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Abstract. We use explicit solutions to a drifted Laplace equation in
warped product model spaces as comparison constructions to show p-
hyperbolicity of a large class of submanifolds for p ≥ 2. The condition
for p-hyperbolicity is expressed in terms of upper support functions for
the radial sectional curvatures of the ambient space and for the radial
convexity of the submanifold. In the process of showing p-hyperbolicity
we also obtain explicit lower bounds on the p-capacity of finite annular
domains of the submanifolds in terms of the drifted 2-capacity of the
corresponding annuli in the respective comparison spaces.

1. Introduction

In [16] the first named author solved the asymptotic Dirichlet problem
at infinity for the p-Laplacian in Cartan–Hadamard manifolds of pinched
negative sectional curvature. As a consequence, such a manifold admits
a wealth of non-constant bounded p-harmonic functions. On the other
hand, there are no non-constant positive p-harmonic functions on a complete
Riemannian manifold with non-negative Ricci curvature; see e.g. [2]. The
purpose of the present paper is to initiate the study of the p-Laplacian and
the existence of p-harmonic functions of various types on submanifolds. In
this paper we concentrate on p-hyperbolicity of submanifolds.

To describe the problem we are dealing with, suppose that S is a Rie-
mannian submanifold of an ambient Riemannian manifold N . We look for
the most general intrinsic geometric condition on N and the most general
extrinsic geometric condition on S which together will assure that S is p-
hyperbolic. Recall that a Riemannian manifold M is called p-hyperbolic,
with 1 < p <∞, if there exists a compact set K ⊂M of positive p-capacity
Capp(K,M) relative to M . Here the p-capacity of K is defined by

Capp(K,M) = inf
u

∫
M
‖∇u‖p dµ,
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where the infimum is taken over all real-valued functions u ∈ C∞0 (M), with
u ≥ 1 in K. In case p = 2, the p-hyperbolicity of M is equivalent both to
the existence of a positive Green’s kernel for the Laplace-Beltrami operator
and to the transience of M , (see the works [20] and [10]). Using the par-
ticular 2-capacity condition alluded to above, the two last named authors
have obtained geometric criteria for 2-hyperbolicity of minimal - or close
to minimal - submanifolds in manifolds with sectional curvatures bounded
from above, (see [23] and [24]).

In the general case of 1 < p < ∞, the p-hyperbolicity of M is known to
be equivalent to the existence of a (positive) Green’s function g = g(·, y)
for the p-Laplace equation, i.e. a certain positive solution (in the sense of
distributions) of

−div
(
‖∇g‖p−2∇g

)
= δy, y ∈M.

A third equivalent criterion for the p-hyperbolicity of M is the existence of
a non-constant positive p-supersolution of the p-Laplace equation; see [12]
and [13]. We refer to [2], [14], and [15] for further studies on p-hyperbolicity
and various Liouville-type results and to [24] for a study of the geometric
conditions which have been previously applied to extend the intrinsic anal-
ysis of hyperbolicity to the extrinsic analysis which is the main concern of
the present paper.

To introduce the main results of the paper requires a number of concepts
and definitions and therefore we refer to Section 4. Here in the introduction
we just single out one consequence of the main result (Theorem 4.1):

Corollary 4.4. Let (Mm, g) denote a complete manifold with intrinsic con-
centric metric balls Br(o) centered at o ∈ M . Suppose that for some p ≥ 2
and for some ρ > 0 we have∫ ∞

ρ

1

Vol(∂Br(o))
1

p−1

dr = ∞,

and suppose that there are constants λ0 > 0 and b < 0 so that

(p− 2)λ0 < (m− 1)
√
−b.

Then (M, g) does not admit a minimal isometric immersion with bounded
second fundamental form ‖α‖ ≤ λ0 into any Cartan–Hadamard manifold
Nn, n ≥ m, with sectional curvatures bounded from above by b.

1.1. Outline of the paper. In Section 2 we describe some of the basic
properties of the p-Laplacian and present the corresponding maximum prin-
ciple, which will be fundamental for the comparison technique applied in
this paper. Section 3 is devoted to set up a so-called comparison constel-
lation, which is essentially molded from curvature restrictions and a model
space construction. In Section 4 we formulate our main result together with
three of its corollaries. They are proved in Sections 7, 8, and 9. As an
application to the main theorem (Theorem 4.1) we study p-hyperbolicity
of some surfaces of revolution in 3-dimensional hyperbolic space in Section
5. A technical tool, the drifted 2-capacity of model spaces is defined and
analyzed in Section 6. Finally, in Section 10 we present an alternative proof
of the main theorem based directly on finite capacity comparison results.
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2. The p-Laplacian

Let M be a non-compact Riemannian manifold, with the Riemannian
metric 〈·, ·〉 and the Riemannian volume form dµ. We say that a vector field
∇u ∈ L1

loc(M) is a distributional gradient of a function u ∈ L1
loc(M) if∫

M
〈∇u, V 〉 dµ = −

∫
M
u div V dµ

for all compactly supported vector fields V ∈ C1
0 (M). Let W 1,p(M), 1 ≤

p <∞, be the Sobolev space of all functions u ∈ Lp(M) whose distributional
gradient ∇u belongs to Lp(M). We equip W 1,p(M) with the norm ‖u‖1,p =
‖u‖p + ‖∇u‖p. The corresponding local space W 1,p

loc (M) is defined in an
obvious manner. The space W 1,p

0 (M) is the closure of C∞0 (M) in W 1,p(M).
Let 1 < p < ∞. A function u ∈ W 1,p

loc (M) is a (weak) solution to the
p-Laplace equation

(2.1) −div
(
‖∇u‖p−2∇u

)
= 0

in M if

(2.2)
∫

M
〈‖∇u‖p−2∇u,∇φ〉 dµ = 0

for all φ ∈ C∞0 (M). If, moreover, ‖∇u‖ ∈ Lp(M), it is equivalent to re-
quire (2.2) for all φ ∈ W 1,p

0 (M). Continuous solutions of (2.1) are called
p-harmonic. Here the continuity assumption makes no restriction since every
solution of (2.1) has a continuous representative by the fundamental work of
Serrin [29]. In fact, p-harmonic functions have locally Hölder-continuous first
order derivatives by regularity results due to Ural’tseva [33] and Lewis [18];
see also DiBenedetto [3], Evans [6], Tolksdorf [30], and Uhlenbeck [32]. Fur-
thermore, if D ⊂M is a precompact open set with C1,α boundary (α ≤ 1),
h ∈ C1,α(∂D), and u is p-harmonic in D with boundary values h, then
u ∈ C1,β(D̄), with β = β(α, p,dimM), by Lieberman [19]. See Remark
10.2 for a discussion why these regularity results, originally proven in the
Euclidean setting, apply to the Riemannian setting as well.

