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4 Riemannian geometry

1 Differentiable manifolds, a brief review

1.1 Definitions and examples
Definition 1.2. A topological space M is called a topological n-manifold, n € N, if
1. M is Hausdorff,
2. M has a countable base (i.e. M is N»),
3. M is locally homeomorphic to R".
Let M be a topological n-manifold. A chart of M is a pair (U, x), where
1. U C M is open,
2. x: U — zU C R" is a homeomorphism, zU C R" open.
We say that charts (U, z) and (V,y) are C*°-compatible if U NV = () or
z=yoz He(UNV): z(UNV) = yUNV)

is a C'°°-diffeomorphism.

A C®-atlas, A, of M is a set of C°°-compatible charts such that

M= |J U

(Uz)eA

A C-atlas A is maximal if A = B for all C*®-atlases B D A. That is, (U,x) € A if it is
C*>°-compatible with every chart in A.

Lemma 1.3. Let M be a topological manifold. Then

1. every C*®-atlas, A, of M belongs to a unique mazimal C*°-atlas (denoted by A).

2. C-atlases A and B belong to the same maximal C*-atlas if and only if AUB is a C*°-atlas.
Proof. Exercise U

Definition 1.4. A differentiable n-manifold (or a smooth n-manifold) is a pair (M, .A), where
M is a topological n-manifold and A is a maximal C°°-atlas of M, also called a differentiable
structure of M.

We abbreviate M or M™ and say that M is a C'°°-manifold, a differentiable manifold, or a
smooth manifold.
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Definition 1.5. Let (M™, A) and (N, B) be C*°-manifolds. We say that a continuous mapping
f: M — N is C* (or smooth) if each local representation of f (with respect to A and B) is
C™. More precisely, if the composition y o f o 27! is a smooth mapping z(U N f~1V) — yV for
every charts (U,z) € A and (V,y) € B. We say that f: M — N is a C*°-diffeomorphism if f is
C® and it has an inverse f~! that is C*°, too.

Remark 1.6. Equivalently, f: M — N is C* if, for every p € M, there exist charts (U,z) in M
and (V,y) in N such that p € U, fU CV,and yo foz~!is C®(xU).

Examples 1.7. 1. M =R", A= {id}, A = canonical structure.

2. M =R, A= {id}, B={z A 23}. Now A # B since idoh™! is not C°° at the origin. However,
(R, A) and (R, B) are diffeomorphic by the mapping f: (R, A) — (R,B), f(y) = y'/3. Note:
f is diffeomorphic with respect to structures A and B since id is the local representation of

1.

f (R, B)

id =X

R R

3. If M is a differentiable manifold and U C M is open, then U is a differentiable manifold in a
natural way.

4. Finite dimensional vector spaces. Let V be an n-dimensional (real) vector space. Every norm
on V determines a topology on V. This topology is independent of the choice of the norm
since any two norms on V' are equivalent (V finite dimensional). Let E1, ..., E, be a basis of
V and E: R" — V the isomorphism

n
E(z) = Zalei, = (z',... z").
i=1

Then E is a homeomorphism (V' equipped with the norm topology) and the (global) chart
(V, E~1) determines a smooth structure on V. Furthermore, these smooth structures are
independent of the choice of the basis E', ..., E,.
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5. Matrices. Let M(n x m,R) be the set of all (real) n x m-matrices. It is a nm-dimensional
vector space and thus it is a smooth nm-manifold. A matrix A = (a;;) € M(n x m,R), i =
1,....n, g=1,...,m

ai;p a2 -+ Aim

a1 az -+ A2m
A= .

Gpl Ap2 - OGpm

can be identified in a natural way with the point
(@11,012, -+ Al Q215 -+ - s A2y« + - 5 ALy -+« Q) € R
giving a global chart. If n = m, we abbreviate M (n,R).
6. GL(n,R) = general linear group

= {L: R" — R" linear isomorphism}
= {A = (a;j): invertible (non-singular) n x n-matrix}
= {A = (a;j): det A # 0}.
[Note: an n x n-matrix A is invertible (or non-singular) if it has an inverse matrix A=1.]

By the identification above, we may interprete GL(n,R) C M(n,R) = R, Equip M(n,R)
with the relative topology (induced by the inclusion GL(n,R) C M(n,R) = R™). Now the
mapping det: M(n,R) — R is continuous (a polynomial of a;; of degree n), and therefore
G(n,R) C R™ is open (as a preimage of an open set R\ {0} under a continuous mapping).

7. Sphere S* = {p € R"*1: |p| = 1}. Let e1,...,e,+1 be the standard basis of R" ! let

@: 8"\ {ent1} = R"
¥: 8"\ {—ens1} = R”

be the stereographic projections, and A = {p, ¥ }. Details are left as an exercise.

Rn+1

\ R™ = R" x {0}

8. Projective space RP™. The real n-dimensional projective space RP™ is the set of all 1-
dimensional linear subspaces of R”*! ie. the set of all lines in R"*! passing through the
origin. It can also be obtained by identifying points x € S"™ and —x € S™. More precisely,
define an equivalence relation

x~y = x==y, xr,y S
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Then RP™ = S"/~= {[z]: © € S"}. Equip RP" with so called quotient topology to obtain
RP"™ as a topological n-manifold. Details are left as an exercise.

9. Product manifolds. Let (M, A) and (N, B) be differentiable manifolds and let p;: M x N — M
and po: M x N — N be the projections. Then

C={(UxV,(zopr,yops)): (U,x) € A (V,y) € B}
is a C'*°-atlas on M x N. Example
(a) Cylinder R! x St
(b) Torus S' x St = T2,

10. Lie groups. A Lie group is a group G which is also a differentiable manifold such that the
group operations are C'°, i.e.

(g,h) = gh™!
is a C*°-mapping G x G — G. For example, GL(n,R) is a Lie group with composition as the
group operation.

Remark 1.8. 1. Replacing C™ by, for example, C*, C* (= real analytic), or complex analytic
(in which case, n = 2m) we may equip M with other structures.

2. There are topological n-manifolds that do not admit differentiable structures. (Kervaire,
n = 10, in the 60’s; Freedman, Donaldson, n = 4, in the 80’s). The Euclidean space R"
equipped with an arbitrary atlas is diffeomorphic to the canonical structure whenever n # 4
("Exotic® structures of R* were found not until in the 80’s).

1.9 Tangent space

Let M be a differentiable manifold, p € M, and v: I — M a C*°-path such that ~(¢) = p for some
t € I, where I C R is an open interval.

Write
C®p)={f:U—=R| feC>®U), U some neighborhood of p}.

Note: Here U may depend on f, therefore we write C*(p) instead of C*°(U).
Now the path ~ defines a mapping 4;: C*®(p) — R,

Yuf = (f o) @)

Note: The real-valued function f o+ is defined on some neighborhood of t € I and (f o~)’(¢) is its
usual derivative at ¢.

Interpretation: We may interprete 4, f as ”a derivative of f in the direction of v at the point
1

p.
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Example 1.10. M =R"
If v = (y,...,7): I = R" is a smooth path and 7/(t) = (¥{(t),...,7,(t)) € R is the derivative
of v at ¢, then

Yf = (foy)(t) =) (t) =~'(t) - V()

t

In general: The mapping ~; satisfies:
Suppose f,g € C*®(p) and a,b € R. Then

a) Yi(af +bg) = ayi f + by,
b) 4:(fg9) = g®)3:f + f(p) g

We say that 4; is a derivation.
Motivated by the discussion above we define:

Definition 1.11. A tangent vector of M at p € M is a mapping v: C*°(p) — R that satisfies:
(1) v(af +bg) = av(f)+bv(g), f,g9€ C>®(p), a,beR;

(2) v(fg) = gp)v(f) + f(p)v(g) (cf. the "Leibniz rule®).
The tangent space at p is the (R—)linear vector space of tangent vector at p, denoted by T,,M or
M,,.
Remarks 1.12. 1. If v,w € T,M and c,d € R, then cv + dw is (of course) the mapping
(av + bw): C*®(p) — R,
(cv + dw)(f) = cv(f) + dw(f).

It is easy to see that cv + dw is a tangent vector at p.
2. We abbreviate vf = v(f).
3. Claim: If v € T,M and c € C*°(p) is a constant function, then cv = 0. (Exerc.)

4. Let U be a neighborhood of p interpreted as a differentiable manifold itself. Since we use
functions in C°°(p) in the definition of T, M, the spaces T, M and T,U can be identified in a
natural way.

Let (U,z), z = (2',22,...,2"), be a chart at p. We define a tangent vector (so-called coordi-
nate vector) (%)p at p by setting

(aii )pf = Di(fer ") (x), feC @)

Here Dj is the partial derivative with respect to i*" variable. We also denote

@)= D) = (5 )
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Remarks 1.13. 1. It is easy to see that (0;), is a tangent vector at p.
2. If (U,x), © = (zt,...,2"), is a chart at p, then (9;),27 = §;;.
Next theorem shows (among others) that T, M is n-dimensional.

Lemma 1.14. If f € C*(B), k > 1, is a real-valued function in a ball B = B™(0,r) C R", then
there exist functions g; € C¥=Y(B),i =1,...,n, such that g;(0) = D;f(0) and

Fly) = £0) =" 4igily)
i=1

forally = (y1,...,yn) € B.

Proof. For y € B we have

(ylv"'vyn—lvo)_f(yla"'yyn—Qyoao)
(yla"'ayn—27070) _f(yla"'7yn—37070

+f
+f

+f(y170770)_f(0)

"o

:Zé f(yl7“’7yi—latyi707--.,0)
i=1

:Z/ a(f(yla-~~7yz'—1,tyi,0,...,0))dt
i=170

n 1
:Z/ sz(y17>yz—latyzvo>70)yzdt
i=1"0

Define .

gi(y) = /0 Dif(y1y.--,Yi-1,ty;,0,...,0)dt.
Then g; € C*~1(B) (since f € C*(B)) and g;(0) = D;f(0). O
Theorem 1.15. If (U,z), x = (z!,...,2"), is a chart at p and v € T,M, then

v = Z 02" (0;) -
i=1

Furthermore, the vectors (0;)p, ¢ = 1,...,n, form a basis of T,M and hence dim T,M = n.
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Proof. For u € U we write z(u) = y = (y%,...,y") € R", so 2'(u) = y*. We may assume that
z(p) = 0 € R™. Let f € C®(p). Since f ox~! on O, there exist (by Lemma 1.14) a ball B =
B"(0,r) C zU and functions g; € C*°(B) such that

(foa™)(y) = (foa™)(0) + iyigi(y) vy € B
and g;(0) = D;(f o x~)(0) = (9;),f. Thus
flu) = f(p) + iwi(u)hi(w
where h; = g; o and )

Hence

= Z v’ (0;)p -
i=1
This holds for every f € C°°(p), and therefore
v= Zvazi(@')p.
i=1

Hence the vectors (0;)p, i = 1,...,n, span T,M. To prove the linear independence of these vectors,
suppose that

w = zn: bz(&)p =0.
i=1

Then .
0= ’LUIL’j = sz (87;)p{L’j = bj
i SN——
=1
=6i;
for all j =1,...,n,, and so vectors (0;)p, @ =1,...,n, are linearly independent. ]

Remark 1.16. Our definition for tangent vectors is useful only for C'*°-manifolds. Reason: If M
is a C*-manifold, then the functions h; in the proof of Theorem 1.15 are not necessarily C*-smooth
(only C*~'-smoothness is granted).

Another definition that works also for C*-manifolds, k > 1, is the following: Let M be a C*-
manifold and p € M. Let v;: I; — M be C'-paths, 0 € I; C R open intervals, and 7;(0) = p, i = 1,2.
Define an equivalence relation 73 ~ v9 <= for every chart (U,z) at p we have

(:L‘ o ')/1)/(0) = (:13 o ')/2)/(0)

Def.: Equivalence classes = tangent vectors at p. In the case of a C'"*°-manifold this definition
coincides with the earlier one ([y] = ).
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1.17 Tangent map
Definition 1.18. Let M"™ and N" be differentiable manifolds and let f: M — N be a C*° map.
The tangent map of f at p is a linear map f.: T,M — T}, N defined by

(fev)g =v(go f), Vge C®(f(p), veT,M.
We also write fy, or T),f.

Remarks 1.19. 1. It is easily seen that f.v is a tangent vector at f(p) for all v € T,M and
that fy is linear.

2. If M =R™ and N = R", then f,, = f'(p) (see the canonical identification T,R" = R™ below).

3. 7Chain rule“: Let M, N, and L be differentiable manifolds and let f: M — N and g: N — L
be C"*°-maps. Then

(go f)*p = 9xf(p) © f*p
for all p € M. (Exerc.)
4. An interpretation of a tangent map using paths:

Let v € T,M and let v: I — M be a C*°-path such that v(0) = p and 49 = v. Let f: M — N
be a C*°-map and o = fo~y: I — N. Then f,v = dyp. (Exerc.)

T,M

Ty N

Let 2 = (2!,...,2™) be a chart at p € M™ and y = (y',...,y") a chart at f(p) € N™. What
is the matrix of fi.: T,M — Ty, N with respect to bases (aii )p,z' =1,...,m, and (ay] )f(p)’j =
1,...,n,?7 By Theorem 1.15,

<81’]> Zf*<8x3> (ai)() 1<j<m.
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Thus we obtain an n x m matrix (a;;),

0 0
- ( ax]) = L ior)

This is called the Jacobian matrix of f at p (with respect to given bases). As a matrix it is the
same as the matrix of the linear map ¢’ (x(p)), g=uyo fox ! with respect to standard bases of
R™ and R".

Recall that f: M™ — N" is a diffeomorphism if f and its inverse f~! are C°°. A mapping
f: M — N is a local diffeomorphism at p € M if there are neighborhoods U of p and V' of f(p)
such that f: U — V is a diffeomorphism.
Note: Then necessarily m = n. (Exerc.)

Theorem 1.20. Let f: M — N be C* and p € M. Then f is a local diffeomorphism at p if and
only if fi: TyM — Ty, N is an isomorphism.

Proof. Apply the inverse function theorem (of R™). Details are omitted, O

Tangent space of an n-dimensional vector space. Let I be an n-dimensional (real) vector
space. Recall that any (linear) isomorphism z: V' — R"™ induces the same C'*°-structure on V. Thus
we may identify V' and 7T,V in a natural way for any p € V: If p € V, then there exists a canonical
isomorphism 7: V' — T,V Indeed, let v € V and 7v: R — V the path

v(t) = p+ tu.

We set
i(v) = Yo-

5

Example: V =R", T,R"=R" canonically.
If f: M — Ris C* and p € M, we define the differential of f, df: T,M — R, by setting
dfv=vf, wveT,M.

(Also denoted by dfy.)
By the isomorphism i: R — T, R as above, we obtain df = i~! o f.. Usually we identify df = f..
Note: Since df : T,M — R is linear, df € T,M* (= the dual of T,M).

f*

™ TipR

N/
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Tangent space of a product manifold. Let M and N be differentiable manifolds and let

m: M XN — M,
mo: M XN — N

be the projections. Using these projections we may identify T, (M x N) and T,M & T;N in a
natural way: Define a canonical isomorphism

T: T(p’q)(M X N)— T,M ©TyN,
TU = TV + T2V, UET(p’q)(MXN).

€TpM €TpN

Example: M =R, N =St

T24 U

N
q<——— / %(nq)
\

Y

2

R e

Let f: M x N — L be a C*-mapping, where L is a differentiable manifold. For every (p,q) €
M x N we define mappings
fpr N—=L, f1:M—1L,
fol@) = f(p) = f(p, 9)-

Thus, for v € T,M and w € T; N, we have

fe(v+w) = (fDv+ (fp)sw. (Exerc.)

1.21 Tangent bundle

Let M be a differentiable manifold. We define the tangent bundle T'M of M as a disjoint union
of all tangent spaces of M, i.e.
T™ = | | T,M.
peEM
Points in 7'M are thus pairs (p,v), where p € M and v € T, M. We usually abbreviate v = (p,v),
because the condition v € T, M determines p € M uniquely.
Let m: T'M — M be the projection

w(v) =p, ifveT,M.
The tangent bundle T'M has a canonical structure of a differentiable manifold.

Theorem 1.22. Let M be a differentiable n-manifold. The tangent bundle TM of M can be
equipped with a natural topology and a C*°-structure of a smooth 2n-manifold such that the projec-
tion m: TM — M 1is smooth.
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Proof. (Idea): Let (U,z), x = (z',...,2"), be a chart on M. Define a one-to-one mapping
T: TU — 2U x R" C R" x R" = R*"
as follows. [Here TU = | |, TyU = || ey TpM.| If p € U and v € T, we set

= (xl(p),...,m”(p),vxl,...,vx")

e?li" eR™
TU
/LA 2U x R"
T,.M
/\ x -
v P zU

First we transport the topology of R"™ x R™ into T'M by using maps T and then we verify that
pairs (TU,z) form an atlas of TM. We obtain a C*°-structure for TM. [Details are left as an
exercise.] O

In the sequel the tangent bundle of M means T'M equipped with this C'*°-structure. It is an
example of a vector bundle over M.

Let m: TM — M be the projection (7(v) = p for v € T,M). Then 7~ !(p) = T,M is a fibre
over p. If A C M, then a map s: A — TM, with o s = id, is a section of 7'M in A (or a vector
field).

Smooth vector bundles. Let M be a differentiable manifold. A smooth vector bundle of
rank k over over M is a pair (E,7), where F is a smooth manifold and 7: E — M is a smooth
surjective mapping (projection) such that:

(a) for every p € M, the set E, = 7~ 1(p) C E is a k-dimensional real vector space (= a fiber of
E over p);

(b) for every p € M there exist a neighborhood U > p and a diffeomorphism o: 771U — U x Rk
(= local trivialization of E over U) such that the following diagram commutes

U U x RF
—* U x R¥ v
\ /
LT( ’Ld 'Lﬂ-l
—
U U

above m1: UxR* — U is the projection] and that ¢|E, : E, — xR¥ is a linear isomorphism
[ proj PlEs: Eqg — {q p
for every g € U.
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The manifold E is called the total space and M is called the base of the bundle. If there exists
a local trivialization of E over the whole manifold M, ¢: 77 'M — M x R¥ then E is a trivial
bundle.

A section of E is any map o: M — FE such that roo = id: M — M. A smooth section is
a section that is smooth as a map o: M — E (note that M and E are smooth manifolds). Zero
section is a map (: M — E such that

¢((p)=0€E, Vpe M.

A local frame of E over an open set U C M is a k-tuple (o1,...,0k), where each o; is a smooth
section of E (over U) such that (o1(p),02(p),...,0k(p)) is a basis of E, for all p € U. If U = M,
(01,-..,0%) is called a global frame.

1.23 Submanifolds

Definition 1.24. Let M and N be differentiable manifolds and f: M — N a C°°-map. We say
that :

1. fis a submersion if f.,: T,M — Ty, N is surjective Vp € M.
2. fis an immersion if f.,: T,M — Ty, N is injective Vp € M.

3. fis an embedding if f is an immersion and f: M — fM is a homeomorphism (note relative
topology in fM).

If M C N and the inclusion i: M < N, i(p) = p, is an embedding, we say that M is a submanifold
of N.

Remark 1.25. If f: M™ — N" is an immersion, then m < n and n — m is the codimension of

f.

Examples 1.26. (a) If My,..., M}, are smooth manifolds, then all projections 7;: My x --- X
M, — M; are submersions.

(b) (M =R, N =R?) a: R = R2, aft) = (t,|t|) is not differentiable at ¢ = 0.

A

(c) a: R = R2, at) = (3,#%) is C™ but not an immersion since o/(0) = 0.

A
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(d) a: R — R2, at) = (t3 - 4t,t2 — 4) is C*° and an immersion but not an embedding (a(42) =

(0,0)).

A

//‘

(e) The map « (in the picture below) has an inverse but it is not an embedding since the inverse
in not continuous (in the relative topology of the image).

/Q»D

(f) The following « is an embedding.

-~

Remark 1.27. The notion of a submanifold has different meanings in the literature. For instance,
Bishop-Crittenden [BC] allows the case (e) in the definition of a submanifold.

Theorem 1.28. Let f: M™ — N™ be an tmmersion. Then each point p € M™ has a neighborhood
U such that f|U: U — N™ is an embedding.

