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Code: PAP 312
Credits: 5

Lauri Jetsu
Department of Physics
University of Helsinki

UNIVERSITY OF HELSINKI Jetsu September 7, 2025 1/34



Introduction
- Lecturer: Lauri Jetsu (lauri.jetsu@helsinki.fi)

- Assistant: Ari Leppälä (ari.leppala@helsinki.fi)

- Magenta colour www-links: symbols A highlight

- Lecturer’s homepage A

- Homepage “Time Series Analysis in Astronomy” A

Paper I ”Discrete Chi-square Method for Detecting Many
Signals” ([2] Jetsu 2020, OJAp) A
- ONLY 1 Paper I: Print, read and take to lectures
- Introduces Discrete Chi-square Method (DCM)
- Applies DCM to simulated data
- Compares DCM to other period analysis methods
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https://www.mv.helsinki.fi/home/jetsu/
https://www.mv.helsinki.fi/home/jetsu/time1/time1.html
http://www.helsinki.fi/~jetsu/time1/paperi.pdf
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Introduction ...
- Homepage “Variable Stars” A

Paper II ”Say hello to Algol’s new companion candidates”
([3]Jetsu 2021) A
- 2 PAPERS Paper I and Paper II: Print, read and
take to lectures
- Introduces DCM
- Applies DCM and other methods to simulated and
real variable star data (e.g. Paper II)

- Different exercises in courses “Time Series
Analysis in Astronomy” and “Variable Stars”
−→ Study order of “Time Series Analysis in
Astronomy” and “Variable Stars” courses flexible
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http://www.helsinki.fi/~jetsu/vars/paperii.pdf
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Introduction Figure: @www.nobleworkscards.com

- Question: Do last term students have an
advantage, because they already know DCM?
- Answer 1: Hopefully, they remember something
about DCM, because all
exercises are different.
- Answer 2: Next year:
You will have the same
advantage → Order of
courses irrelevant
- Answer 3: Your future in
Science? Good to learn
DCM thoroughly: Artificial
and real data analysis &
DCM performance versus other methods, like DFT
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Introduction ...
Status of papers

- Paper I: accepted & published
- Paper II: accepted & published

In all lectures
- Both “Time Series Analysis in Astronomy” and
“Variable Stars” courses:
- Symbols of variables
- Equation, Figure, Table and Section numbers
- References
- Abbreviations ...
same as in Paper I and Paper II:
→ We save a lot of time
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Introduction
- Exercises in python
- We try to use same symbols in all python program
exercises, like
T= ti = time, Y= yi = observation

- Important variables are written in VIOLET capital or
small letters → Use same notations → Assistant can
find them in your python programs

- DCM is an abstract method. It can be used to analyse
arbitrary periodic, not only astronomical, phenomena

- Observable variability time scale
→ Can be observed in human time scale
→ DCM analysis possible
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Introduction
- For example, stars are

variable, not constant,
because they evolve

- Observable
periodic changes
in variable stars:

- Eclipses
- Starspots
- Activity cycles

- DCM is general
→ Can be applied
to many periodic
phenomena
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Background
- First studies

[4](e.g. Jetsu et al. 1990)
- Power spectrum analysis

[9] (Scargle 1982)
- Aug, 2021: 4741 citations
- Sinusoidal light curve

g(t) = A sin2πf (t − tmin)

A = Amplitude = spot size
P = 1/f = Rotation period
tmin = Minimum epoch

- One constant period for one starspot
Figure from [10](Shibayama et al. 2013: their Fig. 3)
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Background
- Next studies

[6](e.g. Jetsu et al. 1999)
- Three Stage Period

Analysis ([5]Jetsu
& Pelt 1999: TSPA)

- Data divided into
segments (seasons)

- Second order g(t) light
curve (double wave)

- P, A, tmin,1 and tmin,2

for two starspots
- One constant period for two starspots

Figure from [10](Shibayama et al. 2013: their Fig. 4)
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Background
- Next studies [8](e.g.

