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ABSTRACT

The eclipses in binary stars give precise information of orbital period changes. Goodricke discovered the 2.867 day
period in the eclipses of Algol in the year 1783. The irregular orbital period changes of this longest known eclipsing
binary continue to puzzle astronomers. The mass transfer between the two members of this binary should cause a
long-term increase of the orbital period, but observations over two centuries have not confirmed this effect. Here, we
present evidence indicating that the period of Algol was 2.850 days three millennia ago. For religious reasons, the
ancient Egyptians have recorded this period into the Cairo Calendar (CC), which describes the repetitive changes
of the Raging one. CC may be the oldest preserved historical document of the discovery of a variable star.

Key words: binaries: eclipsing – history and philosophy of astronomy – methods: statistical – stars: evolution –
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1. INTRODUCTION

In Algol-type eclipsing binaries (hereafter EBs), one member
has evolved away from the main sequence and Roche-lobe
overflow has led to mass transfer (hereafter MT) to the other
member. MT can increase or decrease the orbital period Porb
(Kwee 1958). Many EBs show only positive or negative Porb
changes. Alternating period changes (hereafter APCs) seemed
to occur only in EBs, where one member displayed magnetic
activity (Hall 1989). Activity may explain APC (Applegate
1992), but this phenomenon is still poorly understood (Zavala
et al. 2002; Lanza 2006; Liao & Qian 2010).

Montanari discovered Algol in 1669. It was the second
variable discovered, 73 yr after the discovery of Mira by
Fabricius. Goodricke (1783) determined Porb = 2.d867 of
Algol with naked eyes. He received the Copley Medal for this
outstanding achievement. The observed (O) eclipses cannot be
calculated (C) with a constant Porb. These O −C show APC
cycles of 1.9, 32, and 180 yr. Algol is actually a triple system.
The eclipsing stars in the 2.d867 close orbit are Algol A (B8 V)
and Algol B (K2 IV). Algol C (F1 IV) in the wide orbit causes
the 1.9 yr cycle. Applegate’s theory may explain the longer
cycles because Algol B has a convective envelope. MT from
Algol B to Algol A should cause a long-term Porb increase, but
APC may have masked this effect (Biermann & Hall 1973). This
problem was discussed when Kiseleva et al. (1998) compared
Algol to U Cep, where the parabolic O−C trend has confirmed a
Porb increase caused by MT. Evidence for this effect in Algol is
lacking after 230 yr of observations. Thus, any Porb information
predating 1783 A.D. would be valuable.

Ancient Egyptian Scribes (hereafter AES) wrote Calendars of
Lucky and Unlucky Days that assigned good and bad prognoses
for the days of the year. These prognoses were based on
mythological and astronomical events considered influential for
everyday life. The best preserved calendar is the Cairo Calendar
(hereafter CC) in papyrus Cairo 86637 dated to 1271–1163
B.C. (Bakir 1966; Demaree & Janssen 1982; Helck et al.
1975–1992). Many CC prognoses had an astronomical origins,
because AES acting as “hour watchers” observed bright stars

for religious reasons during every clear night (e.g., Leitz 1989,
1994; Krauss 2002, 2012). The traditions of AES in creating
and copying tables of various different versions of star clocks
spanned thousands of years. We have no exact knowledge
about the volume of this activity and admittedly the evidence
is scarce, but nevertheless the star clocks required existing
astronomical observation practices. The little that we know
about the observation practices comes mostly from Late Period
(664–332 B.C.) sources such as the inscription on the statue
of astronomer Harkhebi and the sighting instrument of Hor,
son of Hor-wedja (Clagett 1995). Hardy (2002) argued that
CC was a stellar almanac, where known bright stars, like α
Car, can be identified. Porceddu et al. (2008, hereafter Paper
I) detected the period of the Moon in CC. Indications of a less
significant period, 2.d85, close to Porb of Algol, were detected,
but this connection had to be considered only tentative. Here, we
concentrate on statistics, astrophysics, and astronomy. We show
that n ≈ 200 good prognoses would induce PMoon and PAlgol
in CC, even if the remaining n ≈ 700 good and bad prognoses
had aperiodic origins (Leitz 1994; e.g., diseases, floods, feasts,
winds). The connections between Algol and AES are discussed
in detail in S. Porceddu et al. (2013, in preparation, hereafter
Paper III), where we date CC to 1224 B.C. A shift of ±300y

would not alter the main results presented here.

2. DATA

The CC prognoses are given in Table 1. The ancient Egyptian
year had 365 days. It contained 12 months (M) of 30 days
(D). Every month had 3 weeks with 10 days. The year was
divided into the flood (Akhet), the winter (Peret), and the harvest
(Shemu) seasons. CC gave three prognoses a day, except for
the five additional “epagomenal” days of the year. We use the
German notation G = “gut” = “good” and S = “schlecht” =
“bad” (Leitz 1994). The notation for unreadable prognoses is
“–.” The Egyptian day began from dawn. Daytime and nighttime
were divided into 12 hr. For example, GGS for “I Akhet 25”
means that the first two parts of this day were good, but the
third part was bad. The logic of this day division procedure has
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Table 1
CC Prognoses for One Egyptian Year

Day Akhet Akhet Akhet Akhet Peret Peret Peret Peret Shemu Shemu Shemu Shemu
I II III IV I II III IV I II III IV

D M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 M = 11 M = 12

1 GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG GGG
2 GGG GGG – GGG GGG GGG GGG GGG – – GGG GGG
3 GGS GGG GGG SSS GGG – – SSS GGG GGG SSS SSS
4 GGS SGS – GGG GGG GGG GSS GGG SSS SSS GGG SSG
5 GGG SSS – GGG GSS GGG GGG SSS – GGG SSS GGG
6 SSG GGG GGG SSS GGG – GGG SSS GGG – – SSS
7 GGG SSS GGG SSS SSS GGG SSS GGG GGG SSS SSS –
8 GGS GGG – GGG GGG GGG GGG GGG – GGG SSS GGG
9 GGG GGG SSS GGG GGG GGG GGG – GGG GGG GGG GGG
10 GGG GGG GGG GGG SSS SSS SSS – – GGG SSS GGG
11 SSS GGG GGG GGG SSS GGG GGG SSS – SSS SSS SSS
12 SSS SSS – SSS – GGG GGG SSS – GGG – GGG
13 GSS GGG SSS GGG GGG SSS GGG SSS – GGG – GGG
14 – GGG SSS GGG SSS SGG – – – GGG SSS GGG
15 GSS GSS SSS – GGG – SSS GGG – SSS GGG SSS
16 SSS GGG GGG GGG GGG – SSS GGG GGG GGG SSS GGG
17 SSS GGG – – SSS GGG SSS SSS GGG SSS – GGG
18 GGG SSS SSS SSS GGG SSS GGG – GGG SSS SSS SSG
19 GGG GGG SSS SSS SSS GSS – GGG GGG SSS SSS GGG
20 SSS SSS SSS SSS SSS SSS SSS – SSS SSS SSS –
21 GGG SSG GGG SSG GGG – – – SSS SSG GGG GGG
22 SSS – – GGG GGG GGG SSS SSS GGG SSS SSS GGG
23 SSS – SSS GGS GGG GGG GGG – GGG GGG SSS SSS
24 GGG SSS GGG – GGG SSS SSS SSS – GGG GGG GGG
25 GGS SSS GGG – GGG GGG – SSS GGG GGG GSG GGG
26 SSS SSS GGG GGG SSS – SSS – GGG SSS GGG GSG
27 GGG SSS GGG GGS GGG – SSS SSS – SSS SSS SSS
28 GGG GGG GGG SSS GGG GGG GGG GGG – GGG SSS GGG
29 SGG GGG GGG SSS GGG SSS GGG GGG GGG GGG GGG GGG
30 GGG GGG GGG GGG GGG SSS GGG GGG GGG GGG GGG GGG

not been explained anywhere in the known Egyptian texts. The
prognosis is usually the same, GGG or SSS, for the whole day.
However, 23 days have a heterogeneous prognosis, like GSS.
Leitz (1994) used the descriptions of such days to infer how AES
divided the day into parts. The first part refers to the morning,
the second refers to mid-day, and the third refers to the evening,
but may also include the night.

We computed Gregorian days (NG = 1≡January 1) from

NG =
{

NE + N0 − 1, NE � 366 − N0

NE + N0 − 366, NE > 366 − N0,
(1)

where NE = 30(M − 1) + D, and N0 = 62, 187 or 307.
Leitz (1994) has suggested N0 = 187. The values N0 =
307 and 62 were obtained by adding 120 and 240 days to
N0 = 187. These three N0 values were tested, because we
did not know, where the Gregorian year began in CC. We
used δ�(NG) ≈ −23.45ocos [360o(NG+10)/(365.25)]. This
accuracy was sufficient (see Section 3.6, 11th paragraph).
The daytime at Middle Egypt (φ = 26◦41′) was lD(NG) =
(24/180◦){acos[− tan(φ) tan(δ�(NG))]} hours. Assuming that
AES divided lD(NG) into three intervals gave

t1(NE) = (NE − 1) + (1/6)[lD(NG)/24]

t2(NE) = (NE − 1) + (3/6)[lD(NG)/24] (2)

t3(NE) = (NE − 1) + (5/6)[lD(NG)/24].

