simulated g(t) model (Eq. 1). All free pa-
rameters of this simulated g(t) model are β̄? = [β̄?I , β̄

?
II ].

The simulated n? = 500 time points t?i are drawn from
a uniform random distribution of Eq. 21, where ∆T = 4.

The chosen signal to noise ratio SN and the standard
deviation s?y of all h(t?i ) give the accuracy σm of the sim-
ulated data (Eq. 22). The n? errors σ?i for the simulated
data are drawn from the Gaussian distribution of Eq. 23.

Finally, the simulated data are

y?i = g(t?i , β̄
?) + σ?i . (27)

We use the three signal model 18 (K1 =3,K2 =1,K3 =
1) to produce simulated data y?i of Eq. 27. Our sample
size is n?=500 and the signal to noise ratio is SN=100.
The results for thirty model 18 simulations are shown
in Fig. 11. If this DCM analysis of ours succeeds, the
simulated frequencies fi,sim and the detected frequencies
fi,det in these samples should coincide with the continu-
ous equal value diagonal lines.

The transparent diamonds in Fig. 11 highlight models
having at least one simulated frequency pair that fulfills

fi,sim − fi+1,sim < fcrit(fmax − fmin), (28)

where fcrit = 0.05 and i = 1 or 2. These signal frequen-
cies differ less than ±5% in the tested frequency range
between fmin and fmax. The models for these particular
simulated samples may fail due to the dispersing ampli-
tudes and the intersecting frequencies discussed in Sects.
4.3 and 4.4. As expected, some of these highlighted de-
tected frequencies fi,det and amplitudes Ai,det do deviate
from the equal value levels in Fig. 11.

The transparent circles in Fig. 11 highlight models

Ai/Amax < Acrit, (29)

where Acrit =0.5 and Amax is the highest value of all sig-
nal amplitudes Ai (i = 1, 2, 3). For these particular sim-
ulated samples, signal detection becomes more difficult,
because at least one signal is two times weaker than the
strongest signal. Again, as expected, the detected fre-
quencies fi,det and amplitudes Ai,det for some these high-
lighted samples deviate from the diagonal equal value
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Fig. 12.— Periodograms z1(f1) and z2(f2) for XZ And data.
Otherwise as in Fig. 2.

Fig. 13.— Model for XZ And data. Otherwise as in Fig. 3.

lines in Fig. 11.
Clearly, the simulated model signal frequencies (Eq.

28: fi,sim) and amplitudes (Eq. 29: Ai,sim) determine the
success of DCM analysis. We can confirm this important
result from the relative error

σfi,rel = |fi,det − fi,sim|/fi,sim. (30)

It measures the error for the detected frequency fi,det

in the units of the simulated frequency fi,sim. We com-
pute the mean of relative errors σfi,rel for m = 100 sim-
ulated samples y?i produced with model 18, n? = 500
and SN = 100 (Eq. 27). The results are given in Ta-
ble 5 (Lines 1-3). The mean of relative error σfi,rel de-
creases when models fulfilling criterion of Eq. 28 are
removed (m = 100 → 69). It decreases even more
when models fulfilling criterion of Eq. 29 are also re-
moved (m = 69 → 48). These general results are con-
sistently confirmed with doubled signal to noise ratio
SN = 100→ 200 (Table 5: Lines 4-6) and doubled sam-
ple size n? = 500 → 1000 (Table 5: Lines 7-9). This
confirms that our DCM can detect the correct frequen-
cies when

1. Signal frequencies are not too close (Eq. 28).

2. None of the signal amplitudes is too weak (Eq. 29).

3. Sample size n and signal to noise ratio SN are suf-
ficient (Table 5).

If these correct frequencies are detected, the values for
the remaining other model parameters will also be cor-

TABLE 5
Mean of relative errors σf1,rel, σf2,rel and σf3,rel for one
hundred model 18 simulations with n? = 500 and SN=100.
Lines 1-3 give results for all models (m = 100), when Eq.
28 criterion models are removed (m = 100→ 69), and when
Eq. 29 criterion models are also removed (m = 69→ 48).
Signal to noise ratio SN is doubled on next three lines.

Sample size n? is doubled on next three lines.

n? = 500, SN = 100
Line Samples σf1,rel σf2,rel σf3,rel m

1 All 0.012 0.029 0.0090 100
2 Eq. 28 0.0085 0.013 0.0065 69
3 Eqs. 28 and 29 0.0030 0.011 0.0051 48

SN doubled: n? = 500,SN = 200
Line Samples σf1,rel σf2,rel σf3,rel m

4 All 0.0039 0.014 0.011 100
5 Eq. 28 0.0036 0.0083 0.0082 76
6 Eqs. 28 and 29 0.0019 0.0036 0.0032 37

n? doubled: n? = 1000,SN = 100
Line Samples σf1,rel σf2,rel σf3,rel m

7 All 0.010 0.019 0.0050 100
8 Eq. 28 0.0064 0.015 0.0049 77
9 Eqs. 28 and 29 0.0034 0.0077 0.0041 40

rect, because linear modelling is always unambiguous.
Nevertheless, failing to detect even a single correct fre-
quency can seriously mislead the period analysis (e.g.
Figs. 6 and 9).

5. REAL USE CASE

We also provide one example of preliminary real case
use of DCM.

Periodic changes occur in the observed (O) minus the
computed (C) eclipse epochs of binaries. The most prob-
able causes for such periodicities are a third body (e.g.
Li et al. 2018), a magnetic activity cycle (e.g. Apple-
gate 1992) or an apsidal motion (e.g. Borkovits et al.
2005). Recently, Hajdu et al. (2019) searched for third
bodies in a large sample of about 80 000 eclipsing bina-
ries. The model in their one-dimensional period analysis
of O-C data was a pure sinusoidal signal superimposed
on a second order polynomial (Hajdu et al. 2019, Eq.
11). They discovered 992 hierarchial triple systems, but
only four candidates possibly having a fourth body. In
other words, the probability for finding a fourth body in
their large sample was about 4/80 000 = 0.00005.

