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ON THE CONFORMAL MARTIN BOUNDARY OF DOMAINS IN
METRIC SPACES

ILKKA HOLOPAINEN, NAGESWARI SHANMUGALINGAM,
AND JEREMY T. TYSON

ABSTRACT. Using Cheeger’s differentiability theorem for Lipschitz functions on
metric measure spaces, we construct a conformal analogue of the Martin boundary
for relatively compact domains in locally compact metric measure spaces which
are locally @-regular for some @ > 1 and support a (1, p)-Poincaré inequality for
some p < @. For relatively compact uniform domains which have uniformly @Q-fat
complement we show that the conformal Martin boundary maps surjectively onto
the topological boundary. We also investigate the behavior of the conformal Martin
boundary under conformal and quasiconformal maps. Our results are new even in
the setting of Euclidean domains.

1. INTRODUCTION

The Martin boundary was first studied in [M] in the context of minimal positive
harmonic functions in classical potential theory. Some recent studies (see [AS| and
[An2]) on the Martin boundary of Riemannian manifolds have focused on the rela-
tionship between the Martin and geometric boundaries; see also [HW], [JK], and [Ai]
for the Euclidean setting. The Martin boundary of a (non-parabolic) Riemannian
manifold M is defined as follows. Fix zo € M. Given a sequence of points (z,,) in M,
we say that the sequence is fundamental if the sequence has no accumulation point
in M and the sequence of functions

G(- xn)
G(zo, xp)

is locally uniformly convergent, where G(-,y) is the Green function for the Laplace-
Beltrami operator A on M with singularity at y. Two fundamental sequences are
said to be equivalent if the corresponding sequences of functions converge to the same
limit. The collection of all equivalence classes of fundamental sequences is the Martin
boundary of M. If M C R" is a bounded Lipschitz domain in the Euclidean space,
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the corresponding limit functions agree with the usual Poisson kernel; see [M] and

According to a result of Bonk, Heinonen, and Koskela, if 2 and €)' are quasicon-
formally equivalent Euclidean domains (in any dimension n > 2) which are Gromov
hyperbolic in the quasihyperbolic metric and whose complements satisfy a density
condition for the variational 2-capacity (so-called uniform 2-fatness), then each qua-
siconformal map from € to €' extends to a homeomorphism of the respective Martin
boundaries; see [BHK, Theorem 9.8 and Theorem 8.15]. In the planar case the two
conditions on the domain and its complement are naturally quasiconformally equiva-
lent. In higher dimensions only the Gromov hyperbolicity remains quasiconformally
invariant; the density condition for the 2-capacity no longer transforms appropriately
under quasiconformal maps. While a simple and direct proof of the result of Bonk,
Heinonen, and Koskela can be given for conformally equivalent planar domains, the
proof which they give (which is valid in all dimensions and for arbitrary quasiconfor-
mal maps) is indirect. Indeed, they show first that the quasiconformal map extends
to a quasisymmetry between the Gromov boundaries, and then they use a result of
Ancona [An2] to identify the Gromov and Martin boundaries.

As the reader is doubtless aware, the correct potential theory to consider in con-
nection with quasiconformal maps in higher dimensions is that associated with the
n-Laplacian

Apu = —div (|Vu|"?Vu),
where n is the dimension of the underlying space. For the nonlinear potential theory
associated with this and more general quasilinear elliptic operators, we refer to the
comprehensive text by Heinonen, Kilpeldinen and Martio [HKM]. In this paper, we
initiate a study of the conformal Martin boundary, defined using singular solutions
to the n-harmonic equation A,u = 0. Taking advantage of recent developments in
the abstract theory of analysis and first-order differential calculus on metric spaces
(see [HeK1], [He|, [HKShT], [Ch]), we work throughout in the general setting of
metric measure spaces of locally Q~-bounded geometry, that is, locally @Q-regular
spaces supporting a local (1, p)-Poincaré inequality for some 1 < p < Q. The first
two authors have established the existence of singular solutions to the )-harmonic
equation Agu = 0 (interpreted in a suitable weak sense) on such a metric measure
space X; see [HoSh]. Using the differentiation theorem of Cheeger [Ch], the discussion
in [Ho] shows the uniqueness of such solutions; see Theorem 3.2 below. We are thus
in a position to define the conformal Martin boundary 0d.,,€) for relatively compact
domains €2 C X. As in the classical case, J.)/{) comes equipped with a natural
topology for which U 0.5, is a compactification of €.

As far as we are aware, Martin boundaries associated with the n-Laplacian, n > 2,
have not been treated before in the literature, even in the setting of R". Also we want
to emphasize that our theory applies, apart from the Euclidean and Riemannian set-
tings, to the Carnot groups as well, and to the highly non-classical spaces constructed
by Bourdon and Pajot [BP] and Laakso [La).

To begin with, we seek to understand the relationship between the conformal Mar-
tin boundary and the topological boundary. Our first result provides a partial answer:

Theorem 1.1. Let Q2 be a relatively compact uniform domain in a metric measure
space X of locally Q~-bounded geometry, () > 1. Suppose also that the complement
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of Q0 is uniformly Q-fat. Then there exists a surjective continuous map from the
conformal Martin boundary 0.0;§2 onto the topological boundary OS).

For the definitions of uniformity of a domain and uniform @-fatness; see Section 3.

Theorem 1.1 does not hold true if the uniformity assumption is relaxed, see Exam-
ple 4.6. However, it is possible that the exterior condition (uniform Q-fatness of the
complement) is not needed in this result. See Question 3 in Section 3.

Observe that by [BHK, Theorem 3.6 and Proposition 3.12], a uniform domain
Q, equipped with the quasihyperbolic metric kg, is Gromov hyperbolic. Moreover,
there is a natural quasisymmetric equivalence between the Gromov (i.e., geometric)
boundary (2, ko) and 092. We conjecture that if 2 is a relatively compact uniform
domain, then the Gromov (geometric) boundary maps surjectively onto J.,,/€2 and
hence all three boundaries are homeomorphic. For the corresponding result for the
classical (2-)Martin boundary in the Euclidean setting, combine Theorems 8.15 and
3.6 of [BHK].