In our other alternative, the daytime was divided into two
intervals and the nighttime was the third interval:

t1(NE) = (NE − 1) + (1/4)[lD(NG)/24]

t2(NE) = (NE − 1) + (3/4)[lD(NG)/24] (3)

t3(NE) = (NE − 1) + 1/2 + (1/2)[lD(NG)/24].

These divisions represented the extremes that can be used in
placing three epochs within 24 hr. We created 24 different
samples of series of time points ti (hereafter SSTP) from Table 1.
The ti of G and S prognoses were separated. The D = 1 and 20
prognoses were always GGG and SSS (Table 1). We removed
the ti of these days from some samples. Table 2 summarizes our
SSTP. The ti values for all prognoses are given in Table 3, which
is available in full in the online journal. Columns 1–4 give D,
M, NE, and the prognoses X. Columns 5–10 give ti calculated
for different combinations of Equations (1)–(3).

3. ANALYSIS

We did not analyze the “bivalent data” yi = y(ti) = X(ti) =
G or S. We analyzed ti, which fulfilled X(ti) = G or S. These
“circular data” could be analyzed with numerous nonparametric
methods (e.g., Batchelet 1981).

3.1. Rayleigh Test

We analyzed these ti with a Rayleigh test between Pmin =
1.d5 and Pmax = 90.d0. Our Pmin exceeded the data spacing

2



The Astrophysical Journal, 773:1 (14pp), 2013 August 10 Jetsu et al.

Table 2
SSTP = 1, 2, 3, . . ., 23, and 24 Created from Table 1

SSTP N0 Div X Remove n ΔT

1 62 Equation (2) G None 564 359.3
2 62 Equation (2) G D = 1 528 358.3
3 187 Equation (2) G None 564 359.4
4 187 Equation (2) G D = 1 528 358.4
5 307 Equation (2) G None 564 359.3
6 307 Equation (2) G D = 1 528 358.3

7 62 Equation (3) G None 564 359.6
8 62 Equation (3) G D = 1 528 358.6
9 187 Equation (3) G None 564 359.6
10 187 Equation (3) G D = 1 528 358.6
11 307 Equation (3) G None 564 359.6
12 307 Equation (3) G D = 1 528 358.6

13 62 Equation (2) S None 351 354.0
14 62 Equation (2) S D = 20 321 354.0
15 187 Equation (2) S None 351 354.0
16 187 Equation (2) S D = 20 321 354.0
17 307 Equation (2) S None 351 354.0
18 307 Equation (2) S D = 20 321 354.0

19 62 Equation (3) S None 351 354.0
20 62 Equation (3) S D = 20 321 354.0
21 187 Equation (3) S None 351 354.0
22 187 Equation (3) S D = 20 321 354.0
23 307 Equation (3) S None 351 354.0
24 307 Equation (3) S D = 20 321 354.0

Notes. N0 in Equation (1), day division Div (Equations (2) or (3)), selected
prognoses (X), removed prognoses (Remove), sample size (n), and time span
(ΔT = tn − t1).

(Equations (2) and (3)) and our Pmax was ΔT/4. We have
applied nonparametric methods to astronomical (Jetsu 1996;
Jetsu et al. 1997, 1999, 2000; Lyytinen et al. 2002; Lehtinen
et al. 2011, 2012) and geophysical data (Jetsu 1997; Jetsu & Pelt
2000; Lyytinen et al. 2009). The sample size (n) and density
(ΔT/(nP )) of CC were better than in any of these previous
studies.

The phases are φi = FRAC[(ti − t0)f ], where FRAC[x]
removes the integer part of x, f = P −1 is the tested frequency,
and t0 is an arbitrary epoch. Rayleigh test statistic is z(f ) =
|R|2/n, where θi = 2πφi , ri = [cos θi, sin θi] and R = ∑n

i=1 ri .
Rayleigh test null hypothesis is
H0: “Phases φi calculated with an arbitrary tested P have a
random distribution between 0 and 1.”
If H0 is true, ri point to random directions θi and |R| ≈ 0.
Coinciding θi give |R| = n. The probability density function is
f (z) = e−z, which gives P (z � z0) = F (z0) = 1−e−z0 . If the

Table 4
Number of Different Daily Prognosis Combinations in Table 1

Prognosis SSTP = 1, 3, . . ., 35 SSTP = 2, 4, . . ., 36

Combination Days G S Days G S

GGG 177 531 0 165 495 0
GGS 6 12 6 6 12 6
GSG 2 4 2 2 4 2
GSS 6 6 12 6 6 12
SSS 105 0 315 95 0 285
SSG 6 6 12 6 6 12
SGG 2 4 2 2 4 2
SGS 1 1 2 1 1 2
Total 305 564 351 283 528 321
“–” 55 0 0 53 0 0
Total 360 564 351 336 528 321

−→ Table 5 −→ Table 6

tested f are between fmin and fmax, the number of independent
statistical tests is m = INT[(fmax − fmin)/f0], where INT[x]
removes the decimal part of x and f0 = 1/ΔT (Jetsu & Pelt
1996, 2000). The probability that z(f ) exceeds the value z0 is

Q = Q(z0) = P (z(f ) > z0) = 1 − (1 − e−z0 )m. (4)

This Q is the standard critical level. We rejected H0 if

Q < γ = 0.001, (5)

where γ is called the preassigned significance level. We used
simulations to check if the above standard Q estimates were
reliable for the CC data.

3.2. Simulation of Data Similar to SSTP = 1, 3, . . ., 23

Table 4 summarizes the real data: number of “days”
(Columns 2 and 5) having the same “prognosis combina-
tion” (Column 1), and number of individual “G” (Columns 3
and 6) or “S” prognoses (Columns 4 and 7). For exam-
ple, the event X(t1) = G occurred with the probability of
P(Event) = (177+6+2+6)/305 = 191/305 in the real data of
SSTP = 1, 3, . . ., 23. The complementary event, X(t1) = S, had
P(Event) = (105+6+2+1)/305 = 114/305. We simulated ape-
riodic data, where the prognosis combinations of real data oc-
curred with the same probabilities. Table 4 (Columns 2–4) gave
the probabilities P(Event) of Table 5. Notations like X�(t1) = G
or X�(t1) = S refer to the events that the simulated prognosis
for the first time point t1 of an arbitrary day is either G or S.
Aperiodic simulated data similar to the real data in SSTP = 1,
3, . . ., 23 were generated with the following procedure:

Table 3
Time Points ti for All Prognoses of Table 1

D M NE X Div: Equation (2) Div: Equation (3)

N0 = 62 N0 = 187 N0 = 307 N0 = 62 N0 = 187 N0 = 307
(days) (days) (days) (days) (days) (days)

1 1 1 G 0.080 0.095 0.076 0.120 0.142 0.114
1 1 1 G 0.239 0.284 0.227 0.359 0.426 0.341
1 1 1 G 0.399 0.473 0.379 0.739 0.784 0.727
2 1 2 G 1.080 1.095 1.076 1.120 1.142 1.113
2 1 2 G 1.240 1.284 1.227 1.360 1.425 1.340

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding
its form and content.)
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Figure 1. Three periodograms of SSTP = 1. (a) f (z) for real data gave P1 = 29.d4 and P2 = 2.d85. (b) z�(f ) (continuous line) for simulated data similar to real data
and level of z0 = 0.693≡ Q = 0.5 (dotted line). (c) zN(f ) for real data gaveP1 = 29.d6 andP2 = 2.d85.

Table 5
Simulation of Aperiodic Data Similar to SSTP = 1, 3,. . . 23

Stage A: Event P(Event)

X�(t1) = G 191/305
X�(t1) = S 114/305

Stage B: Event P(Event)

X�(t1) = G ⇒ X�(t2) = G 183/191
X�(t1) = G ⇒ X�(t2) = S 8/191
X�(t1) = S ⇒ X�(t2) = S 111/114
X�(t1) = S ⇒ X�(t2) = G 3/114

Stage C: Event P(Event)

X�(t1) = G and X�(t2) = G ⇒ X�(t3) = G 177/183
X�(t1) = G and X�(t2) = G ⇒ X�(t3) = S 6/183
X�(t1) = G and X�(t2) = S ⇒ X�(t3) = G 2/8
X�(t1) = G and X�(t2) = S ⇒ X�(t3) = S 6/8
X�(t1) = S and X�(t2) = S ⇒ X�(t3) = S 105/111
X�(t1) = S and X�(t2) = S ⇒ X�(t3) = G 6/111
X�(t1) = S and X�(t2) = G ⇒ X�(t3) = G 2/3
X�(t1) = S and X�(t2) = G ⇒ X�(t3) = S 1/3

1. We chose the simulated SSTP = 1, 3, . . ., or 23. The t1, t2,
and t3 for every NE were calculated with the N0 and Div
of this SSTP (Table 2). The time points of 55 randomly
selected days were removed.

2. The random prognoses for each day were assigned using
the probabilities P(Event) given in Table 5.
Stage A. The random prognosis X�(t1) was assigned with
the given probabilities P(Event).

Stage B. The result for X�(t1) then determined the proba-
bilities P(Event) used in assigning X�(t2).
Stage C. The results for X�(t1) and X�(t2) then determined
P(Event) used in assigning X�(t3).

3. We removed ti with X�(ti) = S for SSTP = 1, 3, . . ., 11 and
ti with X�(ti) = G for SSTP = 13, 15, . . ., 23.

We used this procedure to simulate 10,000 samples of aperiodic
random ti similar to every SSTP = 1, 3, . . ., 23. This resembled
the bootstrap approach (e.g., Jetsu & Pelt 1996), because we
created random samples imitating all the defects of the real
data. Our repeated random sampling could also be called the
Monte Carlo approach.