Lehtinen et al. 2016)
- Continuous Period

Search ([7] Lehtinen
et al. 2011: CPS)

- Sliding model window
- Best model identified

- Constant
- Sine wave
- Double wave

- One constant period
for two starspots
Figure [7](Lehtinen et al. 2011:
their Fig. 7)
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Background
- Next studies [1]

(e.g. Jetsu 2019a)
- Preliminary

Discrete
Chi-square
Method version
([2] Jetsu 2020 DCM)

- Two constant
period light curves
superimposed on a polynomial trend

- Incompatibility of one- and two-dimensional period
finding methods, e.g. there are no “flip-flops”
Figure [1](Jetsu 2019, his Fig. 11)
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Background (Jetsu 2019a)
Imagine a face with a left eye ( ) and a right eye (

). Both eyes can disappear and reappear. At any
given moment, the number of eyes may be zero, one
or two. The original stationary right eye can
disappear and reappear only at fixed locations. The
original non-stationary left eye rotates slowly around
the head. We see this head spinning. Soon it is
impossible to tell which eye is the original left or right
eye. The only compatible pictures of this face are
snapshots, but none of these snapshots can be used
to recognize this constantly changing face. These
snapshots can capture only one side of the head, or
equivalently only half of the full visible surface of FK
Com.
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Abstract (Paper I)

Discrete Chi-Square Method for Detecting Many Signals

Unambiguous detection of signals superimposed on unknown trends is difficult for
unevenly spaced data. Here, we formulate the Discrete Chi-square Method (DCM) that
can determine the best model for many signals superimposed on arbitrary polynomial
trends. DCM minimizes the Chi-square for the data in the multi-dimensional tested
frequency space. The required number of tested frequency combinations remains
manageable, because the method test statistic is symmetric in this tested frequency
space. With our known tested constant frequency grid values, the non-linear DCM
model becomes linear, and all results become unambiguous. We test DCM with
simulated data containing different mixtures of signals and trends. DCM gives
unambiguous results, if the signal frequencies are not too close to each other, and
none of the signals is too weak. It relies on brute computational force, because all
possible free parameter combinations for all reasonable linear models are tested. DCM
works like winning a lottery by buying all lottery tickets. Anyone can reproduce all our
results with the DCM computer code.
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Files (Paper I)

- All program, file and other related items are printed
in violet colour

- All necessary files are available in Zenodo A

dcm.pdf = Paper I manuscript
dcm.py = DCM analysis python program
dcm.dat = DCM control file
TestData.dat = Simulated data file
fisher.py = Fisher test python program

- Copy four last files from Zenodo to the same
directory in your own computer

- Do not use Zenodo Paper I manuscript version
(dcm.pdf), because it is the submitted version
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Model (Paper I)

- Observing times = ti → Model zero point t = 0 at t1
- Observations and errors = yi = y(ti)± σi , 1 ≤ i ≤ n
- Mean of yi = my , Standard deviation of yi = sy

- Model g(t) = g(t ,K1,K2,K3) = h(t) + p(t) (1)

- Periodic part h(t) is a sum of K1 signals

h(t) = h(t ,K1,K2) =

K1∑
i=1

hi(t) (2)

- i:th signal is

hi(t) =

K2∑
j=1

Bi,j cos (2πjfi t) + Ci,j sin (2πjfi t) (3)

- Signal order = K2 (dcm.py can test only alternatives
1 ≡ sine wave and 2 ≡ double sine wave)

UNIVERSITY OF HELSINKI Jetsu September 7, 2025 15/34



Model (Paper I)

- Aperiodic part is K3 order polynomial

p(t) = p(t ,K3) =

K3∑
k=0

pk(t) (4)

- k:th term is

pk(t) = Mk

[
2t
∆T

]k

(5)