Recall that a homeomorphism f : Y] — Y5 between two metric spaces (Y7,d;) and
(Ys,dy) is said to be quasiconformal if there exists a constant H > 1 so that

. SUDg, (,y)<r dz(f (), f(y))
hrfl—i;lp infdl(:r,y)ZT dZ(f(x)a f(y)) = "

for every x € Y;. Furthermore, a homeomorphism f : Y], — Y, is a quasisymmetry if
there exists an increasing homeomorphism 7 : [0, 00) — [0, 00) so that

d?(f(l‘)af(y)) dl(mvy)
(@), f(2) =" (d1<x,z>>

for every triple of points z, y, z € Y;. By the results in [HKShT], a quasiconformal map
between two metric spaces of locally ()~-bounded geometry is locally quasisymmetric.
Observe that the conditions in the above theorem are quasisymmetrically invariant: if
X, X’ are two metric measure spaces of locally Q~-bounded geometry, and if @ C X
satisfies the conditions in Theorem 1.1 and f : X — X' is a quasisymmetric map,
then Q' = f(Q) also satisfies those conditions.

Our second result describes the relationship between the conformal Martin bound-
aries of conformally equivalent domains.

Theorem 1.2. Let Q C X and Q' CY be conformally equivalent domains in metric
measure spaces of locally QQ~-bounded geometry, Q > 1. Then each conformal map f :
Q — Q' extends as a homeomorphism to the respective conformal Martin boundaries.

See Section 4 for the definition of conformality. Note that there are no conditions
on the domain €2. If 2 does not support @)-singular functions, its conformal Mar-
tin boundary is empty. In this case Theorem 1.2 states that the conformal Martin
boundary of Q" also must be empty. This fact follows also from [HoSh, Theorem 4.5].

For quasiconformal maps we prove a version of Theorem 1.2 by making use of Mar-
tin boundaries defined relative to general variational kernels of the type considered
in [HKM, Section 5]. Our results here make use of fundamental analytic proper-
ties of quasiconformal maps in spaces of local Q~-bounded geometry; see [HKShT,
Section 10] and [C, Section 4]. However, we leave open the question of when the
topological type of the “standard” conformal Martin boundary 0,.5/€) is a quasicon-
formal invariant. There are plane domains D; and D, and a quasiconformal map
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of D; onto D, which does not extend to a homeomorphism between their Martin
compactifications; see [Seg] and [SegT].
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of Helsinki and Jyvaskyla. We wish to thank both institutions for their support.
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acknowledge Bruce Palka for illuminating discussions on prime ends. Finally, we are
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2. DEFINITIONS AND NOTATIONS

We assume throughout the paper that X is a path connected, locally compact,
non-compact metric measure space equipped with a metric d and a non-trivial Borel
regular measure g supported on all of X. We furthermore assume that the measure
is locally @-regular for some () > 1. By this we mean that there exists a constant
C > 1 so that each point in X has a neighborhood U such that

(1) C~'r9 < u(B(wz,r)) < Or9

for all balls B(z,r) C U. The index @ is called the reqularity dimension of X; we
emphasize that it need not be an integer.

A non-negative Borel measurable function p : X — [0, 00] is said to be an upper
gradient of an extended real-valued function u on X if for every rectifiable curve
v :fa,b] = X,

ulr(b) = u@)| < [ pds

v

We also assume that X supports a local (weak) (1, p)-Poincaré inequality for some
1 < p < @, that is, there exist constants C' > 0 and 7 > 1 so that each point in X
has a neighborhood U such that

1/p

) Flu—usldn<cr(f 7 an

whenever B = B(z,7) C U is a ball, u is a measurable function on B and p is an
upper gradient of u. Here up = j(B)~" [, udp denotes the mean value of u over the
ball B and 7B = B(x,7r). We note that by Holder’s inequality, X then also supports
a local (1, ¢)-Poincaré inequality for every ¢ > p. In particular, X supports a local
(1, @Q)-Poincaré inequality.

Spaces that satisfy (1) and (2) with p = @ have sometimes been called spaces
of locally Q-bounded geometry in the literature; see [HKShT, Section 9] or [BHK,
Section 9]. Consequently, we describe the spaces under consideration in this paper as
spaces of locally Q™ -bounded geometry. Every n-dimensional Riemannian manifold,
equipped with the Riemannian volume measure, is locally n-regular and supports
a local (1,1)-Poincaré inequality. For more exotic examples in all real dimensions
@ > 1; see [BP], [La], and [S].
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Remark 2.1. Under the above assumptions, a suitable local version of the proof of
Propositon 4.4 of [HaK] implies that X is locally quasiconvez: each point in X has a
neighborhood U for which any two points y, 2 € U can be joined by a curve of length
at most C'd(y, z) for some absolute constant C'. Furthermore, Theorems 3.13 and 5.7
of [HeK1] (suitably localized) imply that X is locally linearly locally connected (LLC).
By this we mean that there exists a constant C' > 1 so that each point in X has a
neighborhood U such that every pair of points z1, 25 in an annulus B(z,2r)\ B(z,7) C
U can be joined by a curve in B(z,2Cr)\ B(z,r/C).

The function space that plays the role of classical Sobolev space in this paper is the
Newtonian space N'P(X). Specifically, N (X) is the collection of equivalence classes
of functions f € LP(X) that have an upper gradient p € LP(X). The equivalence
relation used here is u ~ v if and only if ||u — v||;, = 0, where

1A llep == [1flzr o) +inf flpllrcx),

the infimum being taken over all upper gradients p of f. A set A C X is said to
have p-capacity zero if there exist functions u € N'(X) with arbitrarily small || - ||,
norm with u|A > 1, and a property of points in X is said to hold p-quasi-everywhere
in X (p-q.e.) if the set of points for which the property does not hold has zero p-
capacity. The Sobolev space of functions with zero boundary values on a domain
Q C X, denoted N,”(9Q), is defined to be the collection of elements of N'(X) whose
representative functions vanish p-q.e. in X \ Q.

In [Ch] Cheeger gives another definition of a Sobolev type space, but for indices p >
1 Cheeger’s construction yields the same space as N'*(X); see [Sh1, Theorem 4.10].
It is a deep theorem of Cheeger that if a metric measure space supports a doubling
measure and a (1, p)-Poincaré inequality, then the corresponding Sobolev-type space is
reflexive; see [C, Theorem 4.48]. The results of [Ch] can easily be extended to the case
of spaces supporting a locally Q-regular measure and a local (1, p)-Poincaré inequality.
Using this Sobolev space, properties of p-harmonic functions were investigated in the
papers [Sh2] and [KiSh|. The definition of p-harmonic functions used in these papers
required such functions to be in the class N'P(X). In this paper we consider a less
restrictive definition of p-harmonic functions; however, the analysis in [KiSh] is local
and the results therein apply to the p-harmonic functions of this paper as well.

In [C, Theorem 4.38] it was shown that if the measure on X is doubling and if
X supports a (1, p)-Poincaré inequality for some p, then there is a ”differentiable”
structure on X compatible with the notion of upper gradient. More precisely, the
following theorem holds:

Theorem 2.2 (Cheeger). Let X be a metric measure space equipped with a locally
doubling Borel reqular measure pu. Assume that X admits a weak (1,p)-Poincaré
inequality for some 1 < p < 0.

