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ON THE CONFORMAL MARTIN BOUNDARY OF DOMAINS IN

METRIC SPACES

ILKKA HOLOPAINEN, NAGESWARI SHANMUGALINGAM,

AND JEREMY T. TYSON

Abstract. Using Cheeger's di�erentiability theorem for Lipschitz functions on

metric measure spaces, we construct a conformal analogue of the Martin boundary

for relatively compact domains in locally compact metric measure spaces which

are locally Q-regular for some Q > 1 and support a (1; p)-Poincar�e inequality for

some p < Q. For relatively compact uniform domains which have uniformly Q-fat

complement we show that the conformal Martin boundary maps surjectively onto

the topological boundary. We also investigate the behavior of the conformal Martin

boundary under conformal and quasiconformal maps. Our results are new even in

the setting of Euclidean domains.

1. Introduction

The Martin boundary was �rst studied in [M] in the context of minimal positive

harmonic functions in classical potential theory. Some recent studies (see [AS] and

[An2]) on the Martin boundary of Riemannian manifolds have focused on the rela-

tionship between the Martin and geometric boundaries; see also [HW], [JK], and [Ai]

for the Euclidean setting. The Martin boundary of a (non-parabolic) Riemannian

manifoldM is de�ned as follows. Fix x0 2M . Given a sequence of points (xn) in M ,

we say that the sequence is fundamental if the sequence has no accumulation point

in M and the sequence of functions

G(�; xn)

G(x0; xn)

is locally uniformly convergent, where G(�; y) is the Green function for the Laplace-

Beltrami operator � on M with singularity at y. Two fundamental sequences are

said to be equivalent if the corresponding sequences of functions converge to the same

limit. The collection of all equivalence classes of fundamental sequences is the Martin

boundary of M . If M � Rn is a bounded Lipschitz domain in the Euclidean space,
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the corresponding limit functions agree with the usual Poisson kernel; see [M] and

[HW].

According to a result of Bonk, Heinonen, and Koskela, if 
 and 
0 are quasicon-

formally equivalent Euclidean domains (in any dimension n � 2) which are Gromov

hyperbolic in the quasihyperbolic metric and whose complements satisfy a density

condition for the variational 2-capacity (so-called uniform 2-fatness), then each qua-

siconformal map from 
 to 
0 extends to a homeomorphism of the respective Martin

boundaries; see [BHK, Theorem 9.8 and Theorem 8.15]. In the planar case the two

conditions on the domain and its complement are naturally quasiconformally equiva-

lent. In higher dimensions only the Gromov hyperbolicity remains quasiconformally

invariant; the density condition for the 2-capacity no longer transforms appropriately

under quasiconformal maps. While a simple and direct proof of the result of Bonk,

Heinonen, and Koskela can be given for conformally equivalent planar domains, the

proof which they give (which is valid in all dimensions and for arbitrary quasiconfor-

mal maps) is indirect. Indeed, they show �rst that the quasiconformal map extends

to a quasisymmetry between the Gromov boundaries, and then they use a result of

Ancona [An2] to identify the Gromov and Martin boundaries.

As the reader is doubtless aware, the correct potential theory to consider in con-

nection with quasiconformal maps in higher dimensions is that associated with the

n-Laplacian

�nu = � div (jrujn�2ru);

where n is the dimension of the underlying space. For the nonlinear potential theory

associated with this and more general quasilinear elliptic operators, we refer to the

comprehensive text by Heinonen, Kilpel�ainen and Martio [HKM]. In this paper, we

initiate a study of the conformal Martin boundary, de�ned using singular solutions

to the n-harmonic equation �nu = 0. Taking advantage of recent developments in

the abstract theory of analysis and �rst-order di�erential calculus on metric spaces

(see [HeK1], [He], [HKShT], [Ch]), we work throughout in the general setting of

metric measure spaces of locally Q�-bounded geometry, that is, locally Q-regular
spaces supporting a local (1; p)-Poincar�e inequality for some 1 � p < Q. The �rst

two authors have established the existence of singular solutions to the Q-harmonic

equation �Qu = 0 (interpreted in a suitable weak sense) on such a metric measure

space X; see [HoSh]. Using the di�erentiation theorem of Cheeger [Ch], the discussion

in [Ho] shows the uniqueness of such solutions; see Theorem 3.2 below. We are thus

in a position to de�ne the conformal Martin boundary @cM
 for relatively compact

domains 
 � X. As in the classical case, @cM
 comes equipped with a natural

topology for which 
 [ @cM
 is a compacti�cation of 
.

As far as we are aware, Martin boundaries associated with the n-Laplacian, n > 2,

have not been treated before in the literature, even in the setting of Rn . Also we want

to emphasize that our theory applies, apart from the Euclidean and Riemannian set-

tings, to the Carnot groups as well, and to the highly non-classical spaces constructed

by Bourdon and Pajot [BP] and Laakso [La].

To begin with, we seek to understand the relationship between the conformal Mar-

tin boundary and the topological boundary. Our �rst result provides a partial answer:

Theorem 1.1. Let 
 be a relatively compact uniform domain in a metric measure
space X of locally Q�-bounded geometry, Q > 1. Suppose also that the complement
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of 
 is uniformly Q-fat. Then there exists a surjective continuous map from the
conformal Martin boundary @cM
 onto the topological boundary @
.

For the de�nitions of uniformity of a domain and uniform Q-fatness; see Section 3.

Theorem 1.1 does not hold true if the uniformity assumption is relaxed, see Exam-

ple 4.6. However, it is possible that the exterior condition (uniform Q-fatness of the
complement) is not needed in this result. See Question 3 in Section 3.

Observe that by [BHK, Theorem 3.6 and Proposition 3.12], a uniform domain


, equipped with the quasihyperbolic metric k
, is Gromov hyperbolic. Moreover,

there is a natural quasisymmetric equivalence between the Gromov (i.e., geometric)

boundary @G(
; k
) and @
. We conjecture that if 
 is a relatively compact uniform

domain, then the Gromov (geometric) boundary maps surjectively onto @cM
 and

hence all three boundaries are homeomorphic. For the corresponding result for the

classical (2-)Martin boundary in the Euclidean setting, combine Theorems 8.15 and

3.6 of [BHK].

Recall that a homeomorphism f : Y1 ! Y2 between two metric spaces (Y1; d1) and

(Y2; d2) is said to be quasiconformal if there exists a constant H � 1 so that

lim sup
r!0

sup
d1(x;y)�r

d2(f(x); f(y))

infd1(x;y)�r d2(f(x); f(y))
� H

for every x 2 Y1. Furthermore, a homeomorphism f : Y1 ! Y2 is a quasisymmetry if

there exists an increasing homeomorphism � : [0;1)! [0;1) so that

d2(f(x); f(y))

d2(f(x); f(z))
� �

�
d1(x; y)

d1(x; z)

�

for every triple of points x; y; z 2 Y1. By the results in [HKShT], a quasiconformal map

between two metric spaces of locallyQ�-bounded geometry is locally quasisymmetric.