Proof. Fix p € M. We have to find a neighborhood U > p such that f|U: U — fU is a homeomor-
phism when fU is equipped with the relative topology. Let (Uy,z) and (Vi,y) be charts at points
p and f(p), respectively, such that fU; C Vi, z(p) = 0 (€ R™), and y(f(p)) = 0 (€ R™). Write
f=yofoat, f=(fi,...,fn). Since f is an immersion, f'(0): R™ — R™ is injective. We may
assume that f/(0)R™ = R”™ C R™ x R¥, k = n — m (otherwise, apply a rotation in R"). Then
det f(0) # 0, when f/(0) is interpreted as a linear map R™ — R™. Define a mapping

@: zU; x RF - R",

So(j?t) = (fl(j)ﬂf2(‘%)7’ o 7fm(j)7fm+l(‘%) +tl7- .. 7fm+k(‘%) +tk))7
z € x2Uy, t:(tl,...,tk)ERk.
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The matrix of ¢/(0,0): R™TF — RM+F ig

and therefore det ¢'(0,0) = det 70 (0) # 0. By the inverse mapping theorem, there are neighborhoods
0e W, C zU; x RF and 0 € W, € R™ such that Wy Wy — Wy is a dlﬁeomorphlsm Write
U=WiNaU, and U = 2~'U (C Uy). Since p|zU; x {0} = f, we have ¢|U = f. In particular,

flU: U — fU is a homeomorphism, when fU is equipped with the relative topology. ]
!
Uq e
}—]—?——/\
M

1
w
zU; C R™

Example 1.29. Let f: R""! — R be a C*-function such that V f(p) = (D1f(p), ..., Dn+1f(p)) #
0 for every p € M = {x € R"L: f(x) = 0} # (). Then M is an n dimensional submanifold of R***.

Proof of the claim above. (Idea): Let p € M be arbitrary. Applying a transformation and a
rotation if necessary we may assume that p = 0 and

vVf(0)=(0,...,0, of (0)).

0xp41

Then

8 ( ) # 0. Define a mapping ¢: R — R+

o(z) = (a:l,...,mn,f(x)), = (T1,...,Tn,Tpy1).

Then
1 0 ... 0
1 0 0
: : of
det ©'(0) = : : = » (0) # 0.
0 -+ - 0 1 0
O oo e e 0 %’11(0)

By the inverse mapping theorem, there exist neighborhoods @ > p and W 3 ¢(0) = (0,0) € R" xR
such that ¢: Q@ — W is a diffeomorphism.
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R
MNV=U P
1% M !
¥
— T
\\L/kn
Q
K

Choose an open set K C R", 0 € K, and an open interval I C R, 0 € I, such that K x I C W.
Let V=9 YK xI)NQand U =V N M. Then ¢: V — K x [ is a diffeomorphism. Let y = ¢|U.
Repeat the above for all p € M and conclude that pairs (U,y) form a C*-atlas of M. Since the
inclusion i: M — R"H! satisfies

iU = ylo o|U,

1 is an embedding. O

1.30 Orientation

Definition 1.31. A smooth manifold M is orientable if it admits a smooth atlas {(U,, z4)} such
that for every a and 8, with U, NUg = W # (), the Jacobian determinant of xg oz ! is positive at
each point q € z,W, i.e.

(1.32) det(zg o x;l)/(q) >0, Vqeaz,W

In the opposite case M is nonorientable. If M is orientable, then an atlas satisfying (1.32) is
called an orientation of M. Furthermore, M (equipped with such atlas) is said to be oriented.
We say that two atlases satisfying (1.32) determine the same orientation if their union satisfies
(1.32), too.

Remarks 1.33. 1. Warning: The notion of a smooth structure has different meanings in the
literature (e.g. do Carmo [Ca]). What goes wrong if we define orientability by saying: ” M is
orientable if it admits a C'*°-structure such that (1.32) holds?“ (Exerc.)

2. An is orientable and connected smooth manifold has exactly two distinct orientations. (Ex-
erc.)

3. If M and N are smooth manifolds and f: M — N is a diffeomorphism, then

M is orientable <= N is orientable.
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4. Let M and N be connected oriented smooth manifolds and f: M — N a diffeomorphism.
Then f induces an orientation on . If the induced orientation of IV is the same as the initial
one, we say that f is sense-preserving (or f preserves the orientation). Otherwise, f is
called sense-reversing (or f reverses the orientation).

Examples 1.34. 1. Suppose that there exists an atlas {(U,x), (V,y)} of M such that UNV is
connected. Then M is orientable.
Proof. The mapping y oz~ 1: (U NV) — y(U NV) is diffeomorphic, so

det(y o m_l),(q) #0 Vgex(UNYV).

Since ¢ +— det(y o a:_l),(q) is continuous and (U N'V') is connected, the determinant can not
change its sign. If the sign is positive, we are done. If the sign is negative, replace the chart

(‘/7 y)7 y= (yb cee 7yn)7 by a chart (V7g)7 g = (_y17y27 cee 7yn) Then the atlas {(U7$)7 (V7 g)}
satisfies (1.32). O

2. In particular, the sphere S™ is orientable.

1.35 Vector fields

Let M be a differentiable manifold and A C M. Recall that a mapping X: A — T M such that
X(p) € T,M for all p € M is called a vector field in A. We usually write X, = X(p). f AC M
is open and X: A — TM is a C*-vector field, we write X € T(A). Clearly T(A) is a real vector
space, where addition and multiplication by a scalar are defined pointwise: If X, Y € T(A) and
a,b € R, then aX + bY, p — aX, + bY), is a smooth vector field. Furthermore, a vector field
V € T(A) can be multiplied by a smooth (real-valued) function f € C°°(A) producing a smooth
vector field fV, p— f(p)Vp.

Let M be a differentiable n-manifold and A C M open. We say that vector fields V!,..., V"™ in
A form a local frame (or a frame in A) if the vectors Vpl, ..., Vit form a basis of T),M for every
p € A. In the case A = M we say that vector fields V!, ..., V" form a global frame. Furthermore,
M is called parallelizable if it admits a smooth global frame. This is equivalent to T'M being a
trivial bundle.!

Definition 1.36. (Einstein summation convention) If in a term the same index appears twice,
both as upper and a lower index, that term is assumed to be summed over all possible values of
that index (usually from 1 to the dimension).

Let (U,z), = = (x!,...,2"), be a chart and (9;), = (a?ci)p’ 1 = 1,...,n, the corresponding
coordinate vectors at p € U. Then the mappings

82'1 U—)TM, pi—>(8i)p: <%>,
p

are vector fields in U, so-called coordinate vector fields. Since the vector fields 0; form a frame,
so-called coordinate frame, in U, we can write any vector field V' in U as

Vo =0'(0)(@)p, pEU,

where v': U — R. Functions v’ are called the component functions of V with respect to (U, x).

'Every Lie group is parallelizable; S!,S®, and S are the only parallelizable spheres; RP!, RP3, and RP” are the
only parallelizable projective spaces; a product S™ x S™ is parallelizable if at least one of the numbers n > 0 or m > 0
is odd.
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Lemma 1.37. Let V' be a vector field on M.Then the following are equivalent:
(a) VeT(M);
(b) the component functions of V' with respect to any chart are smooth;

(¢c) If U C M is open and f: U — R is smooth, then the function Vf: U =R, (Vf)(p) =V,f,
s smooth.

Proof. Exercise. O
Remark 1.38. In particular, coordinate vector fields are smooth by (b).

Suppose that A C M is open and V.W € T(A). If f € C*(p), where p € A, then V f € C*(p)
and thus W,(V f) € R (= "the derivative of V f in the direction of W),“). The function A = R, p —
Wy(V f), is denoted by WV f. Thus (WV f)(p) = W,(V f). We also denote (WV'),f = W,(V f).

Remark 1.39. (WV), is not a derivation, so (WV'), & T,,(M), in general. Reason: Leibniz’s rule
(2) does not hold (choose f = g).

Definition 1.40. Suppose that A C M is open and V,W € T(A). We define the Lie bracket of
V and W by setting

VW =Ve(Wf)=Wp(Vf), peA feC™(p).
Theorem 1.41. Let A C M be open and V,W € T(A). Then
(a) [V,W], € T,M;
(b) [V,W] e T(A) and it satisfies

(1.42) V.WIf =VWf) =WV [), feC*A)

(c) if v' and w® are the component functions of vector fields V and W, respectively, with respect
to a chart x = (x',...,2™), then
(1.43) [V, W] = (v'0;w! — w'0p’) 0.

Note: The formula (1.43) can be written as
VW] = (Vw! — W) 9;.

Proof. (a) We have to prove that [V, W], satisfies conditions (1) and (2) in the definition of a
tangent vector.

Condition (1) is clear.
Condition (2): Let f,g € C*°(p). Then

Vo(W(fg)) = Wp(V(f9))
—V(fWg+ng) Wy (fVg+gVr)
F@)Vp(Wg) + (Wypg) (Vo f) + 9®)Vp(W ) + (Wpf)(Vpg)
= fIWp(Vg) = (Vpg) Wy f) = g@Wp(V ) = (Vo f)(Wy9)
(p)( p(Wg) =W, (Vg)) + g() (Vo(W f) = Wp(V )
F@IV, Wlpg + g@)[V, W, f.

[V, W1,(
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(b) Formula (1.42) follows immediately from the definition of a Lie bracket. Let f € C°°(A). Now
functions W f, Vf, V(W f), and W(V f) are smooth by Lemma 1.37 (c) since V,W € T(A).
Hence also [V,W]f =V (W f)—W(Vf) is a smooth function and therefore [V, W] € T(A).

(c) IfV =v'0;, W =w’ 0j, and f is smooth, we obtain by a direct computation that
V,WIf = VW) =WV f)=0"0;(wd;f) — w! 9;(v'0; f)
= " (8iw’) (05 ) + v'w! 8;(8; f) — w! (9v")(Bi ) — w!v' 0;(Di f)
v (0iw?)(0;f) — w! (00) (0 ).

In the last step we used the fact that 0;(0;f) = 0;(0;f) for a smooth function f. Changing
the roles of indices 7 and j in the last sum we obtain (1.43).
O

Lemma 1.44. The Lie bracket satisfies:
(a) Bilinearity:

[ale + CLQXQ,Y] = al[Xl, Y] + CLQ[XQ,Y] ja
(X, a1Y1 + apYs] = a1[X, V1] + az[ X, Yo

for ai,as € R;
(b) Antisymmetry: [X,Y] = —[Y, X].

(c) Jacobi identity:
(X,[Y,Z2]] + [V,[Z,X]] + [Z,[X,Y]] = 0.

(d)
[fX,gY] = fglX,Y]+ f(Xg)Y —g(Y f)X.

Proof. (a) Follows directly from the definition.

(b) Follows directly from the definition.

Y, (Z,X)|f=Y(Z(XF) -Y(X(Zf)) - Z(X(Y[)) + X(Z(Y [))

[Z, [X, Y]}f = Z(X(Yf)) — Z(Y(Xf)) — X(Y(Zf)) + Y(X(Zf)).
Adding up both sides yields

(X, [V, Z]|f + [Y.[2,X]|f+ [Z2,[X,Y]]f = 0.
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[fX,gY|h = fX(gYh)—gY(fXh)
= [gX(Yh) + f(Xg)(Yh) — gfY(Xh) — g(Y f)(Xh)
= [g[X,Y]h + [(Xg)Yh —g(Y f)Xh.

O
Lemma 1.45. Let (U,z), = (x',...,2"), be a chart and 0;, i = 1,...,n, the corresponding
coordinate vector fields. Then
[05,0;] =0 Vi, j.
Proof. Let pe U and f € C*(p). Then
(9:)p(95£) = (90)p [(D; (fo ™)) 0 2]
= D; [(Dj(foz™) o) oa™"] (x(p)) = DiD;(f o x™") (2(p)).
Since D;D;g = D;D;g for a smooth function g, we obtain the claim. O

2 Riemannian metrics

2.1 Tensors and tensor fields

Let Vi,..., Vi, and W be (real) vector spaces. Recall that a mapping F': V4 X -+ x Vi, — W is
multi linear (more precisely, k-linear) if it is linear in each variable, i.e.

F(vy,...;av; +bvl, ... vp) = aF(v1, .., 04,0 0) + bF (U1, .., 00, . 0g)

foralli=1,...,k and a,b € R.

Let V be a finite dimensional (real) vector space. A linear map w: V — R is called a covector
on V and the vector space of all covectors (on V') is called the dual of V' and denoted by V*.

We will adopt the following notation

(w,v) = (v,w) =w(v) eR, weV* veV

Lemma 2.2. Let V be an n-dimensional vector space and let (vy,...,vy,) be its basis. Then covec-
tors wl, ..., w", with
w! (v;) = 67,

form a basis of V*. In particular, dim V* = dim V.

Proof. (Exerc.) O
[Note: Above 5? is the Kronecker delta, i.e. 5? =1, if i = j, and 5? = 0, whenever i # j.]

Definition 2.3. 1. A k-covariant tensor on V is a k-linear map

VESR, VE=Vx...xV.

k copies



Fall 2010 23

2. An [-contravariant tensor on V is an [-linear map

VASR, VI=V*x...xV*.
N—_———

I copies
3. A k-covariant, [-contravariant tensor on V (or a (k,l)-tensor) is a (k + [)-linear map
VEx VSR,
Denote
T*(V) = the space of all k-covariant tensors on V/,

T;(V) = the space of all [-contravariant tensors on V,

TF(V) = the space of all k-covariant, [-contravariant tensors on V (i.e. (k,)-tensors).

Remarks 2.4. 1. T*(V), T;,(V), and T}*(V) are vector spaces in a natural way.

2. We make a convention that both O-covariant and O-contravariant tensors are real numbers,
ie. TO(V)=To(V) =R,

Examples 2.5. 1. Any linear map w: V — R is a l-covariant tensor. Thus TH(V) = V*.
Similarly, T1(V) = V** = V.

2. If V is an inner product space, then any inner product on V' is a 2-covariant tensor (a bilinear
real-valued mapping, i.e. a bilinear form).

3. The determinant det: R” x --- x R™ — R is an n-covariant tensor on R".
Interpretation: For v1,...,v, € R", v; = (v},...,vP),

vl .. 'l)

det(vy,...,v,) = det

n

n
Uy Un,

Definition 2.6. The tensor product of tensors F' € T (V) and G € T7 (V) is the tensor F® G €

TPV,

F® G(vy,... ,vk+p,w1, LT = Foy, .o w0 G0, - - ,vk+p,wl+l, W),
Lemma 2.7. If (v1,...,v,) is a basis of V and (w',...,w") the corresponding dual basis of V*
(i.e. w'(v;) = 0;), then the tensors

W @ wt @y @ ®uj, 1< fpyig <,
form a basis of TF(V). Consequently, diim T} (V) = n**.
Proof. (Exerc.) O

Remark 2.8. Since T7(V) = V** =V (that is, every vector v € V is a 1-contravariant tensor) and
TYV) = V* (every covector is a 1-covariant tensor), we have

W@ Wk Qu, @@, € TF(V),

i.e. it is a (k,[)-tensor.
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2.9 Cotangent bundle
We defined earlier that the differential of a function f € C*°(p) at p is a linear map df,: T,M — R,

dfpv =vf, veTl,M.

Hence df, € T,M* (= the dual of T,M). We call T,M* the cotangent space of M at p. If
(U,z), = = (2',...,2"), is a chart at p and ((O1)p, ..., (dn)p) is the basis of T,M consisting of
coordinate vectors, then differentials dz;,, i = 1,...,n, of functions z* at p form the dual basis of
T,M*. Hence the differential (at p) of a function f € C°°(p) can be written as

dfp = (0i)p fdx;. (Exerc.) [Note: Einsteinin summation]
We define the cotangent bundle of M as a disjoint union of all cotangent spaces of M
T™M* = | | T,M"
peEM

equipped with the natural C'°°-structure (defined similarly to that of TM). Furthermore, let
m: TM* — M, T,M* > w + p € M be the canonical projection. We call sections of T'M*, i.e.
mappings w: M — TM*, with 7 ow = id, covector fields on M or (differential) 1-forms. We
denote by T1(M) (or T&H(M), T*(M), T*1(M)) the set of all smooth covector fields on M. The
differential of a function f € C°°(M) is the (smooth) covector field

df : M —TM*, df(p) =dfp: T,M — R.

If (U,x), » = (z',...,2"), is a chart and w is a covector field on U, there are functions
wi:U—R, 1=1,...,n, such that '
w = w;dx’.

Functions w; are called the component functions of w with respect to the chart (U, z). As in the
case of vector fields we have:

Lemma 2.10. Let w be a covector field on M. Then the following are equivalent:
(a) we THM);
(b) the component functions of w (with respect to any chart) are smooth functions;

(¢) if U C M is open and V € T(U) is a smooth vector field in U, then the function p — wy(V})
s smooth.

Proof. Exercise [cf. Lemma 1.37] O

2.11 Tensor bundles
Let M be a smooth manifold.
Definition 2.12. We define tensor bundles on M as disjoint unions:

1. k-covariant tensor bundle
T"M = | | THT, M),
peEM
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2. l-contravariant tensor bundle

T,M = | | T(T,M), and
peEM

3. (k,l)-tensor bundle
M = | | THT,M)
peM

equipped with natural C°°-structures.
We identify:

TM = ToM = M x R,

T'M = TM*,
T\M =TM,
TEM =T*M,
T°M = T;M.

Since all tensor bundles are smooth manifolds, we may consider their smooth sections. We say that
asection s: M — T M is a (k,l)-tensor field (recall that mos = idys, and so s(p) € TF(T,M)). A
smooth (k,[)-tensor field is a smooth section M — T} M. Similarly, we define (smooth) k-covariant
tensor fields and /-contravariant tensor fields. Since 0-covariant and O-contravariant tensors
are real numbers, (smooth) O-covariant tensor fields and (smooth) O-contravariant tensor fields are
(smooth) real-valued functions.

Denote

T*(M) = {smooth sections on T*M}
= {smooth k-covariant tensor fields}

Ti(M) = {smooth sections on T;M }
= {smooth [-contravariant tensor fields}

T*(M) = {smooth sections on T} M}
= {smooth (k,[)-tensor fields}.

If (U,x), = (z',...,2"), is a chart and ¢ is a tensor field in U, we may write

0= 0., dz" @ ®@dz', if o is a k-covariant tensor field,
o=0""0; ®---®0j,, ifo isan l-contravariant tensor field, or

o= U]-'l,'f,'g;idxil ® - ®dr* @ 05, ®---®0j,, ifoisa (k,I)-tensor field.

Functions oy,...;,, oIt and aillfli are called the component functions of ¢ with respect to the

chart (U, x). Again we have:
Lemma 2.13. Let o be a (k,l)-tensor field on M. Then the following are equivalent:
(a) o € TFH(M);

(b) the component functions of o (with respect to any chart) are smooth;
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(c) if U C M is open and Xi,...,X} € T(U) are smooth vector fields in U and w',... w' €
TYM) are smooth covector fields in U, then the function

pr—>U(Xl,...,Xk,wl,...,wl)p eR

15 smooth.

Proof. Exercise [cf. Lemma 1.37 and Lemma 2.10.] O

2.14 Riemannian metric tensor

Definition 2.15. Let M be a C*°-manifold. A Riemannian metric (tensor) on M is a 2-
covariant tensor field g € T2(M) that is symmetric (i.e. g(X,Y) = ¢(Y, X)) and positive definite
(i.e. g(Xp, Xp) > 0if X, #0). A C°®°-manifold M with a given Riemannian metric g is called a
Riemannian manifold (M, g).

A Riemannian metric thus defines an inner product on each 7T,M, written as
(v,w) = (v,w), = g(v,w) for v,w € T,M. The inner product varies smoothly in p in the
sense that for every X,Y € T(M), the function M — R, p — g(X,,Y)), is C™.

The length (or norm) of a vector v € T,M is

o] = (v,0)/2,

The angle between non-zero vectors v,w € T,M is the unique 9 € [0, 7] such that

v, W
cost) = (v, >
|v]|w]
Vectors eq,...,ep € T,M are orthonormal if they are of length 1 and pairwise orthogonal, in

other words, (e;,e;) = d;;.

Recall that vector fields Fy,...,E, € T(U) in an open set U C M form a local frame if
(Ev)ps - -, (Ep)p form a basis of T, M for each p € U. Associated to a local frame is the coframe
ol ..., ¢" € THU) (=differentiable 1-forms on U) such that ¢'(E;) = §;;.

Now, if E1,...,E, is any (smooth) local frame, and ¢!, ..., ¢" its coframe, the Riemannian
metric g can be written locally as

(2.16) g = gijQOi ® .

The coefficient matrix, defined by ¢;; = (E;, E;), is symmetric in ¢ and j, and the function
p > 9ij(p) == (Ei, Ej)yp

is C'* for all 4, j.

Example 2.17. If (U,z), 2 = (z',...,2") is a chart, then Jy,...,d,, where 9; = 8%1-’ form a
coordinate frame and differentials dz', ..., dz™ its coframe. The Riemannian metric can then be
written (in U) as

g= gijdaji ®da! = gijd:rid:zj.