- It is difficult to see what this model means in reality
- Figure on next page

- Three hi(t) signals (K1 = 3)
- All signals are sinusoids (K2 = 1)
- Signals superimposed on second order p(t)
polynomial (K3 = 2)
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Model (Paper I)
- Time = x-axis
- Data = y-axis

(a) Black dots = data = yi

(a) Black curve = g(t)
(a) Dotted curve = p(t)
(b) Removing p(t) trend
(b) Black dots = yi − p(ti)
(b) Black curve = g(t)− p(t)
(b) Red curve = h1(t) having period 1/f1 = P1 = 1.1
(b) Blue curve = h2(t) having period 1/f2 = P2 = 1.4
(b) Green curve = h3(t) having period 1/f3 = P3 = 1.9
(b) Blue dots = Residuals = ϵi = yi −g(ti) = Data - model
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Model (Paper I)

- Problem: If you only
had data, black dots = yi ,
how could you
unambiguously detect
p(t) trend and
three hi(t) signals?
- DCM succeeds in this!
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Model (Paper I)

- DCM searches for combination of two patterns in data
- Periodic pattern h(t) repeating itself
- Aperiodic pattern p(t) not repeating itself
- Sum of K1 harmonic signals = hi(t)

fi = signal frequency
K2 = signal order

- Polynomial K3 order trend = p(t)
- Free parameters of model

β̄ = [β1, β2, ..., βp]

= [B1,1,C1,1, f1, ...,BK1,K2 ,CK1,K2 , fK1 ,M0, ...,MK3]

- Number of free parameters

p = K1 × (2K2 + 1) + K3 + 1 (6)
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Linear and non-linear models

- Main problem: Solution of best free parameter β̄
values for analysed data yi ± σi?
Definition: Model g(t) has p free parameters
[β̄ = β1, β2, ..., βp]. This model is linear, if all
i = 1, ...,p model partial derivatives

∂g(t)
∂βi

do not contain any free parameter β1, ..., βp. The
model is non-linear, if any of these partial
derivatives contains any free parameter β1, ..., βp.
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Linear and non-linear models
- Crucial difference between linear and non-linear

models is
- Solution of free parameters β̄ is ambiguous, if the

model is non-linear, because this solution depends
on the chosen trial value β̄trial. The final value β̄final is
obtained from an iteration beginning from β̄trial.

- Solution of free parameters β̄ is unambiguous, if
the model is linear. No trial value β̄trial is required.

- Conclusion: If possible, analyse data with a linear
model. Then all results are unambiguous. If a
non-linear model is necessary, then some, or maybe
even all, results are ambiguous.

- Unambiguous = Unique
- Ambiguous = Not Unique
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Model (Paper I)

- DCM model g(t) has p free parameters
β̄ = [B1,1,C1,1, f1, ...,BK1,K2 ,CK1,K2 , fK1 ,M0, ...,MK3]

- They belong to two groups
1st group = β̄I = [f1, ..., fK1]

2nd group = β̄II = [B1,1C1,1, ..., BK1,K2 ,CK1,K2 , M0, ...,MK3]

- 1st group β̄I make model non-linear
- If β̄I are fixed to constant known numerical values
→ Model becomes linear
→ Solution for remaining β̄II free parameters
becomes unambiguous = unique

- This is explained thoroughly Here: 08.09.2025

ExerciseLinearNonlinear A (A2024)
where linear and non-linear models are identified.
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Model
What causes nonlinearity?