A function u ∈W 1,p
loc (M) is called a p-supersolution in M if∫

M
〈‖∇u‖p−2∇u,∇φ〉 dµ ≥ 0

for all non-negative φ ∈ C∞0 (M). Similarly, a function v ∈ W 1,p
loc (M) is

called a p-subsolution in M if∫
M
〈‖∇v‖p−2∇v,∇φ〉 dµ ≤ 0

for all non-negative φ ∈ C∞0 (M). A fundamental feature of solutions of (2.1)
is the following well-known maximum (or comparison) principle which will
be instrumental for the comparison technique presented below in Sections 4
and 6: If u ∈W 1,p(M) is a p-supersolution, v ∈W 1,p(M) is a p-subsolution,
and max(v − u, 0) ∈ W 1,p

0 (M), then u ≥ v a.e. in M . In particular, if
D ⊂M is a precompact open set, u ∈ C(D̄) is a p-supersolution, v ∈ C(D̄)
is a p-subsolution, and u ≥ v in ∂D, then u ≥ v in D. We refer to [11, 3.18]
for a short proof of the comparison principle.
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3. Comparison Constellations

We assume throughout the paper that Sm is a non-compact connected
complete Riemannian submanifold of a complete Riemannian manifold Nn.
Furthermore, we assume that Nn possesses at least one pole. Recall that
a pole is a point o such that the exponential map expo : ToN

n → Nn is a
diffeomorphism. For example, a Cartan–Hadamard manifold has everywhere
non-positive sectional curvatures and since it is also by definition simply
connected, every point is a pole. The rôle of the pole o is precisely to serve
as the origin of a smooth distance function r from o: For every x ∈ Nn \{o}
we define r(x) = distN (o, x), and this distance is realized by the length of
a unique geodesic from o to x, which is the radial geodesic from o. We also
denote by r the restriction r|S : S → R+ ∪{0}. This restriction is called the
extrinsic distance function from o in Sm. The gradients of r in N and S are
denoted by ∇Nr and ∇Sr, respectively. Let us remark that ∇Sr(x) is just
the tangential component in S of ∇Nr(x), for all x ∈ S. Then we have the
following basic relation:

∇Nr = ∇Sr + (∇Nr)⊥,

where (∇Nr)⊥(x) is perpendicular to TxS for all x ∈ S.

3.1. Curvature restrictions. The sectional curvatures of N along the ra-
dial geodesics from o are called the o-radial sectional curvatures of N .

Definition 3.1. Let o be a point in a Riemannian manifold M and let x ∈
M \{o}. The sectional curvature KM (σx) of the two-plane σx ∈ TxM is then
called an o-radial sectional curvature of M at x if σx contains the tangent
vector to a minimal geodesic from o to x. We denote these curvatures by
Ko,M (σx).

The o-radial sectional curvatures ofN control the second order behavior of
r(x) in N via the classical Jacobi field index theory. Indeed, a bound on the
o-radial sectional curvatures gives a bound on the Hessian of radial functions,
HessN (f(r)), as proved by Greene and Wu [9, Theorem A]; see Theorem
3.15 below. The submanifold S and the restricted radial functions f(r)|S
inherit this second order bound to the S-intrinsic Hessian, HessS f(r), and
therefore also to the Laplacian ∆Sf(r) of such modified distance functions.

The mean curvatures HS of S also appear in the Laplacian ∆Sf(r) via
its radially weighted component, which we define as follows:

Definition 3.2. The o-radial mean convexity C(x) of S in N , is defined
in terms of the inner product of HS with the N -gradient of the distance
function r(x) as follows:

C(x) = −〈∇Nr(x),HS(x)〉, x ∈ S,
where HS(x) denotes the mean curvature vector of S in N , i.e. the mean
trace of the second fundamental form αx. With respect to an orthonormal
basis {X1, ..., Xm} of TxS at x ∈ S we have

HS(x) =
1
m

m∑
i=1

αx (Xi, Xi) .
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Notice that HS takes values in the normal bundle of S. We will assume,
that C(x) is bounded from above by a function h(r(x)) which only depends
on the distance r from o :

C(x) ≤ h(r(x)), x ∈ S.
Moreover, for p > 2 we shall also need a particular inequality for the

second fundamental form of S in N in the direction of the gradient ∇Nr(x).
This gives rise to the following definition:

Definition 3.3. The o-radial component B(x) of the second fundamental
form of S in N , is defined in terms of the following inner product:

B(x) = −〈∇Nr(x), αx(Ur, Ur)〉,
where

Ur = ∇S(r(x))/‖∇Sr(x)‖ ∈ TxS ⊂ TxN

is the unit tangent vector to S in the direction of ∇Sr(x) (resp. tacitly
assumed to be 0 in case ∇Sr(x) = 0).

We assume that B(x) is bounded from above by a function λ(r(x)) which
only depends on the distance r from o :

B(x) ≤ λ(r(x)).

Finally, we also impose an upper control on the ’radiality’ of the subman-
ifold, i.e. a local measure of how much the submanifold is extending away
from the pole o:

Definition 3.4. The o-radial tangency T (x) of S in N is defined as follows:

T (x) = ‖∇Sr(x)‖
for all x ∈ S.

We assume that this S-gradient of the restricted distance function r|S has
an upper radial support function g(r) ≤ 1:

T (x) ≤ g(r(x)).

Definition 3.5. Given a connected and complete m-dimensional submani-
fold Sm in a complete Riemannian manifold Nn with a pole o, we denote the
extrinsic metric balls of (sufficiently large) radius R and center o by DR(o).
They are defined as any connected component of the intersection

BR(o) ∩ S = {x ∈ S : r(x) < R},
where BR(o) denotes the open geodesic ball of radius R centered at the pole
o in Nn. Using these extrinsic balls we define the o-centered extrinsic annuli

Aρ,R(o) = DR(o) \ D̄ρ(o)

in Sm for ρ < R, where DR(o) is the component of BR(o) ∩ S containing
Dρ(o).

The upper bounding functions h(r), g(r), and λ(r) together with a suit-
able control on the o-radial sectional curvatures of the ambient space will
eventually control the p-Laplacian of restricted radial functions on S. In
particular, we consider potential functions stemming from capacity calcu-
lations of radially symmetric comparison spaces and transplant them to S
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via the distance function r in N . Such transplantations are then compared
with the ’correct’ potentials on extrinsic metric balls of S. The maximum
principle for the p-Laplacian ∆S

p then finally gives the comparison result for
capacities in S. Concerning the general strategy and types of results (in the
case of p = 2) we refer to [21], [26], and [22].

3.2. Warped products and model spaces. Warped products are gen-
eralized manifolds of revolution, see e.g. [25]. Let (Bk, gB) and (F l, gF )
denote two Riemannian manifolds and let w : B → R+ be a positive real
function on B. We assume throughout that w is at least C2. We consider
the product manifold Mk+l = B × F and denote the projections onto the
factors by π : M → B and σ : M → F , respectively. The metric g on M is
then defined by the following w-modified (warped) product metric

g = π∗(gB) + (w ◦ π)2σ∗(gF ).

Definition 3.6. The Riemannian manifold (M, g) = (Bk×F l, g) is called a
warped product with warping function w, base manifold B and fiber F . We
write as follows: Mm

w = Bk ×w F
l.

Definition 3.7 (See [10], [9]). A w−model Mm
w is a smooth warped product

with base B1 = [0,Λ[⊂ R (where 0 < Λ ≤ ∞), fiber Fm−1 = Sm−1
1 (i.e. the

unit (m−1)-sphere with standard metric), and warping function w : [0,Λ[→
R+ ∪ {0}, with w(0) = 0, w′(0) = 1, and w(r) > 0 for all r > 0. The point
ow = π−1(0), where π denotes the projection onto B1, is called the center
point of the model space. If Λ = ∞, then ow is a pole of Mm

w .

Proposition 3.8. The simply connected space forms Km(b) of constant cur-
vature b are w−models with warping functions

w(r) = Qb(r) =


1√
b
sin(

√
b r) if b > 0

r if b = 0
1√
−b

sinh(
√
−b r) if b < 0.

Note that for b > 0 the function Qb(r) admits a smooth extension to r =
π/
√
b.

Proposition 3.9 (See e.g. [25]). Let Mm
w = B1 ×w Sm−1

1 be a w−model.
Let r0 and r denote two points in B1. Then the geodesic distance from every
x ∈ π−1(r) to π−1(r0) is |r − r0|.