Then there exist measurable sets U, with ,u(X\Ua Ua) = 0 and there exist Lipschitz

“coordinate” functions X* = (X{,..., Xg )+ X — R¥(®) 50 that

(i) for each v, the functions X, . .. ,X,‘j(a) are all linearly independent on U, and

1 < k(a) < N, where N is a constant depending only on the doubling constant
of i and the constants from the Poincaré inequality,
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(i) if f : X — R is Lipschitz, then there exist unique bounded vector-valued
functions d*f : Uy — RF(®) such that
|f (z) — f (o) — d*f(zo) - (X(z) — X(mp))]

lim sup =0
r—0+ x€B(z0,r) r

for p-a.e. xy € U,.

In other words, there exists a finite dimensional L*° vector bundle of Banach spaces
T*X = {F,}.cx, the generalized cotangent bundle, and a derivation operator D on
the algebra of locally Lipschitz functions on X taking values in the sections of T*X.
For z in the “coordinate chart” U, the fiber F, is the dual space to the space RF(®)
mentioned in the theorem. Given a Newtonian function f, the function g; denotes
the minimal p-weak upper gradient of f, and is defined by the equation

gs(z) = inflim sup ][ gdy,
9 r—0+
B(z,r)
the infimum being taken over all upper gradients g of f (see [Sh2, Corollary 3.7]).
With this convention, the norm on the space F} is given by

(3) M loe = g00,x) (),

where, for A = (A1, ..., Ag() in RF(®) we set (A, X*) to be the Lipschitz function given
by Zfiol‘) A; X{. By linear independence of X7,..., X7,
gixey(w) = 0 for some x € U, we have A\ = 0. Finally, in a given chart U,, Df is
given by d“f.

Note that the generalized cotangent bundle is only a measurable vector bundle,
that is, the charts U, are measurable subsets of X and the change of coordinate
functions X? o (X®)~! are bimeasurable invertible transformations.

By [Sh1, Theorem 4.10] and [C, Theorem 4.47], the Newtonian space N'?(X) is
equal to the closure in the N'?( X )-norm of the collection of locally Lipschitz functions
on X,! and by [FHK, Theorem 10], the derivation operator D can be extended to all
of N'?(X) so that

) We mean that whenever

[Df ()| = g5(2)

for all f € N'"?(X) and p-a.e. x € X. Here |-| = || - ||a.r denotes the norm in (3).

One easily verifies (see also [C, p. 458]) that the derivation operator Du satisfies
the product and chain rules: if v is a bounded Lipschitz function on X, u € N'P(X),
and ® : R — R is continuously differentiable with bounded derivative, then uv and
®(u) belong to N'?(X) and

D(uv) = u Dv + v Du,
D(®owu) = ®'(u) Du.

We modify the notion of p-harmonicity of [Sh2], [KiSh], and [HoSh] by minimizing

| Du| rather than g,.

This is an abstract analogue of the celebrated “H = W” theorem of Meyers-Serrin [MS].
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Definition 2.3. Let Q C X be a domain. A function u : X — [—00, 0] is said to
be p-harmonic on Q if u € Nﬁ)’g(Q) and for all relatively compact subsets U of 2 and
for all functions ¢ € N,?(U),

/ Dul? du < / D(u+ )P dp.
U U

[t must be noted that by the results in [Ch], the p-harmonic functions as defined
above are p-quasiminimizers in the sense of [KiSh|. Moreover, p-harmonic functions
can be characterized in terms of a weak formulation of the appropriate Euler-Lagrange
equation: f is p-harmonic if and only if

(4) / |DuP~2Du - D dp =0
U

for all U and ¢ as in Definition 2.3. Here we make use of the fact that the norms | - |
on the fibers of 7*X can be chosen to be inner product norms; see the discussion in
[C, p. 460].

Non-negative @-harmonic functions on spaces of (locally) @~-bounded geometry
satisfy a (local) Harnack inequality by results from [KiSh]. In particular, for each
relatively compact domain €2, there exists a constant ¢y > 1 such that
(5) sup u < ¢p inf wu

B(z,r) B(z,r)
whenever u is a non-negative Q-harmonic function in B(z,2r) C 2. Consequently,
for each compact subset K C () there exists a constant C'x so that

(6) supu < Ckinfu
K K

whenever u is a non-negative (-harmonic function in 2. Finally, as a consequence of
the local LLC property, a Harnack inequality on a sphere S(y,r) = {z € X: d(z,y) =
r} holds for non-negative ()-harmonic functions on the annulus B(y,Cr)\ B(y,r/C)
for sufficiently small r; see, e.g., [BMSh, Lemma 5.3].

3. THE CONFORMAL MARTIN BOUNDARY

In [HoSh] it was shown that every relatively compact domain in a space of locally
(@~ -bounded geometry supports a ()-singular function which plays a role analogous
to the Green function of the (Q-Laplacian operator.

Definition 3.1. Let € be a relatively compact domain in a space X of locally @)~ -
bounded geometry and let y € 2. An extended real-valued function ¢ = g(-,y) on
Q) is said to be a Q-singular function with singularity ot y if it satisfies the following
four criteria:

(i) ¢ is @-harmonic in Q \ {y} and g > 0 on ;

(ii) g‘X\Q =0 p-q.e. and g € NY9(X \ B(y,r)) for all r > 0;

(iii) v is a singularity, i.e., lim,_,, g(x) = o0;

(iv) whenever 0 < a < b < o0,

(7) CapQ(Qb; Q) =(b—a) €,
where Q% = {z € Q: g(x) > b}, Q, = {2 € Q: g(z) > a}.
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Here Cap, (K’;) denotes the relative p-capacity of a compact set K with respect
to an open set Q D K; recall that this is equal to inf [, |Dul’ dy, the infimum being
taken over all functions u € N'?(X) for which u|K > 1 and u|X \ Q = 0. If such
functions do not exist, we set Cap,(/;€2) = oo. For more on capacity, see [HeK2],
[KiMa], [KaSh], [HKM, Chapter 2|, and the references therein.

Since we have fixed the regularity exponent () of the measure p in this discussion,
we shall simply call such functions singular functions, suppressing the reference to
the index. The equality (7) replaces the double inequality in the analogous definition
of singular functions of [HoSh], because the use of Cheeger’s derivative in the defi-
nition of Q-harmonicity gives us access to the Euler-Lagrange equation (4); see [Ho,
Lemma 3.8|.