Observe that the conditions in the above theorem are quasisymmetrically invariant: if

X, X 0 are two metric measure spaces of locally Q�-bounded geometry, and if 
 � X

satis�es the conditions in Theorem 1.1 and f : X ! X 0 is a quasisymmetric map,

then 
0 = f(
) also satis�es those conditions.
Our second result describes the relationship between the conformal Martin bound-

aries of conformally equivalent domains.

Theorem 1.2. Let 
 � X and 
0 � Y be conformally equivalent domains in metric
measure spaces of locally Q�-bounded geometry, Q > 1. Then each conformal map f :


! 
0 extends as a homeomorphism to the respective conformal Martin boundaries.

See Section 4 for the de�nition of conformality. Note that there are no conditions

on the domain 
. If 
 does not support Q-singular functions, its conformal Mar-

tin boundary is empty. In this case Theorem 1.2 states that the conformal Martin

boundary of 
0 also must be empty. This fact follows also from [HoSh, Theorem 4.5].

For quasiconformal maps we prove a version of Theorem 1.2 by making use of Mar-

tin boundaries de�ned relative to general variational kernels of the type considered

in [HKM, Section 5]. Our results here make use of fundamental analytic proper-

ties of quasiconformal maps in spaces of local Q�-bounded geometry; see [HKShT,

Section 10] and [C, Section 4]. However, we leave open the question of when the

topological type of the \standard" conformal Martin boundary @cM
 is a quasicon-

formal invariant. There are plane domains D1 and D2 and a quasiconformal map
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of D1 onto D2 which does not extend to a homeomorphism between their Martin

compacti�cations; see [Seg] and [SegT].
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2. Definitions and Notations

We assume throughout the paper that X is a path connected, locally compact,

non-compact metric measure space equipped with a metric d and a non-trivial Borel

regular measure � supported on all of X. We furthermore assume that the measure

is locally Q-regular for some Q > 1. By this we mean that there exists a constant

C � 1 so that each point in X has a neighborhood U such that

(1) C�1rQ � �(B(x; r)) � CrQ

for all balls B(x; r) � U: The index Q is called the regularity dimension of X; we

emphasize that it need not be an integer.

A non-negative Borel measurable function � : X ! [0;1] is said to be an upper
gradient of an extended real-valued function u on X if for every recti�able curve


 : [a; b]! X,

ju(
(b))� u(
(a))j �

Z



� ds:

We also assume that X supports a local (weak) (1; p)-Poincar�e inequality for some

1 � p < Q, that is, there exist constants C > 0 and � � 1 so that each point in X
has a neighborhood U such that

(2)

Z
B

ju� uBj d� � Cr

0
@Z

�B

�p d�

1
A

1=p

whenever B = B(x; r) � U is a ball, u is a measurable function on B and � is an

upper gradient of u. Here uB = �(B)�1
R
B
u d� denotes the mean value of u over the

ball B and �B = B(x; �r). We note that by H�older's inequality, X then also supports

a local (1; q)-Poincar�e inequality for every q � p. In particular, X supports a local

(1; Q)-Poincar�e inequality.
Spaces that satisfy (1) and (2) with p = Q have sometimes been called spaces

of locally Q-bounded geometry in the literature; see [HKShT, Section 9] or [BHK,

Section 9]. Consequently, we describe the spaces under consideration in this paper as

spaces of locally Q�-bounded geometry. Every n-dimensional Riemannian manifold,

equipped with the Riemannian volume measure, is locally n-regular and supports

a local (1; 1)-Poincar�e inequality. For more exotic examples in all real dimensions

Q > 1; see [BP], [La], and [S].
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Remark 2.1. Under the above assumptions, a suitable local version of the proof of

Propositon 4.4 of [HaK] implies that X is locally quasiconvex: each point in X has a

neighborhood U for which any two points y; z 2 U can be joined by a curve of length

at most Cd(y; z) for some absolute constant C. Furthermore, Theorems 3.13 and 5.7

of [HeK1] (suitably localized) imply that X is locally linearly locally connected (LLC).
By this we mean that there exists a constant C � 1 so that each point in X has a

neighborhood U such that every pair of points x1; x2 in an annulus �B(z; 2r)nB(z; r) �
U can be joined by a curve in �B(z; 2Cr) nB(z; r=C).

The function space that plays the role of classical Sobolev space in this paper is the

Newtonian space N1;p(X). Speci�cally, N1;p(X) is the collection of equivalence classes

of functions f 2 Lp(X) that have an upper gradient � 2 Lp(X). The equivalence

relation used here is u � v if and only if ku� vk1;p = 0, where

kfk1;p := kfkLp(X) + inf k�kLp(X);

the in�mum being taken over all upper gradients � of f . A set A � X is said to

have p-capacity zero if there exist functions u 2 N1;p(X) with arbitrarily small k � k1;p
norm with ujA � 1, and a property of points in X is said to hold p-quasi-everywhere
in X (p-q.e.) if the set of points for which the property does not hold has zero p-
capacity. The Sobolev space of functions with zero boundary values on a domain


 � X, denoted N
1;p
0 (
), is de�ned to be the collection of elements of N1;p(X) whose

representative functions vanish p-q.e. in X n 
.

In [Ch] Cheeger gives another de�nition of a Sobolev type space, but for indices p >
1 Cheeger's construction yields the same space as N1;p(X); see [Sh1, Theorem 4.10].

It is a deep theorem of Cheeger that if a metric measure space supports a doubling

measure and a (1; p)-Poincar�e inequality, then the corresponding Sobolev-type space is
re
exive; see [C, Theorem 4.48]. The results of [Ch] can easily be extended to the case

of spaces supporting a locallyQ-regular measure and a local (1; p)-Poincar�e inequality.

Using this Sobolev space, properties of p-harmonic functions were investigated in the

papers [Sh2] and [KiSh]. The de�nition of p-harmonic functions used in these papers

required such functions to be in the class N1;p(X). In this paper we consider a less

restrictive de�nition of p-harmonic functions; however, the analysis in [KiSh] is local

and the results therein apply to the p-harmonic functions of this paper as well.

In [C, Theorem 4.38] it was shown that if the measure on X is doubling and if

X supports a (1; p)-Poincar�e inequality for some p, then there is a "di�erentiable"

structure on X compatible with the notion of upper gradient. More precisely, the

following theorem holds:

Theorem 2.2 (Cheeger). Let X be a metric measure space equipped with a locally
doubling Borel regular measure �. Assume that X admits a weak (1; p)-Poincar�e
inequality for some 1 < p <1.
Then there exist measurable sets U� with �

�
Xn

S
�
U�

�
= 0 and there exist Lipschitz

\coordinate" functions X� = (X�

1 ; : : : ; X
�

k(�)) : X ! Rk(�) so that

(i) for each �, the functions X�

1 ; : : : ; X
�

k(�) are all linearly independent on U� and

1 � k(�) � N , where N is a constant depending only on the doubling constant
of � and the constants from the Poincar�e inequality,
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(ii) if f : X ! R is Lipschitz, then there exist unique bounded vector-valued

functions d�f : U� ! Rk(�) such that

lim
r!0+

sup
x2B(x0;r)

jf(x)� f(x0)� d�f(x0) � (X
�(x)�X�(x0))j

r
= 0

for �-a.e. x0 2 U�.