Proposition 3.10 (See [25] p. 206). Let Mm
w be a w−model with warping

function w(r) and center ow. The distance sphere of radius r and center ow

in Mm
w is the fiber π−1(r). This distance sphere has the following constant

mean curvature vector in Mm
w

Hπ−1(r) = −ηw(r)∇Mπ = −ηw(r)∇Mr,

where the mean curvature function ηw(r) is defined by

ηw(r) =
w′(r)
w(r)

=
d

dr
log(w(r)).
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In particular, we have for the constant curvature space forms Km(b):

ηQb
(r) =


√
b cot(

√
b r) if b > 0

1/r if b = 0√
−b coth(

√
−b r) if b < 0 .

The radial curvature in model spaces is given by the following result

Proposition 3.11 (See [9] and [10]). Let Mm
w be a w−model with center

point ow. Then the ow-radial sectional curvatures of Mm
w at every x ∈ π−1(r)

(for r > 0) are all identical and determined by

Kow,Mw(σx) = −w
′′(r)
w(r)

.

3.3. Comparison constellation. We now collect the previous ingredients
and formulate the general framework for our p-hyperbolicity comparison
result:

Definition 3.12. Let Nn denote a Riemannian manifold with a pole o and
distance function r = r(x) = distN (o, x). Let Sm denote a connected com-
plete submanifold in Nn and assume that there is an extrinsic ball Dρ(o)
which is precompact with smooth boundary ∂Dρ(o) in Sm. Let Mm

w de-
note a w-model with warping function w : π(Mm

w ) → R+ and center ow;
see Definition 3.7. Then the triple {Nn, Sm,Mm

w } is called a comparison
constellation on the interval [0, R] if the o-radial sectional curvatures of N
are bounded from above by the ow-radial sectional curvatures of Mm

w :

(3.1) Ko,N (σx) ≤ −w
′′(r)
w(r)

for all x with r = r(x) ∈ [0, R] and, moreover, the radial tangency T and the
radial convexity functions B and C of the submanifold Sm are all bounded
from above by smooth radial functions g(r), λ(r), and h(r), respectively:

(3.2)

T (x) ≤ g(r(x)),

B(x) ≤ λ(r(x)), and

C(x) ≤ h(r(x)) for all x ∈ Sm with r(x) ∈ [0, R].

Remark 3.13. We want to point out that the assumption on the smooth-
ness of ∂Dρ(o) makes no restriction. Indeed, the distance function r is
smooth in Nn \ {o} since Nn is assumed to possess a pole o ∈ Nn. Hence
the restriction r|S is smooth in S and consequently the radii ρ that pro-
duce smooth boundaries ∂Dρ(o) are dense in R by Sard’s theorem and the
Regular Level Set Theorem.

Remark 3.14. The definition of comparison constellation above extends a
previous definition considered in [24]. In that paper, the triple {Nn, Sm,Mm

w }
is called a comparison constellation if inequality (3.1) holds and if in addi-
tion only the following condition holds in replacement of inequalities (3.2)
for some bounding radial function h(r):

C(x) ≤ h(r(x)) ≤ w′(r(x))
w(r(x))

for all x ∈ Sm.
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It is proved in [24] that under these conditions Sm is 2-hyperbolic if∫ ∞

ρ

Gm(r)
wm−1(r)

dr <∞,

where

G(r) = exp(
∫ r

ρ
h(t)dt).

3.4. Hessian and Laplacian comparison analysis. Concerning the sec-
ond order analysis of the distance function r we need firstly and foremost
the Hessian comparison theorem for manifolds with a pole:

Theorem 3.15 (See [9], Theorem A). Let N = Nn be a manifold with a
pole o, let M = Mm

w denote a w−model with center ow, and m ≤ n. Suppose
that every o-radial sectional curvature at x ∈ N \ {o} is bounded from above
by the ow-radial sectional curvatures in Mm

w as follows:

Ko,N (σx) ≤ −w
′′(r)
w(r)

for every radial two-plane σx ∈ TxN at distance r = r(x) = distN (o, x) from
o in N . Then the Hessian of the distance function in N satisfies

(3.3)

HessN (r(x))(X,X) ≥ HessM (r(y))(Y, Y )

= ηw(r)
(
1− 〈∇Mr(y), Y 〉2M

)
= ηw(r)

(
1− 〈∇Nr(x), X〉2N

)
for every unit vector X in TxN and for every unit vector Y in TyM with
r(y) = r(x) = r and 〈∇Mr(y), Y 〉M = 〈∇Nr(x), X〉N .

Remark 3.16. In [9, Theorem A, p. 19], the Hessian of rM is less or equal to
the Hessian of rN provided that the radial curvatures of N are bounded from
above by the radial curvatures of M and provided that dimM ≥ dimN .
This latter dimension condition is not satisfied in our setting. However,
since (Mm, g) is a w−model space it has an n−dimensional w−model space
companion with the same radial curvatures and the same Hessian of radial
functions as (Mm, g). In effect, therefore, applying [9, Theorem A, p. 19] to
the high-dimensional comparison space gives the low-dimensional compari-
son inequality as stated.

If µ : N → R denotes a smooth function on the ambient space N , then
the restriction µ̃ = µ|S is a smooth function on the submanifold S and the
respective Hessian tensors, HessN (µ) and HessS(µ̃), are related as follows:

Proposition 3.17 ([17]).

(3.4) HessS(µ̃)(X,Y ) = HessN (µ)(X,Y ) + 〈∇N (µ), αx(X,Y )〉

for all tangent vectors X, Y ∈ TxS
m ⊂ TxN

n, where αx is the second fun-
damental form of S at x in N .

If we compose µ with a smooth function f : R → R we then get:
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Corollary 3.18 ([17]).

HessS(f ◦ µ̃)(X,X) = f ′′(µ)〈∇N (µ), X 〉2

+f ′(µ)
(
HessN (µ)(X,X) + 〈∇N (µ), αx(X,X)〉

)
for all X ∈ TxS

m.

Combining the estimate (3.3) with Corollary 3.18 and tracing the resulting
Hessian comparison statement in an orthonormal basis of TxS

m, we obtain
the following instrumental inequality for the Laplacian of (extrinsic) radial
functions restricted to the submanifold S:

Proposition 3.19. Suppose that the assumptions of Theorem 3.15 are sat-
isfied. Then we have for every smooth real-valued function f ◦ r with f ′ ≥ 0
the following inequality for the standard Laplacian:

∆S(f ◦ r) ≥
(
f ′′(r)− f ′(r)ηw(r)

)
‖∇Sr‖2 +mf ′(r)

(
ηw(r) + 〈∇Nr,HS〉

)
,

where HS denoted the mean curvature vector of S in N .

4. Main results

Applying the notion of a comparison constellation as defined in the previ-
ous section, we now formulate our main p-hyperbolicity result. The proofs
are developed through the following sections.

Theorem 4.1. Consider a comparison constellation {Nn, Sm,Mm
w } on the

interval [ 0,∞[ . Assume further that the functions h(r) and λ(r) are bal-
anced with respect to the warping function w(r) by the following inequality:

(4.1) M(r) := (m+ p− 2) ηw(r)−mh(r)− (p− 2)λ(r) ≥ 0.

Let Λ(r) denote the function

Λ(r) = w(r) exp
(
−
∫ r

ρ

M(t)
(p− 1)g2(t)

dt

)
.

Suppose finally that p ≥ 2 and that

(4.2)
∫ ∞

ρ
Λ(t) dt <∞.