By [HeK1, Theorem 5.7], X is locally Q-Loewner, that is, there exists a decreasing
function ¢ = px : (0,00) — (0,00) and each point in X has a neighborhood U
so that Modg(E, F; B) > ¢(t) whenever B C U is a ball and E and F are two
disjoint, nondegenerate continua in B with dist(F, F) < ¢t min{diam(E), diam(F’)}.
Here Modg(E, F'; B) is the Q-modulus of the family of all curves in B joining £ and
F; see [HeK1, Section 2.3]. Hence the proof given in [Ho, Theorem 3.22] regarding the
uniqueness of singular functions applies in this setting and we deduce the following:

Theorem 3.2. Given a relatively compact domain Q2 C X and y € €0, there exists
precisely one singular function on  with singularity at y.

This observation enables us to define a Martin boundary in a manner similar to
the classical potential theoretic Martin boundary.

Definition 3.3. Fix zy € Q. Given a sequence (z,) of points in 2, we say that the
sequence is fundamental (relative to xg) if the sequence has no accumulation point in
2 and the sequence of normalized singular functions

9(7,7,)
9(xo, Tn)

is locally uniformly convergent. Above we set M (z,z) = 0 for x # x¢ and M (xg, zo) =
1.

M(z,z,) =

Given a fundamental sequence £ = (z,,), let us denote the limit function
M, = lim M )
g(w) = lim M(z,2,)

We say that two fundamental sequences £ and ( are equivalent (relative to xg), £ ~ ¢,
if My = M,. It is worth noting that M, is a non-negative (J-harmonic function in €2,
with M¢(z) = 1. Hence M > 0 in by local Harnack’s inequality. Note that if z is
another point in Q, then g(z,x,)/g9(Zo, z,) = M(x,2,)/M(Zg, x,,). This observation
enables us to conclude that being a fundamental sequence is independent of the
particular choice of xy. Furthermore, fundamental sequences ¢ and ( are equivalent
relative to xg if and only if they are equivalent relative to any 2o € . Thus the
following definition is independent of the fixed point xg.

Definition 3.4. The collection of all equivalence classes of fundamental sequences
in Q is the conformal Martin boundary 0.,/ of the domain . This collection is
endowed with the local uniform topology: a sequence &, in this boundary is said to
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converge to a point  if the sequence of functions M, converges locally uniformly to
M.

Because of the uniqueness of singular functions (see Theorem 3.2 above), we can
also identify points y in {2 with their corresponding singular functions

M-, y) = g(-y)/9(xo, y).

By using the uniqueness of singular functions together with results from [Sh3], we
see that the topology inherited from the local uniform norm on the collection of such
normalized singular functions is compatible with the topology of €2 and that QU052
is compact.

Remark 3.5. From now on we assume without further notice that no fundamental
sequence (1) contains the point xg.

Lemma 3.6. For every xo, € 022 and a sequence (z,,) in 2 converging to x there
ezists a subsequence (,,) which is fundamental.

Proof. Note that M(zg,x,) = 1 for every n € N. Therefore the sequence M (x,x,,)
is locally bounded by the Harnack inequality; see [KiSh]. By [Sh3, Proposition 4.1]
we obtain a locally uniformly convergent subsequence which yields a ()-harmonic
limit. 0

By Lemma 3.6 we see that given a point in the metric boundary of €2 we can
associate with it at least one point on the Martin boundary. Our goal now is to prove
Theorem 1.1, that is, to show (under suitable hypotheses) that we can associate to
each point in the Martin boundary a unique point on the metric boundary. In what
follows, we denote by [(y) the length of a rectifiable curve 7.

Definition 3.7. Let 2 C X be a proper subdomain and let A > 1. We say that
is an A-uniform domain if every pair of distinct points x,y € €2 can be joined by a
rectifiable curve « lying in Q for which [(v) < Ad(x,y) and

min{/(7z2), 1(7z4)} < A6(2)

for all points z on 7. Here §(2) = dq(z) = dist(z, X \ 2) denotes the distance from z
to the complement of {2 and ~,;, denotes the portion of the curve v which lies between
a and b. A curve v in € which satisfies both of these conditions is said to be an
A-uniform curve. We say that Q is uniform if it is A-uniform for some A.

See [Ma] for more information on uniform domains in the Euclidean setting, and
[BHK], [V] for the general metric setting.

In Euclidean space, uniform domains contain no outward pointing cusps. The
following lemma provides a version of this statement in general metric spaces. Here,
for o, € 002 and r > 0, m > 0, we define

AM2oo,m,m) = {2 € QN B(Too,7) : 6(z) > mr}

to be the set of points in the (closed) ball of radius r about x4, which lie at a distance
> mr from the complement of ().

Lemma 3.8. Let Q C X be an A-uniform domain and let v, € Q. Then Ao, r,m) #
0 provided 0 < r < ;diamQ and 0 < m < 5.
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Proof. Tt suffices to prove that A(xy, 7, i) # () since A(zoo,7,m') C A(Zoo,r,m) if
0 <m < m'. Choose € B(To,37) NQ and y € Q\ B(xs,2r). Let v be an
A-uniform curve joining = to y and let z € vy N 0B(xw, r); such a point clearly exists
because 7 is a connected set. Moreover, z € (). Thus,

5(2) > S min{i(1.),1(7)} > 5 min{d(, 2), d(z, )} > 5o

O

In the proof of Theorem 1.1 we will make use of several results (Lemmas 3.9, 3.11
and 3.12) on the behavior of positive Q-harmonic functions near the boundary of
2. Analogous results for non-negative harmonic functions in non-tangentially ac-
cessible (NTA) domains were proved in [JK, Lemma 4.4] and for positive solutions
of uniformly elliptic diffusion operators in [Bau, Lemmas 2.2-2.4]. For the sake of
completeness and also because the extension of these results from Euclidean space
to general metric spaces involves some slight modifications, we present here detailed
proofs of the corresponding lemmata for ()-harmonic functions. However, we wish to
acknowledge the debt which our results owe to [Bau] and [JK].

Lemma 3.9. Let Q) be an A-uniform domain and let x4, € 0. Let 0 < r < idiamQ
and let u be a positive Q-harmonic function defined on B(Zs,4r) N Q. Then there
exist constants A" and C (depending only on A, the diameter of 0, and the constants
involved in the local Q~-bounded geometry of X ) so that

(8) u(w) < Ctu(y)
for all natural numbers h and all z and y in A(v, /A", 277).

