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Quasiregular mappings and the p-Laplace operator
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ABSTRACT. We describe the role of p-harmonic functions in the theory of
quasiregular mappings.
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1. Introduction

In this survey we discuss the importance of p-harmonic functions in the theory
of quasiregular mappings as tools to obtain basic properties of these maps and,
on the other hand, some Liouville-type results on the existence of non-constant
quasiregular mappings between given Riemannian manifolds. Quasiregular map-
pings or, as they are also called, mappings of bounded distortion were introduced
by Reshetnyak in the mid sixties in a series of papers; see e.g. [27], [28], and [29].
An interest in studying these mappings arises from a question about the existence
of a geometric function theory in real dimensions n > 3 generalizing that of holo-
morphic functions C — C. To motivate the definition of quasiregular mappings,
let us write a holomorphic mapping f: U — C, where U C C is open, as a map
f=(uv): U—-R? UCR?

f(xvy) = (u(x,y),v(x,y)).
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Then u and v are harmonic real-valued functions in U and they satisfy the Cauchy-
Riemann system of equations

Dlu = DQU
Dgu = D1U,

where Dy = 0/0x, Dy = 8/0y. For every (x,y) € U, the differential f'(x,y): R? —
R? is a linear map whose matrix (with respect to the standard basis of the plane)

18
D1U Dzu _ D1u Dgu
Dlv DQU - 7D2’LL Dlu ’
Hence

(1.1) [ (@, y)|* = det f'(z,y),

where | f'(z,y)| = sup,|=1|f' (=, y)h| is the operator norm of the linear map f'(z, y).
If we are looking for a class of mappings f: U — R"™, where U C R"™ is open,

sharing some geometric and topological properties of holomorphic functions, the

first problem is to find an appropriate definition for such maps. The first trial

definition could be maps satisfying a condition

(1.2) [f'(@)|" = Js(x), =€l

where J¢(z) = det f'(x). However, it has turned out that, for dimensions n > 3, a
map f: U — R" belonging to the Sobolev space WIE’C"(U; R™) and satisfying (1.2)
for a.e. & € U is either constant or a restriction of a Mdbius map. This is the
so-called generalized Liouville theorem due to Gehring [10] and Reshetn’yak [29];

see also the thorough discussion in [23].
Next candidate is obtained by replacing the equality (1.2) by a weaker condition

(1.3) If (@)|" < KJs(z) ae. z€l,

where K > 1 is a constant. Now there remains a question on the regularity as-
sumption of such mapping f. Again there is some rigidity in dimensions n > 3.
Indeed, if a mapping f satisfying (1.3) is nonconstant and smooth enough (more
precisely, if f € C*, with k = 2 for n > 4 and k = 3 for n = 3), then f is a local
homeomorphism. Furthermore, it then follows from a theorem of Zorich that such
amap f: R™ — R" is necessarily a homeomorphism, for n > 3; see [36]. We would
also like a class of maps satisfying (1.3), with fixed K, to be closed under local
uniform convergence. In order to obtain a rich enough class of mappings, it is thus
necessary to weaken the regularity assumption from C*-smoothness. See [13] and
[3] for recent developments regarding smoothness and branching of quasiregular
mappings. After this short motivation we are ready to give the following definition.

DEFINITION 1.1. Let U C R™ be a domain. We say that a continuous mapping
f: U — R™ is quasiregular (or a mapping of bounded distortion) if
(1) f € Wi (U;R™), and
(2) there exists a constant K > 1 such that
(1.4) If'(z)[" < KJg(z) ae. xzel.

Here f'(z) = (D;f;(z)) is a linear map R™ — R" (the formal derivative of f at
x) and Jg(x) = det f'(x). They exist a.e. by (1). We want to emphasize that f is
assumed to be continuous. We collect the basic analytic and topological properties
of a quasiregular map into the following theorem by Reshetnyak; see [30], [31].
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THEOREM 1.2 (Reshetnyak’s theorem). Let f: U — R™ be quasiregular. Then

(1) f is differentiable a.e. and
(2) f is either constant or it is discrete, open, and sense-preserving.

Recall that a map g: X — Y between topological spaces X and Y is discrete if
the preimage g~ !(y) of every y € Y is a discrete subset of X and that g is open if
gU is open for every open U C X. We also remark that a continuous discrete and
open map ¢g: X — Y is called a branched covering.

To say that f: U — R"™ is sense-preserving means that the local degree u(y, f, D)
is positive for all domains D € U and for all y € fD\ f0D. The local degree is
an integer that tells, roughly speaking, how many times f wraps D around y. It
can be defined, for example, by using cohomology groups with compact support.
For the basic properties of the local degree, we refer to [31, Proposition 1.4.4]; see
also (9], [26], and [34]. For example, if f is differentiable at z¢ with Jg(zo) # 0,
then p(f(zo), f, D) = sign J¢(zo) for sufficiently small connected neighborhoods D
of xg. Another useful property is the following homotopy invariance: If f and g are
homotopic via a homotopy h¢, hg = f, hiy = g, such that y € hyD \ h;0D for every
t € [0, 1], then u(y, f, D) = pu(y, g9, D).

We can now easily extend the definition for mappings f: M — N, where M
and N are (oriented) Riemannian n-manifolds.

DEFINITION 1.3. A continuous mapping f: M — N is quasiregular (or a map-
ping of bounded distortion) if

(1) for every & € M there exist charts (U, ) at x and (V,v) at f(x), respec-
tively, such that fU C V and

YofoptipU —»R"

is quasiregular, and
(2) there exists a constant K > 1 such that

(1.5) T, f|* < KJ¢(z) fora.e. x¢€ M.