In other words, there exists a �nite dimensional L1 vector bundle of Banach spaces

T �X = fFxgx2X , the generalized cotangent bundle, and a derivation operator D on

the algebra of locally Lipschitz functions on X taking values in the sections of T �X.

For x in the \coordinate chart" U�, the �ber Fx is the dual space to the space Rk(�)

mentioned in the theorem. Given a Newtonian function f , the function gf denotes

the minimal p-weak upper gradient of f , and is de�ned by the equation

gf(x) = inf
g

lim sup
r!0+

Z
B(x;r)

g d�;

the in�mum being taken over all upper gradients g of f (see [Sh2, Corollary 3.7]).

With this convention, the norm on the space Fx is given by

(3) jj�jj�;x = gh�;X�i(x);

where, for � = (�1; : : : ; �k(�)) in R
k(�) we set h�;X�i to be the Lipschitz function given

by
P

k(�)

i=1 �iX
�

i
. By linear independence of X�

1 ; : : : ; X
�

k(�) we mean that whenever

gh�;X�i(x) = 0 for some x 2 U� we have � = 0. Finally, in a given chart U�, Df is

given by d�f .
Note that the generalized cotangent bundle is only a measurable vector bundle,

that is, the charts U� are measurable subsets of X and the change of coordinate

functions X� Æ (X�)�1 are bimeasurable invertible transformations.

By [Sh1, Theorem 4.10] and [C, Theorem 4.47], the Newtonian space N1;p(X) is

equal to the closure in the N1;p(X)-norm of the collection of locally Lipschitz functions

on X,1 and by [FHK, Theorem 10], the derivation operator D can be extended to all

of N1;p(X) so that

jDf(x)j � gf(x)

for all f 2 N1;p(X) and �-a.e. x 2 X. Here j � j = jj � jj�;x denotes the norm in (3).

One easily veri�es (see also [C, p. 458]) that the derivation operator Du satis�es

the product and chain rules: if v is a bounded Lipschitz function on X, u 2 N1;p(X),

and � : R ! R is continuously di�erentiable with bounded derivative, then uv and

�(u) belong to N1;p(X) and

D(uv) = uDv + v Du;

D(� Æ u) = �0(u)Du:

We modify the notion of p-harmonicity of [Sh2], [KiSh], and [HoSh] by minimizing

jDuj rather than gu.

1This is an abstract analogue of the celebrated \H = W" theorem of Meyers-Serrin [MS].
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De�nition 2.3. Let 
 � X be a domain. A function u : X ! [�1;1] is said to

be p-harmonic on 
 if u 2 N
1;p

loc
(
) and for all relatively compact subsets U of 
 and

for all functions ' 2 N
1;p
0 (U),Z

U

jDujp d� �

Z
U

jD(u+ ')jp d�:

It must be noted that by the results in [Ch], the p-harmonic functions as de�ned

above are p-quasiminimizers in the sense of [KiSh]. Moreover, p-harmonic functions

can be characterized in terms of a weak formulation of the appropriate Euler-Lagrange

equation: f is p-harmonic if and only if

(4)

Z
U

jDujp�2Du �D�d� = 0

for all U and ' as in De�nition 2.3. Here we make use of the fact that the norms j � j

on the �bers of T �X can be chosen to be inner product norms; see the discussion in

[C, p. 460].

Non-negative Q-harmonic functions on spaces of (locally) Q�-bounded geometry

satisfy a (local) Harnack inequality by results from [KiSh]. In particular, for each

relatively compact domain 
, there exists a constant c0 > 1 such that

(5) sup
B(x;r)

u � c0 inf
B(x;r)

u

whenever u is a non-negative Q-harmonic function in B(x; 2r) � 
. Consequently,

for each compact subset K � 
 there exists a constant CK so that

(6) sup
K

u � CK inf
K

u

whenever u is a non-negative Q-harmonic function in 
. Finally, as a consequence of

the local LLC property, a Harnack inequality on a sphere S(y; r) = fx 2 X : d(x; y) =
rg holds for non-negative Q-harmonic functions on the annulus B(y; Cr) nB(y; r=C)
for suÆciently small r; see, e.g., [BMSh, Lemma 5.3].

3. The conformal Martin boundary

In [HoSh] it was shown that every relatively compact domain in a space of locally

Q�-bounded geometry supports a Q-singular function which plays a role analogous

to the Green function of the Q-Laplacian operator.

De�nition 3.1. Let 
 be a relatively compact domain in a space X of locally Q�-

bounded geometry and let y 2 
. An extended real-valued function g = g(�; y) on

 is said to be a Q-singular function with singularity at y if it satis�es the following

four criteria:

(i) g is Q-harmonic in 
 n fyg and g > 0 on 
;

(ii) g
��
Xn


= 0 p-q.e. and g 2 N1;Q(X nB(y; r)) for all r > 0;

(iii) y is a singularity, i.e., limx!y g(x) =1;

(iv) whenever 0 � a < b <1,

(7) CapQ(

b; 
a) = (b� a)1�Q;

where 
b = fx 2 
: g(x) � bg, 
a = fx 2 
: g(x) > ag.
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Here Capp(K; 
) denotes the relative p-capacity of a compact set K with respect

to an open set 
 � K; recall that this is equal to inf
R


jDujp d�, the in�mum being

taken over all functions u 2 N1;p(X) for which ujK � 1 and ujX n 
 = 0. If such

functions do not exist, we set Capp(K; 
) = 1. For more on capacity, see [HeK2],

[KiMa], [KaSh], [HKM, Chapter 2], and the references therein.

Since we have �xed the regularity exponent Q of the measure � in this discussion,

we shall simply call such functions singular functions, suppressing the reference to

the index. The equality (7) replaces the double inequality in the analogous de�nition

of singular functions of [HoSh], because the use of Cheeger's derivative in the de�-

nition of Q-harmonicity gives us access to the Euler-Lagrange equation (4); see [Ho,

Lemma 3.8].

By [HeK1, Theorem 5.7], X is locally Q-Loewner, that is, there exists a decreasing
function ' = 'X : (0;1) ! (0;1) and each point in X has a neighborhood U
so that ModQ(E; F ;B) � '(t) whenever B � U is a ball and E and F are two

disjoint, nondegenerate continua in B with dist(E; F ) � tminfdiam(E); diam(F )g.
Here ModQ(E; F ;B) is the Q-modulus of the family of all curves in B joining E and

F ; see [HeK1, Section 2.3]. Hence the proof given in [Ho, Theorem 3.22] regarding the

uniqueness of singular functions applies in this setting and we deduce the following:

Theorem 3.2. Given a relatively compact domain 
 � X and y 2 
, there exists
precisely one singular function on 
 with singularity at y.