Then Sm is p-hyperbolic.

We observe the following corollaries; the first two will be proved in Section
9.

Corollary 4.2. Suppose (in Theorem 4.1) that we can choose w(r) =
Qb(r) = sinh(

√
−b r)/

√
−b for some b < 0, i.e. we apply the negatively

curved space form Km(b) to play the role of a model space in the comparison
constellation. Suppose that there exist constants λ0 and h0 such that

B(x) ≤ λ0 and

C(x) ≤ h0 for all x ∈ Sm.

Suppose further that for some p̃ ≥ 2 we have

(4.3) mh0 + (p̃− 2)λ0 < (m− 1)
√
−b.

Then Sm is p-hyperbolic for all p in the range 2 ≤ p ≤ p̃.
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Corollary 4.3. Consider a purely intrinsic setting and comparison constel-
lation: Sn = Nn = Mn

w. Then Sn is p-hyperbolic if and only if∫ ∞

ρ

1

w(t)
n−1
p−1

dr <∞.

This observation is originally due to M. Troyanov, see [31, Corollary 5.2].
We want to point out that the result holds for values 1 < p < 2, too.

Corollary 4.4. Let (Mm, g) denote a complete manifold with intrinsic con-
centric metric balls Br(o) centered at o ∈ M . Suppose that for some p ≥ 2
and for some ρ > 0 we have

(4.4)
∫ ∞

ρ

1

Vol(∂Br(o))
1

p−1

dr = ∞,

and suppose that there are constants λ0 > 0 and b < 0 so that

(4.5) (p− 2)λ0 < (m− 1)
√
−b.

Then (M, g) does not admit a minimal isometric immersion with bounded
second fundamental form ‖α‖ ≤ λ0 into any Cartan–Hadamard manifold
Nn, n ≥ m, with sectional curvatures bounded from above by b.

Proof. Condition (4.4) implies that the manifold (Mm, g) is p-parabolic
according to [31, Corollary 5.4], whereas the condition (4.5) implies p-
hyperbolicity of (Mm, g) according to Corollary 4.2 of the present work
- upon observing that C(x) ≡ 0 by the minimality assumption and that
‖αx‖ ≤ λ0 implies B(x) ≤ λ0 . �

5. p-Hyperbolic surfaces of revolution in K3(−1)

We consider a specific family of surfaces of revolution in 3-dimensional
hyperbolic space and show the p-hyperbolicity of these surfaces - first as an
application of Theorem 4.1 (for p ≥ 2) and then by applying Corollary 4.3
(for all 1 < p <∞). We model the ambient hyperbolic space on R2 ×R+ =
{(x, y, z) ∈ R3 : z > 0} with the conformal factor 1/z2 and consider the
curves:

(5.1) γk(s) =
(
x(s), 0, z(s)

)
=
(
k sin

( s
k

)
, 0, k cos

( s
k

)
+ 1− k

)
,

where k is a (family)-parameter in the range k ∈]0,∞[. We also need that
s ∈ [0, k arccos((k − 1)/k)[ for k ≥ 1/2 to guarantee z(s) > 0 and that
s ∈ [0, kπ] for 0 < k < 1/2. The curve γk(s) is a segment of the circle
of (Euclidean) radius k in the quarter-plane x ≥ 0, y = 0, z > 0 which
goes through the point (0, 0, 1), where it hits the z-axis orthogonally. The
circle is unit length parameterized with respect to the Euclidean metric in
the quarter-plane. Following the setting and calculations of [27, Appendix
p. 2759] and [4] we rotate γk(s) around the z-axis and obtain a complete
surface of revolution S2

k in K3(−1). We can find more information about
these surfaces in [5, pp. 177-184].
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Proposition 5.1. For each k ∈]0,∞[ the surface S2
k is totally umbilical with

principal curvatures

(5.2) κ1(s) = κ2(s) =
k − 1
k

.

In particular, S2
k is of constant sectional curvature

(5.3) KS = −1 +
(k − 1)2

k2
.

Proof. Let us denote S = S2
k and N = K3(−1). According to [27, Appendix

p. 2759] the principal curvatures of S are for any general generating curve(
x(s), 0, z(s)

)
:

κ1(s) = z(s)α′(s) + cos(α(s))

κ2(s) = cos(α(s)) +
(
z(s)
x(s)

)
sin(α(s)),

where α(s) is the angle that the curve makes with the x-axis. When in-
serting our specific choices for x(s) and z(s) the result in equation (5.2)
follows easily. Sectional curvature on S can be calculated by using the
Gauss formula (see e.g. [5, Theorem 2.5, p. 130]). First we observe that
|αx(X,X)| ≡ (k−1)/k for all unit vectors X ∈ TS since both principal cur-
vatures are equal to (k − 1)/k at every point in S. Furthermore, all vectors
in TxS, x ∈ S, are eigenvectors (principal directions) of the second funda-
mental form. Hence αx(X1, X2) = 0 whenever X1 and X2 are orthogonal
and thus, if moreover they are unit vectors

KS(X1, X2) = KN (X1, X2) + 〈αx(X1, X1), αx(X2, X2)〉 − |αx(X1, X2)|

= −1 +
(k − 1)2

k2
.

�

Proposition 5.2. The surface S2
k is p-hyperbolic for every 1 < p < ∞

whenever 1/2 < k < ∞. Furthermore, S2
1/2 is p-hyperbolic if and only if

1 < p < 2 and S2
k is p-parabolic for every p > 1 if 0 < k < 1/2.

Although the above statement follows from Proposition 5.1 and from well-
known results on p-hyperbolicity of spaces of constant curvature, (see [31],
and [10]), we will give below two proofs of the result to illustrate the use of
Theorem 4.1 (for p ≥ 2) and Corollary 4.3 (for all 1 < p <∞).

Indeed, we recognize S2
1 as the totally geodesic surface which goes through

the point (0, 0, 1) orthogonally to the z-axis. The surface S2
1 is isometric to

the hyperbolic plane K2(−1) and is therefore p-hyperbolic for every 1 < p <
∞. Similarly, S2

k is isometric to the simply connected space form Km(b) of
constant curvature b = −1 +

(
(k− 1)/k

)2. Hence S2
k is of constant negative

curvature if 1/2 < k <∞, and therefore p-hyperbolic for every 1 < p <∞.
On the other hand, S2

1/2 is the horosphere at (0, 0, 0) passing through the
point (0, 0, 1). The surface S2

1/2 is totally umbilical with constant mean
curvature 1 and it is well-known to be isometric to the flat Euclidean two-
plane. Thus S2

1/2 is p-hyperbolic if and only if 1 < p < 2. At the other end,
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when k tends to ∞ we recognize another horosphere S2
∞ as the plane z = 1

in K3(−1). Similarly, S2
∞ is totally umbilical with constant mean curvature

1 and isometric to the flat Euclidean two-plane. Hence S2
∞ is p-hyperbolic

if and only if 1 < p < 2. Finally, for 0 < k < 1/2, the surface S2
k is compact

and therefore p-parabolic for every p > 1.