The proof of Lemma 3.9 makes use of quasihyperbolic geometry and, in particular,
of a characterization of uniform domains in terms of a growth condition on the quasi-
hyperbolic metric. Recall that the quasihyperbolic metric kq in a domain Q C X is
defined to be

. ds(z)

(9) kﬂ(l‘ay) T lgf/y 5(2) ) T,y € Qa

where the infimum is taken over all rectifiable curves v joining x to y in €2 and the
integral denotes the line integral of the weight §(2)~! over v, evaluated by using the
arc length parametrization; see [GP]. Any two points in {2 can always be joined by (at
least) one quasihyperbolic geodesic, i.e., a curve v which achieves the infimum in (9).
See [GO, Lemma 1] or [BHK, Section 2]. For an overview of some useful applications
of the quasihyperbolic metric, see [K].

Proof. First we note that a quasihyperbolic geodesic connecting given points in {2 is
an A’-uniform curve for some A" depending only on A. See, e.g., [BHK, Theorem 2.10]
or [V, Theorem 2.29]. Let h € N and let 2 and y be points in A(xn,7/A’,27"). Denote
by v a quasihyperbolic geodesic joining x to yy. Then ~ is an A’-uniform curve. Note
that v C B(xs,2r) N Q since I(y) < A'd(z,y) < 2r and so v C B(x,r) U B(y,r) C
B(xs, 2r).

We now construct a chain of balls B;, © = 1,..., N, covering v satisfying the
following three conditions:

(i) B; N Biy1 # 0 for each i;
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(i) 2B; C B(xe,4r) Ny

(iii) N < 3kq(z,y).
Set ¥y = x, 1y = 6(x1)/2 and By = B(xy,7r1). Let x5 be the terminal point of ~y
in the ball By (thus xs € 0By), ro = §(x2)/2 and By = B(xs,r3). Continuing this
process, we construct a sequence of balls B; = B(x;, ;). Since these are open balls
and x;,1 € 0By, it is clear that (i) holds. Moreover, 2B; C Q by construction. If
z € 2B;, then

A(Tooy 2) < d(Tooy i) + 213 = d(T oo, ;) + 0(7;) < 2d(Too, ;) < 47

since v C B(#w,2r). This shows that (ii) holds. Finally, let v; denote that portion
of the geodesic v contained in B; which joins x; to x;,;. These subcurves ~; are all
disjoint. If z € ~; then 0(z) < d(x;) + r; = 3r;. For each i, we estimate

[l Lo, L
¥ (S( ) 3 T 3

Summing over i, we see that

e [ L5 [ 1

which proves (iii) (and incidentally establishes that the number of balls in the chain
is finite).

Next, we recall that in an A-uniform domain, the following logarithmic estimate
for the quasihyperbolic metric holds true:

(10) tnfa.0) < 142105 (14 SO0 )
for all a,b € Q. See [BHK, Lemma 2.13|. Thus
2 dw,y)
N < 3kq(z,y) < 1247 log (1 + min{d(z), I (y )}>
(11) < 124%log(1 + 2"*1)
< 1242 log(2%")
< 25A%h,

where we have used the fact that z,y € Az, r/A’,271).
Since u is a positive @-harmonic function on B(x,47r) N2, by a repeated use of
the Harnack inequality on the balls B;, we see that

u(z) < cg'uly) < Ctu(y),
where ¢y > 1 denotes the Harnack constant in (5) and C; = ¢2**. Thus (8) holds. [

Our second lemma states a boundary regularity result for ()-harmonic functions.
This result requires a capacity density condition in the complement of the domain,
specifically, the so-called uniform @-fatness condition alluded to in the introduction.
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Definition 3.10. We say that 2 has uniformly QQ-fat complement if there exist con-
stants ¢ > 0 and ro > 0 so that

Capg(B(z,r) \ @ B(z,2r))

Capg(B(w,r); B(w,2r))
for every x € X \ Q and r € (0,ry).

Recall that Capg(E,U) denotes the Q-capacity of E in U, see the remarks fol-
lowing Definition 3.1. For example, a domain obtained by removing a nondegenerate
continuum from a ball in R” has uniformly n-fat complement. On the other hand, any
domain in a metric space of locally Q~-bounded geometry whose boundary contains
an isolated point does not have uniformly )-fat complement, since single points have
zero Q-capacity. See [HKM], [Le], [Mi], and [BMSh] for additional information on the
uniform fatness condition.

From now on rg refers to the constant in the ()-fatness condition of the complement
of Q.

Lemma 3.11. Let Q be a bounded domain with uniformly Q-fat complement. Let
Too € 0S2. Then there exist constants Cy < 0o and o > 0 so that

r «Q

sip uly) <G (%) sup o u(z)
YEB(Zoo,r)NY R 2€QNIB(T ,R)

whenever 0 < r < R < 1y and u is a positive Q-harmonic function in B(x, R) N Q

which vanishes continuously on OS).

For a proof, see [BMSh, Theorem 5.1]. Observe that the LLC condition is used
here.

Our third lemma is a Carleson-type estimate on the values of positive ()-harmonic
functions. The proof is modelled on that of Lemma 4.4 in [JK]. See also [Bau], [Cal,
and [CFMS].

Lemma 3.12. Let Q) be a bounded A-uniform domain with uniformly Q-fat comple-
ment. Let To € 002, 0 <1 < min{i diam Q,ro}, and let u be a positive Q-harmonic
function on B(xs,4r) N Q which vanishes continuously on 02. Then there exists a
constant C3 so that

(12) sup  u(y) <C;  sup  ufz).

yGB(l’oo,’!‘)ﬂQ ZEA(Q?OO:%:%)

Here A" = A'(A) denotes the constant of Lemma 3.9. Moreover, for all § < 7 there
exists a constant C4(f) > 1 so that

(13) sup — u(y) < C3(B)u(z)

YEB(Too,r) N0
for all v < ro/2A" and all points z in the set A(xs, 1, ).
Note that A(xs, 7, 8) is nonempty provided r is sufficiently small by Lemma 3.8.
Proof. By a preliminary normalization, we may assume without loss of generality that

sup u(z) = 1.

ZEA(CL.OO)%)%)
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Next, by Lemma 3.11, and by choosing Cy > max{2, (2C5)'/*} we see that

sup  u(z)
2€B(200,5)N$Y

(14) sup  u(y) <
YEB(200,5/Ca)NQ

DN |

for all zo, € B(Zn,4r) N 0N and all s such that B(zw,$) C B(Zw,4r). By Lemma
3.9, there exists C5 > A so that if h € N with 2" > 24, and w € B(zw, §;) with
u(w) > CP, then

(15) §(w) < O

Choose M > 5 so that 2 > C5 and set C3 = CM. Suppose that there exists
Yo € B(7,7) NQ with u(yy) > Cs = CM. Then 6(yy) < C;Mr. Denote by 9o a
point of 9 for which d(yo o, ¥o) = 0(yp). Then

M- 33
d(y0,00a -'L.oo) S d(y(),ooa yO) + d(y07 'Too) S 04 M 57“ +r S @’F.