Here T, f: To M — Ty N is the differential (or the tangent map) of f at . It
exists for a.e. & by Theorem 1.2 and Condition (1).

2. A-harmonic functions

The very first step in developing the theory of quasiregular mappings is to prove,
by direct computation, that quasiregular mappings have the following morphism
property: If f: U — R" is quasiregular and u € C?(U) is an n-harmonic function
in a neighborhood of fU, then uo f is a so-called .A-harmonic function in U. In this
section we introduce the notion of A-harmonic functions and recall some of their
basic properties that are relevant for this survey.

Let M be a Riemannian n-manifold, with the Riemannian metric (-, -). Recall
that the gradient of a smooth function u: M — R is the vector field Vu such that

(Vu(z), h) = du(z)h

for every x € M and h € T,, M.
The divergence of a smooth vector field V' can be defined as a function divV: M —
R satisfying
Lyw = (divV)w,
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where w is the (Riemannian) volume form and
(') w — w
t
is the Lie derivative of w with respect to V, and « is the flow of V. We say that a
vector field Vu € Ll (M) is a weak gradient of u € L{ (M) if

loc loc

(2.1) /M<vu, V)= — /M wdivV

for all vector fields V € C§°(M). Conversely, a function divV € Ll (M) is a weak
divergence of a (locally integrable) vector field V' if (2.1) holds for all u € C§°(M).
Note that fM divY =0 if Y is a smooth vector field in M with compact support.

We define the Sobolev space W1?(M) and its norm as
WHP (M) = {u € LP(M): weak gradient Vu € LP(M)}, 1 < p < o0,
lellp = llully + Ve[l

Let G C M be open. Suppose that for a.e. x € G we are given a continuous
map

ﬁvw = lim
t—0

Ay T, M — Ty M
such that the map z — A, (X) is a measurable vector field whenever X is. Suppose
that there are constants 1 < p < oo and 0 < a < 3 < oo such that

(Az(h), h) = afh[?
and

Az ()] < B[R]~
for a.e. x € G and for all h € T,, M. In addition, we assume that for a.e. z € G

(Az(h) = Az(K), h — k) >0
whenever h # k, and
Az (AR) = MAP2A,(h)
whenever A € R\ {0}.
A function u € VVlif (G) is called a (weak) solution of the equation
(2.2) —divA;(Vu) =0
in G if
[ (Aa(¥0).70) =0

G
for all ¢ € C§°(G). Continuous solutions of (2.2) are called A-harmonic functions
(of type p). By the fundamental work of Serrin [32], every solution of (2.2) has
a continuous representative. In the special case A,(h) = |h|P~2h, A-harmonic
functions are called p-harmonic and, in particular, if p = 2, we obtain the usual

harmonic functions.
A function u € W,"P(G) is a subsolution of (2.2) in G if

loc
—div Ay (Vu) <0
weakly in G, that is
[ (Aa(¥). 7)< 0
G

for all nonnegative ¢ € C§°(G). A function v is called supersolution of (2.2) if —v is
a subsolution. The proofs of the following two basic estimates are straightforward
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once the appropriate test function is found. Therefore we just give the test function
and omit the details.

2.1. Caccioppoli and logarithmic Caccioppoli inequality.

LEMMA 2.1 (Caccioppoli inequality). Let u be a positive solution of (2.2) (for
a given fized p) in G and let v = u?/? where ¢ € R\ {0,p — 1}. Then

2.3 IR (%) JREAE
G “\alg—-p+1]) Ja

for every nonnegative n € C§°(G).
PrOOF. Write kK = ¢ — p+ 1 and use ¢ = u"nP as a test function. ]

REMARK 2.2. In fact, the estimate (2.3) holds for positive supersolutions if
q<p—1, ¢ #0, and for positive subsolutions if ¢ > p — 1.

The excluded case ¢ = 0 above corresponds to the following logarithmic Cac-
cioppoli’s inequality.

LEMMA 2.3 (logarithmic Caccioppoli inequality). Let u be a positive superso-
lution of (2.2) (for a given fized p) in G and let C C G be compact. Then

(2.4) /|Vlogu|p §c/ |VnP
c G
for alln € C§°(Q), with n | C > 1, where ¢ = ¢(p, B/ ).

PRrROOF. Take ¢ = nPu'~P as a test function. ]

These two lemmas together with the Sobolev and Poincaré inequalities are
used in proving Harnack’s inequality for nonnegative A-harmonic functions by the
familiar Moser iteration scheme. In the following |A| denotes the volume of a
measurable set A C M.

THEOREM 2.4 (Harnack’s inequality). Let M be a complete Riemannian man-
ifold and suppose that there are positive constants Ry, C, and 7 > 1 such that a
volume doubling property

(2.5) |B(z,2r)| < C|B(z, )|

holds for all x € M and 0 < r < Ry, and that M admits a weak (1,p)-Poincaré
inequality

(2.6) ][|va3| <Cr ][\wp
B TB

for all balls B = B(x,r) C M, with TB = B(x,7r) and 0 < r < Ry, and for all
functions v € C*(B). Then there is a constant ¢ such that

1/p

2.7 sup u <c inf u
( ) B(x,r) B(z,r)

whenever u is a nonnegative A-harmonic function in a ball B(x,2r), with 0 < r <
Ry.
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In particular, if the volume doubling condition (2.5) and the Poincaré inequal-
ity (2.6) hold globally, that is, without any bound on the radius r, we obtain a
global Harnack inequality. We refer to [16], [7], and [14] for proofs of the Harnack
inequality.