Proof of Proposition 5.2 using Theorem 4.1: Case p ≥ 2, k > 1/2. We will
use o = (0, 0, 1) as the pole of N = Km(b). Since the principal curvatures
are the same and the surface S = S2

k is of codimension 1, we have

(5.4) HS(x) = αx(X,X) =
k − 1
k

ν

for all unit vectorsX ∈ TxS, where ν ∈ (TxS)⊥ is the unit vector normal to S
pointing towards the z-axis. In particular, (5.4) holds for the unit vector Ur.
It follows that C(x) = B(x) and we may choose h(r(x)) = λ(r(x)) = C(x).
Next we define β(r) by setting β(r(x)) to be the angle between ∇Nr(x)
and ∇Sr(x) (i.e. the angle between ∇Nr(x) and the surface S). Then β(r)
increases from 0 to β(∞) = | arcsin((k − 1)/k)|. Now

(5.5)
h
(
r(x)

)
= λ

(
r(x)

)
= −|HS(x)| cos(β(r(x)) + π/2)

=
|k − 1|
k

sinβ(r(x))

which increases from 0 to (k − 1)2/k2. Similarly,

(5.6) T (x) = cosβ(r(x))

and hence g(r(x)) = T (x) decreases from 1 to cosβ(∞) =
√

1− (k − 1)2/k2.
Furthermore, we may choose K2(−1) as the w-model M2

w in the comparison
constellation. The balance condition (4.1) holds since

(5.7)

M(r) = (m+ p− 2)ηw(r)−mh(r)− (p− 2)λ(r)

= p

(
coth r − |k − 1|

k
sinβ(r)

)
≥ p

(
coth r − (k − 1)2

k2

)
> 0.

Fix ε > 0 to be specified later and choose a sufficiently large (inner) radius
ρ such that g2(r) ≤ 1− (k − 1)2/k2 + ε for all r ≥ ρ. Then

Λ(r) = (sinh r) exp
(
−
∫ r

ρ

M(t)
(p− 1)g2(t)

dt

)
≤ (sinh r) exp

(
−
∫ r

ρ

p
(
coth t− (k − 1)2/k2

)
(p− 1)(1− (k − 1)2/k2 + ε)

dt

)
≤ c(ρ) exp

(
r
(
1− C + C(k − 1)2/k2

))
,

where c(ρ) is a constant depending only on ρ and

C =
p

(p− 1)(1− (k − 1)2/k2 + ε)
.

If we choose
ε <

2k − 1
(p− 1)k2

,
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1− C + C(k − 1)2/k2 < 0 and consequently the integral∫ ∞

ρ
Λ(t) dt

is finite. Hence S2
k is p-hyperbolic for every 2 ≤ p <∞ if k > 1/2. �

Proof of Proposition 5.2 using Corollary 4.3. Since the surfaces S2
k are mod-

els, Corollary 4.3 gives the precise criteria for p-hyperbolicity. Thus it suffices
to study whether the integrals

Ik(p) :=
∫ ∞

c

dt

Ak(t)1/(p−1)

are finite. We show that Ik(p) <∞ for every 1 < p <∞ and 1/2 < k <∞
and that I1/2(p) <∞ if and only if 1 < p < 2. Here c is a positive constant
which will change its actual value in what follows and Ak(t) is the intrinsic
(i.e. hyperbolic) length of the circle on S2

k of intrinsic radius t centered at
(0, 0, 1). This circle is the intersection of the surface S2

k with an appropriate
plane z = constant. Let us denote by c(s) the intersection circle of S2

k and
the plane z = z(s). The Euclidean radius of c(s) is x(s) and hence the
intrinsic length of c(s) is

L
(
δ(s)

)
:= 2πx(s)/z(s).

Denote by δ(s) the intrinsic distance (i.e. the intrinsic radius) of c(s) from
the point (0, 0, 1). Thus

δ(s) =
∫ s

0
1/z(t) dt

and hence

Ik(p) =
∫ ∞

c

d
(
δ(s)

)
L
(
δ(s)

)1/(p−1)
.

After change of variables and forgetting irrelevant multiplicative factors we
obtain an integral ∫ K(k)

c

(
z(s)2−p

x(s)

)1/(p−1)

ds,

where K(k) = k arccos
(

k−1
k

)
is the value for the parameter s such that

z(K(k)) = 0. Performing another change of variables

z(s) = kz, x(s) = k
√

1− (z + 1− 1/k)2, ds =
−k dz√

1− (z + 1− 1/k)2

and again forgetting irrelevant multiplicative factors we get∫ c

0

(√
1− (z + 1− 1/k)2

) p
1−p

z
2−p
p−1 dz.

Hence I1/2(p) < ∞ if and only if 1 < p < 2 whereas Ik(p) < ∞ for every
1 < p <∞ and 1/2 < k <∞. �

Remark 5.3. In this remark we discuss how Theorem 4.1 applies to the
study of p-hyperbolicity of a horosphere in a Cartan–Hadamard manifold
of negative curvature. Let us first consider the case N = Km+1(−1), with
m ≥ 3. Exactly as in the case m = 2, all horospheres are of constant mean
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curvature 1. Of course, it is well-known that horospheres are isometric to
Rm and hence p-hyperbolic if and only if 1 < p < m, but we want to deduce
the p-hyperbolicity of a horosphere for 2 ≤ p < m from Theorem 4.1. It
is convenient to use the unit ball model for Km+1(−1) equipped with the
Riemannian metric

(5.8) ds2 =
4|dz|2

(1 + |x|2)2
,

and choose the origin as a pole o. Let S be the horosphere at −em+1 =
(0, 0, . . . , 0,−1) ∈ ∂Bm+1 passing through the origin. Thus S is the intersec-
tion of the unit ball Bm+1 and the m-dimensional sphere Sm(−em+1/2, 1/2)
of (Euclidean) radius 1/2 centered at −em+1/2. The hyperbolic distance
between a point x ∈ Km+1(−1) and the pole o is given by the formula

r(x) = log
1 + |x|
1− |x|

.

As in (5.5) and (5.6), we have

h
(
r(x)

)
= λ

(
r(x)

)
= sinβ

(
r(x)

)
and

g
(
r(x)

)
= cosβ

(
r(x)

)
,

where β
(
r(x)

)
is the angle between ∇Nr(x) and ∇Sr(x). In order to apply

Theorem 4.1 we need a sharp estimate, or rather a formula, for β(r). By
elementary (Euclidean) trigonometry, it is easy to see that β

(
r(x)

)
= αx/2,

where αx is the angle at −em+1/2 between (Euclidean) line segments from
−em+1/2 to o and to x, respectively. Note that the conformal change of
the metric (5.8) keeps angles invariant. Furthermore, sinβ

(
r(x)

)
= |x|, and

therefore
sinβ(r) =

er − 1
er + 1

.

Thus
M(t)

(p− 1)g2(t)
=

(m+ p− 2)
(
coth t− sinβ(t)

)
2(p− 1)

(
1− sin2 β(t)

)
=

(m+ p− 2)
2(p− 1)

(
1 +O(e−t)

)
as t→∞, and consequently

Λ(r) ≤ c(ρ)(sinh r) exp
(
−m+ p− 2

2(p− 1)
(
r +O(e−r)

))
as r →∞. If p < m, we have

1− m+ p− 2
2(p− 1)

< 0,

and therefore ∫ ∞

ρ
Λ(t) dt <∞

showing the p-hyperbolicity of S.
It turns out that Theorem 4.1 can not be applied to studying p-hyperbolicity

of horospheres on a general Cartan–Hadamard manifold since the balance
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condition (4.1) need not be valid. For example, the complex hyperbolic
space CH2 equipped with a (Riemannian) metric of constant holomorphic
sectional curvature -4 is a Cartan–Hadamard manifold of pinched (Riemann-
ian) sectional curvature −4 ≤ K ≤ −1. Furthermore, for every x ∈ CH2

and every K ∈ [−4,−1] there exists a 2-plane P ⊂ TxCH2 such that the
sectional curvature of P at x takes the value K. Thus in order to apply
Theorem 4.1 the best possible model would be K3(−1). On the other hand,
the principal curvatures of a horosphere S in CH2 are either 1 or 2 (with
multiplicities 2 and 1, respectively), and S has constant mean curvature 4/3.
Since, moreover,

−〈∇Nr(x),HS(x)〉 → 4
3

as r(x) →∞, we must have

lim inf
r→∞

h(r) ≥ 4
3

and lim inf
r→∞

λ(r) ≥ 1,

and thus the balance condition (4.1) does not hold for large r. We refer to [1]
and [8] for the curvature results above. It is worth pointing out that every
horosphere in CH2 is isometric to the first Heisenberg group equipped with
a left-invariant Riemannian metric (see e.g. [8]) and hence is p-hyperbolic
if and only if 1 < p < 4 by [13].