Consequently B(yp.o0,7) C B(Zoo,4r) and by applying (14) we see that

sup  u(y) > 2% sup u(y) > 2Mu(yo) > G
YEB(Y0,00,7)NQ YEB(Yo,00,C5 M 1)NQ2

Hence we may choose y; € B(yoe0,7) N Q so that u(y;) > C* and (by (15))
§(y1) < C; M. Let y1 0 be a point of 9 for which d(y; 0, y1) = 6(y1). Continuing
in this fashion, we construct two sequences, (yx) and (yg ), with

Ykoo € B(Too,4r) N OQ
Y € B(Yr—1,00, C; 1) N Q
8 (k) = d(Yp, Yroo) < CTM7Fr
B(Yk— 1,00, C1 ") C B(T00,47)
u(ye) > CTHE

Now the fact that §(yx) — 0 and u(yx) — 400 contradicts the hypothesis that u
vanishes continuously on 0€2. Thus (12) is verified.

As observed above, A(xs,r, 3) is nonempty provided r is sufficiently small and
B < 55. Moreover, given two points z,y in A(ze, 7, 3) for some § € (0,1) and
r < ry/(24"), we see that if y is a quasihyperbolic geodesic connecting = and y in €,
then [(y) < 2A'r and 6(2) > pr/(2A") for all points z € y because 0(x),d(y) > [r (see
Lemma 3.15 below). Therefore, v can be covered by at most 8(A’)?/3 balls of radii
pr/(4A"). The Harnack inequality can be applied to these balls, and hence inequality
(13) follows from (12), where C%(8) = (1/¢)3A)’/8Cs. O

We now apply the preceding results to the case of singular functions and in par-
ticular to sequences of singular functions giving rise to a Martin boundary function
M,,. The following lemma, which is the key to the proof of Theorem 1.1, establishes
the boundary Holder continuity of Martin boundary functions.

Lemma 3.13. Let Q) be a uniform domain with uniformly @Q-fat complement. Let
Too € O and let x = (xy,) be a fundamental sequence with lim, T, = To. Then M,
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vanishes continuously on 0\ {x}: for each yoo € 0N\ {zo} there exists v, >0
so that

sup M, (y) < Cr?,
yEB(yoo ,r)ﬂQ

for every 0 <r <r,_, where C' and s are constants which are independent of r.

Proof. Let yoo € 00\ {2} and let € = $d(To0,Yso). By Lemma 3.11, there exists
s > 0 so that

s M(y,z) <C(5) s M(za)
YEB (Yoo )N R/ conaB(ye,R)

whenever 0 < r < R < min{ry, e} and x, € B(z,€). Thus it suffices to verify that

sup sup M(z,x,) < 00
n 2€QNIB(Yoo,R)

for some R as above. By Lemma 3.12, it is enough to show that

sup sup M(z,x,) < 00

n ZEA(yooa%yﬁ)

for some R. But observe that

R 1 R
A —_— — Q: >
<y°°’ ar 2A> < {‘T €Q:o(z) 2 2AA’}
which is a compact subset of €2. Choose, for example, R = %min{rg, ¢}. Then, letting

K be a connected compact subset of  containing {z € Q: §(z) > 555} U {zo}, we
see that

M(z,x,) < CxM(xg,1,) = Ck

for all z € K and n € N, where C'x denotes a Harnack constant for the compact set
K asin (6). The proof is complete. O

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. We begin by showing that whenever y = (z,,) and £ = (z,)
are two fundamental sequences giving rise to the same Martin boundary function
M, = Mg, then lim, z, and lim, 2, exist and are equal. Since Q is compact, it
suffices to show that x,, = 2, provided the limits lim, x,, = z, and lim,, 2z, = 24
exist.

Suppose that z., # zsx. Then by Lemma 3.13, M, vanishes continuously on
00\ {zo} and M, vanishes continuously on 00 \ {z}. Thus M = M, = M;
vanishes continuously on the entire boundary 99 of Q. For € € (0,1) let Q. := {z €
Q : M(xz) > €}. Then the closure of € is a compact subset of €. Let Q.o be the
component of €. containing x,. Then M is a ()-harmonic function on €2, which is
in NY9(Q.o) and M = € on 0Q.. By the maximum principle (see [Sh2] or [KiSh]),
M is the constant function M = € in €. This contradicts the fact that M (zo) =1
and hence it follows that 2., = 2.

By appealing to the above discussion, we see that there exists a well-defined surjec-
tive mapping from 0.5/ onto 9€2. The continuity of this map follows directly from
the definition of the topology on the Martin boundary 0.x;€). U
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In general the above map need not be injective. For example, the slit disc in R?
fails to have this property. Each boundary point on the removed radius corresponds
naturally to two distinct Martin boundary points.

Question 1: When is the map defined in Theorem 1.1 injective and hence a homeo-
morphism?

Question 1': In the linear setting of usual harmonic functions, Question 1 is closely
related to the validity of so-called boundary Harnack principle; see [Ai], [An1], [An2],
[AS], [JK], and [Wu]. It would be very interesting to know for which domains (2 the
boundary Harnack principle holds for ()-harmonic functions and whether this would
be useful in showing that 0.3, = 0S2.

Question 2: It is easy to see that the topology on the conformal Martin compactifi-
cation QU 0,),82 is metrizable. One possible candidate metric is

(16) do(o) = [ o SO ),

and the topology on () induced by this metric is compatible with the underlying
topology. Is this metric locally biLipschitz or locally Holder equivalent with the
underlying metric on 27 It would also be interesting to know how this metric is
distorted by quasiconformal maps.

Question 3: In the Euclidean setting and for the classical Martin boundary, Aikawa
[Ai] has shown the equivalence of the Martin boundary and the metric boundary
assuming only the uniformity, which is an interior condition on €2. Is the exterior
condition of ()-fatness on the complement of (2 needed in Theorem 1.1, or can it be
replaced with the milder condition of regularity of the boundary of 7

Question 3': It is easy to see that the estimate of Lemma 3.11 fails if Q does not
satisfy the exterior condition of ()-fatness; consider, for example, the domain =
B(0,1) \ {(5,0),(550)} ¢ R*. This domain does not violate the conclusions of
Theorem 1.1. However, if we know that for every point z* € 0€), each Martin function
M, associated with a fundamental sequence y = (z,), tending to z* is unbounded in
every neighborhood of x*, then a modified version of Lemma 3.13 would help us prove
Theorem 1.1. Simply connected proper subdomains of R? satisfy this condition. Do
all inner uniform domains satisfy this condition?