(If w and 7 are 1-forms, we write wn = & (w ® n+n ®w) (= symmetric product).)
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Remark 2.18. If p € M, then there exists a local orthonormal frame in the neighborhood of p, i.e.
a local frame Ff1, ..., E, that forms an orthonormal basis of T, M for all ¢ in this neighborhood.
Warning: In general, it is not possible to find a chart (U,x) at p so that the coordinate frame
01,...,0, would be an orthonormal frame. In fact, this is possible only if the metric g is locally
isometric to the Euclidean metric.

Definition 2.19. Let (M, g) and (N, h) be Riemannian manifolds. A diffeomorphism f: M — N
is called an isometry if f*h = g, i.e.

f*h(’U, UJ) = h(f*”) f*w) = g(U, ’UJ)

for all v,w € T,M and p € M. A C*-map f: M — N is a local isometry if, for each p € M,
there are neighborhoods U of p and V' of f(p) such that f|U : U — V is an isometry.

Examples 2.20. (1) If M = R", then the Euclidean metric is the usual inner product on each
tangent space T,R"™ = R". The standard coordinate frame is 0,...,d,, where

(05, 0;) = 05, and the metric can be written as

g= Z de'lds’ = 5ijda;ida;j.

7

(2) Let f: M™ — N™* be an immersion, that is, f is C* and f., : T,M — Ty N is injective
for all p € M. If N has a Riemannian metric g, then f*g defines a Riemannian metric on M:

[rg(v,w) = g(fev, faw)

for all v,w € T,M and p € M. Since f,, is injective, f*g is positive definite. The metric f*g
is called the induced metric.

(3) Recall that a Lie group G is a group which is also a C'*°-manifold such that G x G — G,
(p,q) = pg~ ', is C™. For fixed p € G, the map L, : G — G, Ly(q) = pg, is called a left
translation. A vector field X is called left-invariant if X = (L,),X for every p € G, i.e.
Xpg = (Lp)wqXq for all p,q € G.

(Lp)«q
/\
X/ Xpq
q

//Lp/—\»pq

If X is left-invariant, then X € 7(G) (is a smooth vector field) and it is completely determined
by its value at a single point of G (e.g. by X.). If X and Y are left-invariant, then so is
[X,Y]. The set of left-invariant vector fields on G forms a vector space. This vector space
together with the bracket [-, -] is called a Lie algebra g. Thus g = T.G.

A Riemannian metric (-, -) on G is called left-invariant if (L,)*(-,-) = (,-) forall p € G, i.e.
if ((Lp)«q¥, (Lp)sxqw)pq = (v, w)q for all v,w € T,G and all p,q € G.
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<
=
T

g

To construct a left-invariant Riemannian metric on G, it is enough to give an arbitrary inner
product (-, ). on T.G. Similarly, we can define right-invariant Riemannian metrics for right
translations R, : G — G, R,(q) = qp.

(4) If (M1,¢1) and (Ma,g2) are Riemannian manifolds, the product M; x M, has a natural
Riemannian metric g = g1 @ go, the product metric, defined by

9(X1 4+ X0, Y1 +Y2) := g1(X1, Y1) + 92(X2, Y2),

where X;,Y; € T(M;) and Tiy, o) (M1 x M) = T,M; ® T;Ms for all (p,q) € My x M.

If (z%,...,2") is a chart on M and (2", ..., 2"*™) is a chart on Ma, then (z1,...,2"t™) is
a chart on M x M. In these coordinates the product metric can be written as g = gijdazidxj ,
where (g;;) is the block matrix

(g - (9w 0O - 0
(gl)nl (gl)nn 0 0

0 0 (92)11 (92)1m
L0 0 (e o (92)m)

As an example one can consider the flat torus:
T":=S'x - xS!
together with the product metric, where each S! ¢ R? has the induced metric from R2.

Definition 2.21. Let (M, g) be a Riemannian manifold and v : I — M a C*°-path, where I C R
an open interval. The length of ~|[a, b], where [a,b] C I, is defined by

b b
Gllat) = [ Fildt= [ g(n 502 .
a a
The length of a piecewise C'°°-path is the sum of the lengths of the pieces.
Let M be connected and p,q € M. Define

d(p,q) = igf £(7),

where inf is taken over all piecewise C*°-paths from p to ¢. Then d: M x M — R is a metric whose
topology is the same as the original topology of M (this will be proven later).
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2.22 Integration on Riemannian manifolds
We start with a discussion on a partition of unity.

Definition 2.23. Let M be a C*°-manifold. A (C*°-)partition of unity on M is a collection
{@i: i € I} of C*-functions on M such that

(a) the collection of supports {supp p;: i € I} is locally finite,
(b) pi(p) >0 for all p e M and i € I, and
(c) forallpe M

> pilp) =1,

el

A partition of unity {p;: ¢ € I} is subordinate to a cover {U,: a € A} (M = U,U,) if, for each
i € I there is a € A such that supp p; C U,.

Remarks 2.24. 1. Above I and A are arbitrary (not necessary countable) index sets.

2. The support of a function f: M — R is the set

supp f = {p e M: f(p) # 0}.

3. A collection {A;: i € I} of of sets A; is locally finite if each p € M has a neighborhood
U > p such that U N A; # () for only finitely many 1.

4. The sum in (c¢) makes sense since only finitely many terms ¢;(p) are nonzero for every p € M.

Theorem 2.25. Let M be a C*°-manifold and {Uy: o € A} an open cover of M. Then there exists
a countable C*°-partition of unity {p;: i € N} subordinate to {U,: o € A}, with supp ¢; compact
for each i.

Proof. See, for instance, [Le3|, Theorem 2.25. O

As a simple application we obtain the existence of a Riemannian metric.
Theorem 2.26. Every C°°-manifold M admits a Riemannian metric.

Proof. Let (U,z), v = (x!,...,2"), be a chart and 01, ..., 9, a (local) coordinate frame. We define
a Riemannian metric g on U as the pull-back of the Fuclidean metric under z, in other words,

Let {Uy: a € A} be an open cover of M by charts (U,,z,) and let ¢, & = 1,2,..., be a
C*>-partition of unity subordinate to {U,: a € A}. For each k € N choose o« € A such that
supp ¢ C U, and let g be a Riemannian metric on U, given by (2.27). Then

9= Pkdn
k
is a Riemannian metric on M. Thus

g(v,w) = Z @k (P)gr (v, w)

k
for all p € M and v,w € T,,M. ]
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Integration. Recall the change of variables formula for the (Lebesgue) integral (see e.g. [Jo]):
Suppose that (2 and {2y are open subsets of R" and that ¢: 1 — €3 is a diffeomorphism. Let
f: Q2 — R be (Lebesgue-)measurable. Then f o ¢ is measurable and

(2.28) fdm= [ (fo)|J,|dm.
Qo 4

The formula is valid in the following sense: If f > 0, then (2.28) always holds. In general, f € L'(€s)
if and only if (f o ¢)|J,| € L'(21), and then (2.28) holds.
Suppose that (M, g) is a Riemannian n-manifold. Let (U, z), = = (z!,...,2"), and (U,y), y =

(y',...,y™), be charts. The Riemannian metric g = (, ) can be written in U as
or
o 0

Denote ¢ = yox~': 2U — yU. We want to define (first) fU dp, where dy is a ”volume element “,
by using a chart in such a way that the definition would be independent of the chosen chart. Write
G*(p) = (gfj (p)) and G¥(p) = (gfj (p)) for p € U, and let A(q) be the matrix of ¢'(¢) with respect
the standard basis of R™. Since g is positive definite and symmetric, we have

det G*(p) > 0

for all p €. We claim that

(2.29) Vdet GZ(p) = \/det G¥(p)| J, (z(p))|

for all p € U. If this is true, then

LU( det G*) / \/deth ~1(q)) dg

so, the definition

(2.30) /U dp = /HEU(\/W) ox!

is independent of the chosen map z. Similarly,

[ = [ (VaTG) o
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is independent of z for all Borel functions f: U — R. Next pick an atlas A = {(Uy,24): @ € I}
and a (countable) C'*°-partition of unity {¢;} subordinate to A. For each i, let o; € I be such that
supp ¢; C U,,. Then we define, for any Borel set A C M,

p(A 22/ dp = / p; dp = / pixadp.
Ay =2 ), o=

This is independent of the chosen atlas and partition of unity. After this we can develop a theory
of measure (= ) and integration on M.
Proof of (2.29). Let

A= (47) = (D)
be the Jacobian matrix of ¢ = y o 27! with respect to the standard basis of R”. Then it is the
matrix of id, with respect to coordinate frames {0/0x'} and {0/0y’}. Hence

_E o)
;= Dy i

Jj=1

So,
2 _ /9 O
95 =\ 0zt 927
- 0 0
= ZDW’“—MZDM—Z>
<k:1 Oy =1 9y
o 0
= ZDiSDijS/ <—kv —g>
v dy* " dy
=> DD’ gl,.
kb
That is,
G* =ATGYv A,
and so
det G* = det AT - det GY - det A.
Since

det A = det AT = J,,
we obtain (2.29).

3 Connections

3.1 Motivation

We want to study geodesics which are Riemannian generalizations of straight lines. One possibility
is to define geodesics as curves that minimize length between nearby points. However, this property
is technically difficult to work with as a definition. Another approach:

In R” straight lines are curves o : R — R",

at) = p+to, p,v € R™.
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(We do not consider e.g. y(t) = p + t3v as a straight line, although v(R) = a(R).)
The velocity vector of a is ¢ = &/(t) = v, and the acceleration of « is & = (t) = 0; so
straight lines are curves a with & = 0.

Let M™ C R"™ be a submanifold, m < n, with induced Riemannian metric.
Take a C™-path v : I — M, v = (v%,...,7"). Then 4 = (%},...,%") € R™ but also #; € TypnyM
and it has a coordinate-independent meaning. On the other hand, % = (%},...,5") € R"™ but
Yt & Ty M, in general.

M

To measure the ”straightness® of v we project 4; orthogonally to T ;M and obtain 4L the "tan-
gential acceleration“. Hence, we could define geodesics as curves v, with 57 = 0.

Problem: For an abstract Riemannian manifold, there is no canonical ambient Euclidean space,
where to differentiate. So the method does not work as such.

We face the following problem:

To differentiate (intrinsicly, i.e. within M) 4 with respect to ¢ we need to write the difference
quotient of 4, for ¢ # ¢y but these vectors live in different vector spaces, so 4 — 44, does not make
sense.

To do so, we need a way to ”connect “ nearby tangent spaces. This will be the role of a connection.
3.2 Affine connections

First a general definition.

Definition 3.3. Let (E,7) be a C* vector bundle over M, and let £(M) denote the space of
C°-sections of E. A connection in F is a map

V:T(M)xEM)— E(M),
denoted by (X,Y) — VxVY, satisfying
(C1) VxY is linear over C*°(M) in X:

Vixi49x.Y = fVx, Y +9Vx,Y, f,9 € CF(M);

(C2) VxY is linear over R in Y

VX(aYl + bYQ) =aVxY] +bVxYs, a,b eR;

(C3) V satisfies the following product rule:
Vx(fY)=fVxY +(X[f)Y,  feC®(M).
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We say that VxVY is the covariant derivative of Y in the direction of X.

In the case E = TM the connection V is called an affine connection. Thus
V:T(M)xT(M)— T(M). From now on V will be an affine connection on M. Let v :1 — M
be a C*°-path. We say that a C*-map X : I — TM is a C*°-vector field along ~v if
Xt = Xy1) € TyyM for every t € 1.

Denote by T(v) the space of all C*°-vector fields along . Observe that X € T (y) cannot
necessarily be extended to X € T(U), where U is an open set such that v : I — U. For example:

Lemma 3.4. (VxY'), depends only on X, and the values of Y along a C*-path v, with 59 = X,
(and, of course, on V).

Remark 3.5. This innocent looking result will be very important since it makes it possible to
define a notion of covariant derivative of a vector field along a smooth path, and therefore a
parallel transport along a smooth path; see Theorem 3.7 and Definition 3.14 below.

Proof. Let (U, x) be a chart at p, and let 09; = %, 1=1,2,...,n, be the corresponding coordinate
frame. Let ' ‘
X:alai, Y:b78j.

Using the axioms of connection, we gain
(VxY)p = (Vxb/8)), =V (0)(Vx0))p + (Xp0))(0))p = U (0)(Vai6,05)p + (X )(8))p
=V (p)a’(P)(Va;0;)p + (Xpt’)(0))p,

where terms b’ (p)a’(p) depend only on Y, and X, and terms X,b’ depend only on the values of Y’
along v with 49 = X,,. O

Let {E;} be a local frame on an open set U C M. Writing
Vg E; =T},Ey,

we get functions I'¥, € C°(U) called the Christoffel symbols of V with respect to {E;}. As in

v

the proof Lemma 3.4, we get

(3.6) VxY = a'V’T}Ey + XV E; = (a'VT}; + XV)Ey.
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Theorem 3.7. Let V be an affine connection on M, and let v : I — M be a C*°-path. Then there
exists a unique map Dy : T(y) — T () satisfying:

(a) linearity over R:
Dy(aV +bW) = aD,V + bD,W, a,beR;

(b) product rule: .
Di(fV) = fV + fD,V, fec>);
(c) if V is induced by Y € T(M) (V is "extendible ), i.e. Vi =Y., then

DV = VY.

The vector field D;V is called the covariant derivative of V' along ~.

Proof. Note that the last line in (c) makes sense by Lemma 3.4. We follow a typical scheme in the
proof: first we prove the uniqueness and obtain a formula that can be used to define the object we
are looking for.

Suppose that D; exists with the properties (a), (b) and (c). First we prove that D

is local in the following sense. Suppose that V., W &€ T (v) are vector fields such that V; = W; for
all t €]to — d,tg + d[C I for some & > 0. We claim that (D;V)y, = (D¢W)y,. This follows from
conditions (a) and (b). Indeed, let f: R — R be a C*°-function such that f(¢) = 1 for all ¢, with
|t —to| > 6, and f(t) =0 for all ¢, with |t —to| < §/2. Then V. — W = f(V — W), and therefore

DV = DiW = Di(V = W) = Dy(f(V =W)) = fJ(V=W)+ fD(V = W)
by (a) and (b). In particular, at ¢ty we have
(DeV)ig = (DiW )iy = fuo (V= W)io + f(to) (De(V = W)), =0

since f, = 0 = f(to). Let then V € T(%), to € I, and let = = (z',...,2") be a chart at p = y(to).
Then for all ¢ sufficiently close to tg, say |t — to| < &, we have
e = (2 0 ) ()(i)yy = 7 (£) (i)t
and '
Vi =0 (£)(0)~(t)s
where 4% = (z' 0y)" and v/ € C*(tg —¢,tp + ¢). Using (a) and (b), we have
DV = Dy(v19;) = 1 9; + v’ D40;.
Because 0; is extendible, we have

(©)

D0, 9 V0, = Vii00;

Cl) .i i

:) Yy Vaiaj =7 Pfjak
Therefore,

(3.8) DV = 079; + v/ T,0, = (0% + v75'T};) O

By (3.8), if Dy : T () — T () exists and satisfies (a), (b) and (c), then it is unique.

If y(I) is contained in a single chart, we can define D; by (3.8). In the general case,
cover y(I) by charts and define D;V by (3.8). The uniqueness implies that the definitions agree
whenever two charts overlap. O



Fall 2010 35

When do the affine connections exist?

Example 3.9. The Euclidean connection in R™ is defined as follows. Let X,V € T(R"), V =
(vl ..., 0") = 0'0;, where v' € C°(R") and 9y, ..., 0, is the standard basis of R”. Then we define

VxV = (Xv))9;,

i.e. VxV is a vector field whose components are the derivatives of V in the direction X. Note that
the Christoffel symbols of V (w.r.t. the standard basis of R™) vanish.

Lemma 3.10. Suppose M can be covered by a single chart. Then there is a one-to-one corre-
spondence between affine connections on M and the choices of n® functions Ffj € C°(M), by the
rule

(3.11) VxY = (a'bT}; + X0*)0y,
where X = a'0;, Y = b'0;, and 04, ...,0, is the coordinate frame associated to the chart.

Proof. For every affine connection there are functions Ffj € C°°(M), namely the Christoffel sym-
bols, such that (3.11) holds.

Conversely, given functions Ffj, i,7,k =1,2,...,n, then (3.11) defines an affine connection. (Exer-
cise) O

Theorem 3.12. Every C*°-manifold M admits an affine connection

Proof. Cover M with charts {U,}. Then by Lemma 3.10 each U, has a connection V. Choose a
partition of unity {y,} subordinate to {U,}. Define

VxY =) 0 VXY

Check that this defines a connection. O

Remark 3.13. If V! and V? are connections, then neither %Vl nor V! 4+ V2 satisfies the product
rule (C3).

Definition 3.14. Let V be an affine connection on M, v : I — M a C*-path, and D; : T(y) —
T (v) given by Theorem 3.7. We say that V € T (v) is parallel along v if D;V = 0.

W
Exercise 3.15. Let v : I — R™ be a C*°-path. Show that a vector field V' € T () is parallel (with
respect to the Euclidean connection) if and only if its components are constants.

v(t)
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Theorem 3.16. Let V be an affine connection on M, ~v : I — M a C*®-path, tg € I, and
vo € Ty4o)M. Then there exists a unique parallel V € T () such that Vi, = vg. The vector field V
1s called the parallel transport of vy along .

Before we prove this theorem, we state the following lemma about the existence and uniqueness
for linear ODEs (see e.g. Spivak, Vol. I, Chapter V).

Lemma 3.17. Let I C R be an interval and let a;‘? I =R, 1< 5,k <n, be C®-functions. Then
the linear initial-value problem

() = (o)
Uk(t()) = bk7

has a unique solution on all of I for any to € I and (b',...,b") € R™.

Proof of Theorem 3.16. Suppose first that v(I) C U, where (U, z) is a chart. Then V =079, € T(v)
3.8 o
is parallel along ~ if and only if D;V’ (%) (0% + v”’ny})@k = 0, that is, if and only if
() = =/ (OTH (), 1<k<n

This is a linear system of ODEs for (vl(t),...,v"(t)). Lemma 3.17 implies that there exists a
unique solution on all of I for any initial condition V;, = vy.
General case: (y([) is not necessarily covered by a single chart)
Write
B :=sup{b > tg : there exists a unique parallel transport of vy along [tg, b]}.

Clearly, 8 > to, since for small enough £ > 0 the set (o — €,typ + €) is contained in a single chart,
and the first part of the proof applies. Hence, a unique parallel transport V' of vy exists on [tg, 3).
If 5 € I, choose a chart U at () such that v(8 —¢,5 +¢) C U for some £ > 0. The first part of
the proof implies that there exists a unique parallel transport V of Vi_c9 along (8 —¢,3+¢). By

uniqueness V = V on (8—¢,), and hence V is an extension of V past 3, which is a contradiction.
So B ¢ I. Similarly, we can analyze the "lower end“ of I. O

Vo

~(to) (

The parallel transport along v : I — M defines for ty,t € I a linear isomorphism P, ; :
Tyto)M = Ty M by
Pto,t'UO =V,

where V' € T () is the parallel transport of vy € T4,y M along 7.
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Definition 3.18. Let V be an affine connection on M. A C*®-path v : I — M is a geodesic if
Dy = 0.
By Theorem 3.7(c), this can also be written as
Vg =0,
provided that + is extendible.

Theorem 3.19. Let M be a C*®-manifold with an affine connection V. Then for each p € M,
v e T,M, and tg € R, there exist an open interval I > tog and a geodesic v : I — M satisfying
v(to) = p and §(tp) = v. Any two such geodesics agree on their common interval.

Proof. Let (U,z), x = (z',...,2"), be a chart at p and {9;} the corresponding coordinate frame.
If v:J — U is a C*-path, with y(tg) = 0 and §(t9) = v, then

y = (' 0y) 0 =0

and
(3.8

Dy "= (5 + 495 ).
Hence, v: I — U, ty € I C J, is a geodesic, with v(tg) = p and §(tp) = v, if and only if

§k+1jﬁirfj=0, k=1,2,...,n;

v(to) = p;
Y(to) = v.
The theory of ODEs implies that there exists a unique local solution to this. ]

It follows from the uniqueness that, for each p € M and v € T,M, there exists a unique
maximal geodesic v : I — M, with (0) = p and 49 = v, denoted by 7. By "maximal“ we mean
that I is the largest possible interval of definition. We will return to this later.

Remark 3.20. Above and also in the proof of Theorem 3.7 we have abused the notation by writing

Ffj instead of I‘f’j oy. We will continue to do so also in the sequel.