6. Drifted 2-capacity of model spaces

Definition 6.1. Let (M, g) denote a Riemannian manifold with Laplace
operator ∆M , and let V denote a continuous vector field on M . The drifted
Brownian motion on M with the drift vector field V is then generated by
the modified Laplacian L

L f = ∆Mf + 〈∇Mf, V 〉

for every smooth function f on M .

We consider, in particular, the drift vector field

V = V(r)∇Mr

with

V(r) =
M(r)

(p− 1)g2(r)
−mηw(r)

on model spaces M = Mm
w , so that the modified Laplacian then reads as

Lψ(x) = ∆Mψ(x) + ψ′(r(x))V(r(x))

for smooth functions ψ on Mm
w . For purely radial functions ψ(r) we get

Lemma 6.2. Let ψ = ψ(r) denote a function on the w-model space M =
Mm

w which only depends on the radial distance r to the center ow. Then

Lψ(r) = ψ′′(r) + ψ′(r)
(

M(r)
(p− 1) g2(r)

− ηw(r)
)
.
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The Dirichlet problem associated to L defined on so-called extrinsic annuli
is defined as follows:

First, the annular domains in the model space are denoted by

Aw
ρ,R = {x ∈Mn

w : π(x) ∈ [ρ,R]} = π−1([ρ,R]),

and the corresponding boundaries are denoted by ∂Dw
ρ = π−1(ρ) and ∂Dw

R =
π−1(R), respectively. We consider the unique radial function ψρ,R(r) which
solves the one-dimensional Laplace-Dirichlet problem on the model space
annulus Aw

ρ,R:

(6.1)


Lψ = 0 on Aw

ρ,R

ψ = 0 on ∂Dw
ρ

ψ = 1 on ∂Dw
R.

The explicit solution to the Dirichlet problem (6.1) is given in the follow-
ing Proposition, with a focus towards the corresponding expression for the
drifted annular capacity in the model space; see [24], [23], and Section 10
below.

Proposition 6.3. The solution to the Dirichlet problem (6.1) only depends
on r and is given explicitly - via the function Λ(r) introduced in Theorem
4.1, by:

(6.2) ψρ,R(r) =

∫ r
ρ Λ(t) dt∫ R
ρ Λ(t) dt

.

The corresponding ’drifted’ 2-capacity is

(6.3)

CapL(Aw
ρ,R) =

∫
∂Dw

ρ

〈∇Mψρ,R, ν〉 dA

= Vol(∂Dw
ρ )Λ(ρ)

(∫ R

ρ
Λ(t) dt

)−1

.

7. p-Laplacian comparison

Let us consider comparison constellations {Nn, Sm,Mm
w } on intervals

[0, R] for R > 0. Since the o-radial mean convexity of S has an upper
bound

C(x) = −〈∇Nr(x),HS(x)〉 ≤ h(r(x)),

we obtain the following estimate using Proposition 3.19

(7.1) ∆S(f ◦ r) ≥
(
f ′′(r)− f ′(r)ηw(r)

)
‖∇Sr‖2 +mf ′(r) (ηw(r)− h(r)) .

In what follows we use shorthand

(7.2) F (x) = f ′(r(x))‖∇Sr(x)‖
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for all x ∈ S to simplify the notation. To get estimates for the p-Laplacian
of f ◦ r we first compute

∆S
p f(r(x)) = divS

(
‖∇Sf(r(x))‖p−2∇Sf(r(x))

)
= ‖∇Sf(r(x))‖p−2 ∆Sf(r(x)) +

〈
∇S‖∇Sf(r(x))‖p−2,∇Sf(r(x))

〉
= F p−2(x)∆Sf(r(x)) +

〈
∇SF p−2(x), f ′(r(x))∇Sr(x)

〉
= F p−2(x)∆Sf(r(x))

+
〈
(p− 2)F p−3(x)

(
f ′′(r(x))‖∇Sr(x)‖∇Sr(x) + f ′(r(x))∇S‖∇Sr(x)‖

)
,

f ′(r(x))∇Sr(x)
〉

= F p−2(x)
(
(p− 2)

(
f ′′(r(x))‖∇Sr(x)‖2 + f ′(r(x))

〈
∇Sr(x),∇S‖∇Sr(x)‖

〉
‖∇Sr(x)‖

)
+ ∆Sf(r(x))

)
.

This partial ’isolation’ of the factor (p− 2) is the reason behind the general
assumption p ≥ 2 in this work. The factor on (p − 2) is controlled via the
following observation, which introduces the bound λ(r) into this setting:

Lemma 7.1. Let {Nn, Sm,Mm
w } be a comparison constellation on [0, R] for

R > 0. Suppose that the o-radial component of the second fundamental form
of S (see Definition 3.3) has an upper bound

B(x) ≤ λ(r(x)).

Then

(7.3)

〈
∇Sr(x),∇S‖∇Sr(x)‖

〉
‖∇Sr(x)‖

= HessS(r(x)) (Ur, Ur)

= HessN (r(x)) (Ur, Ur) +
〈
∇Nr(x), αx (Ur, Ur)

〉
≥ ηw(r(x))

(
1− ‖∇Sr(x)‖2

)
− λ(r(x)).

Proof. By definition of the Hessian via the induced connection DS in S we
have directly for the first equality in (7.3):

HessS(r)
(
∇Sr,∇Sr

)
=
〈
DS
∇Sr ∇

Sr,∇Sr
〉

= 1
2 DS

∇Sr

〈
∇Sr,∇Sr

〉
= 1

2∇
Sr
〈
∇Sr,∇Sr

〉
= 1

2

〈
∇S‖∇Sr‖2,∇Sr

〉
= ‖∇Sr‖

〈
∇S‖∇Sr‖,∇Sr

〉
,

so that

HessS(r(x)) (Ur, Ur) =
HessS(r)

(
∇Sr,∇Sr

)
‖∇Sr‖2

=

〈
∇Sr(x),∇S‖∇Sr(x)‖

〉
‖∇Sr(x)‖

.

The other (in)equalities in (7.3) follow from (3.4) and (3.3), respectively. �



18 I. HOLOPAINEN, S. MARKVORSEN, AND V. PALMER

The following result relates the p-Laplacian of a radial function f(r) with
its 2-drifted Laplacian, as defined in Section 6.

Lemma 7.2. Let {Nn, Sm,Mm
w } be a comparison constellation on [0, R] for

R > 0. Let f ◦ r be a smooth real-valued function with f ′ ≥ 0, and suppose
now that f(r) satisfies the following condition (to be molded shortly from the
balance condition (4.1)):

(7.4) f ′′(r)− f ′(r)ηw(r) ≤ 0.

Then, for all x ∈ S,

∆S
p f(r(x)) ≥ (p− 1)F p−2(x)g2(r(x)) L(f(r(x))),

where L is the modified 2-Laplacian defined in Lemma 6.2 and F is given
by (7.2).