3. Morphism property and its consequences

Let us now prove the morphism property for quasiregular mappings that were
mentioned at the beginning of Section 2. In the following ”n-harmonic” means, of
course, ”p-harmonic” with p = n, the dimension of M.

THEOREM 3.1. Let f: M — N be a quasiregular mapping (with a constant K )
and let uw € C?(N) be n-harmonic. Then v = uo f is A-harmonic (of type n) in
M, with

(3.1) Ay (h) = (Gyh,h)E1Gyh,
where Gp: T, M — T, M is given by
G Jf(x)Q/”Tszl(Tmffl)Th, if Jp(x) exists and is positive,
e h, otherwise.

The constants a and B for A depend only on n and K.

PROOF. Let us first write the proof formally and then discuss the steps in more
detail. In the sequel w stands for the volume forms in M and N. Let V € C(M)
be the vector field V = |Vu|"~2Vu. Since u is n-harmonic and C%-smooth, we have
divV = 0. By Cartan’s formula we obtain

d(Viw)=d(Viw)+Vi(dw) = Lyw = (divV)w =0
since dw = 0. Here X 17 is the contraction of a differential form n by a vector field
X. Thus, for instance, V_w is the (n — 1)-form

Vow(,...,)=w(V,-, ...,
S~—— N——

n—1 n—1

Hence

(3.2) df*(Vaw) = f*d(Viw) = 0.

On the other hand, we have a.e. in M

(3.3) ffVaw) =W ffo=Wi(Jw) = JWaw,

where W is a vector field that will be specified later (roughly speaking, f.W = V).
We obtain

(3.4) d(JsWaw) =0,
or equivalently

(3.5) div(JfW) =0

which can be written as

(3.6) div A, (Vv) =0,

where A is as in the claim.
Some explanations are in order. When writing

frd(Vaw) S 0,
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we mean that for a.e. z € U and for all vectors vy, vs,...,v, € T, M

Frd(Vaiw)(vr,ve,...,v,) = d(Vaiw)(fevy, fava, ..., favn) =0,

where f. = fip = T, f is the tangent mapping of f at . The left-hand side of (3.2)

holds in a weak sense since f € WI}):(M), see [30, p. 136]. This means that, for
all n-forms n € C§° (M),

(3.7) /M<f*d(VJw)m> - /M<f*(VJw)75n>,

where ¢ is the codifferential. Consequently, equations (3.4)—(3.6) are to be inter-
preted in weak sense. In particular, combining (3.2), (3.3), and (3.7) we get

/M<JfWJw,6n> - /N A (Vo)) = A Ard(Vaw)a) =0

for all n-forms n € C§°(M), and so (3.4) holds in weak sense.

Let us next specify the vector field W. Let A = {o € M : Jy(x) = det f, » # 0}.
Hence f. . is invertible for all x € A, and W = f7'V in A. In M \ A, either J; ()
does not exist, which can happen only in a set of measure zero, or Jy¢(z) < 0.
Quasiregularity of f, more precisely the distortion condition (1.5), implies that
fe.w = Tpf =0 for almost every such x. Hence f, , =0 for a.e. x € M \ A. Setting
W =0in M \ A, we obtain

ff(Viw)y=0=WJffw
a.e. in M \ A. Hence f*(V_ow) =W f*w a.e. in M, and so (3.3) holds. O

3.1. Sketch of the proof of Reshetnyak’s theorem. We shall use Theo-
rem 3.1 to sketch the proof of Reshetnyak’s theorem in a way that uses analysis,
in particular, A-harmonic functions. First we recall some definitions concerning
p-capacity. If @ C M is an open set and C C 2 is compact, then the p-capacity of
the pair (Q2,C) is

(3.8) cap,(Q,C) = inf/|Vgo\p7
? JQ

where the infimum is taken over all functions ¢ € C§°(), with ¢ | C > 1. A
compact set C' C M is of p-capacity zero, denoted by cap,, C = 0, if capp(Q, C)=0
for all open sets 2 D C. Finally, a closed set F' is of p-capacity zero, denoted by
cap, F' =0, if cap, C' = 0 for all compact sets C' C F. It is a well-known fact that a
closed set F' C R™ containing a continuum C' cannot be of p-capacity zero. This can
be seen by taking an open ball B containing C' and any test function ¢ € C§°(B),
with ¢ | C' = 1, and using a potential estimate

Vol /
B
o) =t <e( [ s [ T a) e n

combined with a maximal function and covering arguments. Similarly, if C'is a con-
tinuum in a domain 2 and B is an open ball, with B C Q\ C, then cap,,(C, B;Q2) >
0, where

cap, (C, B: ) = inf/ Veol? > 0,
¥® Q

the infimum being taken over all functions ¢ € C*°(f), with ¢ | C = 1 and
¢ | B=0.
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f is light. Suppose then that U C R” is a domain and that f: U — R" is
a nonconstant quasiregular mapping. We will show first that f is light which
means that, for all y € R", the preimage f~!(y) is totally disconnected, i.e. each
component of f~1(y) is a point.

Fix y € R" and define u: R™\ {y} — R by

1
u(z) = log —.
[z =y
Then v is C*° and n-harmonic in R™ \ {y} by a direct computation. By Theorem
3.1, v=uof,

1
() =yl
is A-harmonic in an open non-empty set U \ f~1(y) and v(x) — +oo as z — 2 €
I (y). We set v(z) = +oo for z € f~1(y).