Our data are the observed (O) minus the computed
(C) primary minimum epochs of XZ And, which were
retrieved from Lichtenknecker-Database of the BAV3 in
September 2019. The primary (A4 IV-V, 3.2M�, 2.4R�)
and the secondary (G IV, 1.3M�, 2.6R�) of this binary
orbit each other during Porb = 1.357 days (Demircan
et al. 1995). Our O-C data values had been computed
from the ephemeris

JD 2452500.5129 + 1.35730911E (31)

(Kreiner 2004). Since there already was evidence for the
possible presence of a third body in XZ And (Demir-
can et al. 1995; Manzoori 2016; Chaplin 2019), we ap-
plied DCM to the O-C data of XZ And. The DCM pe-
riodograms for the g(t, 2, 1, 2) model are shown in Fig.

3 XZ And data were retrieved from Lichtenknecker-Database
of the BAV

https://www.bav-astro.eu/index.php/veroeffentlichungen/lichtenknecker-database/lkdb-b-r
https://www.bav-astro.eu/index.php/veroeffentlichungen/lichtenknecker-database/lkdb-b-r
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12. We detect the periods P1 = 13418d =37y and
P2 = 32192d =88y. These two signals are shown in Fig.
13. For example, Demircan et al. (1995) and Chaplin
(2019) have also detected the P1 periodicity. It seems
that our DCM can easily detect evidence for the possible
presence of a fourth body in XZ And. This result illus-
trates the potential of DCM in detecting many signals
superimposed on unknown polynomial trends.

From the DCM point of view, the most important cur-
rently unsolved questions are

1. How many K1 signals do these data contain?

2. What is the correct K3 trend?

Since the aim of the current paper is to present DCM,
the final results of this preliminary real use case will be
presented in a future work. For this reason, no DCM files
of this case are published here.

6. DISCUSSION

The main point of DCM is that our periodic non-linear
model becomes linear when the grid of constant tested
frequencies is fixed. All analysis results become unam-
biguous, which guarantees the success of DCM. Actu-
ally, we can now present a general numerical solution for
any non-linear g(t, β̄) model. This non-linear model may
be periodic, aperiodic, or combination of both, like the
DCM model. Our simple recipe is

1. Divide the free parameters β̄ to two parts:

a: Those that make the model nonlinear = β̄I

b: The rest of the free parameters = β̄II

2. Fix the tested β̄I grid.

3. Test all reasonable linear models.

4. Identify the best model among these models.

5. Solve the model parameter errors with bootstrap.

Another main point of DCM is the z test statistic sym-
metry in the K1-dimensional frequency space. Without
this symmetry, our period search would literally resem-
ble the search for a needle in a haystack for higher num-
ber of signals. For example, the six signal models have
K1! = 6! = 720 symmetries, which give the same number
equally good alternative z periodogram minima in six-
dimensional frequency space. This z symmetry allows us
to test only a single frequency combination, and to get
rid of the other irrelevant K1! − 1 frequency combina-
tions. Whatever the correct real frequency values may
be, they can always be rearranged into a decreasing order
f1 > f2 > ... > fK1 . Therefore, we test only the combi-
nations of all those one-dimensional frequency intervals
that do not overlap. We never have to bother about the
rest (K1!−1)/K1! of the entire frequency space, because
nothing new can be found out there.

All periodogram minima of model 19 are steep in Fig.
2, which means that χ2 with the initial estimate β̄Initial

is already very close to its possible minimum value be-
fore the non-linear minimization iteration of Eq. 18 even
begins. The zi(fi) periodograms in all Figs. 2, 5 and 8

display no sudden jumps, because there is strong corre-
lation between the χ2 values for tested frequencies close
to each other. If the grid of tested constant frequencies is
already sufficiently dense, there is no sensible “escape”
away from the minima of these continuous, stable and
unambiguous zi(fi) periodogram curves for linear mod-
els. Thus, the non-linear iteration of Eq. 18 can not very
much improve the χ2 estimate, because the search for the
best model solution is already nearly over. For example,
the χ2 estimates for all 32 models of Table 4 are practi-
cally the same with, or without, the non-linear iteration
alternative4 when the frequency grid parameters are fixed
to nL = 60, nS = 30 and a = 0.20. Accurate model pa-
rameter estimates, including the frequencies, can already
be obtained with linear models when the tested frequency
grid is not too sparse. We conclude that the nonlinear
iteration of Eq. 18 is not always needed. However, the
word “Discrete” in our DCM abbreviation could be re-
placed with the word “Continuous” when this non-linear
iteration of Eq. 18 is applied.

There are correlations between the signal frequencies
and amplitudes of the correct model 19 (Fig. 4). If an es-
timate for even one of these parameters shifts away from
the correct value, the remaining other estimates tend to
compensate this shift with their own shifts away from
their correct values. These shifts may mislead the DCM
period analysis, or at least increase the bootstrap error
estimates, if the tested frequency grid is too sparse in
the long or the short search, or in the bootstrap. This
possibly misleading effect can be eliminated with denser
tested frequency grids, but then the detection of many
signals requires a lot of computation time, because the
total number of tested frequency combinations is propor-
tional to nK1

L and nK1

S . However, this “wasted”5 compu-
tation time becomes irrelevant, if the correct frequencies
are detected, because the results for all other model pa-
rameters become unambiguous. The patience required
in testing all possible parameter combinations, as well as
all reasonable linear models, is amply rewarded.

We identify the best model for the data among all 32
alternative nested models with the simple χ2-test and/or
the standard Fisher-test (Sect. 4.2). The correct model
19 has p = 12 free parameters. We can establish this
required minimum number of free parameters with ab-
solute certainty, because the critical levels for all fifteen
models having less than p = 12 free parameters are be-
low the computational accuracy (Table 4: QF < 10−16).
The χ2 and/or QF values for all sixteen remaining alter-
native p ≥ 12 models confirm that model 19 is the best
model. Furthermore, model 19 is certainly better than
the fifteen failed many signal DCM models, which can
be easily identified from their dispersing amplitudes and
intersecting frequencies (Sects. 4.3 and 4.4).