- Simple answer: All trigonometric terms, like
Bi,j cos (2πjfi t). Its partial derivatives

∂[Bi,j cos (2πjfi t)]
∂Bi,j

= cos (2πjfi t)

∂[Bi,j cos (2πjfi t)]
∂fi

= −Bi,j(sin (2πjfi t))(2πjt)

contain free parameters fi and Bi,j
- If frequency fi is fixed to a constant value,

frequencyfi is no longer a free parameter
→ The first partial derivative cos (2πjfi t) no longer
contains any free parameters, and there is no need
for the second partial derivative
→ Model becomes linear
→ Bi,j solution becomes unambiguous = unique
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Model (Exercise)
- Simulating data using model “Trend + Signal”
ExerciseTrendSine A (A2025)
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Model (Paper I)

- Paper I statement
“The first group of free parameters, the frequencies
β̄I = [f1, ..., fK1], make this g(t) model non-linear. If
these β̄I are fixed to constant known numerical
values, the model becomes linear, and the solution
for the remaining second group of free parameters,
β̄II = [B1,1C1,1, ..., BK1,K2 ,CK1,K2 , M0, ...,MK3], is
unambiguous.”
should now be clear.

- In other words, if we test a frequency grid, where
every tested frequency combination β̄I = [f1, ..., fK1]
has fixed numerical constant values, then all these
DCM models are linear and all results are
unambiguous.
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Model (Paper I)

- Residuals
ϵi = y(ti)− g(ti) = yi − gi (7)

are differences between data and model
- Residuals ϵi can be positive (data yi above model gi)

or negative (data yi below model gi)
- Good model

- Mean of ϵi residuals close to zero = Data at both
sides of model = Model goes through data

- Standard deviation of ϵi residuals equal to σi errors
of data

- Absolute values of individual ϵi residuals equal to
errors of individual data = |ϵi | ≈ σi = more accurate
data closer to model

UNIVERSITY OF HELSINKI Jetsu September 7, 2025 26/34



Model (Paper I)

- Chi-square
χ2 =

n∑
i=1

ϵ2
i

σ2
i

(8)

is sum of squared residuals divided by errors σi

- Test statistic χ2 can be computed only if errors σi

are known
- Good model has small χ2

- Bad model has large χ2

- Reasonable model has

χ2 ≈ n,

because |ϵi | ≈ σi ⇒ ϵ2
i /σ

2
i ≈ 1
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Model (Paper I)

- Sum of squared residuals

R =
n∑

i=1

ϵ2
i . (9)

- Test statistic R can be computed even when errors

σi are unknown
- Good model has small R
- Bad model has large R
- Least Squares Fit (LSF) method gives solution for

free parameters β̄. This method solves β̄ values that
- Minimize χ2 when errors σi are known
- Minimize R when errors σi are unknown
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Least Squares Fit = LSF
ExerciseSineFit A (A2024) and

ExerciseTrendSineFit A (A2025)
show how Least Squares Fit (LSF) is done in python.

- Both can be solved without presenting the other exercise!
- scipy subroutine optimize.leastsq is numerical
→ No need to code model g(t) partial derivatives

- Only three subroutines are needed
Model(T,BETA)
Funct(BETA,T,Y,EY)
LSF(T,Y,EY)

- Many models can be applied in the same program by
simply changing names of these three subroutines

- Code Model → Funct always same → Only
dimensions of BETA must be adjusted in LSF
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Least Squares Fit = LSF
Memorize: Least Squares Fit = LSF
- Download dcm.py, dcm.dat and TestData.dat from

Zenodo A

- Edit only dcm.dat. Do NOT edit dcm.py. Mistakenly
edited? No worries, just download all files again.

ExampleDCMmodels A

- Explains dcm.py linear and non-linear model codes
- Advice: Re-read this example several times during

this course → At this first time, you do not have to
understand everything about this example → Print all
seven pages of this example, reread, reread, ...
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LSF of dcm.py in a nutshell
- Six subroutines: Two three subroutine models.
- Three free parameter groups:

- Frequencies
- Signal amplitudes
- Polynomial coeffients

LinearLSF NonLinearLSF
Lfunct Nfunct
LinearModel NonLinearModel
Frequencies: Frequencies:
Not free fixed tested values Free parameters
Signal amplitudes: Signal amplitudes:
Free parameters Free parameters
Polynomial coefficients: Polynomial coeffients:
Free parameters Free parameters

- Any K1, K2 and K3 combination: All six subroutines work.
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