To show that f is light we use the logarithmic Caccioppoli inequality (2.4).
Suppose that C C f~(y) NU is a continuum. Since f is nonconstant and contin-
uous, there exists m > 1 such that the set Q = {z € U: v(x) > m} is an open
neighborhood of C' and 2 C U. We choose another neighborhood D of C' such that
D C Q is compact. Now we observe that v; = min{v, i} is a positive supersolution
for all ¢ > m. The logarithmic Caccioppoli inequality (2.4) then implies that

v(x) =log

/ |Vlogv|™ < ccap,, (2, D) < c <
D

uniformly in i. Hence |Vlogv| € L™(D). Choose an open ball B such that B C
D\ f~'(y). We observed earlier that

cap,,(C,B; D) >0

since C' is a continuum. Let

Mp = maxlogwv.
B
Now the idea is to use
1 v
in{1 —log —
min{1, max{0, o8 i +H
as a test function for cap,,(C, B; D) for every k € N. We get a contradiction since
0 < cap,(C, B; D) < k™"||V1ogv| 1»(py — 0O

as k — oo. Thus f~!(y) can not contain a continuum.

Differentiability a.e. Assume that f = (f1,...,fn: U — R", U C R", is
quasiregular. Then coordinate functions f; are A-harmonic again by Theorem
3.1, since functions & = (x1,...,2,) — «; are n-harmonic. Now there are at
least two ways to prove that f is differentiable almost everywhere. For instance,
since each f; is A-harmonic, one can show by employing reverse Hélder inequality
techniques that, in fact, f € Wﬁ)’f(U ), with some p > n. This then implies that f is
differentiable a.e. in U; see e.g. [2]. Another way is to conclude that f is monotone,
i.e. each coordinate function f; is monotone, and therefore differentiable a.e. since
f € WL™U); see [31]. The monotonicity of f; holds since A-harmonic functions
obey the maximum principle.
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f is sense-preserving. Here one first shows that conditions f € Wlicn (U) and
Jr(z) > 0 a.e. imply that f is weakly sense-preserving, i.e. p(y, f, D) > 0 for all
domains D € U and for all y € fD \ fOD. This step employs approximation of f
by smooth mappings. Pick then a domain D € U and y € fD\ fOD. Denote by Y
the y-component of R™\ f0D and write V = DN f~1Y. Since f is light, D\ f~*(y)
is non-empty. Thus we can find a point xo € f~!(y) N V. Next we conclude that
the set {z € V': Jp(x) > 0} has positive measure. Otherwise, since f is ACL and
|f'(z)] = 0 a.e. in V, f would be constant in a ball centered at x( contradicting
the fact that f is light. Thus there is a point  in V where f is differentiable
and J¢(z) > 0. Now a homotopy argument, using the differential of f at z, and
w(y, f, D) > 0 imply that f is sensepreserving.

f is discrete and open. This part of the proof is purely topological. A sense-
preserving light mapping is discrete and open by Titus and Young; see e.g. [31].

Further properties of f. Once Reshetnyak’s theorem is established it is
possible to prove further properties for quasiregular mappings. We collect these
properties to the following theorems and refer to the books [30] and [31] for the
proofs.

THEOREM 3.2. Let f: M — N be a nonconstant quasireqular map. Then
(1) |fE| =0 if and only if |E| = 0.
(2) |By| =0, where By is the branch set of f, i.e. the set of all x € M where
f does not define a local homeomorphism.
(3) Js(z) >0 a.e.
(4) The integral transformation formula

/ (ho £)()J; (x)dm(x) = / W) N (y. £, A)dm(y)
A

N

holds for every measurable h: N — [0,+00] and for every measurable
A C M, where N(y, f,A) = card f~*(y) N A.
(5) Ifue W-"(N,R), then v =wuo f € W-™(M,R) and

loc loc
Vo(z) = Tp fTVu(f(x)) ae.
Furthermore, we have a generalization of the morphism property.

THEOREM 3.3. Let f: M — N be quasiregular and let w: N — R be an A-
harmonic function (or a subsolution or a supersolution, respectively) of type n.
Then v = wo f is f# A-harmonic (a subsolution or a supersolution, respectively),
where

FEAL(R) = {Jf(x)Ta:f_lAf(m) (T f~HTh), if Jr(z) exists and is positive,

|h|"=2h, otherwise.

The ingredients of the proof of Theorem 3.3 include, for instance, the locality
of A-harmonicity, Theorem 3.2, and a method to ”push-forward” (test) functions.

To describe the latter, we say that D is a normal neighborhood of a point
xo € Mif OfD = fOD and {xo} = DN f~(f(x0)). The local degree u(f(xo), f, D)
is independent of the normal neighborhood of zy and we denote u(f(xo), f,D) =
i(xo, f). For the proof of the following lemma we refer to [14, 14.31] and [31, p.
151].
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LEMMA 3.4. Let f: M — N be a nonconstant quasiregular map, ¢ € C§°(M),
and define
puy)= D ila, fe(x), yerM.
z€f~1(y)
Then @, € Wy ™ (fM).

4. Modulus and capacity inequalities

Although the main emphasis of this survey is on the relation between quasireg-
ular mappings and p-harmonic functions, we want to introduce also the other main
tool in the theory of quasiregular mappings. Let 1 < p < co and let I' be a family
of paths in M. We denote by F(I") the set of all Borel functions g: M — [0, +o0]

such that
/ ods > 1
y

for all locally rectifiable path v € I'. We call the functions in F(I') admissible for
I". The p-modulus of T is defined by

M,T) = 961;1_&) /M oldm.
There is a close connection between p-modulus and p-capacity. Indeed, suppose
that 2 C M is open and C' C 2 is compact. Let I' be the family of all paths in
Q\ C connecting C and 9f2. Then

cap, (2, C) = Mp(T).