While DFT can detect only pure sinusoidal signals,
our DCM can also detect more complicated hi(t) sig-
nals. Except for the trivial n + 1 ≥ p condition, there
is no theoretical K2 upper limit for the signal order that
can be detected with the DCM. Our dcm.py code can de-
tect only K2 = 1 and K2 = 2 order signals. However, the

4 dcm.dat alternatives NonLinear = 1 =Yes and 6= 1 = No.
5 For example, an ordinary PC computes the four signal model

27 and its thirty bootstrap rounds in about three days (Figs. 5-7).
It takes about the same time to compute all results in our Table 5.
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users of our code should be aware of the problems aris-
ing in the DCM period search for higher order K2 > 1
signals. These signals are sums of

hi,j(t) = Bi,j cos (2πjfit) + Ci,j sin (2πjfit), (32)

where j = 1, ...,K2 and Pi = 1/fi. We denote the peak
to peak amplitudes of these hi,j(t) signals with Ai,j . The
following problems arise with these higher order models:

1. Let us assume that the second order K2 = 2 model
is the correct model for the data.

1a. If the Ai,1/Ai,2 ratio of the hi(t) signal approaches
zero, the K2 =2 order model may detect the correct
Pi period, or the wrong half Pi/2 period. Both of
these periods are equally good for Ai,1/Ai,2 = 0.

1b. If the hi(t) signal ratio Ai,2/Ai,1 approaches zero,
the K2 = 2 order model may detect the correct
period Pi, or the wrong double period 2Pi. For
Ai,2/Ai,1 = 0, both periods are equally good.

1c. If a wrong model, like the K2 = 1 model, is applied
to these data, the correct Pi period may, or may
not, be detected. Then again, the one-dimensional
DTF analysis based on this K2 = 1 model also suf-
fers from these half and double period 1a-c prob-
lems (e.g. Reinhold & Reiners 2013).

2. Evidently, more complicated problems than the
above 1a-c problems arise with the higher K2 > 2
order signals. We emphasize that an unambiguous
solution for the these problems directly from the
periodograms of a single model can fail, because
this model may not be the correct model for the
data. Nevertheless, there is an unambiguous solu-
tion for these problems afterwards: the Fisher-test
comparison of many alternative nested models. It
would have been possible for us to code a DCM
version that first tests all chosen K1, K2 and K3

model combinations, and then performs the above
Fisher-tests, like the comparison of 32 nested mod-
els in our Table 4. We decided not to code this te-
dious alternative into our current dcm.py version,
because the users can compare the DCM results for
different nested models with our fisher.py pro-
gram.

3. For all these higher K2 > 2 order complex signals,
the probability for detecting a wrong period Pi for
any hi(t) signal also depends on the quality (σi)
and the quantity (n) of data, as well as on the
frequencies of the other K1 − 1 signals (Eq. 28),
and the amplitudes of these other signals (Eq. 29).

4. There is also one computational aspect, why we de-
cided not to code the cases K2 > 2 into dcm.py. It
would be easy to compute the numerical bootstrap
error estimates for the signal periods and ampli-
tudes of higher order K2 > 2 models. However,
the bootstrap error estimates for the minimum and
the maximum epochs would not be easy to com-
pute for these K2 > 2 models. For example, a
secondary minimum may be present or absent in
some K2 = 2 model bootstrap samples. Or, the

primary and the secondary minima may switch in
some bootstrap samples, if the double wave of the
K2 = 2 model has two equally deep minima. In
fact, we had already solved these K2 = 2 model
primary and secondary minimum epoch problems6

earlier (e.g. Jetsu & Pelt 1999, Figs. 2 and 4). The
bootstrap solutions for these minimum and maxi-
mum epoch errors are much more complicated for
K2 > 2 models.

DCM solves these tasks more directly than DFT:

1. One signal data without trends:
DFT finds the correct period. Then the data are
modelled with a sinusoid having this period. DCM
achieves this directly with the g(t, 1, 1, 0) model.

2. One signal data with trends:
After trend removal, DFT may, or may not, find the
correct period. Then a sinusoid with this period is
fitted to the detrended data. DCM achieves this
directly with the g(t, 1, 1,K3) model for any K3:th
order polynomial trend.

3. Many signal data with trends:
After trend removal, the DFT pre-whitening tech-
nique may, or may not, determine the correct se-
quence of periods one after another. Then sinusoids
having these periods are fitted to the detrended
data. DCM achieves this directly for any order of
polynomial trends, any number of signals, and any
harmonic order signals, including one harmonic or-
der pure sinusoidal signals.

In all these cases 1–3, DFT and DCM both obtain the
final result by minimizing the χ2 test statistic. DCM can
find the global χ2 minimum, if all differences between
signal frequencies are not too small (Eq. 28), and none
of the signal amplitudes is too low (Eq. 29). We show
that in this case the correct simulated frequencies can be
detected, and their accuracy is only improved for higher
signal to noise ratio SN and larger sample size n (Fig. 11,
Table 5). When these correct frequencies are detected,
all other model parameters are also correct, because their
linear least squares fit solutions are unambiguous.

7. CONCLUSIONS

The frequently applied Discrete Fourier Transform
(DFT) can detect periodicity in unevenly spaced data.
Unambiguous signal detection succeeds only if the data
contains no trends and a sinusoid is the correct model
(Lomb 1976; Scargle 1982; Zechmeister & Kürster 2009).
DFT can not directly detect many signals superimposed
on unknown trends, but our Discrete Chi-Square Method
(DCM) can. Our model for the data is the sum g(t) =
h(t) + p(t), where h(t) contains the signals and p(t) is
the polynomial trend. The former periodic part repeats
itself, but the latter aperiodic part does not. Our g(t)
model is non-linear, but it becomes linear when the fre-
quencies of h(t) are fixed to their constant numerical
tested frequency grid values. These linear models give
unambiguous results. We spoil the fun of traditional time

6 HarmonicEpochs subroutine of dcm.py sorts the bootstrap pri-
mary and secondary minimum epochs.
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series analysis with our brute numerical approach, be-
cause we test all possible free parameter values for all
reasonable linear models. We can also identify the best
model for the data among all alternative nested models,
and show when the correct frequencies can be detected
(Eqs. 28 and 29). If these detected frequencies are cor-
rect, all other model parameters are also correct.