This observation enables us to de�ne a Martin boundary in a manner similar to

the classical potential theoretic Martin boundary.

De�nition 3.3. Fix x0 2 
. Given a sequence (xn) of points in 
, we say that the

sequence is fundamental (relative to x0) if the sequence has no accumulation point in


 and the sequence of normalized singular functions

M(x; xn) :=
g(x; xn)

g(x0; xn)

is locally uniformly convergent. Above we setM(x; x0) = 0 for x 6= x0 andM(x0; x0) =
1:

Given a fundamental sequence � = (xn), let us denote the limit function

M�(x) := lim
n!1

M(x; xn):

We say that two fundamental sequences � and � are equivalent (relative to x0), � � �,

if M� =M� . It is worth noting that M� is a non-negative Q-harmonic function in 
,

with M�(x0) = 1. Hence M� > 0 in 
 by local Harnack's inequality. Note that if ~x0 is
another point in 
, then g(x; xn)=g(~x0; xn) = M(x; xn)=M(~x0; xn). This observation
enables us to conclude that being a fundamental sequence is independent of the

particular choice of x0. Furthermore, fundamental sequences � and � are equivalent

relative to x0 if and only if they are equivalent relative to any ~x0 2 
. Thus the

following de�nition is independent of the �xed point x0.

De�nition 3.4. The collection of all equivalence classes of fundamental sequences

in 
 is the conformal Martin boundary @cM
 of the domain 
. This collection is

endowed with the local uniform topology: a sequence �n in this boundary is said to
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converge to a point � if the sequence of functions M�n converges locally uniformly to

M�.

Because of the uniqueness of singular functions (see Theorem 3.2 above), we can

also identify points y in 
 with their corresponding singular functions

M(�; y) = g(�; y)=g(x0; y):

By using the uniqueness of singular functions together with results from [Sh3], we

see that the topology inherited from the local uniform norm on the collection of such

normalized singular functions is compatible with the topology of 
 and that 
[@cM


is compact.

Remark 3.5. From now on we assume without further notice that no fundamental

sequence (xn) contains the point x0:

Lemma 3.6. For every x1 2 @
 and a sequence (xn) in 
 converging to x1 there
exists a subsequence (xnk) which is fundamental.

Proof. Note that M(x0; xn) = 1 for every n 2 N . Therefore the sequence M(x; xn)
is locally bounded by the Harnack inequality; see [KiSh]. By [Sh3, Proposition 4.1]

we obtain a locally uniformly convergent subsequence which yields a Q-harmonic

limit. �

By Lemma 3.6 we see that given a point in the metric boundary of 
 we can

associate with it at least one point on the Martin boundary. Our goal now is to prove

Theorem 1.1, that is, to show (under suitable hypotheses) that we can associate to

each point in the Martin boundary a unique point on the metric boundary. In what

follows, we denote by l(
) the length of a recti�able curve 
.

De�nition 3.7. Let 
 ( X be a proper subdomain and let A � 1. We say that 


is an A-uniform domain if every pair of distinct points x; y 2 
 can be joined by a

recti�able curve 
 lying in 
 for which l(
) � Ad(x; y) and

minfl(
xz); l(
zy)g � AÆ(z)

for all points z on 
. Here Æ(z) = Æ
(z) = dist(z;X n
) denotes the distance from z
to the complement of 
 and 
ab denotes the portion of the curve 
 which lies between

a and b. A curve 
 in 
 which satis�es both of these conditions is said to be an

A-uniform curve. We say that 
 is uniform if it is A-uniform for some A.

See [Ma] for more information on uniform domains in the Euclidean setting, and

[BHK], [V] for the general metric setting.

In Euclidean space, uniform domains contain no outward pointing cusps. The

following lemma provides a version of this statement in general metric spaces. Here,

for x1 2 @
 and r > 0, m > 0, we de�ne

�(x1; r;m) = fx 2 
 \ �B(x1; r) : Æ(x) � mrg

to be the set of points in the (closed) ball of radius r about x1 which lie at a distance

� mr from the complement of 
.

Lemma 3.8. Let 
 � X be an A-uniform domain and let x1 2 @
. Then �(x1; r;m) 6=

; provided 0 < r < 1
4
diam
 and 0 < m � 1

2A
.
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Proof. It suÆces to prove that �(x1; r;
1
2A
) 6= ; since �(x1; r;m

0) � �(x1; r;m) if

0 < m � m0. Choose x 2 B(x1;
1
2
r) \ 
 and y 2 
 n B(x1; 2r). Let 
 be an

A-uniform curve joining x to y and let z 2 
 \ @B(x1; r); such a point clearly exists

because 
 is a connected set. Moreover, z 2 
. Thus,

Æ(z) �
1

A
minfl(
xz); l(
zy)g �

1

A
minfd(x; z); d(z; y)g �

1

2A
r:

�

In the proof of Theorem 1.1 we will make use of several results (Lemmas 3.9, 3.11

and 3.12) on the behavior of positive Q-harmonic functions near the boundary of


. Analogous results for non-negative harmonic functions in non-tangentially ac-

cessible (NTA) domains were proved in [JK, Lemma 4.4] and for positive solutions

of uniformly elliptic di�usion operators in [Bau, Lemmas 2.2{2.4]. For the sake of

completeness and also because the extension of these results from Euclidean space

to general metric spaces involves some slight modi�cations, we present here detailed

proofs of the corresponding lemmata for Q-harmonic functions. However, we wish to

acknowledge the debt which our results owe to [Bau] and [JK].

Lemma 3.9. Let 
 be an A-uniform domain and let x1 2 @
. Let 0 < r < 1
4
diam


and let u be a positive Q-harmonic function de�ned on B(x1; 4r) \ 
. Then there
exist constants A0 and C1 (depending only on A, the diameter of 
, and the constants
involved in the local Q�-bounded geometry of X) so that

(8) u(x) � Ch

1u(y)

for all natural numbers h and all x and y in �(x1; r=A
0; 2�h).

The proof of Lemma 3.9 makes use of quasihyperbolic geometry and, in particular,

of a characterization of uniform domains in terms of a growth condition on the quasi-

hyperbolic metric. Recall that the quasihyperbolic metric k
 in a domain 
 ( X is

de�ned to be

(9) k
(x; y) := inf



Z



ds(z)

Æ(z)
; x; y 2 
;

where the in�mum is taken over all recti�able curves 
 joining x to y in 
 and the

integral denotes the line integral of the weight Æ(z)�1 over 
, evaluated by using the

arc length parametrization; see [GP]. Any two points in 
 can always be joined by (at

least) one quasihyperbolic geodesic, i.e., a curve 
 which achieves the in�mum in (9).

See [GO, Lemma 1] or [BHK, Section 2]. For an overview of some useful applications

of the quasihyperbolic metric, see [K].