3.21 Riemannian connection

Let M be a C*°-manifold and V an affine connection on M. Define a map 7' : T(M) x T (M) —
T(M) by
T(X,Y)=VxY -VyX - [X,Y].

Then T € T2(M) (Exercise). It is called the torsion tensor of V. We say that V is symmetric
ifT'=0.

Remark 3.22. V is symmetric if and only if the Christoffel symbols with respect to any coordinate
frame are symmetric, i.e. Ffj = F;?Z- (Exercise).

Definition 3.23. Let M be a Riemannian manifold with the Riemannian metric ¢ = (-,-). An
affine connection V is compatible with g if

X(Y,Z) =(VxY,Z) +(Y,VxZ)
for every XY, Z € T(M).
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Lemma 3.24. The following are equivalent
(a) V is compatible with g;
(b) If v : I — M is a C*®-path and V,W € T (), then

d

VW) = 2

V.W) = (DV, W) + (V, DW);

(c) If V,W € T(v) are parallel, then (V,W) is constant.

Proof. - Let v : I — M bea C®-curve, p=~(t), and z = (z!,...,2") a chart at p. Let
01, ...,0, be the coordinate frame associated to z. It is enough to show that (a) implies
(3.25) (04, 05)'(t) = (De0;, 0;) () + (s, De0;) (¢)

for every t € I. By the definition of compatibility, (a) implies
(05, 0;) = (Vo 0i,0;) + (03, V9,0;) = (T1;01,05) + (03, Ty 01) = Thsgnj + Thjgat-
For the left-hand side of (3.25), we then have
(0,0;)'(t) = (95 0 V) (t) = 3¢ (9i5) = 7 O(9ij) = Y Thagtj + 31 T 9t
For the right-hand side of (3.25), the identity (3.8) gives us D;0; = 4*T'L.0, and D;0; = "ykfijal.
Therefore,
(D103, 0;)(t) + (03, Dy} (t) = (¥ T}i01, 0;) () + (03, 4 T ) (8) = A Thsgis + 4T hs i,
which is equal to the left-hand side.

(b) = (a)|Let X,Y,Z € T(M), p € M. Let v be an integral curve of X starting at p. Then Y

and Z induce vector fields Y, Z € T () by Y, = Y, and Z =7

y(t)- Now

Xp(Y, Z) = 40(Y, Z) =
37(c)

97,20 Y (DT, 2)(0) + (7, D.Z)0)

(V3Y, 20y + (Y.V52), = (VxY, Z), + (Y. Vx Z),.

(b) = (c) |Since V, W € T () are parallel, we have by definition D;V = 0 = D;W. Using (b) this
implies (V,W)" = 0, that is, (V, W) is a constant.
(c) = (b) | Choose an orthonormal basis {E1(to), ..., En(to)} of Ty )M, where tg € I. Let E; be

the parallel transport of E;(t() along v, see Theorem 3.16. Now (c) implies that {E1(t),..., E,(t)}
is orthonormal for every ¢t € I. If V,W € T (v), we can therefore write

V =v'E; and W =u'E;.
Then D,V = v'DyE; + 0'E; = V' E; and D;W = w'E;. This gives
(DtV, W> + <V, DtW> = <Z)ZEi, ’LU]EJ'> + (UZEi, 'LDJE]'> = z’;leéij + UZ'LDJ(Sij = E(vzw]&-j) = (‘/, W>/

O
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Definition 3.26. Let M be a Riemannian manifold with the Riemannian metric ¢ = (-,-). An
affine connection V is called a Riemannian (or Levi-Civita) connection on M if

(3.27) V is symmetric: VxY — Vy X = [X,Y];
and
(3.28) V is compatible with ¢: X(Y,Z) = (VxY,Z) + (Y,VxZ).

Theorem 3.29. Given a Riemannian manifold M, there exists a unique Riemannian connection
on M.

Proof. Suppose such V exists. Then

X(v,2) "2 (VxY, 2) + (Y. Vx2) P2 (VY. Z) + (¥, V2X) + (Y, [X, Z)).

Similarly,

Y(Z,X) =(VvZ,X) +(Z,VxY) +(Z,[Y, X]);
and

Z(X,)Y)=(VzX,Y)+ (X, VyZ)+(X,[Z,Y]).
Hence,

X(Y,Z)+Y(Z,X) — Z(X,Y) = 2VxY, Z) + (Y, [X, Z]) + (Z,]V, X]) — (X, [Z,Y]).

This gives

(3.30) (VxY,Z)= %(X(Y, Z)+Y(Z,X) = Z(X,Y) = (Y,[X, Z]) — (Z,[Y, X]) + (X, [Z, Y]>).

Suppose V! and V? are Riemannian connections. Since the right-hand side of (3.30) is independent
of the connection, we have

(VLY —-ViY,Z) =0
for every X,Y,Z € T(M). However, this is true only if VY = V%Y for every X,Y € T(M), that
is, VI = V2.
We use (3.30) or, more precisely, its coordinate version to define V and then show that
V is a Riemannian connection. It suffices to show that such V exists in each coordinate chart since

the uniqueness guarantees that connections agree if the charts overlap.
Let (U, ), x = (x!,...,2"), be a chart. Using (3.30) and [9;,9;] = 0, we have

1
(V0,05,0%) = 5 (9105, 00) + (00, 0) = 0101, 97)).

This is the same as 1
Thgk = = (9igk + 059k — Owgij)-

2
Let (¢¥) be the inverse matrix of (gi;), i.e. gig"™ = Oym. Multiplying both sides of the above
equality by ¢*™ and summing over k = 1,2,...,n, we get
1
(3.31) I = §gkm(8igjk + 0j9ki — OrGij)-

This formula defines V in U. Furthermore, from (3.31) we get Iy =T, ie. Vis symmetric. To
show that V (defined by (3.30) or its coordinate version (3.31)) is compatible with g is left as an

exercise. O
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4 Geodesics

4.1 Geodesic flow

Let M be a Riemannian manifold with the Riemannian metric ¢ = (-,-) and the Riemannian
connection V. Recall that a C*°-path v : I — M is a geodesic if

Dt’j/ =0.

If we want to emphasize that v is a geodesic with respect to a Riemannian connection, we call v a
Riemannian geodesic. Recall that for every p € M and v € T),M, there exists a unique maximal
geodesic 4" : I, = M, with 7§ = p and 4§ = v. Next we "show“ that 7} depends C°°-smoothly on
p, v and t.

. Vi
v v
—_— T
I, %—\
0 t
w
7Y v
—_ T S
I, 0 H q
For that purpose we recall following facts on the tangent bundle. Let (U, z), z = (z',...,z"), be

a chart and v € TU. Then v € T,M for some p € U and v can be uniquely written as v = v*(p)(9;),,
with (v!(p),...,v"(p)) € R™ Thus TU = U x R" and we have local coordinates for v € TU:

Z(v) = (a:l(p), a2 (p), vt (p), ... ,v”(p)) € R?",

Since (TU,%), T = (z',...,2",v!,...,v"), is a chart on T M, we get a basis %, o7
for T(p,v) (TM) = T,M @ R".
Let G € T(TU) be the following vector field on TU:

i=1,2,....n

(12) Go=2 Vg = 2 ") g
k=1 i,,k=1
We want to find out the integral curves 7 : I — TU of G. We can "lift“ a C*®°-path v: I — U to a
C®>-path 7 : I — TU by setting
() = -
Using local coordinates T = (x,v) we get a C™-path To7: [ — R?",

Tox(t) = ('yl(t), R R () ,v"(t)),

where v = 2% oy and v' = 4' = (2° 0 v)’. Now 7 is an integral curve of G if and only if 7, = Gy
for all ¢ € I, that is, if and only if

. "0 . 0
T2 (4" 5 + " 508) = 67

Taking into account (4.2) we finally see that 7 is an integral curve of G if and only if

» frov ke

ok = —v"vjffj.
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This is a first-order system equivalent to the second-order geodesic equation in the proof of Theorem
3.19 under substitution v* = 4.

Conclusion: Integral curves of G project to geodesics in projection @ : TM — M. Conversely,
any geodesic v : I — U lifts to an integral curve 7 of G.

Since the geodesic equations are independent of the choice of local coordinates, we conclude that
(4.2) defines a global vector field G, so called geodesic field, on T'M. More precisely:

Lemma 4.4. There exists a unique vector field G on T'M whose integral curves project to geodesics
under m : TM — M.

Proof. If G exists, then its integral curves project to geodesics and therefore satisfy
(4.3) locally. Hence, G is unique if it exists.

Define G locally by (4.2). Then uniqueness implies that various definitions of G in
overlapping charts agree. O

The theory of flows implies that there exists an open neighborhood D(G) C RxTM of {0} xT'M
and a C*°-map « : D(G) — T M, called the geodesic flow, such that each curve

t— aft,v)

is the integral curve of G starting at v € T'M and defined on an open interval I, 3 0. Since « is
C>,also roa:D(G) — M is C*. Now

t (moa)(tv)
is the geodesic 7", with 7J = p and 4§ = v. We have shown that 7/ = (7 o «)(¢,v) depends
C°°-smoothly on ¢, p and v € T),M.
4.5 Appendix

Let N™ and M™ be C'°°-manifolds and f: N — M a C*-map. A C*®-map V: N — T M is said
to be a vector field along f if V, :=V(p) € T,M for all pe N,ie. moV = f.

Theorem 4.6. If f: N — M is an embedding and V is a C* wvector field along f, there exists
V € T(M) such that Vi, = Vi) for allp € N, i.e. V is "extendible “.

Proof. The proof is based on the following: For each ¢ € fN C M there exists a neighborhood U
of ¢ in M and a chart : U — R such that

(4.7) "= =2m=0

in UN fN. These are so called slice coordinates (cf. Theorem 1.28).
How to construct the extension of V7
Sketch: Cover fN by charts {U,} with the property (4.7). In f~'(fN NU,) we have

Vo = > v (0) () ).
=1

Define in U, a vector field V* by setting

where
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R A
ﬁ

(='(q), - 2"(q))
Then take all charts {Ug} such that Ug N fN = () for all  and
M = J(Ua UUg).
a,B

Define V5 € T (Ug) by VP = 0. Rename U,, V©, Ug, and VP as U; and V%, i € I. Finally, take a
C* partition of unity {¢;} subordinate to {U;} and define

el

R’ﬂ

A\ 4

O

The assumption ” f embedding*“ is crucial: For example, v: R — R?, 4(t) = (¢3,0) is a C*™-path
but not embedding. Now 4 € T (%), 4 = 3t2(81)7(t), but 4 ¢ T(R) since ¥ considered as a vector
field in R is given by 4, = 3u?/38; which is not differentiable at u = 0.

4.8 Exponential map

Lemma 4.9. All Riemannian geodesics have constant speed, i.c. for every Riemannian geodesic
v there is a constant ¢ such that

el = (3, )2 = c
for everyt € I.
Proof. Lemma 3.24 implies that (,5)" = 2(Dy¥,+) = 0, since by definition Dy = 0. O
Lemma 4.9 implies that the length of ~|[to,t] is
t
(4.10) C(Vfto,t]) = | el dt = c(t — to).

to
If ¢ = 1, we say that ~ is a normalized geodesic (or of unit speed, or parametrized by arc
length).
Let I,, be the maximal interval where 7" is defined, and let [0, ¢,) be the nonnegative part of [,,.
Lemma 4.11. For every a >0 and 0 <t < Ly,

v

%?zv = Yat-

In particular, £, = éﬁv.
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Proof. The claim holds if |4°| = 0, so we may assume that 47 # 0. Let I, = (a,b) and I, = 17, =
(a/a,b/a). Define v : I, — M by
V(t) = 7" (at).

Then 4, = oY, and so
. () . . .
Diie = Vi = Vasg, (@) = 0” Vg, (Yar) = 0.

Hence, vy is a geodesic, with 7y = 7§ and 4y = ajj = av. Furthermore, fow is the maximal interval
since I, is. Uniqueness implies that v = v*Y. The equality (x) holds since the vector field t — 4,
(along ) is locally extendible to a vector field on M (also denoted by ). This is seen as follows:
Since A¢ # 0, 7 : I, — M is an immersion and therefore locally an embedding by Theorem 1.28.
Then t +— 4, is locally extendible by Theorem 4.6. U

Let & C TM be the set of vectors v such that ¢, > 1, i.e. 4¥(t) is defined for all ¢ € [0,1]. The
exponential map exp : £ — M is defined by

(4.12) exp(v) :=~v"(1).

For p € M, the exponential map at p is the map exp, = exp |Ep, where &, = ENT,M.

exp(v) =7

Theorem 4.13. We have the following properties

(a) € CTM is open and contains the (image of the) zero section M x {0} = ||, s 0p, where 0y
is the zero element of T, M ;

(b) each &, is star-shaped with respect to 0 (= 0p);
(¢) for each v € TM, the geodesic v* is given by
7"(t) = exp(tv)
for all t such that either side is defined;
(d) the exponential map exp : £ — M is C.
Proof. The claim (c) follows from Lemma 4.11:

411
exp(tv) =" "= 7.
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(b): If v € &, then 1} is defined for all ¢ € [0,1]. However, exp(tv) = 7 = ¢, so 71¥ is defined
for all t € [0,1]. This means that &, is star-shaped with respect to 0.

(d): We have exp(v) = (7 o a)(1,v), where « is the geodesic flow. Hence, exp is C*°.

(a): Suppose v € £. Then 7" is defined at least on [0, 1]. Therefore, also the integral curve 7"
of G starting at v € TM is defined on [0,1]. In particular, 7¥(1) is defined, hence (1,v) € D(G).
Because D(G) is an open subset of R x T'M, there exists an open neighborhood of (1,v) in R x T'M
on which the flow « is defined.

>
>

1 R

In particular, there exists an open neighborhood of v in TM where v} = exp(w) is defined.
This implies that £ is open. If 0, € T,,M is the zero element, then ~% is the constant path 4% = p
for every ¢t € R. In particular, 'yf ? is defined for every ¢ € [0,1]. So, £ contains the zero-section. [

Remark 4.14. If v € T,M, v # 0, then exp(v) = 7} = yﬁ)/“v‘. Because v/|v| is a unit vector,

exp(v) is obtained by travelling from p of length |v| along the unit speed geodesic passing through
p with velocity v/|v].

Theorem 4.15. For any p € M, there exist a neighborhood V of the origin in T,M and a neigh-
borhood U of p in M such that
exp,: V = U

is a diffeomorphism.

Proof. The map exp,, is clearly C'*° since exp is. We show that (exp, )0 : To(TpM) = T,M — T,M
is invertible, in fact, the identity map. Let v € T,M. To compute (expp)*ov, choose a curve
7:1 — T,M with 7(0) = 0 € T,M and 7(0) = v and compute ((exp,) o 7'),(0). An obvious choice
is 7(t) = tv. Then

d d d Y
(expy)xov = = ((expy) 0 7) ()= = - expy(t0) =0 = = li=0 = 45 = v-

Hence, (epr)*o : T,M — T,M is identity, in particular, it is invertible. The inverse function
theorem implies that exp,, is a local diffeomorphism on a neighborhood of 0 € T}, M. O

Remark 4.16. The name ”exponential map“ comes from following observation:
Let G be a Lie group. The left-invariant connection V' is defined by the requirement

VLiY =0

for every X € T(G) and Y € g, where g is the set of all left-invariant vector fields (= T.G).
Geodesics with respect to V¥ is the set of all integral curves of left-invariant vector fields.
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Suppose that G = GL(n,R). Then one can show that T.G = gl(n,R), the set of all linear maps
R™ — R™ or n x n matrices. For A € gl(n,R) 2 T.G, we have

o
Ak
exp, A = et = e
k=0

The natural identification for T,G = gl(n,R) is given as follows. Let x;;, 4,5 = 1,2,...,n, be the
coordinate functions on GL(n,R), i.e. ;;(g) is the ijth entry of g € GL(n,R). Define, for each
V € g, a matrix (Vj;) € gl(n,R) by setting

Vij = Ve(wij),

which gives the identification.

4.17 Normal neighborhoods

Let V and U be as in Theorem 4.15, i.e. so that exp, : V — U is a diffeomorphism. Then U is
called a normal neighborhood of p.

If € > 0 is so small that B(0,¢) := {v € T,M : |v| < e} C V, then the image exp,(B(0,¢)) is called
a normal (or geodesic) ball. Furthermore, if B(0,e) C V, then exp,(B(0,¢)) is called closed
normal (or geodesic) ball, and exp,(0B(0,¢)) is called normal (or geodesic) sphere in M.

Any orthonormal basis {e;} of T, M defines an isomorphism E : R" — T, M,

B(x',... 2" = 2le;.
If U is a normal neighborhood of p, we get a coordinate chart ¢ : U — R" by defining

0:=E"1 oexpljl.

Then
(4.18) ©: expp(xiei) (a2, if ale; € V.
We call the pair (U, ) a normal chart and (z!,...,2") € R" are called (Riemannian) normal

coordinates of the point x = expp(miei). We define the radial distance function r : U — R by

n 1/2
r(z) = (Z(ﬂ)‘é’) :

i=1

and the unit radial vector field &~ € T(U \ {p}) by

(), = -

Note that 7(z) = [exp, ! 2| since {e;} is orthonormal.

Lemma 4.19. Let (U, ) be a normal chart at p.
(a) If v=1v'e; € T,M, then the normal coordinates of v°(t) are (tvl,... tv™) whenever tv € V.

(b) The normal coordinates of p are (0,...,0).
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(c) The components of the Riemannian metric at p are g;; = ;.

(d) Any set {x € U :r(z) < e} is a normal ball exp,(B(0,¢)).

(e) If g € U\ {p}, then (%)q is the velocity vector () of the unit speed geodesic from p to q in
U (unique by (a)), and therefore ‘%‘ =1.

(f) Orgij(p) =0 and T'};(p) = 0.

Proofs are straightforward consequences of (4.18).
Geodesics 7" starting at p and staying in U are called radial geodesics (because of (a)).
Warning: Geodesics that do not pass through p do not have, in general, a ”simple“ form in normal
coordinates.

Definition 4.20. An open set W C M is called uniformly (or totally) normal if there exists
§ > 0 such that for any ¢ € W the map exp, is diffeomorphism on B(0,6) C T;M and W C
equ(B(O,é)).

Lemma 4.21. Given p € M and any neighborhood U of p, there exists a uniformly normal W C U,
with p € W.

Proof. Let € be as in the definition of the exponential map (€ C T'M is open and contains the zero
section). Denote the points of £ by (q,v), v € T,M NE = &;. Define a map F : £ - M x M by

F(q,v) = (q,expyv).

Clearly, F'is C*°. (Projections m; : M x M — M, mi(q1,q2) = qi, i = 1,2, are C*° and 10 F = m1|€&,
my o F' = exp). We want to compute the Jacobian matrix of F' at (p,0). Now

Tip0)€ = Tipo)(TM) = T,M & To (T, M)

and
Trp,0) (M x M) =T,y (M x M) =T,M & T,M.

Then the matrix of Fy : T(;, )& — T(, ) (M x M) is

[ij (ex?)p)*] ’

where in the upper left block we have id since the map (g, v) — ¢ is the identity w.r.t. ¢; in the
upper right block we have 0 since (q,v) + ¢ is independent of v; the lower left block * is irrelevant;
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and in the lower right block we have (exp,,). since the map (¢, v) — exp, v is the exponential map
exp, w.r.t. v.

Hence, F\ ;) is invertible. The inverse mapping theorem implies that there exist a neighborhood
O of (p,0) in TM and W of (p,p) such that F : O — W is a diffeomorphism.

T,M T,M M

\l
] 7 /F\ W

(p,0) (p,p)

(¢,0) N

It is possible to choose another neighborhood O C O of (p,0) of the form

O ={(q,v):qe U and |v| <6}, U’ >p.
o
/\%O’
B,
U/

The topology of T'M is generated by product open sets in local trivializations. Hence, there
exists € > 0 so that the set

X ={(q,v) : 7(q) < 2¢ and |v|z < 2¢}
is an open subset of O, where | - |5 is the Euclidean norm in the normal coordinates. The set
K ={(qv):r(q) <eand |v|g = e}

is compact, and the Riemannian norm | - |4 is continuous and nonvanishing on K, so it is bounded
from above and below by positive constants. Both norms |-|z and |- |4 are homogeneous (|A\v| = A|v],
A > 0), so c1|vlz < |v|g < co|vlg whenever v € T, M, with r(q) < e. Denoting § := c;e, we may then
choose the set

O :={(q,v) : r(q) <eand |v] < §} C X.