Anyone can test our DCM code, but just like any any
other period finding method code, it has its statistical
limitations. Since there will always be challenging prob-
lems with real data, we also code the DCM alternative

for analysing simulated data7 similar to the users’ own
real data.

We have now formulated, tested and coded DCM.
However, we leave the tedious comparison between DCM
and DFT to our next study.

We thank Dr. Karri Muinonen for his comments about
numerical nonlinear least squares iteration routines. We
also thank Dr. Thomas Hackman for his comments.
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Chaplin, G. B. 2019, Journal of the American Association of
Variable Star Observers (JAAVSO), 47, 222

Demircan, O., Akalin, A., Selam, S., Derman, E., &
Mueyesseroglu, Z. 1995, A&AS, 114, 167

Draper, N. R., & Smith, H. 1998, Applied Regression Analysis
(John Wiley & Sons, Inc.)

Efron, B., & Tibshirani, R. 1986, Statistical Science, 1, 54
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APPENDIX

DCM COMPUTER CODE

This appendix gives the instructions for the application of our Discrete Chi-square Method python program dcm.py.
We also briefly describe our Fisher test program fisher.py. The user needs to copy only the four files dcm.py, dcm.dat,
TestData.dat and fisher.py from the Zenodo database. These files should be stored to the same directory.

We will update these instructions in our Zenodo database Manual.

Control file

The main idea is that the user never edits the dcm.py program, but only executes it with the python dcm.py

command. The user edits only the last right hand column of the control file dcm.dat. This control file dcm.dat is
shown in the end of this appendix. The dcm.py program may stop working for these reasons:

1. Any ‘‘=’’ character is removed from dcm.dat, or added to dcm.dat.

2. Any of the first column numbers 1, 2, 3, ..., 24 is changed in dcm.dat. The dcm.py program uses these
numbers to identify the input values for the variables given in the third column of dcm.dat.

3. Values for variables K1, K2, K3, nL, nS, Rounds, SimN and SimRounds are not integers in dcm.dat.

Program dcm.py has three different modes. The SimMany and RealData values in dcm.dat determine these modes.

SimMany 6= 1 RealData = 1 Mode 1: dcm.py analyses one sample of real data of file1.
SimMany 6= 1 RealData 6= 1 Mode 2: dcm.py creates and analyses one sample of simulated data.
SimMany = 1 Any RealData value Mode 3: dcm.py creates and analyses many samples of simulated data.

Most users probably select Mode 1 for analysing the real data in their own file file1. This requires only the editing
of lines 1-15 in dcm.dat. Their real data analysis results do not depend on the next lines 16-23 of dcm.dat. These
variables beginning with the letters Sim are relevant only in the simulation Modes 2 and 3.

7 The dcm.py program can simulate data similar to the users
own real data with two dcm.dat alternatives: RealData 6= 1 and

SimMany 6= 1 (Mode 2), or SimMany = 1 (Mode 3). We give detailed
instructions about this possibility in our Appendix.

https://zenodo.org/
https://zenodo.org/
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Control file variables

In this section, we use the same numbering of the control file dcm.dat variables as in this file itself. The users can
easily find the description of each variable, because their numbers below are highlighted with yellow background. This
same numbering is also used in the figure and table reproduction information of Table A1.

1 Tag is text written to the beginning of the names of all output figures and files. This parameter Tag allows
the user to store the results of each particular dcm.dat analysis into figures and files having the chosen specific
names. For our chosen Tag = Dec2019 in dcm.dat, those output figures are

Dec2019z.eps (Fig. 2)

Dec2019gsim.eps (Only if RealData 6= 1 and SimMany 6= 1, or SimMany = 1)

Dec2019gdet.eps (Fig. 3)

Dec2019fA.eps (Fig. 4)

Dec2019Many (Fig. 11: Only if SimMany = 1)

The output files are

Dec2019Params.dat (Analysis results: parts of Table 2)

Dec2019Residuals.dat (Residuals file)

Dec2019Model.dat (Model file)

Dec2019AllBeta.dat (Free parameter file)

Dec2019ManyfA.dat (Relative frequency error file: Only if SimMany = 1)

The contents of these output files are described later in this appendix.

2 RealData is used to select the analysed data. Its value is relevant only in Modes 1 and 2 when SimMany 6= 1.

RealData=1 activates the Mode 1 of program dcm.py, where it analyses the real data given in file file1.

RealData 6= 1 activates the Mode 2 of program dcm.py, where it creates simulated data, stores these data
to a file and analyses these data. It also creates a figure of the simulation model and the simulated data.
For the Tag = Dec2019 in our dcm.dat, the name of the input data figure is Dec2019gsim.eps. The sim-
ulated and analysed data file is Dec2019SimulatedData.dat. The output figure is Dec2019gdet.eps.
The user can test many problems encountered with real data by simulating data having the same time
span ∆T =SimDT, sample size n? =SimN and signal to noise ratio SN =SimSN as the real data. For
SimT 6= 1, the time points for the simulated data are the same as for the real data in file1. With our
Tag=Dec2019, the comparison between simulated Dec2019gsim.eps and detected Dec2019gdet.eps
figures reveals directly, if DCM succeeds.

3 file1 is the name of the file containing the real data analysed in Mode 1 (RealData = 1 and SimMany 6= 1).
Its format must be the same as in our Table 3. Our TestData.dat file in Zenodo database contains the
numerical values of Table 3. In this paper, we analyse these Table 3 simulated data with dcm.py, and
show our results in Figs. 2-10 and Table 4. All these results can be reproduced with the input variable
values given in Table A1.

4 dummy is the value for input and output which contains no information. We use dummy=-99.999.

None of the analysed real or simulated observations Y= yi should have the numerical value of dummy.