Proof. First we note that a quasihyperbolic geodesic connecting given points in 
 is

an A0-uniform curve for some A0 depending only on A. See, e.g., [BHK, Theorem 2.10]

or [V, Theorem 2.29]. Let h 2 N and let x and y be points in �(x1; r=A
0; 2�h). Denote

by 
 a quasihyperbolic geodesic joining x to y. Then 
 is an A0-uniform curve. Note

that 
 � B(x1; 2r) \ 
 since l(
) � A0d(x; y) � 2r and so 
 � B(x; r) [ B(y; r) �
B(x1; 2r).

We now construct a chain of balls Bi, i = 1; : : : ; N , covering 
 satisfying the

following three conditions:

(i) Bi \ Bi+1 6= ; for each i;
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(ii) 2Bi � B(x1; 4r) \ 
;

(iii) N � 3k
(x; y).

Set x1 = x, r1 = Æ(x1)=2 and B1 = B(x1; r1). Let x2 be the terminal point of 


in the ball B1 (thus x2 2 @B1), r2 = Æ(x2)=2 and B2 = B(x2; r2). Continuing this

process, we construct a sequence of balls Bi = B(xi; ri). Since these are open balls

and xi+1 2 @Bi, it is clear that (i) holds. Moreover, 2Bi � 
 by construction. If

z 2 2Bi, then

d(x1; z) � d(x1; xi) + 2ri = d(x1; xi) + Æ(xi) � 2d(x1; xi) � 4r

since 
 � B(x1; 2r). This shows that (ii) holds. Finally, let 
i denote that portion
of the geodesic 
 contained in Bi which joins xi to xi+1. These subcurves 
i are all
disjoint. If z 2 
i then Æ(z) � Æ(xi) + ri = 3ri. For each i, we estimateZ


i

jdzj

Æ(z)
�

1

3

l(
i)

ri
�

1

3
:

Summing over i, we see that

k
(x; y) =

Z



jdzj

Æ(z)
=
X
i

Z

i

jdzj

Æ(z)
�

1

3
N

which proves (iii) (and incidentally establishes that the number of balls in the chain

is �nite).

Next, we recall that in an A-uniform domain, the following logarithmic estimate

for the quasihyperbolic metric holds true:

(10) k
(a; b) � 4A2 log

�
1 +

d(a; b)

minfÆ(a); Æ(b)g

�

for all a; b 2 
. See [BHK, Lemma 2.13]. Thus

N � 3k
(x; y) � 12A2 log

�
1 +

d(x; y)

minfÆ(x); Æ(y)g

�

� 12A2 log(1 + 2h+1)

� 12A2 log(23h)

� 25A2h;

(11)

where we have used the fact that x; y 2 �(x1; r=A
0; 2�h).

Since u is a positive Q-harmonic function on B(x1; 4r) \ 
, by a repeated use of

the Harnack inequality on the balls Bi, we see that

u(x) � cN0 u(y) � Ch

1 u(y);

where c0 > 1 denotes the Harnack constant in (5) and C1 = c25A
2

0 . Thus (8) holds. �

Our second lemma states a boundary regularity result for Q-harmonic functions.

This result requires a capacity density condition in the complement of the domain,

speci�cally, the so-called uniform Q-fatness condition alluded to in the introduction.
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De�nition 3.10. We say that 
 has uniformly Q-fat complement if there exist con-
stants c > 0 and r0 > 0 so that

CapQ(
�B(x; r) n 
;B(x; 2r))

CapQ(
�B(x; r);B(x; 2r))

� c

for every x 2 X n 
 and r 2 (0; r0).

Recall that Cap
Q
(E;U) denotes the Q-capacity of E in U , see the remarks fol-

lowing De�nition 3.1. For example, a domain obtained by removing a nondegenerate

continuum from a ball in Rn has uniformly n-fat complement. On the other hand, any

domain in a metric space of locally Q�-bounded geometry whose boundary contains

an isolated point does not have uniformly Q-fat complement, since single points have

zero Q-capacity. See [HKM], [Le], [Mi], and [BMSh] for additional information on the

uniform fatness condition.

From now on r0 refers to the constant in the Q-fatness condition of the complement

of 
:

Lemma 3.11. Let 
 be a bounded domain with uniformly Q-fat complement. Let
x1 2 @
. Then there exist constants C2 <1 and � > 0 so that

sup
y2B(x1;r)\


u(y) � C2

� r
R

��
sup

z2
\@B(x1;R)

u(z)

whenever 0 < r � R < r0 and u is a positive Q-harmonic function in B(x1; R) \ 


which vanishes continuously on @
.

For a proof, see [BMSh, Theorem 5.1]. Observe that the LLC condition is used

here.

Our third lemma is a Carleson-type estimate on the values of positive Q-harmonic

functions. The proof is modelled on that of Lemma 4.4 in [JK]. See also [Bau], [Ca],

and [CFMS].

Lemma 3.12. Let 
 be a bounded A-uniform domain with uniformly Q-fat comple-
ment. Let x1 2 @
, 0 < r < minf1

4
diam
; r0g, and let u be a positive Q-harmonic

function on B(x1; 4r) \ 
 which vanishes continuously on @
. Then there exists a
constant C3 so that

(12) sup
y2B(x1;r)\


u(y) � C3 sup
z2�(x1;

r

A0
;
1
2A

)

u(z):

Here A0 = A0(A) denotes the constant of Lemma 3.9. Moreover, for all � � 1
2A

there
exists a constant C 0

3(�) � 1 so that

(13) sup
y2B(x1;r)\


u(y) � C 0
3(�)u(z)

for all r < r0=2A
0 and all points z in the set �(x1; r; �).

Note that �(x1; r; �) is nonempty provided r is suÆciently small by Lemma 3.8.

Proof. By a preliminary normalization, we may assume without loss of generality that

sup
z2�(x1;

r

A0
;
1
2A

)

u(z) = 1:



ON THE CONFORMAL MARTIN BOUNDARY OF DOMAINS IN METRIC SPACES 159

Next, by Lemma 3.11, and by choosing C4 � maxf2; (2C2)
1=�g we see that

(14) sup
y2B(z1;s=C4)\


u(y) �
1

2
sup

z2B(z1;s)\


u(z)

for all z1 2 B(x1; 4r) \ @
 and all s such that B(z1; s) � B(x1; 4r). By Lemma

3.9, there exists C5 > A so that if h 2 N with 2h � 2A, and w 2 B(x1;
r

A0
) with

u(w) > Ch

5 , then

(15) Æ(w) < C�h
4 r:

Choose M � 5 so that 2M � C5 and set C3 = CM

5 . Suppose that there exists

y0 2 B(x1; r) \ 
 with u(y0) > C3 = CM

5 . Then Æ(y0) < C�M
4 r. Denote by y0;1 a

point of @
 for which d(y0;1; y0) = Æ(y0). Then

d(y0;1; x1) � d(y0;1; y0) + d(y0; x1) � C�M�5
4 r + r �

33

32
r:

Consequently B(y0;1; r) � B(x1; 4r) and by applying (14) we see that

sup
y2B(y0;1;r)\


u(y) � 2M sup
y2B(y0;1;C

�M

4 r)\


u(y) � 2Mu(y0) > CM+1
5 :

Hence we may choose y1 2 B(y0;1; r) \ 
 so that u(y1) > CM+1
5 and (by (15))

Æ(y1) < C�M�1
4 r. Let y1;1 be a point of @
 for which d(y1;1; y1) = Æ(y1). Continuing

in this fashion, we construct two sequences, (yk) and (yk;1), with

yk;1 2 B(x1; 4r) \ @


yk 2 B(yk�1;1; C
�k
4 r) \ 


Æ(yk) = d(yk; yk;1) < C�M�k
4 r

B(yk�1;1; C
�k
4 r) � B(x1; 4r)

u(yk) > CM+k
5 :

Now the fact that Æ(yk) ! 0 and u(yk) ! +1 contradicts the hypothesis that u
vanishes continuously on @
. Thus (12) is veri�ed.