The inequality cap,,(©2,C) > M,(T') follows easily since o = [V¢| is admissible for
I' for each function ¢ as in (3.8). The other direction is harder and requires an
approximation argument; see [31, Proposition 11.10.2].

If p = n = the dimension of M, we call M,,(T") the conformal modulus of T, or
simply the modulus of I". In that case M, (T") is invariant under conformal changes of
the metric. In fact, M, (T) can be interpreted as follows: Define a new measurable
Riemannian metric

() = 620

Then, with respect to ((-,-)), the length of « has a lower bound

£<<.7.)>(’y) = / ods > 1
¥

and the volume of M is given by

V01(<,>)(M):/ g”dm.
M

Thus we are minimizing the volume of M under the constraint that paths in I have
length at least 1.

The importance of the conformal modulus for quasiregular mappings lies in the
following invariance properties; see [31, I1.2.4, 11.8.1]

THEOREM 4.1. Let f: M — N be a nonconstant quasireqular mapping. Let
A C M be a Borel set with N(f, A) := sup, N(y, f,A) < oo, and let T be a family
of paths in A. Then

(4.1) M, (T) < K N(f. A) M, (fT).
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THEOREM 4.2 (Poletsky’s inequality). Let f: M — N be a nonconstant quasireg-
ular mapping and let T be a family of paths in M. Then

(4.2) M, (fT) < K"~ ' M, (T).

The proof of (4.1) is based on the change of variable formula for integrals
(Theorem 3.2 3.) and on Fuglede’s theorem. The estimate (4.2) in the converse
direction is more useful than (4.1) but also much harder to prove; see [31, p. 39-50].

Application: Harnack’s inequality. As an application of the use of p-
modulus and p-capacity, we prove a Harnack’s inequality for positive A-harmonic
functions of type p > n — 1. Assume that Q C M is a domain, D € () another
domain, and C' C D is compact. For p > n — 1, we set

A\o(C, D) = inf M,(I(E, F; D)),

where E and F are continua joining C and Q\ D, and I'(E, F'; D) is the family of
all paths joining ¥ and F' in D.

THEOREM 4.3 (Harnack’s inequality, p > n—1). Let Q, D, and C be as above.
Let u be a positive A-harmonic function in Q of type p > n — 1. Then

— .\ 1/p
Me cap, (92, D)
4. log —= < P
( 3) 0g me = Co ( )\p(C, D) )

where

Me = rgleaé(u(x), me = min u(z),

and co = co(p, B/ ).

Proor. We may assume that Mo > me. Let € > 0 be so small that Mo —e >
me~+e. Then the sets {z: u(z) > Mo —e} and {z: u(x) < me+e} contain continua
E and F, respectively, that join C' and Q\ D. Write
B logu — log(me + ¢)
~ log(Mc —¢) — log(mc +¢)
and observe that w > 1 in E and w < 0 in F. Therefore |Vw| is admissible for
I'(E, F; D) and hence

w

/D VwlP > My(T(E, F; D)) > A)(C, D).
On the other hand,
| 9oz ulrdm < c(p. 5/a) can, (2.D)

by the logarithmic Caccioppoli inequality (2.4), and
M~ —
Viegu = (log CS) Vw
mg + €

Hence

— .\ 1/p
Mo — cap, (2, D
log C € < ¢ ( pp( ))

mg +¢ Ap(C, D)
and (4.3) follows by letting e — 0. O
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We can define A,(C, D) analogously for p < n — 1, too. However, \,(C, D)
vanishes for p < n — 1. Consequently, Theorem 4.3 is useful only for p > n — 1. The
idea of the proof is basicly due to Granlund [11]. In the above form, (4.3) appeared
first time in [15]. In general, it is difficult to obtain an effective lower bound
for A\,(C, D) together with an upper bound for cap, (€2, D). However, if M = R"
and p = n, one obtains a global Harnack inequality by choosing C, D, and §2 as
concentric balls.

5. Liouville-type results for A-harmonic functions

We have already mentioned that a global Harnack inequality

max u < c min u

B(z,r) B(z,r)
holds for nonnegative .A-harmonic functions on B(x,2r) with a constant ¢ indepen-
dent of z, r, and w if M is complete and admits a global volume doubling condition
and (1, p)-Poincaré’s inequality. It follows from the global Harnack inequality that
such manifold M cannot support nonconstant positive A-harmonic functions for
any A of type p. We say that M is strong p-Liouville.

EXAMPLE 5.1. (1) Let M be complete with nonnegative Ricci curvature.
Then it is well-known that M admits a global volume doubling property
by the Bishop-Gromov comparison theorem (see [1], [6]). Furthermore,
Buser’s isoperimetric inequality [4] implies that M also admits a (1, p)-
Poincaré inequality for every p > 1. Hence M is strong p-Liouville.