None of the model parameters should have the numerical value of dummy.

5 K1= K1 = 1, 2, 3, 4, 5 or 6 signals (Eq. 1)

6 K2= K2 = 1 or 2 signal order (Eq. 1)

7 K3= K3 = 0, 1, 2, 3, 4, 5 or 6 order polynomial trend (Eq. 1)

8 nL= nL = number of tested frequencies in long search

9 nS= nL = number of tested frequencies in short search

10 c= c = width of short tested frequency interval (Eq. 15)

11 TestStat is used to select the test statistic z= z.

If TestStat=1, z is computed from χ2 (Eq. 10: data errors known).

If TestStat 6= 1, z is computed from R (Eq. 11: data errors unknown).
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12 PMIN= Pmin = minimum period

If RealData=1 and SimMany 6= 1 (Mode 1), PMIN is the minimum tested period for the real data in file1.

If RealData 6= 1 and SimMany 6= 1 (Mode 2), or SimMany = 1 (Mode 3), PMIN is the minimum value for
the random periods of simulated model(-s), as well as the minimum of tested periods for the simulated
data.

13 PMAX= Pmax = maximum period

If RealData=1 and SimMany 6= 1 (Mode 1), PMAX is the maximum tested period for the real data in file1.

If RealData 6= 1 and SimMany 6= 1 (Mode 2) or SimMany = 1 (Mode 3), PMAX is the maximum value for
the random periods of simulated model(-s), as well as the maximum of tested periods for the simulated
data.

14 Rounds= number of bootstrap rounds

15 NonLinear determines, if a non-linear model iteration is performed.

If NonLinear=1, program dcm.py performs a nonlinear iteration from βinitial to βfinal (Eq. 18).

If NonLinear6=1, program dcm.py does not perform a non-linear iteration, and only uses the βinitial value
of Eq. 18. This alternative may cause error messages, because low nL and nS test grid values can give
the same results during many bootstrap rounds.

16 SimT determines the t?i time points of simulated data when RealData 6= 1 and SimMany 6= 1 (Mode 2), or
SimMany = 1 (Mode 3).

If SimT = 1, these simulated t?I time points are drawn from the uniform random distribution of Eq. 21.

If SimT 6= 1, the ti time points of real data in file file1 are used as time points t?i in the simulations.
In this alternative, the user can simulate data having same time points ti =T as the real data. The
user can also adjust the sample size SimN, the signal to noise ratio SimSN and the time span SimDT in
dcm.dat to the values of real data.

17 SimN= n? = number of simulated observations when RealData 6= 1 and SimMany 6= 1 (Mode 2), or SimMany=1
(Mode 3).

18 SimSN= SN = signal to noise ratio of simulated observations (Eq. 22) when RealData 6= 1 and SimMany 6= 1
(Mode 2), or SimMany=1 (Mode 3).

19 SimDT= ∆T time span of simulated observations when RealData 6= 1 and SimMany 6= 1 (Mode 2), or SimMany=1
(Mode 3).

20 SimMany activates the Mode 3 of dcm.py.

If SimMany 6= 1 and RealData=1, dcm.py analyses one real data sample (Mode 1).

If SimMany 6= 1 and RealData 6= 1, dcm.py creates and analyses one simulated data sample (Mode 2).

If SimMany = 1, dcm.py creates and analyses many, SimRounds, simulated data samples (Mode 3). With
our Tag = Dec2019 the results are figure Dec2019Many.eps (Fig. 11) and file Dec2019AllBeta.dat.

21 SimRounds = Number of simulated data samples created and analysed when SimMany = 1.

22 SimDF= fcrit of Eq. 28 (e.g. Fig. 11: transparent diamonds) when SimMany = 1.

23 SimDA= Acrit of Eq. 29 (e.g. Fig. 11: transparent circles) when SimMany = 1.

24 PrintScreen controls printing to screen in all Modes 1-3.

PrintScreen = 1 results are printed to screen. This allows the user to follow from the screen how the
computations proceed, like the periods simulated and/or detected, or the bootstrap rounds completed.

PrintScreen 6= 1 prevents printing to screen. This may be needed, if dcm.py is executed in batch.

Analysis results file

The main results of the analysis are stored in the analysis results file. The same information is also printed to the
screen, if PrintScreen = 1. All values in our Table 2 (Column 3) are extracted from the result file Dec2019Params.dat
given in the end of this appendix. The contents of this file are summarized in Table A2.
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Residuals file

The εi residuals of the model are stored into the residuals file, which is Dec2019Residuals.dat with our Tag =
Dec2019. Columns 1-3 are T= ti, EPSILON= εi = yi−gi, EY= σi. The format is the same as in the real data file file1,
i.e. the format of this residual file is immediately suitable for further dcm.py period analysis.

Model file

This file is Dec2019Model.dat with our Tag = Dec2019. Columns 1-4 are T= ti, Y= yi, EY= σi and G= gi.

Free parameter file

This free parameter file is Dec2019AllBeta.dat with our Tag = Dec2019. It contains 39 columns. The first two
columns are TEPOCH= t1 and DELTAT= ∆T . For the free parameters βi, our dcm.py program uses the index values i
given in Table A3. All columns having dummy values contain no βi value. If these dummy columns are removed, the
remaining i columns are the βi free parameters specified in Table A3. If necessary, the user can derive all functions of
the g(t) model from these parameters t1,∆T and βi by using Eqs. 1 - 5.

In Mode 1 (SimMany 6= 1, RealData = 1), the first line contains the parameters t1,∆T and βi for the original
data sample in file1. Other lines contain these parameters for the bootstrap data samples.

In Mode 2 (SimMany 6= 1, RealData 6= 1), the first line contains the t1,∆T and βi parameters for the original
simulated data sample. Other lines contain these parameters for the bootstrap data samples.

In Mode 3 (SimMany = 1, any RealData value), the 1st, 3rd, ... , 2×SimRounds−1 lines contain the simulated
t1,∆T and βi model parameters. Every next line, the 2nd, 4th, ... 2×SimRounds lines, contain the respective
detected model parameters.