As observed above, �(x1; r; �) is nonempty provided r is suÆciently small and

� � 1
2A
. Moreover, given two points x; y in �(x1; r; �) for some � 2 (0; 1) and

r < r0=(2A
0), we see that if 
 is a quasihyperbolic geodesic connecting x and y in 
,

then l(
) � 2A0r and Æ(z) � �r=(2A0) for all points z 2 
 because Æ(x); Æ(y) � �r (see

Lemma 3.15 below). Therefore, 
 can be covered by at most 8(A0)2=� balls of radii

�r=(4A0). The Harnack inequality can be applied to these balls, and hence inequality

(13) follows from (12), where C 0
3(�) = (1=c0)

8(A0)2=�C3. �

We now apply the preceding results to the case of singular functions and in par-

ticular to sequences of singular functions giving rise to a Martin boundary function

M�. The following lemma, which is the key to the proof of Theorem 1.1, establishes

the boundary H�older continuity of Martin boundary functions.

Lemma 3.13. Let 
 be a uniform domain with uniformly Q-fat complement. Let
x1 2 @
 and let � = (xn) be a fundamental sequence with limn xn = x1. Then M�
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vanishes continuously on @
 n fx1g: for each y1 2 @
 n fx1g there exists ry1 > 0

so that

sup
y2B(y1;r)\


M�(y) � Crs;

for every 0 < r � ry1, where C and s are constants which are independent of r.

Proof. Let y1 2 @
 n fx1g and let � = 1
3
d(x1; y1). By Lemma 3.11, there exists

s > 0 so that

sup
y2B(y1;r)\


M(y; xn) � C
� r
R

�s
sup

z2
\@B(y1;R)

M(z; xn)

whenever 0 < r < R < minfr0; �g and xn 2 B(x1; �). Thus it suÆces to verify that

sup
n

sup
z2
\@B(y1;R)

M(z; xn) <1

for some R as above. By Lemma 3.12, it is enough to show that

sup
n

sup
z2�(y1;

R

A0
;
1

2A
)

M(z; xn) <1

for some R. But observe that

�

�
y1;

R

A0
;
1

2A

�
�

�
x 2 
 : Æ(x) �

R

2AA0

�

which is a compact subset of 
. Choose, for example, R = 1
2
minfr0; �g. Then, letting

K be a connected compact subset of 
 containing fx 2 
 : Æ(x) � R

2AA0
g [ fx0g, we

see that

M(z; xn) � CKM(x0; xn) = CK

for all z 2 K and n 2 N, where CK denotes a Harnack constant for the compact set

K as in (6). The proof is complete. �

We now turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. We begin by showing that whenever � = (xn) and � = (zn)
are two fundamental sequences giving rise to the same Martin boundary function

M� = M�, then limn xn and limn zn exist and are equal. Since �
 is compact, it

suÆces to show that x1 = z1 provided the limits limn xn = x1 and limn zn = z1
exist.

Suppose that x1 6= z1. Then by Lemma 3.13, M� vanishes continuously on

@
 n fx1g and M� vanishes continuously on @
 n fz1g. Thus M := M� = M�

vanishes continuously on the entire boundary @
 of 
. For � 2 (0; 1) let 
� := fx 2


 : M(x) > �g. Then the closure of 
� is a compact subset of 
. Let 
�;0 be the

component of 
� containing x0. Then M is a Q-harmonic function on 
�;0 which is

in N1;Q(�
�;0) and M = � on @
�;0. By the maximum principle (see [Sh2] or [KiSh]),

M is the constant function M = � in 
�;0. This contradicts the fact that M(x0) = 1

and hence it follows that x1 = z1.
By appealing to the above discussion, we see that there exists a well-de�ned surjec-

tive mapping from @cM
 onto @
. The continuity of this map follows directly from

the de�nition of the topology on the Martin boundary @cM
. �
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In general the above map need not be injective. For example, the slit disc in R2

fails to have this property. Each boundary point on the removed radius corresponds

naturally to two distinct Martin boundary points.

Question 1: When is the map de�ned in Theorem 1.1 injective and hence a homeo-

morphism?

Question 10: In the linear setting of usual harmonic functions, Question 1 is closely

related to the validity of so-called boundary Harnack principle; see [Ai], [An1], [An2],

[AS], [JK], and [Wu]. It would be very interesting to know for which domains 
 the

boundary Harnack principle holds for Q-harmonic functions and whether this would

be useful in showing that @cM
 = @
:
Question 2: It is easy to see that the topology on the conformal Martin compacti�-

cation 
 [ @cM
 is metrizable. One possible candidate metric is

(16) dQ(x; y) =

Z



jM(w; x)�M(w; y)j

1 + jM(w; x)�M(w; y)j
d�(w);

and the topology on 
 induced by this metric is compatible with the underlying

topology. Is this metric locally biLipschitz or locally H�older equivalent with the

underlying metric on 
? It would also be interesting to know how this metric is

distorted by quasiconformal maps.

Question 3: In the Euclidean setting and for the classical Martin boundary, Aikawa

[Ai] has shown the equivalence of the Martin boundary and the metric boundary

assuming only the uniformity, which is an interior condition on 
. Is the exterior

condition of Q-fatness on the complement of 
 needed in Theorem 1.1, or can it be

replaced with the milder condition of regularity of the boundary of 
?

Question 30: It is easy to see that the estimate of Lemma 3.11 fails if 
 does not

satisfy the exterior condition of Q-fatness; consider, for example, the domain 
 =

B(0; 1) n f(1
2
; 0); (�1

2
; 0)g � Rn . This domain does not violate the conclusions of

Theorem 1.1. However, if we know that for every point x� 2 @
, each Martin function

M� associated with a fundamental sequence � = (xn)n tending to x
� is unbounded in

every neighborhood of x�, then a modi�ed version of Lemma 3.13 would help us prove

Theorem 1.1. Simply connected proper subdomains of R2 satisfy this condition. Do

all inner uniform domains satisfy this condition?

Our next proposition can be informally stated as follows: the values of a singular

function can decrease by at most an absolute multiplicative constant under the oper-

ation of taking the quasihyperbolic convex hull. While this result plays no role in the

proof of Theorem 1.1, we feel that it is of some independent interest and illustrates

some di�erent conclusions that can be drawn from Lemma 3.12.