The highest z(f ) peaks for the real data of SSTP = 1 were
at P1 = 29.d4 and P2 = 2.d850 (Figure 1(a)). They reached
Q = 0.0000034 and 0.0012. Hence, H0 should be rejected with
P1, but not with P2 (Equation (5)).

The noise periodogram z�(f ) for all 10,000 simulated aperi-
odic data samples similar to SSTP = 1 is shown in Figure 1(b).
This z�(f ) is the median, not the mean, of z(f ) periodograms
for all 10,000 simulated data samples at any particular f, be-
cause the probability density function of z is not Gaussian.
This density function, e−z, predicts that half of the values fulfill
0 � z � 0.693 and the rest fulfill 0.693 < z � n. At the higher
f, our z�(f ) approached z0 = 0.693 ≡ Q = 0.5 (Figure 1(b),
dotted line). However, z�(f ) deviated from z0 = 0.693 at lower
f, i.e., the standard Q estimates were not reliable. The z�(f )
periodogram displayed peaks at

f = f (ΔT , k) = [P (ΔT , k)]−1, (6)
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Figure 2. Three periodograms of SSTP = 2.

where k � 4 was an integer and the long periods were
P (ΔT , k) = ΔT/(k+1/2) (Figure 1(b)). The n = 564 simulated
ti were nearly evenly spaced over ΔT = 360d that contained
k+1/2 cycles of P (ΔT , k). The sum of ri within the k full cycles
was close to zero. The ri within the remaining 1/2 cycle pointed
to same side of the unit circle. This caused the z�(f ) peaks at
f (ΔT , k). These P (ΔT , k) were unreal periods, which gave us
another reason for rejecting the use of the standard Q estimates.

In the power spectrum analysis, the observed power at any
tested f is the “signal–power to noise–power ratio” (Scargle
1982). We divided the standard Rayleigh test z(f ) periodogram
for the real data with the noise periodogram z�(f ) for similar
simulated aperiodic data. This gave us the normalized peri-
odogram

zN(f ) = z(f )/z�(f ). (7)

To avoid any misunderstanding, we emphasize that the power
spectrum method was not applied here. That parametric method
relies on a sinusoidal model (Scargle 1982). It can be applied
to a time series yi = y(ti), but not to a series of time points ti.
Rayleigh test is a nonparametric method. There is no need to fit
the data, because there is no model or model parameters.

The highest zN(f ) peaks were at P1 = 29.d6 and P2 =
2.d850 (Figure 1(c)). Comparison to Figure 1(a) revealed that
normalization shifted P1 from 29.d4 to 29.d6, but it did not
shift P2. Normalization also eliminated numerous unreal peaks,
especially in the lowest f range. We used zN(f ) to identify
the best periods in SSTP = 1. Their significance also had to
be solved from simulations, because the standard Q estimates
were unreliable. The peak at f −1

1 = P1 = 29.d6 reached
z1 = zN(f1) = 16.68. We used Table 5 to simulate ten million
aperiodic samples similar to the real data of SSTP = 1 and

calculated zN(f ) for each sample within [f1 −f0/2, f1 + f0/2].
The highest peak satisfied zN(f ) > z1 = 16.68 only in 120 of
these samples. Hence, the simulated critical level for P1 = 29.d6
was Q� = 0.000012. For P2 = 2.d850, the same procedure gave
Q� = 0.00014, which fulfilled the criterion Q� < γ = 0.001.
These changes differed, i.e., Q < Q� for P1 = 29.d6 and
Q > Q� for P2 = 2.d850. We decided to revise the H0 rejection
criterion to

Q� < γ = 0.001, (8)

where Q was substituted with Q�. The periods P3 = 1.d5401
(Q� = 0.00091) and P4 = 7.d48 (Q� = 0.00091) also satisfied
Equation (8) for SSTP = 1. We will discuss these two unreal
periods later.

3.3. Simulation of Data Similar to SSTP = 2, 4, . . ., 24

The sample size decreased after removing the D = 1 and 20
prognoses. Columns 5–7 of Table 4 gave the P(Event) of Table 6
used in generating simulated aperiodic data similar to the real
data in SSTP = 2, 4, . . ., 24.

1. We chose the simulated SSTP = 2, 4, . . ., or 24. The t1, t2,
and t3 for every NE were calculated with the N0 and Div
of this SSTP (Table 2). All time points at D = 1 and 20
were first removed. Then the time points of 53 randomly
selected days were removed.

2. X�(t1), X�(t2), and X�(t3) values were assigned as in
Section 3.2, except that P(event) values were from Table 6.

3. We removed ti with X�(ti) = S for SSTP = 2, 4, . . ., 12 and
ti with X�(ti) = G for SSTP = 14, 16, . . ., 24.

The highest f (z) peaks for STTP = 2 were at P1 = 2.d850
and P2 = 64.d8 (Figure 2(a)). Comparison between Figures 1(b)
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Table 6
Simulation of Aperiodic Data Similar to SSTP = 2, 4, . . ., 24

Stage A: Event P(Event)

X�(t1) = G 179/283
X�(t1) = S 104/283

Stage B: Event P(Event)

X�(t1) = G ⇒ X�(t2) = G 171/179
X�(t1) = G ⇒ X�(t2) = S 8/179
X�(t1) = S ⇒ X�(t2) = S 101/104
X�(t1) = S ⇒ X�(t2) = G 3/104

Stage C: Event P(Event)

X�(t1) = G and X�(t2) = G ⇒ X�(t3) = G 165/171
X�(t1) = G and X�(t2) = G ⇒ X�(t3) = S 6/171
X�(t1) = G and X�(t2) = S ⇒ X�(t3) = G 2/8
X�(t1) = G and X�(t2) = S ⇒ X�(t3) = S 6/8
X�(t1) = S and X�(t2) = S ⇒ X�(t3) = S 95/101
X�(t1) = S and X�(t2) = S ⇒ X�(t3) = G 6/101
X�(t1) = S and X�(t2) = G ⇒ X�(t3) = G 2/3
X�(t1) = S and X�(t2) = G ⇒ X�(t3) = S 1/3

and 2(b) revealed many new z�(f ) peaks caused by the removal
of ti at D = 1. The standard Q estimates were certainly
unreliable. The highest zN(f ) peaks were at P1 = 2.d850 (Q� =
0.000094) and P2 = 1.d540 (Q� = 0.00059) (Figure 2(c)).
Normalization did not shift P1, but it revised P2 from 64.d8 to
1.d540. This unreal P2 = P (ΔT , k = 5) = 64.d8 was predicted
by Equation (6). It was nicely eliminated by normalization.

The most striking difference between SSTP = 1 and 2 was
that the highly significant P1 = 29.d6 vanished. The removal of
“GGG” prognoses at D = 1 caused this. The most important
similarity was that the 2.d850 period fulfilled the criterion of
Equation (8) in both SSTP = 1 and 2. After removing the
D = 1 prognoses, the significance of this 2.d850 period increased
(Q� = 0.00014 → 0.000094). In conclusion, the removal of
D = 1 prognoses eliminated the 29.d6 period and the 2.d850
period became the best period. It also became more significant.

The σP estimates for all P were determined from zN(f ) with
the bootstrap method (Jetsu & Pelt 1996). Table 7 gives the best
P for G prognoses. These P satisfied the rejection criterion of
Equation (8). All best P for S prognoses (Table 8) failed this
criterion of Equation (8).

3.4. Results of the Period Analysis of all G Prognoses

Four periods for G prognoses, 29.d6, 2.d85, 1.d54, and 7.d48,
satisfied rejection criterion of Equation (8).

SSTP = 3, 5, 7, 9, and 11 were similar to SSTP = 1 in the
sense that the G prognoses at D = 1 were not removed. The
two best periods for SSTP = 3, 5, 7, 9, and 11 were within
the error limits of the two best periods P1 = 29.d6 ± 0.d2 and
P2 = 2.d850 ± 0.d002 for SSTP = 1.

SSTP = 4, 6, 8, 10, and 12 were similar to SSTP = 2,
because the D = 1 prognoses were removed. The best periods
for these five SSTP were within the error limits of the best period
P1 = 2.d850 ± 0.d002 for SSTP = 2.

We compared the results for the SSTP = 1 and 2 pair in
Section 3.3. Comparison of the SSTP = 3 and 4, SSTP = 5 and
6, SSTP = 7 and 8, SSTP = 9 and 10, or SSTP = 11 and 12
pairs showed that removing the G prognoses at D = 1 always
led to the same result: the best period 29.d6 lost its significance,
while 2.d850 became the new best period and the significance of
this periodicity increased.

Table 7
Best Periods for the G Prognoses

SSTP P Q� P Q�

(days) (days)

1 29.6 ± 0.2 0.000012 2.850 ± 0.002 0.00014
1.5401 ± 0.0008 0.00091 7.48 ± 0.02 0.00091

2 2.850 ± 0.002 0.000094 1.5400 ± 0.0008 0.00059

3 29.6 ± 0.2 0.000015 2.850 ± 0.002 0.00024
1.5401 ± 0.0008 0.00057 . . . . . .