Relative frequency error file

This file is produced only when SimMany = 1 (Mode 3). With our Tag = Dec2019, its name is Dec2019ManyfA.dat.
Its contents are also printed in the screen when PrintScreen = 1. This file gives the relative frequency errors (Eq.
30). The results are given separately for all models, as well as for those models that do not fulfill criteria of Eqs. 28
and 29, like models not highlighted in Fig. 11.

We show dcm.dat and Dec2019Params.dat files in the end of this appendix, but not Dec2019Residuals.dat,
Dec2019Model.dat, Dec2019AllBeta.dat and Dec2019ManyfA.dat files, because they can be created with the python
dcm.py command.

Reproducing our results

Here, we explain how the users can reproduce our main results, and at the same time practice the use of our CDM
program dcm.py. After reproducing our results, the users can also be more confident about results for their own data.

Col. 1 of Table A1 gives the input parameter values in dcm.dat that reproduce the results in our Figs. 2-4. File
dcm.dat from Zenodo database contains the same input values as Col. 1 of Table A1.

Col. 2 of Table A1 shows how the results in our Table 4 can be obtained by adjusting the K1= K1, K2= K2 and
K3= K3 values in dcm.dat. Those particular adjusted values are denoted with * in Table A1.

Cols. 3-4 contain the dcm.dat input values for reproducing Figs. 5 - 10.

Col. 5 tells how to reproduce Fig. 11.

Col. 6 shows how Table 5 can be reproduced by adjusting SimN and SimSN values marked with “*”.

The users’ results for Figs. 2, 3, 5, 6, 8 and 9 should be identical. However, the results for Figs. 4, 7 and 10, as well as
the error estimates in Table 2, will never be identical, because the random bootstrap residuals ε?i are always different
in Eq. 19. The results in Fig. 11 and Table 5 will also always differ, because the created random data samples y?i of
Eq. 27 are never the same.

Fisher test

In this section, we explain how our program fisher.py computes the Fχ and QF estimates in Table 4. Executing
python fisher.py asks for the numerical input values for n= n, p1= p1, p2= p2, Chi1= χ1 or R1= R1, and Chi2= χ2

or R1= R2. If the pair χ1 and χ2 is used, the F= Fχ value is computed from Eq. 12. For the R1 and R2 pairs, the
F= FR value is computed from Eq. 13. The program prints the F value and the Q= QF value of Eq. 14. The results
for comparing models 19 and 20 are shown in Fig. A1.
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Fig. A1.— Application example of fisher.py.

Least squares fit subroutine

The numerical python least squares subroutine optimize.leastsq minimizes the sum of squares
∑n
i=1[(yi−gi)/σi]2.

For the 32 nested models of Table 4, the χ2 estimates for the linear models of denser tested frequency grids agree
with the results for the non-linear model (Eq. 18). In the python optimize.leastsq subroutine, the parameter ftol
measures the relative error in the above sum of squares. The parameter xtol measures the relative error in the desired
approximate solution. We use ftol=0.0001 and xtol=0.0001 in optimize.leastsq of our non-linear least squares
fit NonLinearLSF, because this should prevent the numerical non-linear iteration β̄final of Eq. 18 from wandering too
far from the unambiguous initial β̄initial estimate obtained from linear modelling.

Amplitude dispersion occurs already for the unambiguous linear models, before any non-linear modelling is made.
The numerical optimize.leastsq subroutine has to utilize these unrealistic high amplitude hi(t) curves, because this
is the only possible way to minimize χ2. These high amplitude curves, which nearly cancel out each other, offer the
only possible way to fit two or more curves having nearly the same frequencies. From the purely mathematical point
of view, these amplitude dispersion models do not fail. They are just unrealistic. There just are no reasonable low
amplitude solutions. However, we know for certain that these unrealistic models fail, because we know that model 19
is the correct solution.

The optimize.leastsq is not an analytical subroutine, because it does not require the model partial derivative
formulas as its input. Here is room for development for those who are prepared to code these ∂g(t)/∂βi partial
derivatives. But even that analytical solution could not eliminate amplitude dispersion, because the continuous and
stable z1(f1), ..., zK1

(fK1
) periodograms already confirm that there simply are no realistic low amplitude hi(t) curve

solutions (e.g. Figs. 5 and 8).

Qualitative program code description

We end this appendix with a short qualitative description of the stages of dcm.py.

1. First, the long tested frequency interval fmin = P−1
max and fmax = P−1

min is fixed. We create the nL evenly spaced
tested frequencies f1, f2, ..., fK1

between fmin and fmax. Such grids are illustrated in Fig. 1. The j:th tested
value of frequency fi is denoted with fi,ji (ji = 1, 2, ..., nL).

2. We create the one-dimensional vectors F1, F2, ...FK1 , Z for collecting the period search results from the K1-
dimensional tested frequency space. These vectors are empty before the loop of tested frequencies begins.

3. All f1,j1 > f2,j2 > ... > fK1,jK1
combinations are tested in a loop. For each combination,

(a) We compute the periodogram test statistic z = z[f1,j1 , f2,j2 , ..., fK1,jK1
] of Eq. 10 or 11.

(b) The tested frequency combination and the result for z are appended into the collection vectors

F1,old ← f1,j1⇒F1,new = [F1,old, f1,j1 ]

F2,old ← f2,j2⇒F2,new = [F2,old, f2,j2 ]

...⇒ ... (A1)

FK1,old ← fK1,jK1
⇒FK1,new = [FK1,old, fK1,jK1

]

Zold ← z⇒Znew = [Zold, z]

4. After completing the test frequency loop, we find the index k of the Z minimum. The best frequency candidates
are at F1[k] = f1,mid, F2[k] = f2,mid, ... FK1 [k] = fK1,mid of Eq. 15 (e.g. Fig. 1: diamonds).

5. We fix the short denser tested frequency grids of Eq. 15, which are centered at F1[k], F2[k], ... FK1
[k]. The more

accurate best frequency values are determined by using these dense grids of nS tested frequencies.