(2) Let H,, be the Heisenberg group. We write elements of H,, as (z,t), where

z = (z1,-..,2n) € C" and ¢t € R. Furthermore, we assume that H,
is equipped with a left-invariant Riemannian metric in which the vector
fields
0 0
X,i=—+4+2y,—,
J axj + yJ 6t
0 0
Y= — — 22, —,
/ 8yj J ot
0
ot
j =1,...,n, form an orthonormal frame. Harnack’s inequality for non-

negative A-harmonic functions on H,, was proved in [16] by using Jeri-
son’s version of Poincaré’s inequality. Jerison proved in [24] that (1,1)-
Poincaré’s inequality holds for the horizontal gradient

Vou= 3" (X)X, + (Fu)¥;)

Jj=1

and for balls in so-called Carnot-Carathéodory metric. Since the LP-norm
of the Riemannian gradient is larger than that of the horizonal gradient,
we have (1,1)-Poincaré’s inequality for the Riemannian gradient as well if
geodesic balls are replaced by Carnot-Carathéodory balls or Heisenberg
balls By (r) = {(2,t) € H,: (|2|* +t?)'/* < r} and their left-translations.
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p-parabolicity, p-hyperbolicity. Classically, a Riemannian manifold

M is called parabolic if it does not support a positive Green’s function for the
Laplace equation.

DEFINITION 5.2. We say that a Riemannian manifold M is p-parabolic, with

1<p<oo,if
cap,(M,C) =0
for all compact sets C C M. Otherwise, we say that M is p-hyperbolic.
EXAMPLE 5.3. (1) A compact Riemannian manifold is p-parabolic for all
p=>1

2)

In the Euclidean space R™ we have precise formulas for p-capacities of
balls:

capp(R", Br) = 0, otherwise.

_ {cr"‘p, ifl1<p<mn,

Hence R” is p-parabolic if and only if p > n.
If the Heisenberg group H,, is equipped with the left-invariant Riemannian
metric, we do not have precise formulas for capacities of balls. However,
for r > 1,

cap,,(H,, By (r)) ~ r¥nt2p
if 1 <p < 2n+2, and cap,(Hy, By(r)) = 0 if p > 2n + 2. Hence H, is
p-parabolic if and only if p > 2n + 2.
Any complete Riemannian manifold M with finite volume Vol(M) < oo
is p-parabolic for all p > 1. This is easily seen by fixing a point 0 € M
and taking a function ¢ € C§°(B(o, R)), with ¢ | B(o,7) = 1 and [V¢| <
¢/(R —r). We obtain an estimate

cap, (B(o, R), B(o,7)) < ¢Vol(M)/(R—71)? — 0

as R — oo.

Let M™ be a Cartan-Hadamard n-manifold, i.e. a complete, simply
connected Riemannian manifold of nonpositive sectional curvature and
dimension n. If the sectional curvature has a negative upper bound
Ky < —a? < 0, then M is p-hyperbolic for all p > 1. This follows since
M™ satisfies an isoperimetric inequality

Vol(D) < % Area(dD)

for all domains D € M, with smooth boundary; see [35], [5]. If p > 1,
then v(z) = exp(—dd(x,0)) is a positive supersolution of the p-Laplace
equation for some § = d(n,p) > 0 (see [18]). Hence the p-hyperbolicity of
M also follows from the theorem below for p > 1.

THEOREM 5.4. Let M be a Riemannian manifold and 1 < p < oco. Then the
following conditions are equivalent:

(1)
2)

(3)
(5.1)

M is p-parabolic.
M,(Ts) = 0, where '« is the family of all paths v: [0,00) — M such
that y(t) — oo as t — oo.
Every nonnegative supersolution of
—div A, (Vu) =0

on M is constant for all A of type p.
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(4) M does not support a positive Green’s function g(-,y) for (5.1) for any A
of type p and y € M.

Here 7(t) — oo means that () eventually leaves any compact set. For the
proof of Theorem 5.4 as well as for the discussion below we refer to [15]. Let us
explain what is Green’s function for (5.1). We define it first in a ”regular” domain
Q € M, where regular means that the Dirichlet problem for A-harmonic equation
is solvable with continuous boundary data. For this notion, see [14].

We need a concept of A-capacity. Let C C 2 be compact, and assume for
simplicity that Q \ C' is regular. Thus there exists a unique A-harmonic function
in \ C with continuous boundary values v = 0 on 2 and u =1 in C. Call u the
A-potential of (2,C). We define

cap4(Q,C) = /Q<A1(Vu),Vu>.

Then
Ca‘pA(Qa C) ~ Capp(ﬂa O)
and furthermore,

(5.2) cap 4(21,Cy) > cap 4(Qe2, Cs)

if Cy C Cy and/or Q; C Q. Note that this property is obvious for variational
capacities but cap 4 is not necessary a variational capacity.

The definition of Green’s function, and in particular its uniqueness when p = n,
relies on the following observation.

LEMMA 5.5. Let Q € M be a domain and let C' C Q be compact such that Q\C
is reqular. Let u be the A-potential of (Q,C). Then, for every 0 <a <b <1,
cap4(©2,C)

(b—a)p—1"

DEFINITION 5.6. Suppose that Q@ € M is a regular domain and let y € Q. A

function g = g(+,y) is called a Green’s function for (5.1) in Q if

cap 4({u > a},{u>0b}) =

(1) g is positive and A-harmonic in Q \ {y},
(2) lim,_,, g(z) =0 for all z € 99,
3)

lim g(z) = cap o (2, {y})"/ "7,

Z—»y
which we interprete to mean lim,_,, g(z) = o0 if p < n,
(4) for all 0 < a < b < cap 4(Q, {y})/—P),

cap 4({g > a} {g > b}) = (b— )"/ 07,

THEOREM b5.7. Let 2 €@ M be a reqular domain and y € §2. Then there exists
a Green’s function for (5.1) in Q. Furthermore, it is unique at least if p > n.