Proposition 3.14. Let 
 be a uniform domain whose complement is uniformly Q-
fat. Let g be a singular function on 
 with singularity at w 2 
. For � 2 (0;1],
set

E� := fz 2 
 : g(z) � �g:

Then every quasihyperbolic geodesic 
 connecting two points x; y 2 E� lies entirely in
the set Ec� , where c is a positive constant which is independent of x, y, � and g.

The proof of this proposition needs the following two lemmata.
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Lemma 3.15. Let x; y be two points in 
 so that minfÆ(x); Æ(y)g � r. Then whenever

 is a quasihyperbolic geodesic in 
 connecting x and y, every point z 2 
 has the
property Æ(z) � r

2A0
.

Proof. Suppose there is a point z 2 
 so that Æ(z) < r

2A0
. Without loss of generality,

we can assume that l(
xz) � l(
zy). Then, as 
 is A0-uniform, we see that l(
xz) �

r=2. Therefore, d(x; z) � r=2. However, Æ(z) � Æ(x) � d(z; x). Therefore, we have

Æ(z) � r � r

2
= r=2 � r

2A0
, leading to a contradiction. Therefore, no such point z 2 


exists, and the proof is now complete. �

Lemma 3.16. Let x 2 
 and 
 be a quasihyperbolic geodesic from x to another point
y in 
 so that Æ(y) � Æ(x). Let Qx denote a point on @
 so that Æ(x) = d(Qx; x).
Then if z 2 
 so that l(
xz) � l(
zy), one of the following two conditions hold true
for z:

(1) d(Qx; z) � 3Æ(x), and Æ(z) �
Æ(x)

2A0
,

(2) d(Qx; z) � 3Æ(x), and Æ(z) � 2
3A0

d(z; Qx).

The proof of Lemma 3.16 is an easy consequence of the uniformity of 
 together

with Lemma 3.15, provided we observe in the second case of Lemma 3.16 that l(
xz) �
d(x; z) � 2

3
d(Qx; z). We therefore leave the proof of this result to the reader.

Proof of Proposition 3.14. Let x; y be two points in E� . Let 
 be a quasihyperbolic

geodesic connecting x and y in 
. We consider four cases. In what follows, r1 =

r0=(4A
0)2, where r0 is the bound on radii associated with the uniform Q-fatness of

the complement of 
.

Case 1: Both x and y are at least a distance r1

2A0
from the boundary of 
; that is,

minfÆ(x); Æ(y)g � r1

2A0
. Then, by Lemma 3.15, 
 � fz 2 
: Æ(z) � r1

(2A0)2
g which is a

compact subset of 
. By the Harnack inequality (6), we see that for all points z in 
,

(17) g(z) �
1

C1

�:

Case 2: Æ(x) = minfÆ(x); Æ(y)g < r1

2A0
, and d(x; y) � 3Æ(x).

Then, by the fact that 
 is an A0-uniform curve, l(
) � A0d(x; y) � 3A0Æ(x) <
r0=2, and hence 
 � B(Qx; 4A

0Æ(x)), and by Lemma 3.15, for all z 2 
 we have

Æ(z) � Æ(x)=(2A0). Therefore, applying the second conclusion of Lemma 3.12 with

r = 4(A0)2Æ(x) and x1 = Qx, we see that all z 2 
 satisfy

(18) g(z) �
1

C3

�:

Case 3: Æ(x) = minfÆ(x); Æ(y)g < r1

2A0
, and 3Æ(x) < d(x; y) � 3A0Æ(x).

Now, we can break 
 up into subarcs 
i, i = 1; : : : ; N with N � 6(A0)2, so that
1
2A0

Æ(x) � l(
i) � Æ(x)=A0. Let xi; yi denote the endpoints of 
i. If both Æ(xi) and

Æ(yi) are not smaller than r1

2A0
, then the argument of Case 1 covers the points on 
i.

If on the other hand minfÆ(xi); Æ(yi)g �
r1

2A0
, then as d(xi; yi) � 2minfÆ(xi); Æ(yi)g,

the points in 
i are covered by the argument of Case 2. Thus we see that for every

point z 2 
,

(19) g(z) � (minf1=C1; 1=C3g)
6(A0)2

�:
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Case 4: Æ(x) = minfÆ(x); Æ(y)g < r1

2A0
, and d(x; y) > 3A0Æ(x).

In this case, let z0 denote the midpoint of 
, and consider the ball B(Qx; r1). Let

x0 denote the point on 
 at which 
 �rst exits the ball B(Qx; r1). We consider two

subcases:

Case 4a: z0 62 
xx0. Then for every point z in 
xx0, l(
xz) � l(
zy). Now we are in

the situation of Lemma 3.16. Consider z 2 
xx0, and let r = 2Æ(x) in the �rst case

considered in this lemma, and let r = 3
2
d(Qx; z) in the second case. Then x 2 B(Qx; r)

and z 2 �(Qx; r;
1
2A0

). Now, by Lemma 3.12, we have

(20) g(z) �
1

C3

�:

Case 4b: z0 2 
xx0 or x
0 does not exist. Then, we repeat the argument of Case 4a

for points in 
xz0, to obtain inequality (20) for points in 
xz0.
Together, Cases 4a, 4b, and Case 1 yield inequality (20) for all points z in the

segment 
xz0. We repeat Case 4 for the segment 
z0y by replacing the role of x with

the role of y in the case that Æ(y) � r1

2A0
, and we repeat the argument of Case 1 for

the segment 
z0y otherwise, with x0 playing the role of x.
Together, the above four cases yield the desired result. �

4. The conformal Martin boundary and conformal mappings

It was shown in [HKShT] that if Y1 = (Y1; d1; �1) and Y2 = (Y2; d2; �2) are two

metric measure spaces of locally Q-bounded geometry, then a homeomorphism f :

Y1 ! Y2 is quasiconformal if and only if f 2 N
1;Q

loc
(Y1;Y2) and there exists a constant

K � 1 so that

Lip f(x)Q � K Jf(x)

for �-almost every x 2 Y1. See [HKShT, Theorem 9.8]. Here

Lip f(x) = lim sup
r!0

�
ess sup

d1(x;y)�r

d2(f(x); f(y))

r

�

denotes the maximal stretching of f at x and

Jf(x) = lim sup
r!0

�2(fB(x; r))

�1(B(x; r))

denotes the in�nitesimal volume distortion of f at x. For the de�nition of the metric

space-valued Sobolev space N
1;Q

loc
(Y1;Y2); see [HKShT, Section 3].