Now choose a neighborhood W C U of p such that also W C U’ (=the set in the definition of
O’) and that W x W C F(O'). Next we show that W and ¢ satisfy the claim of the Lemma.
Take ¢ € W. Because F is a diffeomorphism on ', we know that exp, is a diffeomorphism on
B(0,0) C T;M.

Is W C exp,(B(0,0))? Take a point y € W. Since (¢,y) € W x W C F(0O'), there exists
v € B(0,9) C T, M such that (q,y) = F'(q,v), so y = exp,v. Hence, W C exp,(B(0,0)). O
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4.22 Riemannian manifolds as metric spaces

Recall that the length of a C*°-path v : [a,b] — M is

b
() = by(y) = / 5],

where ¢ is the Riemannian metric on M. It is independent of parametrization: if ¢ : [¢,d] — [a, D]
is C'°° with C'*° inverse, then
y=vo¢:[c,d] - M

is called a reparametrization of v (a forward reparametrization if ¢(¢) = a and a backward
reparametrization if 7(¢) = b). Then (Exercise)
t(y) = €(7)-

A regular curve is a C*-path v : I — M such that 4y # 0 for every t € I. A path 7 : [a,b] = M
is piecewise regular if there exists ag = a < a; < --- < ap = b such that vy|[a;_1,a;] is regular.
The length of v is then

k b

€0) = 3 tollair.ad) = [,
i=1 a

which is well-defined since #; exists and is continuous outside the discrete set of points t = a;. We
say that v is admissible if it is piecewise regular or v : {a} = M, y(a) =p € M.

Remark 4.23. The idea of reparametrization extends to admissible curves. The arc length
function of an admissible curve « : [a,b] — M is the function s : [a,b] — R,

s(t) = t(7][a. 1]) = / ] .

Furthermore, the derivative s'(t) exists whenever 44 exists and s'(t) = |#|.

Every admissible curve has a unit speed reparametrization: if «y : [a,b] — M is admissible and
¢ = (), there exists a forward reparametrization 7 : [0,¢] — M of v such that 7 is of unit speed
(piecewise).

Now suppose that M is connected (hence path-connected). For p,q € M, we define

d(p,q) := igf £(7),

where inf is taken over all admissible paths v from p to ¢ (v : [a,b] — M, v(a) = p, v(b) = q).

Theorem 4.24. Let M be a connected Riemannian manifold, and let d be as above. Then (M,d)
18 a melric space whose induced topology is the same as the given manifold topology.

Proof. (i) d(p,q) is finite for every p,q € M (exercise).
(ii) Clearly, d(p,q) = d(q,p) > 0 since #(v) is independent of parametrization (exercise).
(iii) d(p,p) = 0 since we can take the constant path v = p.

(iv) d(p,q) < d(p,z) +d(z,q) (exercise)

So it remains to show:
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(v) p # g implies d(p, q) > 0.
(vi) metric space topology = manifold topology.

(v): Let p € M and let (z!,...,2") be normal coordinates at p. As in the proof of Lemma 4.21,
we can find a closed normal ball B = exp,(B(0,0)) and positive constants ¢; and ¢, such that

cilvlg < Jv] < e2lolg
for every v € T; M and q € B. This implies that for every piecewise regular v : I — B we have

(4.25) erlg() < £y(7) < ealy().

Here ¢5(7y) is the length w.r.t. the Euclidean metric g and l4(7y) is the length w.r.t. the Riemannian
metric g. Now, if p # ¢, take 6 > 0 so small that ¢ ¢ B. Then each admissible path 7 from p = v(a)

to ¢ has to pass through dB = exp,(0B(0,4)). Let ty be the smallest of those ¢ > a with y(t) € dB.
Then

ly(7) = L(7l(a,t0)) = erlg(vl(a,to)) > erdg(p,~(to)) = 16 > 0,

where dy is the Euclidean distance.

¥(to)

B
Thus (v) is proven and (M,d) is indeed a metric space.

(vi): We need to show that for every p € M and for every neighborhood U of p in the manifold
topology there exists a metric open ball B(p,e) = {qg € M : d(p,q) < €} C U, and conversely for
every p € M and € > 0 there exists a neighborhood U of p in the manifold topology such that
U C B(p,e). This can be done for example by using (4.25). Details are left as an exercise. O

4.26 Minimizing properties of geodesics

Definition 4.27. An admissible curve 7 is called minimizing if ¢(v) < ¢(¥) for any admissible 7
with the same endpoints.

Remark 4.28. A curve « is minimizing if and only if ¢(v) = d(p, q), where p and ¢ are the end
points of .

We shall show that minimizing curves, with unit speed parametrization, are geodesics.

Definition 4.29. An admissible family of curves is a continuous map I' : (—¢,¢) x [a,b] = M
such that
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1° T'is C*° on each rectangle (—¢,¢) X [a;—1,a;] for some ap = a < a; < -+ < a,, = b; and
2° for each s € (—¢,¢) the map I's : [a,b] — M, I's(t) = I'(s,t), is an admissible curve.

AS

~Y

A vector field along T is a continuous map V : (—¢,¢) X [a,b] — TM such that V(s,t) €
Tr(s,pyM for every (s,t) and V|(—e,¢e) x [a;-1,a;] is C* for some (possibly finer) subdivision ag =
a<a <---<ag="b Curves Iy : [a,b] = M, T's(t) = I'(s,t), are called the main curves. They
are piecewise regular.

Curves T® : (—¢,¢) — M, T')(s) = I'(s,t), are called the transverse curves. They are always
C>. We define

OL'(s,t) :== %Fs(t)y t # ag;

and

w BT (s,t)
T®

Then 9,I' is a vector field along I', but 0;I" can not necessarily be extended to a vector field
along I'. If V is a vector field along I', we write D;V as the covariant derivative of V' along main
curves and DgV as the covariant derivative of V' along the transverse curves.

Lemma 4.30 (Symmetry Lemma). Let I' : (—e,¢) X [a,b] = M be a family of admissible curves
on a Riemannian manifold M. Then

Dol = Do’
on any rectangle (—e,€) X [a;—1, a;], where I" is C°.
Remark 4.31. This is the point where the symmetry condition on V is needed.
Proof of Lemma 4.30. Let x be a chart at I'(sg, tp). Writing
(xoT)(s,t) = (x(s,t),...,2"(s,1)),
we get 4 '
ox* oz’

8,5F = —87, and 881“ = ——
0s

ot 0.
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Recall the equation (3.8) in Chapter 3: 4 = 4%0; and V = v79; implies that
DV = (0" + /4T,

Now when calculating D 0;I' we can use ¥ = 0sI" and V = 0,I'; and similarly, when calculating

D;9,I', we can use ¥ = 0;I" and V = 0,;I'. Hence,

%k 029 02t
+ [ A

dsot Ot 9s Y

par =

and

0?zF  0xd oxt i (0% 02t 02T,
DO = [ == 4 =2k < Yk
t0 <8t88+ D5 ot ”> k <8t8s+ D5 ot ﬂ> O
(*) 02 xF n oz %
~ \0tds  0s Ot

r@) O, = D,O,T.

We have (x) because Ffj = F?i due to the symmetricity of V. O

Remark 4.32. Shorter proof of Lemma 4.30. Let 0, and 0y be the standard coordinate vector
fields in R2. Then
8tF = F*(?t and 88I’ = P*as

Since [0, 0s] = 0, we have

DsatF - Dtasf - VI‘*{)SF*at - VI‘*atP*as
= [[.05,T.9,]
= T.,[0;,0,] = 0.

Definition 4.33. Let 7 : [a,b] — M be an admissible curve. A variation of v is an admissible
family I' : (—e,e) X [a,b] — M such that I'g = v. It is called a proper variation (or fixed-
endpoint variation) if I's(a) = v(a) and I's(b) = 7(b) for every s. The variation field of I" is
the vector field V(t) = 9sI'(0,t). A vector field W along ~ is proper if W (a) = 0 and W (b) = 0.
(If T is proper variation of 7, the variation field of I" is proper.)

r-—-r—-—-r-—-r--r-°-r-~—-~°
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Lemma 4.34. Let 7 : [a,b] — M be admissible and V' a continuous piecewise smooth vector field
along ~v. Then there exists I', a variation of v, such that V is the variation field of U'. If V is
proper, then I' can be taken to be proper as well.

Proof. Define I'(s,t) := exp(sV(t)). (Exercise) O

Theorem 4.35 (First variation formula). Let vy : [a,b] — M be a unit speed admissible curve, T’ a
proper variation of v, and V the variation field of I'. Then

d b k—1
(4.36) U)o == [(ViDA) de = 3V (@), A)
a i=1

where Ay :=4(a;) —4(a;) and a;’s are the subdivision points of [a,b] associated to ;

f(af) = m i) and 3(a7) = Lm (o).

Note: The unit speed assumption is not restrictive: each admissible curve has a unit speed
reparametrization and the length is independent of parametrization.

Aqi(7)

Proof of Theorem 4.35. Write T'(s,t) = 0:I'(s,t) and S(s,t) = 0sI'(s,t). Then

d a2 _i/‘“ 1/2 _/’“Q 1/2
ST fai,a]) = o /ai_l<l“8(t),F5(t)> dt = - ai_1<T(s,t),T(s,t)> dt = » (T T at

"l ~1/29 “1 _ 430 [% 1
- (T 1) 2o (T, T :/ (T, T)""?2(D,T, T :/ —(DyS,T) dt.
/ai_l 2( ) > 8S< ) >dt 2< ) > < ) >dt g |T|< S, >dt

a;—1 1—1

At s = 0, we have T(0,t) = 0,I'(0,t) = 4, |T(0,t)] = || = 1, and S(0,t) = 9,I'(0,t) = V(¢).
Hence,

d % ) Y d ) )
d—ﬁ(rs\[ai—haims:o = / (D¢V, ) dt = / <—<V7’Y> 2 Dt’Y>> dt
S a;_1 a;—1 dt

a;

= (V(ai),4(a))) — (Vi(ai1). A (af 1)) / (V. D) dt.

ai—1

Using V(ag) = V(a) = 0 and V(ay) = V(b) = 0, and summing over all i = 1,...,k, we get the
claim. O

Theorem 4.37. Every minimizing curve with unit speed is a geodesic.
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Proof. Let 7 : [a,b] — M be minimizing, with || = 1, and let ap = a < a1 < -+ < ax = b be
the subdivision such that 7|[a;—1,a;] is C*°. If I is a proper variation of v, then the minimizing
property of v implies that

<y

(4.38) -

(I's)|s=0 = 0.
Using Lemma 4.34, we know that every proper vector field V' along + is the variation field of some
proper variation I' of 7. Now using (4.36) and (4.38), we get

k—1

b
(4:39) [ VD e+ Y (v (@), an) =0

i=1

for every proper vector field V' along ~.
m Take an interval [a;_1, a;] and choose a function ¢ € C*°(R) such that ¢ > 0 on (a;_1, a;) and
¢ = 0 elsewhere. Then (4.39) with V = ¢D;¥ implies

/ ©| D) dt = 0.
aq—1

Hence, Dy = 0 on each (a;—1,a;), that is, v is a "broken” geodesic.
For each ¢ = 1,...,k — 1 one can construct, using local coordinates at v(a;), a vector field V'
along v such that V(a;) = A;y and V(t) = 0 for every t ¢ (a; — ,a; + €), where £ > 0 is so small
that a; ¢ (a; —,a; + €) if j # i. Using again (4.39) and 1°, we know that |A;4|> = 0, that is,
A;4 = 0. Hence,

Y(a;) =4(af) foreveryi=1,...,k— 1.

The existence and uniqueness of geodesics imply that there exists a geodesic v : [ — M, a; € I,

such that ¥(a;) = v(a;), ¥(a;) = ¥(a; ) = ¥(a;}), and ¥ = v on both (a;_1,a;) NI and (a;,a;41) N 1.
Hence, v is a geodesic. ]

Geometric interpretation: If Dy # 0, then (4.36) with V = @Dy, where ¢ is as in 1°, gives

d

b
—U(Ts)]s=0 = — Dy|*dt < 0.
S0 == [ DA ar <

Thus deforming ~ in the direction of its ”acceleration vector” D;¥ decreases length.

Similarly, if A;4 # 0, then the length of the broken geodesic v decreases by deforming it in the
direction of V', with V(a;) = A;7.
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Definition 4.40. We say that an admissible curve v : [a,b] — M is a critical point of the

length functional /¢ if
d

%E(FS)L@:O =0
for every proper variation I" of ~.
Proof of Theorem 4.37 actually gives the following:

Corollary 4.41. A unit speed admissible curve 7y is a critical point of the length functional if and
only if v is a geodesic.

Proof. If 7y is a critical point, then the proof of Theorem 4.37 implies that ~ is a geodesic. Conversely,
if v is a geodesic, then the right-hand side of (4.36) has only a term

b
_/ <V7 Dt’7> dt>

which vanishes since D;y = 0 by the definition of geodesic. Hence, « is a critical point. U
Next we study the converse of Theorem 4.37 and prove that geodesics are locally minimizing.

Lemma 4.42 (Gauss lemma). Let U be a normal ball at p € M. Then the unit radial vector field

% s orthogonal to the normal spheres in U.

T,M
)
7
—
dB(0, R) d

Proof of the Gauss lemma. Let ¢ € U\ {p}. Since exp, : B(0,79) — U is a diffeomorphism for
some 19 > 0, there is v € T,M such that exp,v = ¢. Let X € T;M be tangent to the normal
sphere through ¢, that is, X € T (exp,(0B(0, R))), R = |v[ > 0. Let w € T,(T,M) = T;, M such
that (exp,).w = X. Then w € T,,(0B(0, R)). By Lemma 4.19, the radial geodesic from p to ¢ is
v(t) = exp,(tv) and 4 = [v] (%)v(t) =R (%)v(t)' Hence, 91 = R (%)q.

We want to show that X | (%)q or (X,41) =0. Let 0 : (—¢,e) = T,M, o(s) € 0B(0,R), be a
C*°-path such that ¢(0) = v and ¢(0) = w.

0B(0,R) C T,M
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Let I" be a variation of v given by
[(s,t) = exp,(to(s)).
For each s € (—¢,¢), I's is a geodesic with speed |o(s)| = R. Write S = J,I" and 7' = 9,I". Then

d d
S5(0,0) = %F(&ONS:O == exp,(0)|s=0 = 0;

d d
T(0,0) = —T'(0,t)]t=0 = — exp,(tv)]i=0 = v;

dt dt
d d .
5(0,1) = “T(5, )]sz = - 5D, (()lamo = (ex0,).(6(0)) = (exp, ) = X
and
d d .
T(0,1) = aF(O,t)h:l = Eexpp(tv)h:l =7(1).
S
) r
—

Now (S,T) = 0 at (s,t) = (0,0) and (S,T) = (X,7(1)) at (s,t) = (0,1). Therefore, to prove
that (X,¥(1)) = 0, it is enough to show that (S,T) is independent of ¢. Using the Symmetry
lemma 4.30 and the fact that 'y is a geodesic with I'y = T we obtain

4.30 10 10

0 DyT=0 2

28T = (D,S, T D, PL=" 1p,s. 1 *=2Y (D1 1) = =Z (1,1 = = Z |72 =0,

9(5.1) =081y + (5, 01) "L (08,1 420 (D) = Sy = e =0
since |T| = |T's| = R for every (s,t). O

Definition 4.43. Let U C M be open and f € C®(U). The gradient of f, denoted by Vf or
grad f, is a C"*°-vector field on U, defined by

(Vf,X) =df(X) = X[
for every X € T(U).

Corollary 4.44 (of the Gauss lemma). Let U be a normal ball centered at p € M and let % €
T(U\ {p}) be the unit radial vector field. Then Vr =2 on U\ {p}.

Recall that here r : U — R is the radial distance function, defined in normal coordinates by

n 1/2
(@) = (Z(ﬂ)?) — [exp; (2)]

and

0 't ;
<E>z = (0i)a; o= expy(z'e;).
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Proof of Corollary 4.44. Take g € U\{p} and X, € T, M. We need to show that dr(X,) = (%,X@.
Let exp,(0B(0, R)), R = r(q), be the normal sphere through ¢. We decompose X, as

0
Xq—Wq—i-a(E)q, a € R,

where W, is tangent to the sphere exp,(0B(0, R)), i.e. W, € Ty(exp,(0B(0, R))).

This can be done since (%)q ¢ Ty(exp,(0B(0, R))) by the Gauss lemma. Now dr(W,) = Wyr =
0 since Wy, € T (exp,(0B(0, R))) and r = R on exp,(9B(0, R)). A direct computation (in normal

coordinates) gives
0 0
— | = = =1
dr ( or ) ( or ) T

see Remark 4.45 below. By Gauss lemma

0
<E’Wq> -

Hence
dr(Xq) = dr(Wy) + adr (%)q = q;
and )
<£7Xq>=<%,wq>+a5 =04+a-1=a.
Therefore, <%,Xq> = dr(X,). O

Remark 4.45. Let U = exp,(B(0,79)) be a normal ball centered at p. We prove that

(3)--

in U\ {p}. Let v(t) = exp,(tv), v = v'e;, be a radial unit speed geodesic starting at p. Then

(%)W} r = = (ro) (1)

for all ¢ €]0,79[. Since the normal coordinates of v(t) are (tv', ..., tv"), we have

(rom)(®) =r(v(1) = V({tv)2 + -+ ()2 =t/ (v1)2 + - + (") =1,
and therefore (ro~)'(t) = 1.
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Theorem 4.46. Let U be a normal ball at p € M. If ¢ € U \ {p}, then the radial geodesic from p
to q is the unique minimizing curve from p to q in M up to reparametrization.

Proof. Take e > 0 such that ¢ € exp,(B(0,¢)) C U. Let v : [0,R] — M be the unique radial
geodesic from p to ¢, with unit speed and R = r(q) = |exp, *(¢q)|. Then ~(t) = exp,,(tv) for some
unit vector v € T, M. Since v has unit speed, ¢(7) = R. Thus we need to show that /(o) > R
whenever o : [0,b] — M is an admissible unit speed curve from p to ¢, with ([0, b]) # ([0, R]).
Let ag € [0,b] be the largest ¢ such that o(t) = p and let by € [ag,b] be the smallest ¢ such that
o(t) € Sr = exp,(9B(0, R)).

For ¢ € (ap,bg], we can decompose &(t) as

5(1) = alt) - + W),

where W (t) is tangent to the normal sphere centered at p through o(t). The Gauss lemma implies
that (W (t), (%)U(t)> =0, so

(O = (5(1), (1)) = a(t)* + [W(H)* > a(t)*.

Using Corollary 4.44 we know that

Hence,
bo bo bo
l(o) > l(o|[ag, bp]) = lim |o(t)| dt > lim a(t) dt = lim dr(a(t))dt
0—0 ao+o 6—0 ao+o 6—0 ao+o
bo d
= lim —r(o(t))dt =r(o(by)) — r(o(ap)) = R = £(7).
6—0 ao+o

If ¢(o) = £(y), then both inequalities above are equalities. Since o is of unit speed, we must have
ap =0 and by =b = R; and W(t) =0 and «a(t) > 0. So, ¢(t) = a(t)% and since o is of unit speed
a(t) = 1. Thus both o and v are integral curves of %, with o(R) = v(R) = q. Hence, c =v. O

Corollary 4.47. Let U be a normal ball at p. Then r(z) = d(x,p) for every xz € U.
Proof. Exercise. O



58 Riemannian geometry

Denote
Bp,r):={q€ M :d(p,q) <t}
B(p,r):=1{q€ M :d(p,q) <r};
and
S(p,r):=={q € M :d(p,q) =r}.

We say that an admissible curve v : I — M is locally minimizing if each ¢ty € I has a neighborhood
J C I such that «|J is minimizing between any pair of its points. Clearly, a minimizing curve is
locally minimizing.

Theorem 4.48. FEvery geodesic is locally minimizing.

Proof. Let v : I — M be a geodesic such that I C R is open. Let tg € I and let W C M be a
uniformly normal neighborhood of «(tp), that is, there exists 6 > 0 such that for every ¢ € W the
map exp,, is a diffeomorphism in B(0,6) C T, M and W C exp,(B(0,9)) = B(q,9).

t1 to t2

Let J C I be an open interval containing ¢y such that ~v(J) C W. If t1,to € J, then g2 = v(t2)
belongs to a normal ball centered at g1 = 7y(¢1) by the definition of uniformly normal neighborhood.
Theorem 4.46 implies that the radial geodesic from ¢; to ¢o is the unique minimizing curve from ¢
to go. However, 7|[t1,t2] is a geodesic from ¢; to go and ~([t1,te]) is contained in the same normal
ball around g1, so |[t1,t2] is this minimizing radial geodesic. O

Remark 4.49. We need a uniformly normal neighborhood above to be able to place the center of
the normal ball to any point y(t), with ¢ in a neighborhood of .