4 2.851 ± 0.002 0.00016 1.5401 ± 0.0008 0.00037

5 29.6 ± 0.2 0.000013 2.851 ± 0.002 0.00015
1.5404 ± 0.0008 0.00081 7.48 ± 0.02 0.00089

6 2.851 ± 0.002 0.000094 1.5401 ± 0.0008 0.00054

7 29.5 ± 0.2 0.000012 2.850 ± 0.002 0.00010
7.48 ± 0.02 0.00079 . . . . . .

8 2.850 ± 0.002 0.000060 . . . . . .

9 29.6 ± 0.2 0.000012 2.851 ± 0.002 0.00016
7.48 ± 0.02 0.00090 . . . . . .

10 2.851 ± 0.002 0.000096 . . . . . .

11 29.6 ± 0.2 0.000013 2.851 ± 0.002 0.000076
7.48 ± 0.02 0.00088 . . . . . .

12 2.851 ± 0.002 0.000051 . . . . . .

Table 8
Best Periods for the S Prognoses

SSTP P Q� P Q�

(days) (days)

13 30.3 ± 0.2 0.0021 7.48 ± 0.02 0.0028

14 2.795 ± 0.003 0.0066 1.5570 ± 0.0009 0.0095

15 30.3 ± 0.2 0.0018 7.48 ± 0.02 0.0026

16 2.822 ± 0.002 0.0079 2.795 ± 0.003 0.0084

17 30.3 ± 0.2 0.0020 7.49 ± 0.02 0.0031

18 2.796 ± 0.002 0.0053 1.5487 ± 0.0008 0.011

19 30.2 ± 0.2 0.0018 7.48 ± 0.02 0.0024

20 2.795 ± 0.003 0.0053 2.822 ± 0.002 0.011

21 30.3 ± 0.2 0.0019 7.48 ± 0.02 0.0028

22 2.822 ± 0.002 0.0061 2.795 ± 0.003 0.0068

23 30.3 ± 0.2 0.0021 7.48 ± 0.02 0.0024

24 2.795 ± 0.003 0.0041 2.824 ± 0.002 0.012

The unreal 1.d54 period detected in SSTP = 1–6 was predicted
by P ′(P0, k1, k2) = [P −1 + (k1/(k2P0)]−1, where P = 2.d85 is
the real period, P0 = 1.d0 is the window period, k1 = −1 and
k2 = 1 (Tanner 1948). This unreal period was not detected in
SSTP = 7–12, because the daily ti were evenly distributed over
24 hr with Equation (3) and therefore induced no P0 = 1.d0
window period.

We detected the unreal 7.d48 period in SSTP = 1, 5, 7, 9, and
11, but it vanished in SSTP = 2, 6, 8, 10, and 12, because it was
nearly equal to δt/4 = 7.d50, where δt = 30d was the distance
between the removed D = 1 prognoses.

Normalization shifted the best period from 29.d4 to 29.d6 in
SSTP = 1 (Figures 1(a) and (c)). It caused similar shifts in
SSTP = 3, 5, 7, 9, and 11. These shifts were always toward the
mean of the synodic month, Psyn = 29.d53, which would have

6



The Astrophysical Journal, 773:1 (14pp), 2013 August 10 Jetsu et al.

been the most practical value for prediction purposes of AES.
The synodic month is not constant, but varies between 29.d3 and
29.d8 in a year (Stephenson & Baolin 1991). Our PMoon differed
from 29.d53 only by +0.d07 (SSTP = 1, 3, 5, 9, and 11) and −0.d03
(SSTP = 7). We solved the precision σP that AES could have
reached from n observations of Pi=Psyn+(AMoon/2) sin (2πxi),
where AMoon = 0.d5, xi = i/n and i = 1, . . . , n. It
was σ 2

P = [(AMoon/2)2/n]
∑n

i=1[sin (iu)]2, where u = 2π/n.
Then

∑n
i=1[sin (iu)]2 = n/2− [cos (n + 1)u sin (nu)]/[2 sin u]

(Gradshteyn & Ryzhik 1994) gave σP = 2−3/2AMoon = 0.d18.
This agreed with our σP = 0.d2 in Table 7. AES must have mea-
sured these changes for more than a year, because their PMoon
estimate was much closer to 29.d53 than the expected observa-
tional ±0.d2 error.

3.5. Results of the Period Analysis of all S Prognoses

There was no significant periodicity in S prognoses, because
all best P failed the criterion of Equation (8). The P = 30.d3±0.d2
and 7.d48±0.d02 for SSTP = 13, 15, . . ., 23 were the same within
their error limits (Table 8). These P, originating from S at D =
20, were replaced by the new P = 1.d557, 2.d795, and 2.d822 for
SSTP = 14, 16, . . ., 24. The 2.d822 and 2.d795 periods were both
close, but not equal to, the 2.d850 period already detected from G
prognoses. P ′(P0, k1, k2) ≈ 1.d55 was predicted by P = 2.d795,
P0 = 1.d0, k1 = 1, and k2 = −1 (Tanner 1948).

3.6. General Remarks about the Results of Period Analysis

We analyzed 24 different SSTP. We had an infinite number
of alternatives for transforming Table 1 into ti, but we simply
could not invent any other realistic alternative transformations
that would have altered our period analysis results. For example,
the available prognoses for D = 2 were always “GGG.” We
performed additional tests, where ti at D = 1 and 2 were
removed. The best period was 2.d85. However, we could not
test all possible alternatives for removing ti from the data.

The unreal periods could be divided into two categories.
Those of the first category were present even in aperiodic data,
like the long periods predicted by Equation (6). Normalization
eliminated these first category unreal periods. The second
category of unreal periods were induced by the real periods.
Some of these unreal periods could be predicted, like the
connection between the real 2.d85 period and the unreal 1.d54
period (Tanner 1948). Normalization did not eliminate these
second category unreal periods, but they vanished when the real
periodicity was removed, like the unreal 7.d48 period when the
real 29.d6 period was removed. This indicated that only the 29.d6
and 2.d85 periods were real.

The standard Q estimates were unreliable. For example, the
evidence for P1 = 2.d850 in SSTP = 1 was not indisputable,
because it failed the criterion of Equation (5). However, the
significance of P1 = 2.d850 was underestimated (Q > Q�),
while that of P2 = 29.d6 was overestimated (Q < Q�). Periods
29.d6 and 2.d850 reached z0 = zN(f ) = 16.7 and 14.6. Inserting
these z0 into Equation (4) gave Q(z0) = 0.000013 and 0.00011.
This was nearly equal to Q� = 0.000012 and 0.00014. We
emphasize that Equation (4) should not be applied to zN(f ).
However, using z0 = zN(f ) in Equation (4) gave Q(z0) ≈ Q�.
This indicated that our simulated statistics were robust.

Normalization allowed us to imitate the pattern of lucky
and unlucky days, although we did not know how these were
chosen. It gave us the Q� estimates and eliminated some of the
unreal periods. The best idea of all was to test what happens

after removing PMoon. This resulted in the 2.d850 period being
the only significant real period and its significance increased.
CC does not give explicit clues as to why AES assigned the
prognoses with such regularity, but the 2.d850 period differs by
0.d017±0.d002 from the current orbital period 2.d867328 of Algol.
If this is indeed the reason for finding this periodicity in CC,
then Porb should have increased about 25m since 1224 B.C.

Coinciding θi of n1 periodic ti give |A1| = |∑n1
i=1ri | = n1. If

aperiodic ti give |A2| = | ∑n−n1
i=1 ri |≈0, then z=|A1+A2|2/n≈

n2
1/n. For example, P = 29.d4 and 2.d851 reached z = 17.4

and 12.1 in SSTP = 1 (n = 564), which gave n1 � √
zn ≈ 99

and 83. If 36 values connected to PMoon were at D = 1, the
other ti inducing this signal must have been at D = 2, 3, 29,
or 30. Thus, most of the G data could be aperiodic, because
n1 ≈ 200 prognoses could induce PMoon and PAlgol. The exact
required number, n1, cannot be solved, because the θi of all n1
periodic ti cannot be equal with Equations (2) and (3). There
were 126 eclipses of Algol during 360d. If AES used only one
G prognosis to mark each individual eclipse, they may even
have marked all eclipses into CC, because reaching n1 � 83
requires interpolating many of the ≈60 daytime eclipses or of
those eclipses that occurred when Algol was in conjunction with
Sun.

We used simulations to check if a signal of n1 periodic
G prognoses with PAlgol = 2.d85 would induce the z(f )
periodogram of Figure 2(a). We selected these n1 periodic ti
from the real data of SSTP = 2. We assigned the remaining
n−n1 aperiodic random prognoses in such a way that the relative
number of different daily prognosis combinations was the same
as in the real data (Table 4). Our simulations reproduced the
unreal 1.d54 period, as well as those predicted by Equation (6).
The period of PAlgol = 2.d85 = 57d/20 induced a z(f ) peak
at PReturn = 19d in many signals, because a series of eclipses
was repeated every 19 days (see Figure 4(a), groups of vertical
lines). AES may have noted that eclipses “returned” exactly to
the same epoch of the night after 57d = 3×19d. The relation
PReturn/Pk3 −PReturn/PAlgol = k3 = ±1,±2, . . . predicted z(f )
peaks at f = 1/Pk3 . For example, Pk3=1 = 3.d353 and Pk3=−1 =
2.d478 gave one cycle less or more than PAlgol during PReturn. The
z(f ) peaks at these unreal Pk3 frequently exceeded the PAlgol
peak in weaker simulated signals (n1 = 40). However, PAlgol
dominated over Pk3 in stronger simulated signals (n1 = 100).
When we divided the real STTP = 1 and 2 data into two parts,
these unreal Pk3 were weaker in the first part of CC (NE �180),
but many Pk3 peaks exceeded that of PAlgol in the second part
(NE > 180). The real (PMoon and PAlgol) and the unreal (7.d48
and 1.d54) periods were present in both parts. Our simulations
also revealed that the z(f ) = 12.7 peak at f = 1/PAlgol in
Figure 2(a) could be reproduced, if AES recorded only the
observed, n1 ≈ 60, nighttime eclipses by using more than one
G prognosis for each eclipse. AES may even have attributed
importance to a connection between PMoon and PAlgol, because
PReturn = 19d coincides with the difference between D = 1
(always GGG) and D = 20 (always SSS) during every month.