6. The bootstrap is used to solve the errors for model parameters within the short tested frequency intervals.
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TABLE A1
Control file variables reproducing our results. Columns 1-6 are explained in Section “Reproducing our results”.

Reproduce: Figs. 2, 3 and 4 Table 4 Figs. 5, 6 and 7 Figs. 8, 9 and 10 Fig. 11 Table 5

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6

1 Tag Dec2019 Dec2019 Dec2019 Dec2019 Dec2019 Dec2019
2 RealData 1 1 1 1 1 1
3 file1 TestData.dat TestData.dat TestData.dat TestData.dat TestData.dat TestData.dat
4 dummy -99.999 -99.999 -99.999 -99.999 -99.999 -99.999
5 K1 3 * 4 2 3 3
6 K2 1 * 1 1 1 1
7 K3 2 * 2 0 1 1
8 nL 60 60 60 60 60 60
9 nS 30 30 30 30 30 30

10 c 0.20 0.20 0.20 0.20 0.20 0.20
11 TestStat 1 1 1 1 1 1
12 PMIN 1.0 1.0 1.0 1.0 1.0 1.0
13 PMAX 2.0 2.0 2.0 2.0 2.0 2.0
14 Rounds 30 2 30 50 3 3
15 NonLinear 1 1 1 1 1 1
16 SimT 1 1 1 1 1 1
17 SimN 500 500 500 500 500 *
18 SimSN 100 100 100 100 100 *
19 SimDT 4.0 4.0 4.0 4.0 4.0 4.0
20 SimMany 0 0 0 0 1 1
21 SimRounds 3 3 3 3 30 100
22 SimDF 0.05 0.05 0.05 0.05 0.05 0.05
23 SimDA 0.5 0.5 0.5 0.5 0.5 0.5
24 PrintScreen 1.0 1.0 1.0 1.0 1.0 1.0

TABLE A2
Parameters of result file.

n,T1,DT n, t1,∆T number of observations, first observing time, time span
my,sy,SN my , sy , SN mean, standard deviation and signal to noise ratio of observations
K1,K2,K3 K1,K2,K3 number of signals, signal order and polynomial trend order

p p number of free parameters
PMIN,PMAX Pmin, Pmax minimum and maximum tested period

nL,nS nL, nS number of tested frequencies in long and short search
CHI2,R χ2, R chi-square and sum of squared residuals of the best model

F1,P1,A1,T1MIN1,T1MIN2,T1MAX1,T1MAX2 h1(t) parameters f1, P1, A1, t1,min,1t1,min,2t1,max,1, t1,max,2

F2,P2,A2,T2MIN1,T2MIN2,T2MAX1,T2MAX2 h2(t) parameters f2, P2, A2, t2,min,1t2,min,2t2,max,1, t2,max,2

F3,P3,A3,T3MIN1,T3MIN2,T3MAX1,T3MAX2 h3(t) parameters f3, P3, A3, t3,min,1t3,min,2t3,max,1, t3,max,2

BETA[i] β̄ all free parameter values

The tested frequency combination β̄I = [f1,j1 , f2,j2 , ..., fK1,jK1
] is swapped before stage 3a. We write the next

tested frequencies into file ALLF.dat with subroutine WriteALLF. Subroutine ReadALLF reads these frequencies within
another subroutine LinearModel. Hence, we do not have to rewrite the model equations for every new tested
β̄I = [f1,j1 , f2,j2 , ..., fK1,jK1

] combination. In stage 3b, the results from the K1-dimensional frequency grid space
are projected into the one-dimensional collection vectors of Eq. A1.

We emphasize that although there may be coding errors in our dcm.py program, all our main conclusions apply.
Ours is just one possible DCM application code. More talented coders can certainly improve our code.
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TABLE A3
Programming indexes i for free parameters βi. These indexes are given separately for β̄I and β̄II . Columns “L” and “N”

denote Linear and Non-linear models for given K1 and K2 combinations.

β̄I free parameters
One period Two periods Three periods Four periods Five periods Six periods

K1 = 1 K1 = 1 K1 = 2 K1 = 2 K1 = 3 K1 = 3 K1 = 4 K1 = 4 K1 = 5 K1 = 5 K1 = 6 K1 = 6
K2 = 1 K2 = 2 K2 = 1 K2 = 2 K2 = 1 K2 = 2 K2 = 1 K2 = 2 K2 = 1 K2 = 2 K2 = 1 K2 = 2

L N L N L N L N L N L N L N L N L N L N L N L N

f1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
f2 - - - - - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2
f3 - - - - - - - - - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3
f4 - - - - - - - - - - - - - 4 - 4 - 4 - 4 - 4 - 4
f5 - - - - - - - - - - - - - - - - 5 - 5 - 5 - 5
f6 - - - - - - - - - - - - - - - - - - - - - 6 - 6

β̄II free parameters
One period Two periods Three periods Four periods Five periods Six periods

K1 = 1 K1 = 1 K1 = 2 K1 = 2 K1 = 3 K1 = 3 K1 = 4 K1 = 4 K1 = 5 K1 = 5 K1 = 6 K1 = 6
K2 = 1 K2 = 2 K2 = 1 K2 = 2 K2 = 1 K2 = 2 K2 = 1 K2 = 2 K2 = 1 K2 = 2 K2 = 1 K2 = 2

L N L N L N L N L N L N L N L N L N L N L N L N

B1,1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 5 1 6 1 6 1 7 1 7
C1,1 2 3 2 3 2 4 2 4 2 5 2 5 2 6 2 6 2 7 2 7 2 8 2 8
B1,2 - - 3 4 - - 3 5 - - 3 6 - - 3 7 - - 3 8 - - 3 9
C1,2 - - 4 5 - - 4 6 - - 4 7 - - 4 8 - - 4 9 - - 4 10