Our next proposition can be informally stated as follows: the values of a singular
function can decrease by at most an absolute multiplicative constant under the oper-
ation of taking the quasihyperbolic convex hull. While this result plays no role in the
proof of Theorem 1.1, we feel that it is of some independent interest and illustrates
some different conclusions that can be drawn from Lemma 3.12.

Proposition 3.14. Let Q) be a uniform domain whose complement is uniformly Q-
fat. Let g be a singular function on Q with singularity at w € Q. For 7 € (0,00],
set

E.:={z€Q :g(z) >71}.

Then every quasihyperbolic geodesic v connecting two points x,y € E, lies entirely in
the set E.,, where ¢ is a positive constant which is independent of x, y, T and g.

The proof of this proposition needs the following two lemmata.
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Lemma 3.15. Let z,y be two points in Q so that min{d(x),(y)} > r. Then whenever
v is a quasihyperbolic geodesic in ) connecting x and y, every point z € v has the
property 6(z) > 35

Proof. Suppose there is a point z € 7 so that §(z) < 5%. Without loss of generality,
we can assume that [(y;,) < {(7,,). Then, as v is A’-uniform, we see that [(7,,) <
r/2. Therefore d(x, z) < r/2. However, 6(z) > §(x) — d(z,z). Therefore, we have
§z)y>r—=%t= r/2 > 547, leading to a contradiction. Therefore, no such point z € v
exists, and the proof is now complete. O

Lemma 3.16. Let x € Q2 and v be a quasihyperbolic geodesic from x to another point
y in Q so that 6(y) > 0(x). Let Q. denote a point on 02 so that 6(x) = d(Qs,x).
Then if z € v so that [(Vz,) < I(72y), one of the following two conditions hold true
for z:

oz
(1) d(Qq, 2) < 36(z), and §(z) > 2;4),
(2) d(Qq,2) > 35(x), and 6(z) > 35d(z, Qz).
The proof of Lemma 3.16 is an easy consequence of the uniformity of 2 together

with Lemma 3.15, provided we observe in the second case of Lemma 3.16 that [(7,,) >
d(z,z) > 2d(Qy, z). We therefore leave the proof of this result to the reader.

Proof of Proposition 3.14. Let z,y be two points in F,.. Let v be a quasihyperbolic
geodesic connecting x and y in 2. We consider four cases. In what follows, r =
ro/(4A")%, where rq is the bound on radii associated with the uniform Q-fatness of
the complement of €.

Case 1: Both z and y are at least a distance 5 from the boundary of €2; that is,
min{4(z),0(y)} = 74 Then, by Lemma 3.15, v C {z € Q: 6(2) = Gz} which is a

compact subset of Q2. By the Harnack inequality (6), we see that for all pomts Zin 7y,

1
17 >
17 92> oot

Case 2: §(x) = min{d(z),d(y)} < 5%, and d(z,y) < 36(z).

Then, by the fact that v is an A’-uniform curve, I(y) < A'd(z,y) < 34'5(z) <
ro/2, and hence v C B(Q.,4A'5(z)), and by Lemma 3.15, for all z € v we have
d(z) > d(z)/(2A"). Therefore, applying the second conclusion of Lemma 3.12 with
r=4(A")%5(x) and 7, = Q,, we see that all z € y satisfy

1
18 > —
19 922 oo

Case 3: 0(x) = min{d(x),d(y)} < 54, and 36(z) < d(z,y) < 3A'(x).

Now, we can break v up into subarcs v;, : = 1,..., N with N < 6(A")?, so that
570 (z ) < I(y) < 6(x)/A'". Let x;,y; denote the endpoints of ~;. If both §(x;) and
6(y;) are not smaller than 347, then the argument of Case 1 covers the points on ;.
If on the other hand min{d(z;),d(y;)} < 747, then as d(w;,v;) < 2min{d(x;),d(y;)},
the points in ~; are covered by the argument of Case 2. Thus we see that for every
point 2z € 7,

(19) g(2) > (min{1/Cy, 1/C3 1) 7,
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Case 4: §(r) = min{d(z),d(y)} < 547, and d(z,y) > 3A'6(x).

In this case, let zg denote the midpoint of 7, and consider the ball B(Q,,r). Let
x' denote the point on 7 at which v first exits the ball B(Q,, 7). We consider two
subcases:

Case 4a: 2y € 7Vzor. Then for every point z in 7., {(7s2) < (7). Now we are in
the situation of Lemma 3.16. Consider z € 7,7, and let = 2§(z) in the first case
considered in this lemma, and let r = %d(QI, z) in the second case. Then z € B(Q,,r)
and z € A(Qq,, ﬁ) Now, by Lemma 3.12, we have

1
(20) o) 2 oo

Case 4b: 2y € v, or z' does not exist. Then, we repeat the argument of Case 4a
for points in v,,,, to obtain inequality (20) for points in 7,.,,.

Together, Cases 4a, 4b, and Case 1 yield inequality (20) for all points z in the
segment 7,,,. We repeat Case 4 for the segment ~,,, by replacing the role of z with
the role of y in the case that §(y) < 747, and we repeat the argument of Case 1 for
the segment v,,, otherwise, with 2’ playing the role of x.

Together, the above four cases yield the desired result. O

4. THE CONFORMAL MARTIN BOUNDARY AND CONFORMAL MAPPINGS

It was shown in [HKShT] that if Y7 = (Y3,dy, u1) and Yy = (Y3, do, u2) are two
metric measure spaces of locally @Q-bounded geometry, then a homeomorphism f :
Y} — Y is quasiconformal if and only if f € Nﬁ)’?(Yl; Y,) and there exists a constant
K > 1 so that

Lip f(z)? < K J;(z)
for p-almost every = € Y;. See [HKShT, Theorem 9.8]. Here

da(f (), f(y))>

Lip f(z) = lim sup (ess SUDg, (2,4)<r .

r—0

denotes the mazximal stretching of f at x and

. p2(fB(z,r))
1) =R (B )
denotes the infinitesimal volume distortion of f at x. For the definition of the metric
space-valued Sobolev space NIL’CQ(Yl; Y5); see [HKShT, Section 3.