Another proof of 4.37 (without using the first variation formula). Let v : [a,b] — M be a minimiz-
ing curve and let ¢y € (a,b). As above, there exists an interval J = (t9 — &,tp + £) C [a,b] and
a uniformly normal neighborhood W such that v(J) C W. As above, we conclude that for every
t1,ty € J, the unique minimizing curve from ~(¢;) to y(t2) is the radial geodesic. Since the restric-
tion of 7 is such a minimizing curve, it coincides with the radial geodesic thus solving the geodesic
equation in a neighborhoof of ty. Since t( is arbitrary, v is indeed a geodesic. O

4.50 Completeness

Definition 4.51. A Riemannian manifold M is said to be geodesically complete if every maximal
geodesic is defined for all ¢t € R.

Example 4.52. If U ¢ R" is an open subset with the Euclidean metric, then U is not complete.

Theorem 4.53 (Hopf-Rinow). Let M be a connected Riemannian manifold. Then the following
are equivalent:

(a) there exists p € M such that exp,, is defined on the whole of T),M;



Fall 2010 59

(b) for every p € M the map exp,, is defined on the whole of T),M;
(¢) M is complete as a metric space;
(d) M is geodesically complete.

Moreover, any of the above conditions implies that

(e) if p,q € M, then there exists a geodesic from p to q with ¢(y) = d(p,q), that is, M is a
geodesic metric space.

Proof. | (¢) = (d) | Suppose M is metrically complete but not geodesically complete. Then there
exists a unit speed geodesic v : [0,b) — M that extends to no interval [0,b+¢) for e > 0. Let t; T b
and write p; = y(t;). Since 7 is of unit speed, we have

[t t5]) = [t5 — til,

which gives
d(pi, pj) < [tj — til.

Hence (p;) is a Cauchy sequence in M. Because M is metrically complete, there exists p € M such
that d(p;,p) — 0. Let W be a uniformly normal neighborhood of p and ¢ > 0 such that for every
q € W, the map exp, is diffeomorphism in B(0,d) C T;M and W C B(q,d) = exp,(B(0,0)). If
i € N is large enough, then p; € W and ¢; > b— §/4.

G-

Because exp,, is diffeomorphism in B (0,6) C T, M, we know that every geodesic o starting at

pi (i.e. 0(0) = p;) is defined at least on [0,9). In particular, the geodesic o, with ¢(0) = 4(¢;), is
defined on [0, /2]. The uniqueness of the geodesic implies that o is a reparametrization of . Hence
v, ¥(t) = o(t — t;), is an extension of v which is defined on [t;,t; +0/2], with ¢; +6/2 > b+ 46/4; a
contradiction. Hence, M is geodesically complete.
(a) = (c) | First of all, we will show that that every ¢ € M can be joined to p by a geodesic
of length d(p,q), i.e. claim (e) when p is as in (a). Let B(p,§) be a closed normal ball at p.
If ¢ € B(p,§), then there exists a minimizing geodesic from p to ¢ by Theorem 4.46. Suppose
q ¢ B(p,6). Since S(p,d) = exp,(9B(0,6)) is compact and the distance function is continuous,
there exists z € S(p,d) such that d(x,¢) = min{d(y,q) : y € S(p,9)}.

Y

Qe
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Let v : R — M be a unit speed geodesic such that v|[0,4] is the unique radial geodesic from
p to 2. Hence, ¥(t) = exp,(tv), where v = exp,'(x)/d. (Note that the assumption (a) says that
exp, (tv), hence 7, is defined for all £ € R.) We are going to show that v(r) = ¢, where r = d(p, ).
Let f:[0,7] — R be the continuous function f(t) =t + d(vy(t),q) and let
T={te0,r]: f()y=r} (=F7'(r)
Then 0 € T and T is closed. Let tg := sup1. Then tyg € T since T is closed. If t5 = r, we

have r 4+ d(y(r),q) = r, and so y(r) = ¢g. Thus, we may assume that ¢ty < 7. Next we show that
to+ 6" € T if & > 0 is so small that tg+ ¢ < r. Let B(y(tg),d’) be a closed normal ball and choose

q € S(y(ty),d") such that d(¢’,q) = min{d(y,q) : y € S(v(to),d")}.

‘ q *q
x

It suffices to show that ¢ = ~(to + ¢'), because then

d(v(to),q) 2 &' + min{d(y, q) : y € S(1(to), )} = & +d(q,q) = & + d(3(to + &), ),

((*) is an exercise) and since to € T" implies d(y(to),q) = r — to; we have
d(v(to +¢'),q) = d(y(t0),q) =" =71 —to = &' =71 — (to + ).

Hence, tg + 0’ € T'; a contradiction with the definition of ¢y. To prove that v(tg 4+ 0') = ¢/, observe
that

d(p,q') > d(p,q) — d(d'.q) =7 — (d(v(to),q) — &) “S v — (r —tg — &) = to + 4.

On the other hand, the broken geodesic from p to ¢’ that goes from p to y(tp) by 7 and then from
v(tp) to ¢' by a radial geodesic in B(vy(tp),0’) has length to + §. Hence, d(p,q’) < tg+ &', and so
this broken geodesic in minimizing, hence a geodesic. The uniqueness of geodesics implies that it
coincides with ~|[0,%9 + '], so y(to + ¢’) = ¢/. This completes the proof of the claim that every
g € M can be joined to p by a geodesic of length d(p, q).

Let then (g;) be a Cauchy sequence in M. Let v; : [0,¢;] — M, ;(t) = exp,(tv;), be a unit
speed minimizing geodesic from p to ¢;. Then

[t — t5| = |d(p, @) — d(p, q;)| =< d(g;, ¢;)-
Hence, (t;) is a Cauchy sequence in R, in particular ¢; < R < oo for every ¢ € N. Since |v;| = 1,
the sequence (t;v;) of T, M is bounded. Therefore, a subsequence (t;, v;,) converges to v € T,M.
The continuity of the exponential map exp,, implies that g;, = exp,(t;,v;,) — exp,v. Because (¢;)
is Cauchy, ¢; — exp, v, so (g;) converges. This gives (c).

(b) = (a) | Trivial.
(d) = (b) | Obvious.
(b) = (e) | That was, in fact, proven in |(a) = (c) |

O

Remarks 4.54. The condition (e) does not imply completeness (e.g. open ball in R™). All compact
Riemannian manifolds are complete.
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5 Curvature

5.1 What is curvature?

Consider a C*™-path v: I — R? in the plane. Assume that || = 1. Formally, the curvature of
7 is defined by (t) = |J;|, the norm of the accelleration vector. Geometrically, the curvature has
an interpretation:

Given a point p = ~(t), there are many circles o that are tangent to v at p, i.e. o(t) = p and
0+ = ¢ but exactly one such that also &; = 4;. Call this the osculating circle. If 4, = 0, take o
to be the straight line tangent to v at p. Note that 4 L 44, since |%| = 1 (v has no accelleration in
its own direction).

Then k() = 1/R, where R is the radius of the osculating circle (R = oo and k(t) = 0 if 44 = 0).
Choose a unit normal vector at some point of v and let N be the corresponding (continuous) unit
normal vector field along . Then the signed curvature ky is

[k, iEE TN,
() = {—m(t), if 5, 11 N

Suppose S is a (2-dimensional) smooth surface in R3. The curvature of S at p € S is
described by two numbers, called the principal curvatures, as follows:

(i) Choose a plane P through p € S containing N, a unit normal vector to S at p; near p SN P
is a smooth plane curve v (C P) passing through p.

(ii) Compute ky of v at p with respect to the chosen unit normal N.

(iii) Repeat this for all such planes P.

The principal curvatures, x; and ko, of S at p are the minimum and the maximum signed cur-
vatures obtained in (iii). Principal curvatures are not isometrically invariant; they are not intrinsic
properties of S. For instance, a strip S = {(z,y) € R?>: x € R,0 < y < 7} and a half-cylinder
Sy = {(z,y,2) € R®: x € R,y?> + 22 = 1,2 > 0} are isometric (by the map (z,y) — (z,cosy,siny)),
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but the principal curvatures of S; are k1 = k9 = 0 whereas the principal curvatures of Sy are k1 = 0
and ko = 1.

Gauss’s Theorema Egregium ("remarkable theorem®), 1827: The product K = kK2 is
intrinsic, i.e. can be expressed in terms of the metric of S. The product K is called the Gaussian

”bowl-shaped * ”dome-shaped “
K>0 K<0

curvature.

Model surfaces.
1. The plane R?, K =0.
2. The sphere S? = {z € R?: |z| = 1} with induced metric, K = 1.
3. The hyperbolic plane H?, K = —1.
e Upper half-plane model: H? = {(z,y) € R?: y > 0} with the Riemannian metric

gH = y_QQE, ge = the Euclidean metric.

e Poincaré-disk model: H? = {z € R?: |z| < 1} with the Riemannian metric

49k ‘
(1 - Jaf?)”

gH =

geodesics

Theorem 5.2 (Uniformization theorem). Every connected 2-manifold is diffeomorphic to a quotient
space of either R%, S?, or H? by a discrete group of isometries acting properly discontinuously
without fized points. Therefore, every connected 2-manifold has a complete Riemannian metric
with constant Gaussian curvature.
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Theorem 5.3 (Gauss-Bonnet theorem). If S is a compact oriented 2-manifold with a Riemannian
metric, then

/ K = 27mx(5),
S
where x(S) is the Euler characteristic of S.

The Euler characteristic of S is a topological invariant of S defined as
X(S) = # vertices - # edges + # faces in any triangulation of S.

2, if S =sphere,
X(S)=x0, if S =torus,
2 —2¢g, if S = an oriented surface of genus g.

For Gauss’s Theorema Egregium and the Gauss-Bonnet theorem see e.g. [Lel].
Curvature in higher dimensions.
A recipe for computing ”some curvatures* at p € M:
1. Take a 2-dimensional subspace P C T, M;

2. Take a ball B(0,7) C T,M such that exp, is a diffeomorphism in a neighborhood of B(0,r).
Then exp, (P N B(0,r)) is a 2-dimensional submanifold of M. Call it Sp.

3. Compute the Gaussian curvature of Sp at p. Denote it by K(P).
Thus ”curvature® of M at p can be interpreted as a map
K: {2-planes in T,M} — R.

A geometric description of curvature: Consider two geodesics intersecting at p in angle a. We will
show later that the curvature has the following effect to the behavior of geodesics:

"curvature® > 0 (e.g. S™) "curvature“ =0 (R") “curvature“ < 0 (e.g. H")

Model spaces with ”constant curvature® will be: R" | S* = {x € R"*! . |2| = 1} with the
induced metric, and the hyperbolic space H".

e Upper half-space model for H":

{(z1,...,2,) €ER":z, >0}, gy =x,%gr, where gg is the Euclidean metric.

e Poincaré model for H"™:

d9E
reR": |z| <1}, H= ——————.
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o Geodesics (in the models above) are as in the 2-dimensional case.

Remark 5.4. We say that a Riemannian metric g is obtained from another Riemannian metric g
by a conformal change of the metric if § = fg, where f is a positive C*°-function. (Conformal
= "angles are preserved“.)

Consider next the parallel translation P ; around a (piecewise smooth geodesic) triangle v: [0, 1] —
M, p=~(0) =~(1), when M =R" S" or H".

R?’L
Conclusion: Py 1Vp = Vo
< < < < p
~ 1
Po1Vo
ST . Conclusion: Py1Vy # Vo
HTL

Conclusion: Fy1Vp # Vo

J

Py1Vo

The phenomenon above is related to the question whether M is locally isometric to R™ at p. Indeed,
a Riemannian manifold M is locally isometric to R™ at p if and only if Py = id for every sufficient
small loops v, with v(0) = v(1) = p.

So, the curvature is a local invariant that in some sense measures how far away the affine connection
(locally) is from the Euclidean connection.

5.5 Curvature tensor and Riemannian curvature

Let M be a C°°-manifold with an affine connection V. The curvature tensor field of V is the
map R: T(M) x T(M) x T(M) — T (M) defined by

Warning: In some books the definition differs from above by sign. (e.g. in Do Carmo [Ca]).
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Lemma 5.6. R is 3-linear over C>*(M) :Vf,g € C*(M)
(i) R(fX1+9X2,Y)Z = fR(X1,Y)Z + gR(X»,Y)Z;
(ii) RCX, fY + gYs)Z = FR(X,Y1)Z + gR(X,Y)Z;
(iii) R(X,Y)(fZ +gW) = fR(X,Y)Z + gR(X,Y)W.
Proof. (Exercise). O

Thus R € T?(M). As a tensor field the value of R(X,Y)Z at p depends only on X, Y,, and
Z, (and, of course, on R itself).

Remark 5.7. (i) We immediately see that

(5.8) R(X,Y)Z = —R(Y,X)Z.

(ii) If M = R™ with the standard connection, then R(X,Y)Z =0V X,Y,Z € T(R").

Let (U x), = = (x',...,2"), be a chart at p, with dy,...,0, the coordinate frame. Then
R (€ T$(M)) can be written in coordinates (z%) as

R = R} dz' ® d2) @ dz" @ 0,
where the functions Rfjk are defined by

R(9;,0;)0) = Ry;1,0%.

So, if ' o
V =09, W=w'd and Z =29,

then by linearity (over C*°(U))
R(V,W)Z = R{;v'w’ 2*0y,

where we also see that (R(V,W)Z), depends only on V,, W), Z,, and Rﬁjk(p).
Since [0;, 0] = 0, we have

R(04,0j)0k = V,V,0k =V, Vg0 =+ = (ngrzr? —TLI7 + 0T — 8]-1“?,1) O

Geometric interpretation for R(X,Y)Z : For small ¢ > 0, define a piecewise regular curve
v :[0,4t] — M as follows:

7][0, t] = the integral curve of 0; starting at p € M;

v|[t, 2t] = the integral curve of J; starting at y(t);
v|[2t, 3t] = the integral curve of — 0; starting at ~y(2¢);
7v|[3t, 4t] = the integral curve of — 0; starting at v(3t).

Here 0; and 0; are coordinate vector fields corresponding to a chart (U,z) at p. Since 0; and
0; are coordinate vector fields, v(0) = v(4t) = p.
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Let Py 4¢ : T,M — T, M be the parallel translation along . Then for v € T, M, we have:

(I — P074t)2)

(5.9) R(9:, 05)v = fim =57,

where I : T,M — T,M is the identity map.

The proof of (5.9) is left as an exercise.

Assume that M is a Riemannian manifold, V the Riemannian connection, and (, ) the Rie-
mannian metric. Using the Riemannian metric we can change R € T(M) to R € T*(M) by
defining

(5.10) R(X,Y,Z,W) = (R(X,Y)Z,W)

for X,Y,Z, W € T(M). It is called the Riemannian curvature tensor. In coordinates it is
written as
R = Rijida’ ® da’ @ da* @ dat,

where
Rijke = gem R

Proposition 5.11. Let M be a Riemannian manifold. Then
(1) R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0 (Bianchi identity);
(2) (R(IX,Y)Z,W)=(R(Z,W)X,Y);
(3) (R(X,Y)Z,W)=—(R(X, Y)W, Z).
Proof. (Exercise) O

Remark 5.12. The value of R(X,Y,Z,W) at p depends only on X,, Y, Z, and W), (and, of
course, on R).

5.13 Sectional curvature

For u,v € T, M, write

VI = (u,v)?

= the area of the parallelogram spanned by « and v.

lu A vl

If |u Av| # 0, we define

(R(u,v)v,u)

(5.14) Kluv) ==

Lemma 5.15. Let P C T,M be a 2-dimensional subspace and let u,v € P be linearly independent.
Then K(u,v) does not depend on the choice of u and v.

Proof. Exercise. O

Definition 5.16. Given p € M and a 2-dimensional subspace P C T,M, the number K(P) =
K (u,v), where {u,v} is any basis of P, is called the sectional curvature of P at p.
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Remark 5.17. This is the same as the Gaussian curvature of Sp described earlier in ; see e.g.
Lee [Lel, Chapter 8].

Lemma 5.18. (R(u,v)v,u) determines the curvature completely, i.e. K and the metric defines R.

Proof. We need to show that (z,y,z,w) — (R(x,y)z,w) is the only 4-linear form that satisfies
conditions (5.8) and 5.11(1)-(3), and whose restriction to points (x,y,y, x) is equal to (R(z,y)y, ).
Suppose that f and f’ are two such maps (i.e. 4-linear maps (z,y, z,w) — f(z,y,z,w) satisfying
(5.8) and 5.11(1)-(3), and whose restrictions to points (z,y,y,x) are equal to (R(z,y)y,x)). Then
the 4-linear form g = f — f’ also satisfies (5.8) and 5.11(1)-(3). Since

g(u,v,v,u) = f(u,v,v,u) — f'(u,v,v,u) = (R(u,v)v,u) — (R(u,v)v,u) =0
for all u,v, we have g(x + z,y,y,z + z) = 0, and by 4-linearity

9z, y,y,2) +9(x,y,y,2) + 9(z,9,y,2) + 9(2,y,y,2) = 0.
=0 =0

Thus
9(x,y,y,2) + 9(z,y,y,2) =0
Using (5.8) and 5.11(2)-(3) we obtain

0=yg(z,y,y,2) +9(2,y,y,1)

(2)
= g9(x,y,y,2) + 9y, x,2,y)

3)

= g($7y7y7z) _g(yvxvyvz)
(5.8)

=" 9(z,y,y,2) + g(x,y,y, 2).

Thus
9(z,y,y,2) = 0.

Here replace y by y 4+ w to obtain first
9(@,y +w,y+w,2) =0

and then by 4-linearity

g(fE,y,y,Z) +g(m7y7waz) +g(x7w7y7z) +g(.’E,U),'LU,Z) = 0.
=0 =0

Hence
g(IL’, w,Y, Z) = —g({L’, Yy, w, Z)

which by (2) and (3) (of 5.11) is the same as
9(y, 2z, w) = g(z,y, 2, w).

We conclude that g does not change in cyclic permutations of the first 3 variables. By 5.11(1), the
sum over such permutations vanishes, and therefore g = 0. ]

By using Lemma 5.18 one can characterize curvature tensors with constant sectional curvature.
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Proposition 5.19. Let M be a Riemannian manifold andp € M. Then K(P) = K for all 2-planes
P C T,M if and only if

R(z,y)z = K ((y,z)z — (z, 2)y)
forall x,y,z € T, M.

Proof. Define multilinear maps R : (T,M)* — T, M,

R(z,y)z = K ((y,z)z — (2, 2)y) ,
and R : (T,M)* — R, )
R(.’E, Y, z, U)) =K (<y7 Z><‘T7 'LU> - (.’E, Z><y7 U)>) .
Now R satisfies (5.8) and 5.11(1)-(3). If K(P) = K, we have
R(z,y,y,2) = K (|2|*[z[* = (2,9)*) = R(z,y,y, ).
Lemma 5.18 then implies that R = R.
Obvious. O

5.20 Ricci curvature and scalar curvature
Definition 5.21. The Ricci curvature is a tensor field Ric € T2(M) defined by
Ric(z,y) = the trace of the linear map z — R(z,x)y.

If e1,...,e, is an orthonormal basis of T),M, then

n

Ric(z,y) = Z(R(ei,l’)% ei)

= Z(R(%ez‘)ez‘,w-

i=1

We set Ric(x) = Ric(z,x). If |x| = 1, Ric(z) is called the Ricci curvature in the direction x.
Hence if || =1 and eq,...,e,—1 € TyM such that z,eq,...,e,—1 is an orthonormal basis of T),M,
we get

n—1
Ric(z) = (R(z,z)z, x) + Z(R(m, ei)ei, )
~ i=1

n—1
i=1

where P; C T,M is the plane spanned by = and e;. Note that (x) holds since |z A e;| = 1 for all
1=1,...,n—1.
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Remark 5.22. Lower bounds for the Ricci curvature Ric(x) give upper bounds for the volume
growth. The Ricci curvature will be important in relations between curvature and topology.

The scalar curvature is a function S defined as the trace of Ric. Thus
n
S(p) =) Ric(e;),
i=1
where e1, ..., e, is an orthonormal basis of T, M.

6 Jacobi fields

Jacobi fields provide tools to study the effect of curvature on the behavior of nearby geodesics.
They can also be used to characterize points where exp, fails to be a local diffeomorphism.
In this chapter we assume that M is a Riemannian manifold.
6.1 Jacobi equation
Lemma 6.2. IfI' is a C*° admissible family of curves and if V is a C°° vector field along I, then
DsDtV - DtDSV = R(S, T)V
Recall that I': | — ¢, ¢[x][a,b] — M and
T(s,t) = 0I'(s,t),
S(s,t) = 0sI'(s,1),
D;V = the covariant derivative of V' along main curves [,

D,V = the covariant derivative of V' along transverse curves r®.