Monotonicity properties (5.2) of A-capacity and the so-called Loewner property,
ie. cap,, C > 0if C is a continuum, are crucial in proving the uniqueness when
p = n. Indeed, we can show that on sufficiently small spheres S(y,r)

l9(x,y) —cap 4 (2, Bly,r)/ | < e we S(y,r),

which then easily implies the uniqueness.
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Next take an exhaustion of M by regular domains Q; C ;41 € M, M = U;Q;.
We can construct an increasing sequence of Green’s functions g¢;(-,y) on €;. Then
the limit is either identically +oo or

9(y) = lim g,(y)

is a positive A-harmonic function on M \ {y}. In the latter case we call the limit
function g(-,y) a Green’s function for (5.1) on M.

5.2. Liouville-type properties. We have the following list of Liouville-type
properties of M (which may or may not hold for M):
(1) M is p-parabolic.
(2) Every nonnegative A-harmonic function on M is constant for every A of
type p. (Strong p-Liouwville.)
(3) Every bounded .A-harmonic function on M is constant for every A of type
p. (p-Liouwville.)
(4) Every A-harmonic function v on M with Vu € LP(M) is constant for
every A of type p. (D,-Liouville.)
We refer to [15] for the proof of the following general result, and to [16] and
[21] for studies concerning the converse directions.

THEOREM 5.8.
(1) = (2 =06 = 4.

5.3. Applications to quasiregular maps. Here we give applications of the
above results on n-parabolicity and various Liouville properties to the existence of
non-constant quasiregular mappings between given Riemannian manifolds.

Let us start with the Gromov-Zorich ”global homeomorphism theorem” that
is a generalization of Zorich’s theorem we mentioned in the introduction; see [12],
[37].

THEOREM 5.9. Suppose that M is n-parabolic, n = dim M > 3, and that N
is simply connected. Let f: M — N be a locally homeomorphic quasiregular map.
Then f is injective and fM is n-parabolic.

PROOF. We give here a very rough idea of the proof. First one observes that
fM is n-parabolic (see Theorem 5.10 below), and so N \ fM is of n-capacity
zero. Then one shows, again by using the n-parabolicity of M, that the set F
of all asymptotic limits of f is of zero capacity. Consequently, F is of Hausdorff
dimension zero. Recall that an asymptotic limit of f is a point y € N such that
f(w(t)) — y as t — oo for some path v € 'y, in M. Removing E U (N \ FM)
from N has no effect on the simply connectivity for dimensions n > 3. That is,
fM \ E remains simply connected. Thus one can extend uniquely any branch of
local inverses of f and obtain a homeomorphism g: fM \ E — ¢g(fM \ E) such
that fog=1id | (fM \ E). Finally, g can be extended to E to obtain the inverse of
I O

We want to mention that in [20] the author and Pankka generalized the global
homeomorphism theorem for mappings of finite distortion under mild conditions on
the distortion. See also [38] for a related result for locally quasiconformal mappings.

THEOREM 5.10. If N is n-hyperbolic and M is n-parabolic, then every quasireg-
wlar mapping f: M — N is constant.
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PROOF. Suppose that f: M — N is a nonconstant quasiregular mapping.
Then fM C N is open. If fM # N, pick a point y € (N \ fM) and let g = g(-,y)
be the Green’s function on IV for the n-Laplacian. Then go f is a nonconstant posi-
tive A-harmonic function on M which gives a contradiction with the n-parabolicity
of M and Theorem 5.8. If fM = N, let u be a nonconstant positive supersolution
on N for the n-Laplacian. Then uo f is a nonconstant supersolution on M for some
A of type n which is again a contradiction. O

ExAaMPLE 5.11. (1) If N is a Cartan-Hadamard manifold, with Ky <
—a? < 0, then every quasiregular mapping f: R™ — N is constant.
(2) Let H,, be the Heisenberg group with a left-invariant Riemannian metric,
then every quasiregular mapping f: R2"*! — H,, is constant.

THEOREM 5.12. Suppose that M is strong n-Liouville while N is not. Then
every quasireqular map f: M — N is constant.

ProoOF. If N is not strong n-Liouville, then it is n-hyperbolic by Theorem 5.8.
Suppose that f: M — N is a nonconstant quasiregular mapping. Then fM C N
is open. If fM # N, choose a point y € (N \ fM) and let g = g(-,y) be the
Green’s function for n-Laplacian on N. Then g o f is a nonconstant positive A-
harmonic function, with A of type n. This is a contradiction. If fM = N, we
choose a nonconstant positive n-harmonic function » on N and get a contradiction
as above. ]

THEOREM 5.13. Let N be a Cartan-Hadamard n-manifold, with —b? < K <
—a? < 0, and let M be a complete Riemannian n-manifold admitting a global
doubling property and a global (1,n)-Poincaré inequality. Then every quasiregular

mapping f: M — N is constant.

PrOOF. By [18], N admits nonconstant positive n-harmonic functions. Hence
N is not strong n-Liouville. On the other hand, the assumptions on M imply that
a global Harnack’s inequality for positive .A-harmonic functions of type n holds on
M. Thus M is strong n-Liouville, and the claim follows from Theorem 5.12. g

THEOREM 5.14 (”One-point Picard”). Suppose that N is n-hyperbolic and M
is strong n-Liouville. Then every quasiregular mapping f: M — N\ {y}, with
y € N, is constant.

PROOF. Suppose that f: M — N\ {y} is a nonconstant quasiregular mapping.
Then (N \ fM) # (. Choose a point z € (N \ fM), and let g = g(-,z) be the
Green’s function on N for the n-Laplacian. Then g o f is a non-constant positive
A-harmonic function for some A of type n leading to a contradiction. |

In [22] the author and Rickman applied a method of Lewis ([25]) that relies
on Harnack’s inequality to prove the following general version of Picard’s theorem
on the number of omitted values of a quasiregular mapping. See [31, IV.2.1] and
[8] for earlier versions of Picard’s theorem.