Proof. By using the assumption p ≥ 2 together with the comparison con-
stellation assumptions (3.2) we obtain from (7.1) and (7.3) that

∆S
p (f(r(x)))

≥ F p−2(x)(p− 2)
(
f ′′(r)‖∇S(r)‖2 + f ′(r) HessS(r) (Ur, Ur)

)
+ F p−2(x)

(
f ′′(r)‖∇S(r)‖2 − f ′(r)ηw(r)‖∇S(r)‖2 +mf ′(r) (ηw(r)− h(r))

)
≥ F p−2(x)(p− 1)‖∇S(r)‖2

(
f ′′(r)− f ′(r)ηw(r)

)
+ F p−2(x)f ′(r) ((p− 2 +m)ηw(r)− (p− 2)λ(r)−mh(r))

= F p−2(x)
((
f ′′(r)− f ′(r)ηw(r)

)
(p− 1)‖∇S(r)‖2 + f ′(r)M(r)

)
.

Since f(r) satisfies inequality (7.4), we have, via ‖∇S(r)‖ ≤ g(r), that:

∆S
p (f(r(x)))

≥ F p−2(x)
((
f ′′(r)− f ′(r)ηw(r)

)
(p− 1)g2(r) + f ′(r)M(r)

)
= (p− 1)F p−2(x)g2(r)

(
f ′′(r)− f ′(r)ηw(r) + f ′(r)

M(r)
(p− 1)g2(r)

)
= (p− 1)F p−2(x)g2(r)

(
f ′′(r) + f ′(r)

(
M(r)

(p− 1)g2(r)
− ηw(r)

))
= (p− 1)F p−2(x)g2(r) L(f(r)),

as claimed in the lemma. �

8. First proof of Theorem 4.1

Next we show that (4.2) is also a sufficient condition for p-hyperbolicity
of Sm. First we transplant the model space solutions ψρ,R(r) of equation
(6.1) into the extrinsic annulus Aρ,R = DR(o) \ D̄ρ(o) in S by defining

Ψρ,R : Aρ,R → R, Ψρ,R(x) = ψρ,R(r(x)).

Here the extrinsic ball Dρ(o) is as in Definition 3.12 and DR(o) is that
component of BR(o) ∩ S which contains Dρ(o). Next we extend Ψρ,R to
S ∩ B̄ρ(o) by setting Ψρ,R(x) = 0 for x ∈ S ∩ B̄ρ(o).

Using w′(r) = ηw(r)w(r) and the balance condition (4.1) it is straightfor-
ward to check that

ψ′′ρ,R(r)− ψ′ρ,R(r)ηw(r) ≤ 0.
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Since ψ′ρ,R(r) ≥ 0 and Lψρ,R = 0 in Aw
ρ,R, we obtain from Lemma 7.2

that
∆S

p Ψρ,R ≥ 0 in DR(o) \ B̄ρ(o).

Thus Ψρ,R is a p-subsolution inDR(o)\B̄ρ(o). In fact, Ψρ,R is a p-subsolution
in the whole extrinsic ball DR(o) since Ψρ,R(x) = 0 for x ∈ S ∩ B̄ρ(o); see
[11, Theorem 7.25, Lemma 7.28]. Furthermore, for fixed ρ and fixed x ∈ S,
Ψρ,R(x) is defined for sufficiently large R and it is decreasing as a function
of R, see equation (6.2). Hence the limit function

Ψρ := lim
R→∞

Ψρ,R

exists in S and, moreover, it is positive in S \ B̄ρ(o) by (4.2). By [11,
Theorem 3.75], Ψρ is a p-subsolution in S. Hence 1−Ψρ is a non-negative,
non-constant p-supersolution in S, and therefore S is p-hyperbolic. This
proves Theorem 4.1.

9. Proof of Corollaries

Proof of Corollary 4.2. The balance condition (4.1) is clearly satisfied by
(4.3). Thus we only need to check the p-hyperbolicity condition (4.2). Since
g(r) ≤ 1, we have

M(r)
(p− 1)g2(r)

> (1 + c)
√
−b

for some positive constant c by (4.3). Hence

Λ(r) ≤ sinh(
√
−b r)√
−b

exp
(
−
∫ r

1
(1 + c)

√
−b dt

)
and therefore it is straightforward to check that∫ ∞

ρ
Λ(t) dt <∞,

which concludes the proof. �

Proof of Corollary 4.3. The assumptions amount to g(r) ≡ 1, h(r) ≡ 0,
and λ(r) ≡ 0 and the only ’free’ function is w(r). In this intrinsic setting
we therefore have

M(r) = (m+ p− 2)ηw(r),
so that with g(r) = 1 we get∫ r

ρ

M(t)
(p− 1)g2(t)

dt = m+p−2
p−1

∫ r

ρ

w′(t) dt
w(t)

= m+p−2
p−1 log

w(r)
w(ρ)

,

and hence

Λ(r) = w(r) exp
(
−m+p−2

p−1 log
w(r)
w(ρ)

)
= w(r)1−

m+p−2
p−1 w(ρ)−

m+p−2
p−1

= w(r)−
m−1
p−1 c(ρ),
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where c(ρ) is a constant depending on the fixed inner radius of the annuli
used in the proof of the p-hyperbolicity. Then Λ(r) has bounded integral
precisely if ∫ ∞

ρ

1

w(r)
m−1
p−1

dt <∞,

as claimed. �

10. p-capacity bounds

In this section we give lower bounds on the p-capacity of closed (compact)
extrinsic balls relative to Sm. Let G ⊂ Sm be a precompact open set such
that D̄ρ(o) ⊂ G. We recall from the introduction that the p-capacity of
D̄ρ(o) relative to G is defined by

Capp(D̄ρ(o), G) = inf
v

∫
G
‖∇Sv‖p dµ,

where the infimum is taken over all real-valued functions v ∈ C∞0 (G), with
v ≥ 1 in D̄ρ(o). If ∂G is regular for the Dirichlet problem for p-harmonic
functions, then there exists a unique function u ∈ C(Ḡ) which is p-harmonic
in G \ D̄ρ(o) such that u = 0 in D̄ρ(o), u = 1 in ∂G, and that

Capp(D̄ρ(o), G) =
∫

G
‖∇Su‖p dµ.

We refer to [11, Chapter 6] for the boundary regularity. For our purposes it
is enough to know that every open set can be exhausted by open sets with
regular boundaries.

Since u is p-harmonic in G \ D̄ρ(o), we have

(10.1) Capp(D̄ρ(o), G) =
∫

G
〈‖∇Su‖p−2∇Su,∇Sϕ〉 dµ

for every function ϕ ∈W 1,p(G) which is continuous in Ḡ with values ϕ = 0
in D̄ρ(o) and ϕ = 1 in ∂G. In particular, (10.1) holds for all 0 ≤ t < s ≤ 1
with the function

ϕ(x) =


0 if u(x) ≤ t
u(x)−t

s−t if t < u(x) < s

1 if u(x) ≥ s.

Applying the co-area formula ([28], [7, 3.2.12, 3.2.46], [34]) we obtain

Capp(D̄ρ(o), G) =
1

s− t

∫ s

t

(∫
u−1(τ)

‖∇Su‖p−1 dHm−1

)
dτ.

Letting s→ t we finally get

(10.2) Capp(D̄ρ(o), G) =
∫

u−1(t)
‖∇Su‖p−1 dHm−1

for a.e. t ∈ [0, 1]. We will use the equation (10.2) to get lower bounds on
the p-capacity Capp(D̄ρ(o), DR(o)) in terms of the corresponding drifted 2-
capacity in the model space.