05T (s,t)

8tF(S, t)

Proof. This is a local question, so we may compute in local coordinates. Let x be a chart at
I'(so,t0). Writing
Vs, t) = V'(s,t)0;,

we get
Vi ,
D,V = ({;—t& + V*'D,0;,
RVi_ Vi oV .
54>t

DD,V "= ... +ViD;D,0;.
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Thus '
DsDyV — DDV = V*(DsD0; — Dy Ds0;).

Writing (z o I')(s,t) = (z'(s,t),...,2™(s,t)), we have

o0xJ oxk
Since 0; is extendible, we have
oz’
D,0; = ; = —Vo,0i.
10; = V10, 5 Vo, 0,
Furthermore, since Vj,0; is extendible, we obtain
D00, = 225, 0+ 25 (v,0)
s/t a 8t 8 8 S 8]‘ 7
0?2 oz 0k
= gt 00 T r g VoV, 0
Similarly (interchanging s <> t and j <> k),
022 0xk 0xd
DtDS(?Z- - %Va 8 + — 8 at Va Va,ﬁ
Hence
J
D.D:d; — D;D,d; = 8; 8; (Vo Vo, 0 — Vo, Vi, ;)
[01,0;]=0 oz dx A
- 8t 83 R(ak’78])82
= R(S,T)0;.
So,

D,D;V — D;D,V = V'R(S,T)0; = R(S,T)V.

Remark 6.3. Shorter proof of Lemma 6.2.(Cf. Remark 4.32.) Since

[S,T] = [0, 1.8, =T, [05,0;] =
——

=0

we obtain

R(S,T)V = VsVrV = ViVsV = Vig 7V

N——
=0

=Vr.6.Vr.a,V — Vr.o, Vr.s.V
=D,D;,V — D;D,V.

Let I" be as above. We say that I' is a variation of v through geodesics if all main curves I’y
are geodesics and I'g = . Recall that the variation field of I' is the vector field V (t) = 9;I'(0,¢) =
S(0,1).
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Theorem 6.4. Let v be a geodesic and I' a variation of v through geodesics. If V' is the variation
field of T, then it satisfies the Jacobi equation

(6.5) D2V + R(V,4)% = 0.

Proof. Let S(s,t) = 0sI'(s,t) and T'(s,t) = 0:I'(s,t) be as earlier. Since all main curves I'; are
geodesics, we have '
DT = D" =0.

By Lemma 6.2 and the Symmetry Lemma 4.30, we obtain

0= D,D,T = D,;D,T + R(S,T)T
— D,D,S + R(S,T)T.

At s =0, S(0,t) =V (t) and T(0,t) = ¢, so we get (6.5). O
Definition 6.6. Any vector field V' along a geodesic v that satisfies (6.5) is called a Jacobi field.

Let v: I — M be a geodesic, E; € T(v), i = 1,...,n, a parallel orthonormal frame along =,
and E, = 4. Let V € T(7),

V= 'UZEZ
Since F; is parallel, D,V = ¢'E; and
(6.7) DV =i'E;.
Writing R(E;, Ey)Ey = R;’kéEi> we get
(6.8) R(V,4%)¥ = R(WE}, En)E, = v/ R}, E;.

By definition, V' is a Jacobi field if and only if it satisfies (6.5). Plugging-in (6.7) and (6.8) into
(6.5), we conclude that

V is a Jacobi field < #'F; +v/R: E; =0

mn-—1

& ' +/R),,=0,Vi=1,...,n

This is a linear system of 2"%order ODEs. Theory of ODEs then imply the following:

Proposition 6.9. Let v: I — M be a geodesic, ty € I, and p = y(tg). Given any vectors v,w €
T,M there exists a unique Jacobi field V' satisfying the initial conditions

Vie=v and (D;V), = w.

Corollary 6.10. Given a geodesic vy, the set of all Jacobi fields along v is a 2n-dimensional linear
subspace of T (7).

Proof. Follows easily from 6.9 (Exercise) O

Lemma 6.11. Ifv: I — M is a geodesic and V is a Jacobi field along ~, then on every [a,b] C I,
V' is the variation field of some variation of y|[a,b] through geodesics.

Proof. Let v: I — M be a geodesic and V' a Jacobi field along «. Fix [a,b] C I and let o be a
(C°°-path such that 69 = V,. Let T" and Z be parallel vector fields along o such that

TO = "ya and ZO = (DtV)a.
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For a sufficiently small € > 0 define I': | — €, ¢[x[a,b] — M by
['(s,t) = expy(s) [t —a)(Ts + sZs)].
Then I' is a variation of « through geodesics. By Theorem 6.4,
t — 9,1°(0,¢)

is a Jacobi field along . We claim that V; = 9,I'(0,t). To prove the claim, we observe that

t).
d d .
9sI'(0,a) = d—P(S a)\s 0= ds (8)\3:0 =00 ="Va

and

d
0I'(s,a) = af(s,t)‘t:a =Ts + sZs.

The Symmetry Lemma 4.30 and the assumption that 7" and Z are parallel along o imply that

D 0T (s, a) 420 D0, T'(s,a) = Dg(Ts + sZ)

d
= DJT,+sD,Z,+ E(S) Z
=0 =0

= Zs.

Hence at s =0
Dtasf(O, CL) = ZQ = (DtV)a

Since V and 9,I'(0, -) have the same initial values, we get V; = 9sI'(0,¢) by Proposition 6.9. O

6.12 Effect of curvature on geodesics

Let z,y € T, M be orthonormal and X,Y their parallel fields in T}, M.

Define I'(s, ) = exp, [t(z + sy)].
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Vi

Then I' is a variation of I'y through geodesics and

(6.13) Vi = 0.1(0, ) = % (expy [t + 59)]) g = (exp, ). (tY)

is a Jacobi field. More precisely, (exp,)«(tY) = (exp,)«(tY), where (exp,)its: Tia(TpM) —
TronM.

We want to study the Taylor expansion of |V} at t = 0. In what follows we denote the covariant
derivative Dy by prime (). Write T; = 9,I'(0,t) = I'g(¢). From (6.13) (or from the Symmetry lemma)
we get

‘ 2

Vo=Yy=y and (V,V)y =0,
and consequently

(VV)o =2(V,V)o =0
V) =2(V" V)g+2(V,V')g =2 |y|* =2
=0 =1
VIV =2V, VYo +2(V, V'Y
— 2 <V”/, V>0 +2<vl/’ Vl>0 + 4<V”, Vl>0
=0
= 6(V", V')q.

—

Since V is a Jacobi field, we have V" = —R(V,T)T, and therefore
Vg = —(R(V,T)T), =0,

and so
(V, V)’O" =0.

Furthermore,

Using this we compute

V V "o ( V/l/ (V/l V/>)
2 <V/l/l V> <Vl/l vl> 6<V,”, V/>0 + 6 <V1/7 Vl/>0
=0 =0

_ 8<V”/, V/>0
= _8<R(y7 l‘)l‘, y>

Putting these together, we obtain

8
Vil* = 2— = 5 (B, 2)a, y)t* + OF).
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Vectors z,y € T,M are orthonormal, hence (R(y,z)z,y) = K(y, ), and therefore
(6.14) Vi[2 =2 — %K(y,x)t‘* +O(t),
Let us prove the equality (*):
(=R(V.T)T), = (=R(V",T)T)o.
For every W € T(I'y), we have at t = 0:

<R(V> T)T> W>6 = <(R(Vv T)T)lv W>0 + <R(V> T)T> W/>0

=0 since Vp=0

Hence using Proposition 5.11(2)-(3) we obtain

(RV,T)T) W) = (R(V.T)T,W)g

BE - (r(r,wyT, VY,

= —((R(T,W)T), VYo —(R(T,W)T, V")

~
—

il
=
~
=
<
3
o

(R(V',T)YT,W ).

Since this holds for every W € T(I'y), the equality (x) follows.
Geometrical interpretation:

K(y,z) >0 K(y,z) <0

6.15 Conjugate points

In this section we study the relationship between singularities of the exponential map and Jacobi
fields.

If M is complete, then exp, is defined on all of T;,M and it is a local diffeomorphism near 0.
However, it may fail to be a local diffeomorphism at points far away.

Example 6.16. The sphere S™. For any p € S”, all points on 9B(0,7) C T,S™ are mapped to the
antipodal point g € S™ (of p) by the exponential map exp,. Hence ¢ is the critical value of exp,,.
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Definition 6.17. A point ¢ is a conjugate point of p € M if ¢ is a critical value of exp,. That
is,
eXPpuy: To(TpM) — Ty M

is singular for some v € T,M. (Note that then ¢ = expy, v.) Moreover, ¢ is conjugate to p along
a geodesic v if v is a reparametrization of vV, where v is as above.

Suppose that v € T,M and exp,,,,, w = 0 for some 0 # w € T,(T,M) = T,M. Thus g = exp, v
is a conjugate point of p. Let
['(s,t) = exp,t(v + sw)

be the variation of ¢ — expp(tv) through geodesics. The corresponding variation field
Vi = 0s'(0,t) = exp,q, tW,

where W is the parallel field of w in T,,M, is a Jacobi field that vanishes at ¢ = 0 and ¢ = 1;
Vo = expp. 0 = 0, V1 = exp,,, w = 0. Since exp,,, is the identity map, also exp,,, is invertible for
|t| small enough, and therefore V' is non-trivial.

Theorem 6.18. Let v: [0,1] — M be a geodesic. Then q = 7 is conjugate to p = vy along =y if
and only if there exists a non-trivial Jacobi field V' along v such that Vo =0 and Vi = 0.

—

Suppose that V' is a non-trivial Jacobi field along v, with V) = 0 and V; = 0. Let

Proof. Proved above.

q

D(s, ) = expy t(0 + sV3).
Its variation field is V' (see the proof of Lemma 6.11). Hence
eXPpis, Vo = 0sI(0,1) = V1 = 0.

Since V) = 0 and V is non-trivial, we must have Vj # 0 (otherwise, V; = 0 by Proposition 6.9). It
follows that exp,,., is singular, and therefore ¢ = exp, (o) is conjugate to p along +. O
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Remark 6.19. If ~: [a,b] — M is a geodesic, so does o: [a,b] — M, o(t) = ~v(a + b — ).
Furthermore, if V' is a Jacobi field along v, then

t—= Voot
is a Jacobi field along . In conclusion,
q is conjugate to p < p is conjugate to q.

Theorem 6.20. If V is a Jacobi field along a geodesic v: [a,b] — M, V, =0, and V}, =0, then

(V.4) = (V',9) =0
Proof. Since 7 is a geodesic, Dyy = 0, and so

(V9,9 =(V"4) = —(RV.9)¥4%) =0
(=(R(V:¥)7,y) hence =0)

Thus (V/,4) = ¢ = constant. On the other hand,

VA = {9 =c¢

and therefore
<V;57’3/t> =ct+ d7

where d is a constant. Since (Vg,%,) = 0 and (V4,4s) = 0, we have ¢ = d = 0, and consequently

(V.4) = (V',9) =0

Remark 6.21. We get from the proof above that every Jacobi field V satisfies
Vi, 1) = (Var Ya) + (Vo Fa) (E — @)

Theorem 6.22. Let : [a,b] — M be a geodesic. If v, is not conjugate to v, and vy € Ty, M, vy €
T, M, then there exists a unique Jacobi field V' along v such that V, = v1 and Vj, = vs.

Proof. Let V and W be Jacobi fields such that V, = W, = vy and V = Wy, =vy. Then Y =V —-W
is a Jacobi field along v, with Y, = 0 and Y; = 0. Theorem 6.18 implies that Y = 0, hence V is
unique (if exists). The proof of the existence of V' is left as an exercise. O

Suppose that M has constant sectional curvature K. Let y: [0,b] — M be a geodesic and E;, i =
1,...,n, be a parallel frame along . Let V' be a Jacobi field along . Then by Proposition 5.19

(V" E;) = —(R(V, %)%, Ei)
= —K (63, A0V, Ei) — (V,A) (%, Bi)).

If  is of unit speed and (V,%) = 0, then

(V' E;) = —K(V, E;).
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Solutions:

K>0: V= (d sin(VKt) 4 b' cos(\/?t))Ei(t);
K=0: V= (a't+0)Eit);
K <0: V= (a'sinh(y/|K]|t + b’ cosh(v/|K]|t)) E;(t),

where a’ and b’ are constants.

Conclusion:

If K <0, there are no conjugate points of v(0).

If K > 0, we get conjugate points of v(0) for t = ¢ /K, £ =1,2,....

6.23 Second variation formula

Theorem 6.24 (The second variation formula). Let 7: [a,b] — M be a unit speed geodesic, T' a
proper variation of v, and V its variation field. Then

d2

2 —
(6.25) 752

(o= | (DR - (RO A3V

where V* is the normal component of V, i.e. V.=VT 4+ VL VT =(V,4)5.

Proof. Write T'= o,I', S = 0,I'. Assume I' is smooth in | — ¢,e[x[a;—1, a;]. Then

d 41
£€ (PSHCLi_l,CLi]) = Lil m<DtS, T>dt,

see the proof of the First variation formula 4.35. The Symmetry lemma 4.30 and Lemma 6.2 imply

that
e % 9 ((DyS,T)
@6 (FSHCLi_l,CLi]) = /ail % <T> dt

_/ <<D5Dt8,T>+<Dt5,DsT>_1<DtS7T>2<DsT7T> dt
-/ |
i—1

T| 2 Ik
/ai <<DtDsS+R(S,T)S,T> + | Dy S|? <DtS,T>2>
_ - - dt.
aic1 T T

At s =0, |T| =1, hence

d2

@E(Fsuaa—lv ai])|8:O = / ((DtDSS7 T> + <R(S7 T)Sv T> + |DtS|2 - <DtS7 T>2) dt\s:O'
ai—1

Since T'(0,t) = 4, we have D,T = D,y = 0 at s = 0, and therefore

a; a; 8
/ (D¢DS, T)dt|s—g = §<DSS, T)dt|s—g
aq—1

= <DSS(07ai)7ﬁ/ai> - <DSS(07GZ’—1)’;VG¢_1>'

aj—1
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Since I' is proper, S(s,t) = 0 for all s at the endpoints t = ap = a and t = a = b. Hence
DS(s,a9) = 0 and DgS(s,ar) = 0. Furthermore, D4S is continuous at every (s,t), in particular,
when t = a;, and therefore

k a k
Z/ <DtDssv T>dt\s=0 = Z (<DSS(07 ai)y;yaﬁ - <DSS(07ai—1)7’yai—1>) = 0.
i=1 7 %i-1 i=1
We obtain
d2 b
@“Fs)\szo = / (IDS)? = (DS, T)? — (R(S,T)T, S)) dt|s—g

b
- / (IDVIE — (DV,4)? — (R(V.A)3, V) dt

where the last equality holds since S(0,t) = V;.
Write V = VT 4+ V4 where VT = (V,4)%. Then