The table from the Cosmology of Seti I and Ramses IV given
in Neugebauer & Parker (1960, pp. 84–86) demonstrates how
prone written documents from ancient Egypt were to writing
errors. If we consider the amount of wrongly copied entries in the
aforementioned table, it seems fair to test for an estimated 10%
of incorrect entries. Therefore, we simulated periodic signals
with n1 = 60, where six randomly chosen time points of each
simulated signal were displaced. These simulations revealed
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that if AES recorded only the observed ≈60 yearly nighttime
eclipses in CC, the period of Algol could be discovered although
10% of their entries were erroneous.

Here, we discuss our precision estimate, σP = 0.d002, for
PAlgol. The maximum separation between three ti within one
day is 8h ≡ Δφ = 0.12 for PAlgol. An eclipse positioned to a
correct third of the day, had σΔφi

≈ 0.06 for Equation (3) and
less for Equation (2). Our large samples contained four ti within
each PAlgol. We obtained our σP estimates for PMoon and PAlgol
from 1 yr of data. The long-term mean of the variable length of
synodic month, Psyn = 29.d53, was closer to our PMoon than what
could be measured from only 1 yr of observations (Section 3.4,
last paragraph). This indicated that AES measured PMoon
changes over many years. It was easier to measure long-term
PAlgol than PMoon, because the former remained practically con-
stant. A period change of 0.d017 would revise the predictions
radically, because the current Porb = 2.d867 predicts eclipses
about 52h later in the end of a year than Porb = 2.d850. The
precision of σP = 0.d002 predicts correct nights for all yearly
eclipses, because the accumulated error is only ±6h.

The ratio PMoon/PAlgol = 29.d6/2.d850 = 10.4 was close to
Pweek = 10d. However, five facts contradicted the idea that
Pweek and PMoon induced PAlgol. (1) There were no signs Pweek

in CC. (2) PAlgol = 2.d850 ± 0.d002 was 55×σP smaller than
PMoon/10 = 2.d960. (3) After removing the D = 1 prognoses,
PMoon and the unreal 7.d48 period vanished, but PAlgol did
not vanish (compare Figures 1(c) and 2(c)). Hence, 7.d48 was
connected to PMoon, but PAlgol was not. (4) After removing the
D = 1 prognoses, PMoon vanished, but the significance of PAlgol
always increased (Table 7). This indicated that PAlgol was not
connected to PMoon. (5) The ratio PMoon/PAlgol induces a 0.4
phase difference in one month. Events connected to PMoon and
PAlgol are totally out of phase throughout the whole year. Thus,
PMoon and/or Pweek certainly did not induce PAlgol.

It could be argued that our test against H0 was irrelevant,
because the data contained an algorithm. The z(f ′) peaks are at
f ′ that maximize |R|. The values of |R| or f ′ do not depend on
H0, but reveal any arbitrary P ′ = 1/f ′ coded with an algorithm,
e.g., PMoon or PAlgol. The z0 = z(f ′) value would give the Q
estimate for P ′ (Equation (4)), but we emphasized repeatedly
that these standard Q estimates were not valid. We identified the
best periods P ′ from the zN(f ′) peaks, which did not depend on
H0. We solved the critical levels, Q�, from simulations, which
did not rely on H0. In short, our period analysis results did not
depend on H0.

We also tested the constant daytime, lD(NG) = 12h, alterna-
tive for all NG of the year (Equations (2) and (3)). The results did
not change. The lD(NG) changes, and δ�(NG) approximation in
Section 2 had no influence on the results.

4. ASTROPHYSICS

The physical parameters of Algol are given in Table 9, where
the subscripts “1” and “2” denote the “A–B” and “AB–C”
systems. The zero-age main sequence masses were mB =
2.81 M� and mA = 2.50 M� in the “best-fitting” evolutionary
model of Sarna (1993), where Algol B evolved away from the
main sequence in 450 million years. This happened only a few
million years ago. Roche-lobe overflow caused substantial MT
to Algol A, which became more massive than Algol B within
less than 700,000 yr. MT is weaker at the current quiescent stage.
The complex APC of Algol may have “masked” (Biermann &
Hall 1973) the presence of a small long-term Porb increase that

Table 9
Physical Parameters of the Algol System (Zavala et al. 2010)

Orbital Elements Orbital Elements Masses
A–B System AB–C System

a1 = 2.3 ± 0.1 a2 = 93.8 ± 0.2 mA = 3.7 ± 0.2
i1 = 98.6 i2 = 83.7 ± 0.1 mB = 0.8 ± 0.1
Ω1 = 7.4 ± 5.2 Ω2 = 132.7 ± 0.1 mC = 1.5 ± 0.1
e1 = 0 e2 = 0.225 ± 0.005
P1 = 2.867328 P2 = 679.85 ± 0.04

Note.[a1] = [a2] = ′′/1000, [i1] = [i2] = [Ω1] = [Ω2] = ◦, [e1] = [e2] =
dimensionless, [P1] = [P2] = days, [mA] = [mB] = [mC] = M�.

should have been observed as parabolic O − C changes. MT
from the less massive Algol B to the more massive Algol A
should lead to a long-term increase

Ṗorb/Porb = −[3ṁB(mA − mB)]/(mAmB), (9)

where Ṗorb is the rate of Porb change, mA and mB are the masses
of the gainer and the loser, and ṁB is the MT rate (Kwee
1958, Equation (5)). If Porb was 2.d850 in 1224 B.C. and it
has since then increased to 2.d867328, constant Ṗorb would give
ṁB = −2.2×10−7 M� yr−1. This agreed with the “best-fitting”
evolutionary model that predicted ṁB = −2.9 × 10−7 M� yr−1

(Sarna 1993). Soderhjelm (1980) noted that Algol’s MT “is
unlikely to be less than 10−7 M� yr−1.” Constant MT is
only an approximation, because short MT bursts interrupt the
long quiescent periods (e.g., Mallama 1978). Equation (9) may
also underestimate MT (Zavala et al. 2002). However, more
conservative MT estimates, between 10−13 and 10−8 M� yr−1,
have been published (Harnden et al. 1977; Cugier & Chen 1977;
Hadrava 1984; Richards 1992).

Bastian (2000) discussed the accumulated long-term effects
of Earth’s non-uniform rotation to the O − C diagrams of
EB. Such effects also shift the computed epochs of ancient
solar eclipses (Smith 2012). However, accumulated effects are
insignificant within 1 yr of data, like CC. The days in 1224
B.C. were 0.s055 shorter than now, because the increase has
been about 0.s0017 in a century (Stephenson 1997). If Porb was
2.d850 000 in days in 1224 B.C., it would be 2.d849 998 in modern
days. This 0.d000 002 difference was 1000 times smaller than
our error σP = 0.d002 for 2.d850 and 8500 times smaller than
the 0.d017 period change. Hence, Earth’s non-uniform rotation
did not prevent a reliable comparison of the present-day Porb of
Algol to that in 1224 B.C.

The perturbations of Algol C are slowly changing i1 and
eclipses may not always occur. Soderhjelm (1975) derived the
period for these i1 changes

Pi1 = 4[1+(mA + mB)/mC]
(
P 2

2 /P1
)(

1−e2
2

)3/2

3[(G1/G2)2 + 2(G1/G2) cos Ψ + 1]1/2cos Ψ
, (10)

where G1 = m1[Ga1(1 − e1)2(mA + mB)]1/2, m1 = (mAmB)/
(mA +mB), G2 = m2[Ga2(1− e2)2(mA +mB +mC)]1/2, m2 =
[(mA +mB)mC]/(mA +mB +mC), G is the gravitational constant
and Ψ is the angle between the orbital planes of A–B and AB–C
systems, which fulfills

cos Ψ = cos i1 cos i2 + sin i1 sin i2 cos (Ω1 − Ω2). (11)

Combining Ψ = 95◦ ± 3◦ (Csizmadia et al. 2009) and Ψ =
86◦ ± 5◦ (Zavala et al. 2010) to the values in Table 9 gave
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Figure 3. Light curves of the best candidates as function of phase. (a) Algol (closed circles), (b) λ Tau (open diamonds), (c) ζ Gem (closed triangles), (d) l Car (closed
squares), (e) β Lyr (open circles), (f) η Aql (open squares), and (g) δ Cep (open triangles). (h) All curves in the same scale: Algol is more than one magnitude brighter
than the other six variables and has the largest amplitude.

Pi1 = 25,000 and 31,000 yr, i.e., i1 may have been stable
during the past three millennia. The Pi1 lower limits were 14,000
and 16,000 yr for ±1σΦ. Therefore, we could not confirm that
eclipses occurred in 1224 B.C.