B2,1 - - - - 3 5 5 7 3 6 5 8 3 7 5 9 3 8 5 10 3 9 5 11
C2,1 - - - - 4 6 6 8 4 7 6 9 4 8 6 10 4 9 6 11 4 10 6 12
B2,2 - - - - - - 7 9 - - 7 10 - - 7 11 - - 7 12 - - 7 13
C2,2 - - - - - - 8 10 - - 8 11 - - 8 12 - - 8 13 - - 8 14

B3,1 - - - - - - - - 5 8 9 12 5 9 9 13 5 10 9 14 5 11 9 15
C3,1 - - - - - - - - 6 9 10 13 6 10 10 14 6 11 10 15 6 12 10 16
B3,2 - - - - - - - - - - 11 14 - - 11 15 - - 11 16 - - 11 17
C3,2 - - - - - - - - - - 12 15 - - 12 16 - - 12 17 - - 12 18

B4,1 - - - - - - - - - - - - 7 11 13 17 7 12 13 18 7 13 13 19
C4,1 - - - - - - - - - - - - 8 12 14 18 8 13 14 19 8 14 14 20
B4,2 - - - - - - - - - - - - - - 15 19 - - 15 20 - - 15 21
C4,2 - - - - - - - - - - - - - - 16 20 - - 16 21 - - 16 22

B5,1 - - - - - - - - - - - - - - - - 9 14 17 22 9 15 17 23
C5,1 - - - - - - - - - - - - - - - - 10 15 18 23 10 16 18 24
B5,2 - - - - - - - - - - - - - - - - - - 19 24 - - 19 25
C5,2 - - - - - - - - - - - - - - - - - - 20 25 - - 20 26

B6,1 - - - - - - - - - - - - - - - - - - - - 11 17 21 27
C6,1 - - - - - - - - - - - - - - - - - - - - 12 18 22 28
B6,2 - - - - - - - - - - - - - - - - - - - - - - 23 29
C6,2 - - - - - - - - - - - - - - - - - - - - - - 24 30

M0 3 4 5 6 5 7 9 11 7 10 13 16 9 13 17 21 11 16 21 26 13 19 25 31
M1 4 5 6 7 6 8 10 12 8 11 14 17 10 14 18 22 12 17 22 27 14 20 26 32
M2 5 6 7 8 7 9 11 13 9 12 15 18 11 15 19 23 13 18 23 28 15 21 27 33
M3 6 7 8 9 8 10 12 14 10 13 16 19 12 16 20 24 14 19 24 29 16 22 28 34
M4 7 8 9 10 9 11 13 15 11 14 17 20 13 17 21 25 15 20 25 30 17 23 29 35
M5 8 9 10 11 10 12 14 16 12 15 18 21 14 18 22 26 16 21 26 31 18 24 30 36
M6 9 10 11 12 11 13 15 17 13 16 19 22 15 19 23 27 17 22 27 32 19 25 31 37
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Contents of dcm.dat
1 = Tag = Dec2019
2 = RealData = 1
3 = file1 = TestData.dat
4 = dummy = -99.999
5 = K1 = 3
6 = K2 = 1
7 = K3 = 2
8 = nL = 60
9 = nS = 30

10 = c = 0.20
11 = TestStat = 1
12 = PMIN = 1.0
13 = PMAX = 2.0
14 = Rounds = 30
15 = NonLinear = 1
16 = SimT = 1
17 = SimN = 500
18 = SimSN = 100
19 = SimDT = 4.0
20 = SimMany = 0
21 = SimRounds = 3
22 = SimDF = 0.05
23 = SimDA = 0.50
24 = PrintScreen = 1.0

Contents of Dec2019Params.dat

n 500
T1 1.9547820000e-03
DT 3.9958894740e+00

my -1.2567031722e+00
sy 2.2066570834e+00

sigma 2.6888315618e-02
SN 4.6424393691e+02
K1 3
K2 1
K3 2
p 12

PMIN 1.0000000000e+00
PMAX 2.0000000000e+00

nL 60
nS 40

CHI2 4.9309212497e+02 gives ZMIN 9.9306809934e-01
R 5.6396874104e-01 gives ZMIN 3.3584780513e-02

.................................................................
F1 9.0911731600e-01 +/- 1.2735271893e-03
P1 1.0999680486e+00 +/- 1.5420877320e-03
A1 9.0070629802e-01 +/- 1.5914601221e-02 SN 67.00

T1MIN1 3.2534538828e-01 +/- 1.1847765288e-03
T1MIN2 ... +/- ...
T1MAX1 8.7532941256e-01 +/- 5.3225925012e-04
T1MAX2 ... +/- ...

.................................................................
F2 7.1406875500e-01 +/- 6.6356730224e-03
P2 1.4004253694e+00 +/- 1.3149673657e-02
A2 1.0016254884e+00 +/- 3.2552250810e-02 SN 74.50

T2MIN1 4.9569244560e-02 +/- 1.4268052938e-02
T2MIN2 ... +/- ...
T2MAX1 7.4978192926e-01 +/- 7.7035844527e-03
T2MAX2 ... +/- ...

.................................................................
F3 5.2638452700e-01 +/- 4.0181847831e-03
P3 1.8997518899e+00 +/- 1.4379538506e-02
A3 1.1011510476e+00 +/- 4.6003971393e-02 SN 81.91

T3MIN1 4.2559945346e-01 +/- 9.8085696951e-03
T3MIN2 ... +/- ...
T3MAX1 1.3754753984e+00 +/- 2.6765025920e-03
T3MAX2 ... +/- ...

...............................................................
i BETA[i]
1 F1 9.09117e-01 1.27353e-03
2 F2 7.14069e-01 6.63567e-03
3 F3 5.26385e-01 4.01818e-03
4 B11 1.22518e-01 2.30736e-03
5 C11 -4.33368e-01 8.68889e-03
6 B21 -4.89585e-01 2.14509e-02
7 C21 -1.05456e-01 3.02140e-02
8 B31 -9.37527e-02 2.12900e-02
9 C31 -5.42535e-01 2.62038e-02

10 M0 1.79955e+00 2.20915e-03
11 M1 -1.49889e+00 2.81791e-03
12 M2 -1.20073e+00 1.33342e-03
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