Under our standing assumptions on X (see section 2), if 
 � X is a relatively

compact domain, then 
 is of locally Q-bounded geometry. Thus if 
 � X and


0 � Y are relatively compact subdomains of metric measure spaces of locally Q-
bounded geometry, then the results of [HKShT, Section 9] apply to quasiconformal

maps from 
 to 
0. Let f : 
 ! 
0 be such a map. By the discussion in [HKShT,

Section 10], there exists a matrix-valued map df , the transposed Jacobian, on 
 so

that for every Lipschitz function ' on 
0,

D(' Æ f)(x) = df(x)D'(f(x))

for �-a.e. x 2 
.
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The following lemma is an immediate consequence of the discussion in [C, p. 460]

together with [C, Lemma 4.35] which proves that jD'j � Lip' for Lipschitz functions

'. Here we denote by kdf(x)k the operator norm of df(x) as a map from the �ber

F 0
'(x) in the generalized cotangent bundle T �Y over '(x) to the �ber Fx in T

�X over

x.

Lemma 4.1. For �X-a.e. x 2 
, kdf(x)k � C Lip f(x).

De�nition 4.2. We say that a homeomorphism f : 
! 
0 is a conformal mapping
if it is a quasiconformal mapping and for �X-a.e. x 2 
,

(21) kdf(x)kQ � Jf (x):

Note by the above lemma that if f : 
 ! 
0 is quasiconformal, then there exists

K0 � 1 so that kdf(x)kQ � K0 Jf (x) for �X-a.e. x 2 
. Thus f is conformal if

K0 = 1.

Remark 4.3. Observe that the Cheeger derivative structures on X and Y are not

unique. Thus, unlike the de�nition of quasiconformality, the de�nition of conformality

given above depends heavily on the choice of the derivative structures of both X and

Y . Indeed, the identity map f(x) = x from X = Rn to Y = Rn is not conformal if Y
is equipped with the standard Euclidean di�erentiation structure and X is equipped

with a nonstandard Cheeger di�erentiation structure, say, the structure in which

D'(x) = 2r'(x) if the �rst component of the vector x is negative and D'(x) =

r'(x) if the �rst component of x is non-negative. Recall that the coordinate charts

U� in the Cheeger di�erentiation structure need only be measurable sets.

Lemma 4.4. If f : 
 ! 
0 is a conformal map and u : 
 ! R is Q-harmonic on a
domain V � 
, then u0 := u Æ f�1 is Q-harmonic on f(V ) � 
0.

Proof. First, u0 2 N
1;Q

loc
(f(V )) by [HKShT, Theorem 9.10]. Next, let U 0 be a compact

subdomain of f(V ) and '0 2 N
1;Q
0 (U 0). By the Q-harmonicity of u,Z

U

jDu(x)jQ dx �

Z
U

jD(u+ ')(x)jQ dx;

where U = f�1(U 0) and ' = (u0 + '0) Æ f � u. By the absolute continuity of quasi-

conformal mappings (see [HKShT, Section 9]) and by the de�nition of conformality,Z
U 0

jDu0(x0)jQ dx0 �

Z
U 0

jD(u0 + '0)(x0)jQ dx0;

and so u0 is Q-harmonic. �

Corollary 4.5. If f : 
 ! 
0 is a conformal map and g is a (Q-)singular function
on 
, then g Æ f�1 is a singular function on 
0.

The only additional point worth noting for the proof of Corollary 4.5 is the invari-

ance of capacity under conformal maps: if K is a compact subset of 
 and f : 
! 
0

is conformal, then

Cap
Q
(f(K);
0) = Cap

Q
(K;
):

Theorem 1.2 clearly follows directly from Corollary 4.5. Indeed, the image �0 =
(f(xn))n of a fundamental sequence � = (xn)n in 
 is again a fundamental sequence

in 
0.
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We use Theorem 1.2 to give an example of a domain 
 for which the conclusion

of Theorem 1.1 is false: a nontrivial portion of the boundary @
 is collapsed onto a

single point in the conformal Martin boundary @cM
.

Example 4.6. Consider the simply connected domain 
 � C constructed in the

following manner. Let f�n : n 2 Ng be an enumeration of all the rational numbers

between 0 and 2� and let rn = 1� 2�n. For n 2 N , set

Cn := frne
i� : j� � �nj � 2�n�2 mod 2�g [ f�rei�n : rn � r � rn+1g

and let 
 = D n
S1

n=1Cn, where D = fz 2 C : jzj < 1g. See Figure 1.

Figure 1. A \maze-like" domain 


Let f be a conformal map from D onto 
. By Theorem 1.2, f extends as a

homeomorphism between the respective Martin boundaries in a natural manner. Now

the Martin boundary of D is equivalent with the metric boundary S(0; 1) of D . By

the theory of prime ends (see [N]), S(0; 1) is naturally equivalent to the set of prime

ends of D , and f extends as a homeomorphism between the sets of prime ends of D
and 
 in a natural manner. Observe that there is only one prime end corresponding

to the outer boundary S(0; 1) of 
. Hence each point on S(0; 1) � @
 corresponds

to the same Martin kernel function; S(0; 1) collapses to a single point on the Martin

boundary.

Question 4: Example 4.6 raises the question whether, for a domain 
; for which
the conclusion of Theorem 1.1 is false, the part of the boundary @
 that collapses

onto a single point has Q-harmonic measure zero. See [HKM] for the de�nition of

Q-harmonic measure.

Now let f : 
 ! 
0 be a quasiconformal map. We introduce a new variational

kernel, which is a deformation of the classical kernel K0(x; �) = j�jQ by the quasi-

conformal map. For x 2 
 and � 2 Fx (the �ber over x in the Cheeger generalized

cotangent bundle), let

Kf(x; �) = Jf(x)jdf(x)
�1��jQ;

where A� denotes the transpose of the matrix A. As in the undeformed case, we may

now de�ne Kf -harmonic functions to be minimizers of the energyZ
U

Kf (x;Du(x)) dx; U � 
:
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The usual variational argument combined with the change of variables formulas from

[C, Section 4] and [HKShT, Section 10] shows that each Kf -harmonic function g is a
solution to the weak PDE Z




jDgjQ�2Dg �D'
kdfkQ

Jf
= 0

for every Lipschitz function ' with support in 
 n fyg. The existence and uniqueness

of Kf -singular functions follows by the arguments of [HoSh] and [Ho] and we may

de�ne a Kf -Martin boundary @
Kf

M

 by the procedure outlined in section 3. By exactly

the same argument as above, we �nd that f extends to a homeomorphism of @
Kf

M



onto @cM
0.

More generally, starting from any kernel K(x0; �) de�ned on 
0 which satis�es the

structure conditions of [HKM, x5.1], we may de�ne K-harmonic functions and a K-

Martin boundary @K
M

0. Then f extends to a homeomorphism of @

f
#
K

M

 onto @K

M

0,

where

f#K(x; �) = Jf (x)K(f(x); df(x)�1��):

Question 5: In the above setting, when does f extend as a homeomorphism between

the usual conformal Martin boundaries @cM
 and @cM
0? See [Seg] and [SegT] for

examples of planar domains for which such a homeomorphic extension does not exist.

The above question can be partially answered by answering the following question.

Question 6: Given a kernel K satisfying the structure conditions of [HKM, x5.1],

when is @K
M

 homeomorphic to @cM
?
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