Our main comparison estimate for the p-capacity now reads as follows:
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Theorem 10.1. Let {Nn, Sm,Mm
w } denote a comparison constellation on

[0, R], R > ρ, in the sense of Definition 3.12. Then

(10.3) Capp

(
D̄ρ(o), DR(o)

)
≥
(CapL(Aw

ρ,R)
Vol(∂Dw

ρ )

)p−1 ∫
∂Dρ

‖∇Sr‖p−1 dHm−1.

Proof. Let G ⊂ DR(o) be a precompact open set with regular boundary
such that D̄ρ(o) ⊂ G. Let u ∈ C(Ḡ) be p-harmonic in G \ D̄ρ(o) with u = 0
in D̄ρ(o) and u = 1 in ∂G. Furthermore, let Ψρ,R be the p-subsolution in
DR(o) defined in Section 8. By the comparison principle,

u(x) ≥ Ψρ,R(x)

for all x ∈ DR(o). Recall that ∂Dρ(o) is assumed to be smooth; see Remark
3.13. Since ∇Su is Hölder-continuous up to the boundary ∂Dρ(o) by [19]
(see Remark 10.2 below) and u(x) = Ψρ,R(x) = 0 for all x ∈ D̄ρ(o), we
obtain

(10.4) ‖∇Su(x)‖ ≥ ‖∇SΨρ,R(x)‖

for all x ∈ ∂Dρ(o). Combining (10.2) and (10.4), we arrive at

Capp(D̄ρ(o), G) ≥
∫

∂Dρ

‖∇SΨρ,R‖p−1 dHn−1

=
(
ψ′ρ,R(ρ)

)p−1
∫

∂Dρ

‖∇Sr‖p−1 dHm−1

=
(CapL(Aw

ρ,R)
Vol(∂Dw

ρ )

)p−1 ∫
∂Dρ

‖∇Sr‖p−1 dHm−1.

The desired estimate (10.3) now follows since

Capp

(
D̄ρ(o), DR(o)

)
= inf

G
Capp(D̄ρ(o), G),

where G ⊂ DR(o) is a precompact open set with regular boundary. �

Remark 10.2. The C1,β-regularity results for p-harmonic functions that
were mentioned in the introduction are proven in the Euclidean setting.
In this remark we explain why these regularity results apply to p-harmonic
functions in precompact open subsets D of a Riemannian n-manifold as well.

The p-Laplace equation is the Euler-Lagrange equation of the variational
integral ∫

D
‖∇u‖p dµ .

A key idea in proofs of C1,β-regularity (also up to the boundary) is to con-
sider, for a fixed 0 < ε < 1, the minimizer uε of the variational integral

(10.5)
∫

D

(
ε+ ‖∇u‖2

)p/2
dµ

with fixed boundary values and prove estimates for∇uε that are independent
of ε. Since uε is a minimizer, it is a weak solution to

(10.6) div
((
ε+ ‖∇uε‖2

)p/2∇uε

)
= 0.
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Recall that in local coordinates the divergence of a vector field X = Xi∂i is

divX = ∂iX
i + Γi

kiX
k,

where ∂1, . . . , ∂n is the coordinate frame and Γj
ki are the corresponding

Christoffel symbols. Writing (10.6) in local coordinates yields an equation

(10.7) ∂i

((
ε+ ‖∇uε‖2

)p/2−1
gji∂juε

)
+ Γi

ki

(
ε+ ‖∇uε‖2

)p/2−1
gjk∂juε = 0 ,

where gij are the entries of the matrix (gij)−1, gij = 〈∂i, ∂j〉.
For simplicity let us use the same notation for functions on M and their

local representations. Then (10.7) is equivalent to the equation (now in Rn)

divA
(
x,∇uε(x)

)
+B

(
x,∇uε(x)

)
= 0,

where the kth component of the vector A(x, h), h = (h1, . . . , hn), is

Ak(x, h) =
(
ε+ gi`(x)hih`

)p/2−1
gjk(x)hj ,

and

B(x, h) = Γi
ki

(
ε+ gi`(x)hih`

)p/2−1
gjk(x)hj .

As in [19] we write

akj(x, h) =
∂Ak

∂hj
(x, h)

=
(
ε+ gi`(x)hih`

)p/2−1
(
gjk(x) +

(p− 2)
(
gik(x)hi

)(
gij(x)hi

)
ε+ gi`(x)hih`

)
.

Next recall that the components of the Riemannian metric with respect to
normal coordinates at a point y ∈M behave like gij(expy v) = δij +O(|v|2)
as v → 0. Hence gij(y) = δij , ∂kgij(y) = 0, and Γj

ki(y) = 0. By smoothness
of gij , ∂kgij , and Γj

ki we conclude that each point y ∈ D̄ has a neighborhood
such that A, ajk, and B, when written with respect to normal coordinates
at y, satisfy the structure conditions

akj(x, h)ξkξj ≥ λ
(
ε+ |h|2

)p/2−1 |ξ|2, ξ ∈ Rn,∣∣∣akj(x, h)
∣∣∣ ≤ Λ

(
ε+ |h|2

)p/2−1
,

|B(x, h)| ≤ Λ (1 + |h|)p ,

|A(x, h)−A(y, h)| ≤ Λ (1 + |h|)p−1 |x− y|,

where the constants λ and Λ depend only on p and the dimension n.
Suppose then that D ⊂M is a precompact open set with C1,α boundary

(α ≤ 1), h ∈ C1,α(∂D), and that u is p-harmonic in D with boundary values
h. Applying [19] and the discussion above we conclude that each point
y ∈ D̄ has a neighborhood U such that u ∈ C1,β(D̄∩U), with β = β(α, p, n),
By compactness of D̄ we finally obtain that u ∈ C1,β(D̄) as stated in the
introduction.
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10.1. Second Proof of Theorem 4.1. Using the explicit capacity com-
parison obtained in Theorem 10.1 we finally observe the following direct
proof of the main theorem.

Let {Nn, Sm,Mm
w } denote a comparison constellation on [0,∞] in the

sense of Definition 3.12. By assumption Dρ(o) is precompact with a smooth
boundary (cf. Remark 3.13) and thence, in equation (10.3) we have∫

∂Dρ

‖∇Sr‖p−1 dHm−1 > 0.

From (6.3) and the assumption (4.2) we also have

lim
R→∞

CapL(Aw
ρ,R) > 0,

so that Theorem 10.1 implies:

Capp

(
D̄ρ(o), Sm

)
= lim

R→∞
Capp

(
D̄ρ(o), DR(o)

)
> 0.

Thus D̄ρ(o) is a compact subset with positive p-capacity in Sm, and p-
hyperbolicity of that submanifold follows again.

References

[1] Berndt, J. Real hypersurfaces with constant principal curvatures in complex hyper-
bolic space. J. Reine Angew. Math. 395 (1989), 132–141.

[2] Coulhon, T., Holopainen, I., and Saloff-Coste, L. Harnack inequality and
hyperbolicity for subelliptic p-Laplacians with applications to Picard type theorems.
Geom. Funct. Anal. 11, 6 (2001), 1139–1191.

[3] DiBenedetto, E. C1+α local regularity of weak solutions of degenerate elliptic equa-
tions. Nonlinear Anal. 7, 8 (1983), 827–850.

[4] do Carmo, M., and Dajczer, M. Rotation hypersurfaces in spaces of constant
curvature. Trans. Amer. Math. Soc. 277, 2 (1983), 685–709.

[5] do Carmo, M. P. Riemannian geometry. Mathematics: Theory & Applications.
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