Under our standing assumptions on X (see section 2), if Q@ C X is a relatively
compact domain, then Q is of locally -bounded geometry. Thus if 2 C X and
Q' C Y are relatively compact subdomains of metric measure spaces of locally Q-
bounded geometry, then the results of [HKShT, Section 9] apply to quasiconformal
maps from 2 to Q. Let f: Q — ' be such a map. By the discussion in [HKShT,
Section 10], there exists a matrix-valued map df, the transposed Jacobian, on € so
that for every Lipschitz function ¢ on ',

D(po f)(x) = df (z) De(f(x))
for p-a.e. x € Q.
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The following lemma is an immediate consequence of the discussion in [C, p. 460)]
together with [C, Lemma 4.35] which proves that |Dy| ~ Lip ¢ for Lipschitz functions
¢. Here we denote by ||df(x)|| the operator norm of df (z) as a map from the fiber
F(’p(x) in the generalized cotangent bundle T*Y over ¢(x) to the fiber F, in T*X over
x.

Lemma 4.1. For pux-a.e. x € Q, ||df (z)|| < C Lip f(z).

Definition 4.2. We say that a homeomorphism f : Q — Q' is a conformal mapping
if it is a quasiconformal mapping and for px-a.e. x € €,

(21) ldf ()19 < Ty ().

Note by the above lemma that if f : 2 — €' is quasiconformal, then there exists
Ky > 1 so that ||df (z)||? < Ko Jp(z) for px-a.e. x € Q. Thus f is conformal if
KO =1.

Remark 4.3. Observe that the Cheeger derivative structures on X and Y are not
unique. Thus, unlike the definition of quasiconformality, the definition of conformality
given above depends heavily on the choice of the derivative structures of both X and
Y. Indeed, the identity map f(z) = z from X = R" to Y = R" is not conformal if Y’
is equipped with the standard Euclidean differentiation structure and X is equipped
with a nonstandard Cheeger differentiation structure, say, the structure in which
Dy(z) = 2Vp(x) if the first component of the vector x is negative and Dp(x) =
V(z) if the first component of = is non-negative. Recall that the coordinate charts
U, in the Cheeger differentiation structure need only be measurable sets.

Lemma 4.4. If f : Q — Q' is a conformal map and u : Q — R is Q-harmonic on a
domain V C Q, then v’ :=uo f~1 is Q-harmonic on f(V) C Q'.

Proof. First, ' € N2?(f(V)) by [HKShT, Theorem 9.10]. Next, let U’ be a compact

loc

subdomain of f(V) and ¢' € Ny*?(U"). By the Q-harmonicity of u,

/U Du(x)[@dr < / D(u + o) (x)|? d,

where U = f~'(U’") and ¢ = (u' + ¢') o f — u. By the absolute continuity of quasi-
conformal mappings (see [HKShT, Section 9]) and by the definition of conformality,

|Du'(2")[?da’ < | |D(u + ) ()| do,
U U
and so u' is (Q-harmonic. O

Corollary 4.5. If f : Q — Q' is a conformal map and g is a (Q-)singular function
on Q, then go f~! is a singular function on V.

The only additional point worth noting for the proof of Corollary 4.5 is the invari-
ance of capacity under conformal maps: if K is a compact subset of Q and f : Q —
is conformal, then

Capg(f(K), Q') = Capy (K, Q).

Theorem 1.2 clearly follows directly from Corollary 4.5. Indeed, the image & =
(f(x))n of a fundamental sequence & = (x,), in Q is again a fundamental sequence
in €.



ON THE CONFORMAL MARTIN BOUNDARY OF DOMAINS IN METRIC SPACES 165

We use Theorem 1.2 to give an example of a domain €2 for which the conclusion
of Theorem 1.1 is false: a nontrivial portion of the boundary 02 is collapsed onto a
single point in the conformal Martin boundary 0.;,€2.

Example 4.6. Consider the simply connected domain 2 C C constructed in the
following manner. Let {6, : n € N} be an enumeration of all the rational numbers
between 0 and 27 and let r,, =1 —27". For n € N, set

Cp = {rne? : 10 —0,] > 27" 2 mod 27} U {—re : 1, <r <711}
and let Q =D\ |J ", C,, where D = {z € C: |z| < 1}. See Figure 1.

FIGURE 1. A “maze-like” domain 2

Let f be a conformal map from D onto 2. By Theorem 1.2, f extends as a
homeomorphism between the respective Martin boundaries in a natural manner. Now
the Martin boundary of D is equivalent with the metric boundary S(0,1) of D. By
the theory of prime ends (see [N]), S(0,1) is naturally equivalent to the set of prime
ends of D, and f extends as a homeomorphism between the sets of prime ends of D
and (2 in a natural manner. Observe that there is only one prime end corresponding
to the outer boundary S(0,1) of Q. Hence each point on S(0,1) C 9 corresponds
to the same Martin kernel function; S(0, 1) collapses to a single point on the Martin
boundary.

Question 4: Example 4.6 raises the question whether, for a domain €2, for which
the conclusion of Theorem 1.1 is false, the part of the boundary 02 that collapses
onto a single point has -harmonic measure zero. See [HKM] for the definition of
(Q-harmonic measure.

Now let f : Q — Q' be a quasiconformal map. We introduce a new variational
kernel, which is a deformation of the classical kernel Ky(z,&) = |£|9 by the quasi-
conformal map. For x € Q and £ € F, (the fiber over z in the Cheeger generalized
cotangent bundle), let

Ky(x,€) = Jy(x)|df (x) 7€,
where A* denotes the transpose of the matrix A. As in the undeformed case, we may
now define K -harmonic functions to be minimizers of the energy

/Kf(x,Du(x))dx, UcQ.
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The usual variational argument combined with the change of variables formulas from
[C, Section 4] and [HKShT, Section 10] shows that each K j-harmonic function g is a
solution to the weak PDE

/ |Dg|%7% Dg - Dy el _
Q Jy
for every Lipschitz function ¢ with support in Q\ {y}. The existence and uniqueness

of Ky-singular functions follows by the arguments of [HoSh| and [Ho| and we may

0

define a K¢-Martin boundary 8]\? Q2 by the procedure outlined in section 3. By exactly
the same argument as above, we find that f extends to a homeomorphism of 8]\? Q
onto JearY.

More generally, starting from any kernel K (z',&) defined on €' which satisfies the
structure conditions of [HKM, §5.1], we may define K-harmonic functions and a K-
Martin boundary 9%€). Then f extends to a homeomorphism of G{jKQ onto 95 Y,
where

fPE (2,€) = Jp(2) K (f (), df (2) 7€)
Question 5: In the above setting, when does f extend as a homeomorphism between
the usual conformal Martin boundaries 0.,/ and 0.,/§2'? See [Seg] and [SegT] for
examples of planar domains for which such a homeomorphic extension does not exist.

The above question can be partially answered by answering the following question.
Question 6: Given a kernel K satisfying the structure conditions of [HKM, §5.1],
when is 98 Q) homeomorphic to 9.,,Q?
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