5. ASTRONOMY

Naked eye observers can discover periodicity in the Sun,
the planets, the Moon, and the stars. Periods of the Sun and
the planets exceed 90d. PMoon was in CC. Thus, the stars
were the only other celestial objects, where AES could have
detected periodicity between 1.d5 and 90d. Here, we present
eight criteria indicating that Algol was the most probable star,
where AES could have discovered periodic variability. The
General Catalogue of Variable Stars (hereafter GCVS3) gave
the maximum brightness (mmax), the amplitude (Δm), and the
period (P) of all known over 40,000 variables. The criterion
C1: variability fulfils mmax � 4.0 and Δm � 0.4

gave those 109 stars, where variability could be discovered
with naked eyes (e.g., Turner 1999). The criterion
C2: period is known and fulfils 1.d5 � P � 90d

left us with the 13 stars of Table 10. The criterion
C3: variable was not below, or too close to, the horizon

eliminated ζ Pho, β Dor, and κ Pav. The next criterion
C4: variability can be predicted
eliminated ρ Per (Percy et al. 1993, 1996), μ Lep (Renson et al.
1976; Heck et al. 1987; Perry et al. 1987) and R Lyr (Percy et al.
1996, 2001). Their changes cannot be predicted even today. The
changes of the remaining candidates are shown in Figures 3
and 4. The light curves have not changed significantly since

3 GCVS at http://www.sai.msu.su/groups/cluster/gcvs/gcvs/ was accessed in
2008 November.

Table 10
Thirteen Variable Star Candidates Not Rejected with C1 or C2

Name P Type mmax Δm δ a0 a30 a60 amax

(days) (mag) (mag) (deg) (hr) (hr) (hr) (deg)

ζ Pho 1.6697671 EB 3.91 0.51 −73 0 0 0 <0
ρ Per 50 SP 3.30 0.70 +23 14 10 6 86
Algol 2.8673043 EB 2.12 1.27 +25 14 10 6 88
λ Tau 3.9529478 EB 3.37 0.54 −1 12 8 4 62
μ Lep 2 CP 2.97 0.44 −25 10 5 0 38
β Dor 9.8426 CE 3.46 0.62 −65 0 0 0 <0
ζ )Gem 10.15073 CE 3.62 0.56 +18 13 9 6 82
l Car 35.53584 CE 3.28 0.90 −50 7 0 0 14
β Lyr 12.913834 EB 3.25 1.11 +34 15 10 6 82
R Lyr 46 SP 3.88 1.12 +43 16 11 7 73
κ Pav 9.09423 CE 3.91 0.87 −60 4 0 0 3
η Aql 7.176641 CE 3.48 0.91 −1 12 8 4 62
δ Cep 5.366341 CE 3.48 0.89 +44 16 11 7 73

Notes. Column 1: name; Column 2: P; Column 3: type (EB: eclipsing binary; SP:
semiregular pulsating star; CP: chemically peculiar; or CE: cepheid); Columns 4
and 5: mmax and Δm; Column 6: δ in 1224 B.C.; Columns 7–10: time above
altitudes 0◦, 30◦, and 60◦ (a0, a30, and a60) and upper culmination (amax).

the discovery of these variables. Therefore, we first modeled
the light curves of the photometry in Kim (1989; Algol), Grant
(1959; λ Tau), Moffett & Barnes (1980; ζ Gem, η Aql, and
δ Cep), Dean et al. (1977; 1 Car), and Aslan et al. (1987;
β Lyr). We then obtained a full phase coverage by selecting
a random sample of points from these models and adding a
Gaussian random 0.m01 error to them. This is what anyone would
observe with an instrument having a precision of 0.m01. These
curves could be descriptive, because we were only interested
in what can be detected with naked eyes. Algol is easiest to

9
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Figure 4. Light curves of the best candidates as a function of time. (a)–(g) The symbols are the same as Figure 3, but here they denote the brightness at mid-night.
The vertical lines (when visible) display the total range of the brightness changes during a night lasting 12 hr. (h) The nightly changes in the same scale. The selected
phase interval of each light curve is the one that would induce the largest possible changes during a single night.

observe with naked eyes. The next three criteria require that the
naked eye observer can identify suitable and eliminate unsuitable
comparison stars. The criterion
C5: variability can be detected during a single night
eliminated ζ Gem and l Car. The largest nightly changes of β
Lyr, η Aql, and δ Cep were between 0.m2 and 0.m4. The vertical
lines in Figure 4 show that the changes of these three could not
be perceived during most nights. The nightly changes of Algol
and λ Tau, 1.m27 and 0.m54, are the largest. Algol is the only
EB, whose entire eclipse can be observed during a single night
(Figure 4(h)).

We also checked how easy it is to discover the changes of
these seven variables in relation to nearby stars (“∗” in Figure 5
and Table 11). Our notations for brighter stars, belonging and
not belonging to the same modern constellation as “∗”, are large
“�,” and large “•,” respectively (Hoffleit & Jaschek 1991; Bright
Star Catalogue, hereafter BSC). The notations for comparison
stars are small “�” and small “•.” Table 11 gives the name,
BSC number, and m of stars close to “∗.” We give Δm, if it
exceeds 0.m05. The distance from “∗” is [d] = ◦. We compared
four aspects: (1) how many large “�” and large “•” outshined
“∗”? (2) How many suitable and unsuitable small “�” and
small “•” were available? (3) What kind of observations were
required (Table 10: P, Δm)? (4) What were the extinction effects
(Table 10: a0, a30, a60)? The criterion
C6: variability changes the constellation pattern
eliminated all other candidates, except Algol and λ Tau. It
favored Algol, the second brightest star in a field, where it fades
below all six comparison stars in 5h (Figure 5(a)).

Our previous criteria lead only to the discovery of variability,
but not to the discovery of periodicity. Discovery of periodicity
in the smooth light curves of ζ Gem, l Car, η Aql, δ Cep, and β
Lyr requires the tabulation of differential magnitudes (i.e., a time

series). Even if such tabulation had succeeded, it is unlikely that
AES could have used a graphical solution to discover periodicity,
like Figures 4(c)–(g). Algol and λ Tau appear constant, except
during eclipses. However, no time series is required to discover
their periodicity, but only a series of time points. If the eclipse
epochs are found to be multiples of the same number, then
periodicity has been discovered. The criterion
C7: period of variability could be discovered by AES
did not eliminate Algol or λ Tau. The former is brighter with a
larger Δm, its exact eclipse epochs are easier to determine and
its altitude was higher in 1224 B.C.

The history of astronomy should indicate objectively the
probability for discovering variability and periodicity. In 1596,
Fabricius discovered the first variable, Mira. The next one,
Algol, was discovered by Montanari in 1669. Goodricke (1783)
discovered its period. Baxendell (1848) discovered the variabil-
ity and Porb of λ Tau, but it took another 60 yr to measure the
light curve due to the lack of suitable comparison stars (Stebbins
1920). The last criterion
C8: variability and periodicity was discovered first
clearly favored Algol. Our eight criteria strongly indicated
that Algol was the most probable star, where AES could have
discovered periodic variability.

How could we constrain Algol’s evolution, if AES,
Goodricke, and modern astronomers used different magnitude
systems? The time when the light fades, ti, is the same in any
system. Hence, any P inferred from these ti does not depend on
the system.

6. DISCUSSION

AES were socially valued professionals, e.g., in astronomy,
mathematics, and medicine. Their duties included also the

10
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Figure 5. Stars close to the seven best candidates (“∗”). The stars in the same modern constellation (large and small “�”) are shown if d � 20◦ in Table 11. The stars
not belonging to the same modern constellation (large and small “•”) are shown if d � 15◦. The right ascension (x-axis: (◦)), declination (left-hand y-axis: (◦)), and
the altitude of upper culmination amax (right-hand y-axis:(◦)) have been calculated for 1224 B.C.

measurement of time by observing stars while they conducted
the proper nightly rituals that kept the Sun safe during its journey
across the underworld (Leitz 1989, 1994; Hardy 2002; Krauss
2002, 2012). The timing of these rituals was important, because
it had to appease the terrible guardians, who opened one gate of
the underworld at each hour (Clagett 1989). The Sun was reborn
at the 12th hour, but only if AES performed the rituals absolutely
right. The risk that the Sun would never rise again was imminent.
With PAlgol = 57d/20, the eclipses always occur exactly at
the same modern hour after 57 nights. Ancient Egyptian hours
were of relative length so in winter the day hours were shorter
than in summer, and for night hours the reverse. Also due to
the methods they employed to take into account the dawn and
the dusk, their measurement of time was not precise (Clagett
1995). If an eclipse was observed in the end of the night, the
next eclipses occurred at three night intervals, but always about
three and a half hours earlier, until they could not be observed
at daytime. This sequence of nighttime eclipses was repeated
every 19 days. The eclipses also returned to the same part of

the night after 57 days. These regularities occur with modern or
ancient hours, or to be precise, they could be discovered without
any concept of hours. Whatever Algol “did” (blinked or not) on
D≈1 (always GGG), it always also did on D≈20 (always SSS).
There are nearly 300 clear nights a year in this area (Mikhail
& Haubold 1995). Evidence of star clocks, which AES used to
measure time from stars, spans over a millennium from the First
Intermediate Period (ca. 2181–2055 B.C.) to the Late Period
(664–332 B.C.). For this purpose, they devised star tables to help
with time keeping (Clagett 1995). For example, the Ramesside
star clocks contained 13 rows of stars, where the first row stood
for the opening of the night, the next 11 rows for the beginning
of the consecutive hours of the night, and the last row stood for
the ending of the night. AES must have encountered difficulties
in the correct identification of a very bright star (Algol), because
it was frequently outshined by six other dimmer nearby stars.
This star sometimes even lost and regained its brightness during
the same night (midnight eclipse). Either they arrived at a known
period value or they just recorded the observed eclipses. AES
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Table 11
Brightest Stars Close to the Seven Best Variable Star Candidates