THEOREM 5.15. Suppose that M admits a global Harnack’s inequality for posi-
tive A-harmonic functions of type n. Assume, furthermore, that M has the following
covering property: for each 0 < k < 1 there exists an integer m = m(k) such that
every ball B(x,r) C M can contain at most m disjoint balls of radius kr. Suppose
that N has at least two ends, i.e. there exists a compact set C C N such that
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N\ C has at least 2 unbounded components. Then, for every K > 1, there exists a
constant q such that every K-quasiregular mapping f: M — N must be constant if
N has at least q ends.

5.4. p-parabolicity and volume growth. Suppose that M is complete. Fix
a point 0 € M and write V (t) = Vol(B(o,1)).

THEOREM 5.16. Let 1 < p < oo and suppose that

o0 t 1/(p_1)
L dt =
/ <v<t>) -
© A
Vi) -0 T %

PROOF. One can either construct a test function involving the integrals above,
or use a p-modulus estimate for separating (spherical) rings. More precisely, write
B(t) = B(o,t) and S(t) = S(o,t) = 9B(o,t). For R > r > 0 and integers k > 1,
we write t;, = r +i(R —r)/k, i = 0,1,...,k. Then, by a well-known property of
modulus,

or

Then M 1s p-parabolic.

), S(tie1); Btig)))

Mk

M, (T(S(r), S(R); B(R)))"/ "7

(=)

see e.g. [31, IL1.5]. Here I'(S(r), ( ); B(R)) is the family of all paths joining
S(r) and S(R) in B(R). For each i =0,...,k — 1 we have an estimate

My (T (S(t:), S(ti1); B(tiv1))) < (V(tigr) = V(i) (tigr — )P

Hence
(5:3) k-1 1/(1-p)
M, (T(S(r), S(R); BR)))" ™" =3 <W> (tisr — t2)-

i=0
Thus the right-hand side of (5.3) tends to the integral

/ V/(t 1/(:0 1)

as k — oco. We obtain an estimate

R e
Mp(r(S(r),S<R);B(R)))<</ %) '

In particular, if
e dt B
. Vie-n >

for some r > 0, then M is p-parabolic. O

The converse is not true in general. That is, M can be p-parabolic even if

[ ()" ae
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or

> dt _
/ Ve <%
see [33].

It is interesting to study when the converse is true.

Suppose that we have polar coordinates (¢,t) on M, with the the pole at o.
Let J(¢,t) be the Jacobian determinant for the change of variables associated to
these polar coordinates. We want to estimate cap,(B(o, R), B(o,r)) from below.
For that purpose, let us take a test function u € C§°(B(o, R)), with u | B(o,r) = 1.
Then

R R
1< [ vutrelde= [ IVaGOI@.077 0,07

1/p (p—1)/p
< (/R|VU(7(f)|pJ(19’t)dt> (/R J(ﬁ,t)l/(lp)dt> .

Suppose that there is "homogeneity” on S(t) so that J(U,t) ~ Area S(t) = V'(t)

for all ¥. Then
L B o

Integrating with respect to ¥ and using Fubini’s theorem we obtain

R 1=p
dt
p .
/|Vu| >c (/T V/(t)l/(p_1)>

for all test functions u. Hence
17
_ R dt :
capp(B(O, R),B(O7 ’I")) Z C W

co dt 1=p
=¢ </ v'<t>1/<p1>) |

Some kind of symmetry on M is provided if M admits a global doubling prop-
erty and global (1,p)-Poincaré inequality. We refer to [17] for the proofs of the
following two theorems.

THEOREM 5.17. Suppose that M is complete and admits a global doubling prop-
erty and global (1, p)-Poincaré inequality for 1 < p < co. Then

) ¢\ V@D
M is p-hyperbolic if and only if / (W) dt < 0.

In some cases, we can estimate Green’s functions:
THEOREM 5.18. Suppose that M is complete and has nonnegative Ricci curva-
ture everywhere. Let 1 < p < co. Then

S t 1/(p—1)
M is p-hyperbolic if and only if / (W) dt < oo.
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Furthermore, we have estimates for Green’s functions for (5.1)

L[ ¢ 1/(p—1) 0o t 1/(p—1)
c — dt < g(zx,o Sc/ (—) dt
[ (v@) smorse | v

for every x € OM(r), where M(r) is the union of all unbounded components of
M\ B(o,r). The constant ¢ depends only on n,p,«, and (3.

Theorem 5.17 follows also from the following sharper result; see [19].

THEOREM 5.19. Suppose that M is complete and that there exists a geodesic
ray v: [0,00) — M such that for all t > 0,

|B(v(t),2s)] < c|B(v(t),s)],
whenever 0 < s < t/4, and that

1/p

][ lu —up (hldm < c ][ |Vu|Pdm

By (1) 2B, (1)

for all uw € C*°(2B,(t)), where B,(t) = B(v(t),t/8). Then M ‘s p-hyperbolic if

/oo (W)Wl) dt < oo.

Theorem 5.19 can be applied to obtain the following.

THEOREM 5.20. Let M be a complete Riemannian n-manifold whose Ricci cur-
vature is nonnegative outside a compact set. Suppose that M has mazximal volume
growth (V(o,t) = r™). Then M is p-parabolic if and only if p > n.
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