Notation Name m Δm d
(mag) (mag) (◦)

large � α Per HR 1017 1.79 − 9.4
∗ β Per HR 936 2.12 1.27
small � ζ Per HR 1203 2.85 − 12.9
small � ε Per HR 1220 2.88 0.12 9.5
small � γ Per HR 915 2.93 − 12.6
small � δ Per HR 1122 3.01 − 9.2
small • γ And HR 603 2.26 − 12.1
small • β Tri HR 622 3.00 − 13.1

large � α Tau HR 1457 0.75 0.20 9.4
large � β Tau HR 1791 1.65 − 25.7
large � η Tau HR 1165 2.87 − 12.1
large � ζ Tau HR 1910 2.88 0.29 24.7
large � 78 Tau HR 1412 3.35 0.07 7.5
∗ λ Tau HR 1239 3.37 0.54
small � ε Tau HR 1409 3.53 − 9.4
small � o Tau HR 1030 3.60 − 9.4
small � 27 Tau HR 1178 3.63 − 11.9
small � γ Tau HR 1346 3.65 − 5.5
small � 17 Tau HR 1142 3.70 − 12.2
small � ξ Tau HR 1038 3.70 0.09 8.7
small � δ Tau HR 1373 3.76 − 7.3
large • 1 Ori HR 1543 3.19 − 12.9
small • 3 Ori HR 1552 3.69 − 14.2

large � β Gem HR 2990 1.14 − 12.4
large � α Gem HR 2891 1.59 − 13.4
large � γ Gem HR 2421 1.93 − 7.5
large � μ Gem HR 2286 2.75 0.27 9.8
large � ε Gem HR 2473 2.98 − 6.5
large � η Gem HR 2216 3.15 0.75 11.6
large � ξ Gem HR 2484 3.36 − 8.7
large � δ Gem HR 2777 3.53 − 4.0
large � κ Gem HR 2985 3.57 − 10.1
large � λ Gem HR 2763 3.58 − 5.2
large � θ Gem HR 2540 3.60 − 13.7
∗ ζ Gem HR 2650 3.62 0.56
small � ι Gem HR 2821 3.79 − 8.9
small � υ Gem HR 2905 4.06 − 9.7
large • β CMi HR 2845 2.84 0.08 13.5

large � α Car HR 2326 -0.72 − 27.8
large � β Car HR 3685 1.68 − 7.9
large � ε Car HR 3307 1.86 − 10.4
large � ι Car HR 3699 2.25 − 4.7
large � θ Car HR 4199 2.76 − 6.7
large � υ Car HR 3890 3.01 − 2.6
large � ω Car HR 4037 3.32 − 8.0
large � p Car HR 4140 3.27 0.10 5.5
small � q Car HR 4050 3.36 0.08 3.9
small � a Car HR 3659 3.44 − 5.5
small � χ Car HR 3117 3.47 − 17.1
∗ l Car HR 3884 3.28 0.90
small � U Car HR 4257 3.78 − 9.0
small � S Car HR 4114 3.82 − 6.4
small � c Car HR 3571 3.84 − 6.2
small � X Car HR 4337 3.84 0.18 10.7
small � i Car HR 3663 3.97 − 3.9
small � I Car HR 4102 4.00 − 12.0
large • δ Vel HR 3485 1.96 0.40 11.1
large • κ Vel HR 3734 2.50 − 8.1
large • n Vel HR 3803 3.13 − 5.7
small • φ Vel HR 3940 3.54 − 8.1
small • o Vel HR 3447 3.55 0.12 12.8
large • λ Cen HR 4467 3.13 − 12.6
small • π Cen HR 4390 3.89 − 14.7

Table 11
(Continued)

Notation Name m Δm d
(mag) (mag) (◦)

small • β Vol HR 3347 3.77 − 9.3
small • α Vol HR 3615 4.00 − 6.0
small • λ Mus HR 4520 3.64 − 13.4

large � α Lyr HR 7001 -0.02 0.09 5.9
large � γ Lyr HR 7178 3.24 − 2.0
∗ β Lyr HR 7106 3.25 1.11
small � R Lyr HR 7157 3.88 1.12 10.6
small • μ Her HR 6623 3.42 − 14.3
small • ξ Her HR 6703 3.70 − 12.0
small • o Her HR 6779 3.80 0.07 10.2
small • 109 Her HR 6895 3.84 − 12.9
small • θ Her HR 6695 3.86 − 11.6
small • 110 Her HR 7061 4.19 − 12.6
large • β Cyg HR 7417 3.08 − 10.3
small • η Cyg HR 7615 3.39 − 13.8
small • χ Cyg HR 7564 3.30 10.9 12.7

large � α Aql HR 7557 0.77 − 7.6
large � γ Aql HR 7525 2.72 − 9.7
large � ζ Aql HR 7235 2.99 − 17.4
large � θ Aql HR 7710 3.23 − 4.7
large � δ Aql HR 7377 3.36 − 7.2
large � λ Aql HR 7236 3.44 − 12.9
small � β Aql HR 7602 3.71 − 5.9
∗ η Aql HR 7570 3.48 0.91
small � ε Aql HR 7176 4.02 − 19.2
small � i Aql HR 7193 4.02 − 14.3
large • α Cap HR 7754 0.08 − 15.0
small • ε Del HR 7852 4.03 − 14.4

large � α Cep HR 8162 2.44 − 9.6
large � γ Cep HR 8974 3.21 − 20.0
large � β Cep HR 8238 3.16 0.11 13.7
large � ζ Cep HR 8465 3.35 − 2.4
large � η Cep HR 7957 3.43 − 13.3
large � ι Cep HR 8694 3.52 − 8.3
∗ δ Cep HR 8571 3.48 0.89
small � μ Cep HR 8316 3.43 1.67 5.9
small � ε Cep HR 8494 4.15 0.06 2.5
small � θ Cep HR 7850 4.22 − 15.2
large • β Cas HR 21 2.25 0.06 12.7
small • α Lac HR 8585 3.77 − 8.2
small • 81 Cyg HR 8335 4.23 − 11.0

may have considered this variability to threaten the “cosmic
order.” CC describes the repetitive transformation of the Eye
of Horus, usually called “Wedjat” or “the Raging one,” from a
peaceful to raging personality, with good or bad influence on the
life of men (Leitz 1994). A legend existed in which the enraged
Eye of Horus nearly destroyed all mankind (Lichtheim 1976).
Most likely, AES linked Algol’s strange behavior with this
prominent legend. It should be noted that in different contexts
the concept of the Eye of Horus could embody rather diverse
meanings ranging from ritual equipment to even representing
“Re,” i.e., the Sun (god) (Leitz 2002). It has also been argued
that the Eye of Horus represents the Moon (e.g., Sethe 1962;
Leitz 1994; Lull & Belmonte 2009), and we discovered PMoon
in CC. However, the described repetitive changes of the Eye of
Horus seem to follow a much shorter timescale of a few days
(Paper III, Section 2).

If AES recorded eclipses, why are there no texts of Algol from
other ancient cultures? We argued that AES did not refer directly
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to Algol for religious reasons, but used indirect mythological
references. Half a year after our manuscript was submitted,
Smith (2012) showed that AES also referred to solar eclipses
only indirectly. For example, in the passage concerning III Peret
16, according to Leitz’ calculations a New Moon day, one is
forbidden to go outside and see the darkness (Leitz 1994). The
menacing presence of the god Seth over the morning of II Peret
14 has been believed to be a reference to the planet Mercury
observed as a morning star (Krauss 2002). Even the most direct
astronomical descriptions from the ancient Egyptians such as the
Cosmology of Seti I and Ramses IV do not plainly describe what
happens in the sky but do that through mythological narrative
(Clagett 1995). This could explain the lack of references to the
star itself. There are indirect mythological references to Algol
also in other ancient cultures (Paper III, Section 8).

The idea that CC contains significant new astrophysical
information may appear controversial. A hypothesis is scientific
only if it can be tested (e.g., Hempel 1952). Scientific hypotheses
are useful if they give predictions based on reasoning, like
statistical tests or astrophysical relations. The word “predict” is
used here when extrapolating from the present day to 1224 B.C.
We use the present day astrophysical parameters of Algol (test
i: Porb, test ii: ṁB, test iii: Φ) and the present day astronomical
catalogs (test iv: GCVS, BSC).

Two scientific hypotheses were tested. We rejected our
statistical hypothesis, H0, because the 29.d6 and 2.d850 periods
were indisputably detected with the new normalized Rayleigh
test. This result was the core of our manuscript.

We applied four tests to our astrophysical hypothesis
H1: “Period 2.d850 in CC was Porb of Algol.”
test i. The present day value is Porb = 2.d867. No one has

presented evidence for Porb increase since Goodricke (1783)
discovered this period. An astrophysical relation (Equation (9))
predicted that MT from the less massive Algol B to the more
massive Algol A should have caused such an increase (Kwee
1958). test i supported H1.

test ii. The present day MT estimates ([ṁB] = M� yr−1)
predicted the following Porb values in 1224 B.C.

Harnden et al. (1977): |ṁB| � 10−9 ⇒ Porb � 2.d867.
Cugier & Chen (1977): |ṁB| ≈ 10−13 ⇒ Porb � 2.d867.
Soderhjelm (1980): |ṁB| > 10−7 ⇒ Porb < 2.d860.
Hadrava (1984): |ṁB| ≈ 10−8 ⇒ Porb ≈ 2.d866.
Richards (1992): 10−11 � |ṁB|�10−10 ⇒Porb � 2.d867.
Sarna (1993): |ṁB| ≈ 2.87 × 10−7 ⇒ Porb ≈ 2.d845.
This large range,10−13�|ṁB|�2.87 × 10−7, gave no unique

Porb prediction. However, these|ṁB| were based on different ap-
proaches: observations and models. The long quiescent periods
are sporadically interrupted by short bursts of MT. All conser-
vative MT estimates were based on observations (Harnden et al.
1977; Cugier & Chen 1977; Richards 1992), which may have
coincided with the long quiescent periods. The bursts cause
Porb changes of several seconds in a year (e.g., Frieboes-Conde
et al. 1970; Mallama 1978). MT in these bursts has to be much
larger than our estimate,|ṁB| = 2.2×10−7, which predicts Porb
changes of only 0.s43 in a year. Our |ṁB| estimate, based onH1,
may turn out to be valuable, because many MT bursts must have
occurred since 1224 B.C. test ii did not contradict H1.

test iii. A naked eye observer can determine Porb from the
present day eclipses. Eclipses have not necessarily occurred
in all periods of history, because Algol C changes i1. One
argument against H1 would have been that the present day
Ψ (Csizmadia et al. 2009; Zavala et al. 2010) did not prove
that eclipses occurred in 1224 B.C. The astrophysical relations

of Equations (10) and (11) predicted this. A few days after
we submitted our manuscript, Baron et al. (2012) published a
revised value, Ψ = 90.◦2 ± 0.◦32, which proved that eclipses
similar to the present-day eclipses occurred also in 1224 B.C.
We could even argue that H1 predicted their result. test iii did
not contradict H1.

test iv. We searched for all celestial objects, where peri-
odicity between 1.d5 and 90d could be discovered with naked
eyes. PMoon was in this range, but the periods of the Sun and the
planets were not. We applied eight criteria to the present day
data (GCVS, BSC) to eliminate all unsuitable variable stars. The
two most suitable remaining celestial objects were certainly the
Moon and Algol. We detected periodic signs of only these two
celestial objects in CC. test iv supported H1.

tests i and ivsupported H1. tests ii and iii did not contradict
H1, but indicated that H1 could be true. Thus, we could not
prove that H1 is definitely true. Then again, no one from any
field of science has argued what other terrestrial or celestial
phenomenon occurred regularly every third day, but always 3 hr
and 36 minutes earlier than before, and caught the attention of
AES.

7. CONCLUSIONS

We discovered connections between Algol and AES writings
that can hardly be a coincidence. All statistical, astrophysical,
astronomical, and egyptological details matched. The period
recorded in CC may represent a valuable constraint for future
studies of MT in EBs. Goodricke’s achievement in 1783 was
outstanding. The same achievement by AES, if true, was literally
fabulous.
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Väisälä Foundation (P.K.), the Finnish Graduate School in
Astronomy and Space Physics (J.Le.), and the Academy of
Finland (J.T.-V.).

REFERENCES

Applegate, J. H. 1992, ApJ, 385, 621
Aslan, Z., Derman, E., Engin, S., & Yilmaz, N. 1987, A&AS, 71, 597
Bakir, A. 1966, The Cairo Calendar No. 86637 (Cairo, Egypt: Government

Printing Office)
Baron, F., Monnier, J. D., Pedretti, E., et al. 2012, ApJ, 752, 20
Bastian, U. 2000, IBVS, 4822, 1
Batchelet, E. 1981, Circular data in Biology (London: Academic)
Baxendell, J. 1848, MNRAS, 9, 37
Biermann, P., & Hall, D. S. 1973, A&A, 27, 249
Clagett, M. 1989, Ancient Egyptian Science 1: Knowledge and Order (Philadel-

phia, PA: American Philosophical Society)
Clagett, M. 1995, Ancient Egyptian Science 2: Calendars, Clocks and Astron-

omy (Philadelphia, PA: American Philosophical Society)
Csizmadia, S., Borkovits, T., Paragi, Z., et al. 2009, ApJ, 705, 436
Cugier, H., & Chen, K.-Y. 1977, Ap&SS, 52, 169
Dean, J. F., Cousins, A. W. J., Bywater, R. A., & Warren, P. R. 1977, MmRAS,

83, 69
Demaree, R., & Janssen, J. 1982, Gleanings from Deir el-Medina (Leiden,

Netherlands: Nederlands Instituut voor het Nabije Oosten te Leiden)
Frieboes-Conde, H., Herczeg, T., & Høg, E. 1970, A&A, 4, 78
Goodricke, J. 1783, RSPTA, 73, 474
Gradshteyn, I. S., & Ryzhik, I. M. 1994, Table of Integrals, Series and Products

(London: Academic)

13

http://dx.doi.org/10.1086/170967
http://adsabs.harvard.edu/abs/1992ApJ...385..621A
http://adsabs.harvard.edu/abs/1992ApJ...385..621A
http://adsabs.harvard.edu/abs/1987A&AS...71..597A
http://adsabs.harvard.edu/abs/1987A&AS...71..597A
http://dx.doi.org/10.1088/0004-637X/752/1/20
http://adsabs.harvard.edu/abs/2012ApJ...752...20B
http://adsabs.harvard.edu/abs/2012ApJ...752...20B
http://adsabs.harvard.edu/abs/2000IBVS.4822....1B
http://adsabs.harvard.edu/abs/2000IBVS.4822....1B
http://adsabs.harvard.edu/abs/1848MNRAS...9...37B
http://adsabs.harvard.edu/abs/1848MNRAS...9...37B
http://adsabs.harvard.edu/abs/1973A&A....27..249B
http://adsabs.harvard.edu/abs/1973A&A....27..249B
http://dx.doi.org/10.1088/0004-637X/705/1/436
http://adsabs.harvard.edu/abs/2009ApJ...705..436C
http://adsabs.harvard.edu/abs/2009ApJ...705..436C
http://dx.doi.org/10.1007/BF00647161
http://adsabs.harvard.edu/abs/1977Ap&SS..52..169C
http://adsabs.harvard.edu/abs/1977Ap&SS..52..169C
http://adsabs.harvard.edu/abs/1977MmRAS..83...69D
http://adsabs.harvard.edu/abs/1977MmRAS..83...69D
http://adsabs.harvard.edu/abs/1970A&A.....4...78F
http://adsabs.harvard.edu/abs/1970A&A.....4...78F


The Astrophysical Journal, 773:1 (14pp), 2013 August 10 Jetsu et al.

Grant, G. 1959, ApJ, 129, 78
Hadrava, P. 1984, BAICz, 35, 335
Hall, D. S. 1989, SSRv, 50, 219
Hardy, P. A. 2002, Arch, 17, 48
Harnden, F. R., Jr., Fabricant, D., Topka, K., et al. 1977, ApJ, 214, 418
Heck, A., Mathys, G., & Manfroid, J. 1987, A&AS, 70, 33
Helck, W., Otto, E., & Westendorf, W. 1975–1992, Läxikon der Ägyptologie,

I–VI (Wiesbaden, Germany: Harrassowitz)
Hempel, C. G. 1952, Fundamentals of Concept Formation in Empirical Science

(Chicago, IL: Univ. Chicago Press)
Hoffleit, D., & Jaschek, C. 1991, The Bright Star Catalogue (5th ed.; New

Haven, CT: Yale Univ. Observatory)
Jetsu, L. 1996, A&A, 314, 153
Jetsu, L. 1997, A&A, 321, L33
Jetsu, L., Hackman, T., Hall, D. S., et al. 2000, A&A, 362, 223
Jetsu, L., & Pelt, J. 1996, A&AS, 118, 587
Jetsu, L., & Pelt, J. 2000, A&A, 353, 409
Jetsu, L., Pelt, J., & Tuominen, I. 1999, A&A, 351, 212
Jetsu, L., Pohjolainen, S., Pelt, J., & Tuominen, I. 1997, A&A, 318, 293
Kim, H. 1989, ApJ, 342, 1061
Kiseleva, L. G., Eggleton, P. P., & Mikkola, S. 1998, MNRAS,

300, 292
Krauss, R. 2002, Alter Orient und Altes Testament, 297, 193
Krauss, R. 2012, Palarch’s J. Archaeol. Egypt/Egyptol., 9, 1
Kwee, K. K. 1958, BAN, 14, 131
Lanza, A. F. 2006, MNRAS, 369, 1773
Lehtinen, J., Jetsu, L., Hackman, T., Kajatkari, P., & Henry, G. W. 2011, A&A,

527, A136
Lehtinen, J., Jetsu, L., Hackman, T., Kajatkari, P., & Henry, G. W. 2012, A&A,

542, A38
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