DV = Dil{Vi)3) = (Vi) D+ (VD)
=0

~~~

=0
= (D)5
DVt = (DV)*,
Hence
1DV = [(DV)TP 4 [(DV) P = (DV,4)? + DV,
and so
IDV[* = (DyV,4)? = [D VP

Also,

(R(V, )7, V) = (RUV,4)%, )7, V) + (R(VE,4)3, V)
=0
= (R(VE, 4%, (V,A)%) + (R(VE,4)4, V)
=0
= <R(VJ_7 207 VJ_>'

O

We define a symmetric bilinear form, called the index form, on the space of continuous,
piecewise C'™ vector fields along v by

b
1V, W) = / (DY, D) — (R(V,A)3, W) db.

a

Corollary 6.26. Ifv: [a,b] — M is a unit speed geodesic and if T' is a proper variation of v whose
variation field V' is normal, then

d2
ds?

In particular, if v is minimizing, then I(V,V') >0 for any proper, normal vector field V along .

(6.27) (T jsmo = I(VLV).
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Proof. Since I' is proper, also V is proper. Furthermore, since V' is proper and normal, we obtain
(6.27) from the second variation formula (6.25). To prove the second claim, suppose on the contrary
that there exists a proper normal vector field V' along 7 such that I(V,V) < 0. Now V is the
variation field of some proper variation I' of 7. But then (6.27) implies that

2
d—e(rs)|s:0 < 07

and therefore « can not be minimizing. O

Next we express I(V, W) in another form involving the Jacobi equation.
Suppose that V' and W are continuous, piecewise smooth vector fields along v. Let a = ag <
a; < --- < ap = b be such that V and W are C* on each [a;_1, a;]. Then

(DyV,W)' = (DFV,W) + (D;V, D,WV).

Hence @
/ (D, DW)dt = —/ D2V, W)t + /D, w).
ai—1 ai—1 a1
By taking the sum over ¢ = 1,...,k and observing that W is continuous at points t = a; we get
b k
(6.25) IV.W) = = [ DRV + RVAYLW)dt = Y (ADWV. W (a),
a i=0
where

A;D,V = lim D,V () — lim D,V(t), i=1,... k—1;
.V t{‘ngz V(1) t}ngz V(t), i k
AQDtV = }{IC]L DtV(t),

The next theorem says that no geodesic is minimizing past its first conjugate point.

Theorem 6.29. Let v: [0,b] — M be a unit speed geodesic from p = ~v(0) to ¢ = v(b) such that
v(a) is conjugate to p along vy for some a €)0,b]. Then there exists a proper normal vector field X
along v such that I1(X, X) < 0. In particular, |0, c| is not minimizing for any c €la, b|.

Proof. By Theorem 6.18 and Theorem 6.20, there exists a nontrivial normal Jacobi field J along
7][0, a] such that Jy = 0, J, = 0 since ~y(a) is conjugate to p.

p AD,V

Define a vector field V' along ~ by
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Then V is proper, normal, and piecewise smooth. Let W be a smooth, proper, and normal vector

field along ~ such that

Wa = ADY = lim DV (1)~ lim DV (t) = ~DyJ (@) # 0.

N—_——
=0

Note that D;J(a) # 0 otherwise J = 0. Also D;J(a) L 4, by Theorem 6.20. Such W is easy to
construct: take the parallel translation of —D;J(a) and then multiply by a smooth ”bump function ¢

®.

Define

Then X°¢ is a proper, normal, piecewise smooth vector field along =y, and

o pla) =1

I(Xe, X°)

Xe=V+eW,

I(V,V) 4+ 2eI1(V,W) + 2I(W,W).

e > 0.

Since V' is a Jacobi field along [0, a] and [a, b], we get by (6.28) that

and

Hence

if £ is small enough.

I(V’ W) = _<ADtVa Wa>

(X%, X®) = —2e |[W, |2 +e*I(W, W) < 0
N——"

£0

I(V,V)=—(AD:V,V,) =0

—[Wa|* #0.

Remark 6.30. A geodesic without conjugate points need not be minimizing.

Example 6.31. There are no conjugate points along any geodesic on a cylinder S' x R. However,
no geodesic that wraps more than half way around the cylinder is minimizing.

not minimizing
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7 Curvature and topology

7.1 Index lemma

Lemma 7.2 (Index Lemma). Let «y : [0,b] — M be a unit speed geodesic from p = ~(0) to ¢ = v(b)
without conjugate points to p along ~v. Let W be a piecewise smooth vector field along ~v with Wy =0
and let V€ T () be the unique Jacobi field with Vo = Wy and Vi, = Wy,. Then

I(V,V) <I(W,W)

and equality occurs if and only if W = V.

Proof. Let v1,...,v, be a basis in T,M and Vi,...,V,, € T () be Jacobi fields such that V;(0) =0
and V;(b) = v;. Then by Theorem 6.22 the fields V; are unique. Because the Jabobi equation is
linear, the set {V;(¢)} is linearly independent for every ¢t € (0,b]. Because Wy = 0, we know that
W = f'V;, where f’ is piecewise smooth along v. On the other hand, the equality V;, = W} =
f1(b)V;i(b) combined with the fact that V; is a Jacobi field implies that V = f*(b)V;. Hence, due to
the fact that V' is a Jacobi field and (6.28), we have

(7.3) I(V,V) = (V'(b), V(b)) = [(b) 7 (b)(V] (b), V(D).
Furthermore,

(V2 Vi) = (Va V) = (VI Vi) + (VL V) = (VL V) = (W V)
= (R(V;. 4)3. Vi) = (R(Vi. )3, V) = 0.

Hence (V/,Vj) — (Vi, V]) = C, where C is a constant. The constant C' = 0 because (V/, Vj)o —

Vi, Vj/>o = 0, and therefore

(7.4) Vi, Vi) = (Vi, Vj).

On the other hand, B )
W= fVi+ 'V = A+ B,
SO

b
W, W) = /0 (A, A) + (A, B) + (B, A) + (B, B) — (R(W, )3, W)) dt.

Integrating by parts, using the fact that V; is a Jacobi field and equations (7.3) and (7.4), we have

b b b
/ (B, B) dt = / FEVEV dt = / P (VL VY — (VI V3Y) dt
0 0 0
b
= [0 FI )V (), V(b)) — /0 (F PV + F VL) = TP (RO V;)) dr

b
T3 rvv) - /O ((A, B) + (B, 4) — (R(W, ), W) dt.

Hence,
b
(W, W) = / (A, Ay dt +1(V, V) > IV, V).
0

>0

as required. From this we see that the equality occurs if and only if A = 0, or equivalently if fZ =0
for every i. However, this is possible if and only if W = V. U
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Let v be as in the assumptions of Lemma 7.2 and let I' be a proper variation of v whose
variation field W is non-trivial and normal, that is, (W,%) = 0. Then Corollary 6.26 and the
Index Lemma 7.2 implies

AT om0 = W, W) > I(V,V) =0,

where V' is the unique Jacobi field along v with Vj = Wy = 0 and V,, = W, = 0. Hence, V = 0. Note
that (W, 4) = 0 is not a restriction: any proper variation I' can be reparametrized such that W L 4.

Conclusion: ~ is minimizing among ”"nearby paths”.
Warning: v may not be minimizing among all paths joining v(0) and ~(b). For example, consider

the cylinder:

| __— absolute minimizer

7 minimizing among nearby paths

7.5 Bonnet’s theorem and Myers’ theorem
We write Ky > H if the sectional curvature K (P) > H for all 2-planes P C T,M and p € M.

Theorem 7.6. Let M be a complete connected Riemannian n-manifold. Suppose that there exists
H > 0 such that

(1) (Bonnet, 1855): Ky > H; or
(2) (Myers, 1941): Ric(x) > (n —1)H for every x € TM, |x| = 1.
Then there are conjugate points on every geodesic v of length at least w/ VH. In particular,

diam(M) < #

Proof. If suffices to prove (2): Let v : [0,b] — M be a unit speed geodesic with b > 7/vH. Let
FEy, ..., E, be an orthonormal parallel frame along v such that E,, =%. We define

Wi(t) = sin(5H) E;(t),
fori=1,2,...,n—1. Then W; € T(y), W;(0) = 0 and W;(b) = 0. Then (6.28) gives

b b
LW W) = — / (D2W; + R(Wi, 43, W) dt = / in? (1)(%2 B, — R(Ei, )4, Ey) dt
0 0

-/ sin(5) (3 — (BB E)) .
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Hence,
n—1

b
S (Wi, W) = / sin?(52) (n — 1) — Ric()) dr.
i=1 0
On the other hand, Ric(¥) > (n — 1)H and 7572 < H, so

n—1

> I(Wi, W) < 0.

i=1

Therefore, there exists j = 1,2,...,n — 1 such that I(W;,W;) < 0. Suppose that there are no
conjugate points on . Let V' be the unique Jacobi field along v such that V5 = W;(0) = 0 and
Vi, = W;(b) = 0; hence V' = 0. Index lemma and the fact that W; # V implies that

I(ijwj) > I(V’V) =0,

which is a contradiction. Hence, there are conjugate points on 7. Suppose diam(M) > \/—% Then

there exists p,q € M and a minimizing geodesic v from p = v(0) to ¢ = v(b) of length b > 7 /+/H.
We just proved that p is conjugate to ~(t) for some 0 < t < w/v/H. By Theorem 6.29 we see that
7/[0, b] is not minimizing, which is a contradiction. O

Corollary 7.7. Let M be as in Theorem 7.6. Then M is compact and the fundamental group m M
is finite.

Proof. Let M be the universal covering space of M. Because 7 : M — M is a local diffeomorphism,
we see that ¢ = 7*g is a Riemannian metric on M such that 7 is a local isometry, so 7 is a
Riemannian covering; see Appendix 7.16. Because M is complete (see Theorem 7.21) and satisfies
the same conditions (1) or (2) as M does, we see that

diam(M) < 7/VH.

Hence, M is bounded. However, M is also complete so it must be compact. Similarly, M is
compact. Furthermore, for every p € M the set m—!(p) is finite since it is compact and discrete.
Hence 71 M is finite because there is a one-to-one correspondence between 7~ !(p) and 7y M. O

7.8 Cartan-Hadamard theorem

Lemma 7.9. Let M be a complete connected Riemannian manifold with K(P) < 0 for every 2-
planes P C T,M and p € M. Then for all p € M the exponential map exp,, : T,M — M is a local
diffeomorphism.

Proof. Let v :[0,00) — M, v(0) = p, be a geodesic and V' a non-trivial Jacobi field along v with
Vo = 0. Show that V; # 0 for every ¢ > 0 and conclude that for every ¢ > 0 the point () is not a
conjugate to p. Details are left as an exercise. ]

Remark 7.10. Theorem 6.29 can be used here.

Lemma 7.11. Let M and M be connected Riemannian manifolds such that M is complete and
there is a local isometry w: M — M. Then M is complete and 7 is a covering map.

Remark 7.12. To show that 7 is a covering map, we need to show that every p € M has a neigh-
borhood U such that 771U is a disjoint union of sets U, and m|Uy : Uy — U is a diffeomorphism
for every a.
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We will prove Lemma 7.11 later.

Theorem 7.13 (Cartan-Hadamard theorem). Let M be a complete connected Riemannian man-
ifold with Ky < 0. Then for every p € M the exponential map exp, : T,M — M is a covering

map. Hence, the universal covering space M of M is diffeomorphic to R™.

Proof of Theorem 7.13. Lemma 7.9 implies that exp,, is a local diffeomorphism. Hence, there exists
a Riemannian metric on T, M such that exp, : T,M — M is a local isometry. The space T,M
with this metric is complete since geodesics of T),M passing through origin 0 are straight lines.
Now Lemma 7.11 implies that exp,, is a covering map. Furthermore, since the fundamental group

m1(T,M) = 0, we know that M is diffeomorphic to T,M, that is, to R". O

Proof of Lemma 7.11. We prove first that 7 has the path-lifting property for geodesics: Let
pE W(M), pemYp),y:I— M a geodesic such that y(0) = p. Let v = m,; 14 € T5(M); recall
that m, : T, 5(M ) = T, M is an isomorphism. Let 7 : R — M be the geodesic with Yo = 1; recall
that M is complete. Because 7 is a local isometry, we see that geodesics are mapped to geodesics.
Hence w04 =« on I. Therefore, v extends to all of R, which implies the completeness of 7T(M )

‘71 is surjective‘ We prove that 77(]\7 ) is both open and closed which then implies that M =

77(]\7 ) since M is connected. Clearly 7T(M ) is open since 7 is a local homeomorphism. To prove

that 7r(M) is closed, suppose that xz; € 7T(M) such that z; — = € M. Then (z;) is a Cauchy
sequence in 7T(M) and x € 7T(M) since 7T(M) is complete.

‘7r is a covering map ‘ Fix p € M and let 77 1(p) = {pa}. Choose r > 0 such that U = B(p,r) is

contained in a normal neighborhood of p. Let Uy = B(pa,r) C M. We will show that
(1) the sets U, are disjoint;
(2) 7' =, Us; and
(3) 7|U, : Uy — U is a diffeomorphism for every a,

which finishes the proof.

(1): Take any pu,ps € 7 (), Pa # Dp- Because M is complete, there exists a minimizing geodesic
7 from p, to pg. Because v = mo7 is a geodesic from p to p, such v must leave U and re-enter
it since all geodesics in U passing through p are radial geodesics. Hence ~y (and therefore 7)
has length at least 2r. Therefore, d(pq,pg) > 2r so U, N Up = 0 due to triangle inequality.

(2): Because 7 is a local isometry, we know that w(ﬁa) C U for every a. Hence, [, U, C n~'U.
Thus we need to show that 7—'U c |J, U,. Let § € 77'U. Then q := m(q) € U, so there
exists a minimizing geodesic v in U from ¢ = v(0) to p = ~(¢), with ¢ :=d(p,q) <r. If 7 is
the lift of v starting at ¢ = 7(0), then 7(7(¢)) = v(¢) = p. Therefore, (¢) = p,, for some «
and d(Pa,q) < U(F) =e <r. So ¢ € Uy, and 71U c U, Ua.

(3): For each o the map 7T|ﬁa : U, — U is a local diffeomorphism. Moreover, it is bijective since
its inverse is the map sending each radial geodesic starting at p to its lift starting at p,.

O

Remark 7.14. A complete, simply-connected Riemannian manifold with nonpositive sectional
curvature is called a Cartan-Hadamard manifold.

Corollary 7.15. A Cartan-Hadamard n-manifold is diffeororphic to R™.
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7.16 Appendix: Covering spaces

We assume here that all topological spaces are path-wise connected and locally path-wise connected.

Definition 7.17. Let X be a topological space. A covering space of X consists of a topological
space X and a continuous surjective map, called a covering map, 7: X — X such that the
following holds: Each point z € X has a path-wise connected open neighborhood U such that each
component of 771U is mapped homeomorphically onto U by 7.

Note that the continuous surjective map f: (—1,27) — S, f(t) = (cos(y),sin(t)), in Exerc.
7/1 is not a covering map.

Definition 7.18. If M and M are smooth connected manifolds, a smooth covering map m: M —
M is a smooth surjective map such that every point p € M has a connected open neighborhood
such that each component of 77U is mapped diffeomorphically onto U by .

Definition 7.19. If M and M are Riemannian manifolds, then 7: M — M is a Riemannian
covering if it is a smooth covering which is also a local isometry of M onto M.

Lemma 7.20 (Path-lifting property). Let X and X be topological spaces and 7 : X3 Xa covering
map. Let~: [a,b] = X be a path i.e. a continuous map. Then for every p € n1(y(a)) there exists
a unique path, the lift of v, 7: a,b] — X such that T o5 =~ and 7(a) =

Proof. By compactness of ’y([a b]) we can cover it by finitely many path-wise connected open sets
U, i =1,...,k, such that each component of 7~'U; is mapped homeomorphically onto U; by 7,
v(a) € Uy, and UiNUip # 0. Let a;y = a < ay < --- < ax = b be such that v([a;,a;4+1]) C U; for
i=1,...,k—1. Let U1 be the p-component of 7 1U1 Then 7T|U1 U1 — U; is a homeomorphism.
Let 172 be the (7T|U1) ! (fy(ag))—component of 7 'U,. Then 7T|U2. Us — Us is a homeomorphism. In
general, let U;1 be the (7T|l?i)_1(’y(aiﬂ))—componen‘c of 771U, ;. Finally, we define 7: [a,b] — X
piecewisely by 7|[a;, ait1] = (7T|ﬁi)_1 o 7v|[ai, a;+1]. By the construction, 7 is a lift of v such that
Y(a) = p.

The uniqueness can be proven in a standard way: assume that 4, and s are lifts of v such that
A1(a) = A2(a) = p and prove that the set {t € [a,b]: 31(t) = F2(t)} is both open and closed in [a, b].
Details are left as an exercise. O

Theorem 7.21. If 7: M — M is a Riemannian covering, then M is complete if and only if M is
complete.

Proof. (i) Let us first prove the path-lifting property for geodesics: Suppose that p € M, p €
7 1(p), and ~: [a,b] — M is a geodesic such that p = v(a). Let U;, U;, and 7: [a,b] — M
be as in the proof of Lemma 7.20. Since, for every i = 1,...,k, w\ﬁi: U; — U; is an isometry,
the lift 4 is a geodesic.

(ii) Suppose then that M is complete. Let p € M and v: [a,b] = M be any geodesic such that
y(t) = p for some t. Since M is complete, the lift of v extends to a geodesic 7: R — M.
Since 7 is a local isometry, mo4: R — M is a geodesic that coincides with v on [a, b]. Hence
~ extends to a geodesic on all of R, and consequently M is complete.

(iii) Conversely, suppose that M is complete. Let p € M and ¥ € TﬁM be arbitrary, and let
p = m(p) and v = m0. Since M is complete, the maximal geodesic 7" is defined on all of
R. Then the lift 4: R — M of 4" is a geodesic such that 4(0) = p and 4(0) = 0. Hence M
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is complete. Note that the existence of the lift 5: R — M follows by applying Lemma 7.20
with arbitrary long intervals [—k, k], k € N.
O

Let X and Y be topological spaces and f,g: X — Y continuous maps. We say that f and ¢
are homotopic, denoted by f ~ g, if there exists a continuous map H: X x [0,1] — Y, called the
homotopy from f to g, such that H(z,0) = f(z) and H(z,1) = g(x) for all z € X.

If, furthermore, H(x,t) = f(x) = g(x) for all ¢t € [0,1] and for all z € A C X, we say that f
and ¢ are homotopic relative to A and write f ~4 g or f ~ g rel A.

Suppose then that «, 5: [0,1] — X are paths. A path homotopy from « to 3 is a homotopy
relative to {0,1}, that is it fixes the endpoints all the time. If there exists a path homotopy from
a to 3, we say that they are (path) homotopic and write o ~ f3.

Lemma 7.22 (Homotopy lifting progerty). Let m: X = X be a covering map. Suppose _that
a, B:[0,1] = X are homotopic and &, 3: [0,1] — X are the lifts of a and B such that &(0) = 3(0).
Then a ~ (3.

Proof. The claim can be proven by modifying (and extending) the proof of path lifting property
Lemma 7.20. Details are left as an exercise. U

Corollary 7.23 (Monodromy theorem). Let : X — X be a covering map. Suppose that
o, B:[0,1] — X are path homotopic and &, 3: [0,1] — X their lifts such that &(0) = B(0). Then
a(1) = B(1).

It is obvious that, for any points p,q € X, path homotopy is an equivalence relation on the set
of all paths from p to g. We denote by [a] the (path homotopy) equivalence class of a path a.

Let us denote by Q(X,p) the set of all loops in X based at p, i.e. paths a: [0,1] — X such
that a(0) = (1) = p. The constant loop ¢, € Q(X,p) is the constant path c,(t) = p. If a loop
a € Q(X, p) is homotopic to ¢,, we say that o is nullhomotopic.

The fundamental group of X based at p € X is the set of all (path homotopy) equivalence
classes of loops based at p. It is denoted by 7i(X,p). Recall that the product of two paths
a,B:]0,1] — X with a(1) = $(0) is the path af: [0,1] — X,

a2, 0<t<1/2
aB(t) = {5(% -1), 1/2<t<1,

and the reverse path of a: [0,1] — X is the path @ (t) = a(1 —t). The set m(X,p) becomes a
group when equipped with the product [a][3] := [af], reverse, and the neutral element c,.

If X is path-connected, the fundamental groups m1 (X, p) and 71 (X, q) are isomorphic for every
p,q € X by &.: m(X,p) = m(X,q), ®,la] = [F]a][y], where v is any path from p to ¢. In
this case the base point is irrelevant and we write 7 (X) for the fundamental group based at any
(unspecified) point.

If X is path-connected and 1 (X) is trivial, i.e. every loop is nullhomotopic, we say the X is
simply connected.

Theorem 7.24. Let : X — X be a covering map such that X is simply connected. Ifm: X1 — X
18 any covering, there exists a covering map 7: X — X1 such that m = 7 o 7. Any two simply
connected coverings of the same space are isomorphic.

Proof. See, for instance [Le2|, Theorem 12.5 and Proposition 12.6. ]
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Any covering 7: X — X, where X is simply connected is called the universal covering space
of X. It can be shown that a connected, locally path-connected space admits a universal covering
space if and only if it is semilocally simply connected.

Let us describe the construction of the universal covering space for a topological manifold M.
Fix p € M and let Q, denote the space of all paths ~: [0,1] — M starting at p = ~(0). Let
My = Q,/~ be the space of all homotopy classes of paths starting at p. Since homotopic paths
have the same endpoints, there is a natural projection ¥: My — M. Then My can be endowed
with a topology for which it is simply connected and ¥: My — M is a universal covering.

Let 7: X — X bea covering map. A homeomorphism ¢: X — X is called a deck transformation
(of the covering 7), or a covering homeomorphism, if 7o = 7. The set of all deck transformations
form a group under composition.

Let then M and M be topological manifolds and 7: M — M a covering. Then the group I of
deck transformations acts properly discontinuously on M, i.e. each point p € M has a neighborhood
U of p p such that the open sets gU g € T', are pairwise disjoint.

Let m: M — M be the universal covering. Fix p € M and § € 7 '(p). Let T be the deck
transformation group of the covering. Then I' is isomorphic to 71 (M, p). The isomorphism is given
as follows: given g € I all paths joining $ and g(p) are homotopic since 71 (M) is trivial. Therefore
it projects to a well-defined element of 71 (M, p). Hence we obtain a desired map I' — 71 (M, p).
Similar proof gives the one-to-one correspondence between 7~ (p) and 71 (M, p). Indeed, fix p € M
and p € 7 (p). For each ¢ € 7~ !(p), all paths from p to § are homotopic and hence project
projects to a well-defined element [a] € w(M, p). Conversely, given [a] € w1 (M, p), all lifts (starting
at p) of loops in [a] are homotopic, and therefore have the same endpoints.

8 Comparison geometry

8.1 Rauch comparison theorem

Theorem 8.2 (Rauch). Let M" and ]\7"““, k>0, be Riemannian manifolds and let~ : [0,b] — M,
7 : [0,0] = M be unit speed geodesics such that 5(0) has no conjugate points along . Suppose that
for every t € [0,0], v € T,y M, and v € Ty, M we have

K(3t,v) < K(5,,).
Let J and J be non-trivial Jacobi fields along v and 7, respectively, such that
Jo=Xo. Jo=MNo, (Jh30) = (Jo.Fo), and |J| = |,

where A € R is a constant. Then

| Te| > ||
for every t € [0,0].
Proof. First a special case
(8.3) (J, ) = 0= (Ji, 7).

Since, by Remark 6.21,

(Jt7;Yt> = <J07;Y0> + t<J(/)7;YO> <J0770> + t<J0770> (Jt77t>
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we get from (8.3) that Jo = 0, Jy = 0, (J§,%) = 0, and (jé,%) — 0. Because J and J are
non-trivial, we have J), # 0 and J|), # 0. Since 7(0) has no conjugate points along 7, we have J; # 0

for every ¢t > 0. On the other hand, Jy = 0 and Jy = 0 so by the 'Hopital’s rule there exists a limit

N

S ALEIN AL

Hence, in order to prove |J;| > |.J;| it is enough to show that

2
(Y S
a\|78) =

for every t > 0, that is,

(8.4) L T = (T TR = 0,
We define -
~ J, T,
Ty, = L)
<Jt7Jt>
for ¢t €]0,b] and
(St Jt)
J), =
90( )t <Jt7<]t>

for those ¢ > 0 for which J; # 0. Fix ¢; € [0,b]. If J;, = 0, then (8.4) holds trivially. Therefore, we
may assume that J;;, # 0 and then define Jacobi fields W' (along ) and W (along 7) by

Then o(J); = (W), whenever defined and ¢(J); = @(WN/tl)t for t €]0,b]. Now

t1
(D) = (W) = (WH Wh)y = (WH Wi, — (W Wi, :/ (WH Wi dt
S—— 0

=0 since Jo=0

t1 t1
- / <Wt1/7 Wt1/>t + <Wt1”7 Wt1>t dt = / <Wt1/7 Wt1/>t - <R(th ) 7)77 Wt1>t dt
0 0
t1 t
= [, - g (5 )
0 (W

Let B : T)oy)M — TypHM and ﬁt : Tg(o)j\\f — T:/(t)ﬂ be parallel transports along ~ and 7,
respectively. Let I : T )M — T5(0)M be an injective linear map that preserves the inner product.
Denote I, = P,o 1 o Pt_l : TyyM — T5;) M. Suppose that [ is chosen such that

I(’YO) = %40 and Itl (thll) = thll *

Define a vector field W along v by
wh = 1,w.
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Note that now /V[Ztl th Let Eq,...,E, € T(y) and Er,....E, € T (¥) be parallel along v and
3 such that E, =%, E, =7, I(E;(0)) = E;(0), and that {Ey(t), ..., E,(t)} spans Ty yM for every
t. Write Wi =Y. f;E;. Then

W =3 4

Hence,
(a) |Wf| = \thl\ for every t.

Since W' =% f!E; and wh' = Zf{Ei, we have
i i
(b) (WH', W) = 32 ff{(Ei By) = S S E By) = (Wh', W),
2 i,
Now (a) and (b) together with the curvature assumption and the Index Lemma 7.2 imply

t1
QO(J)tl :/ <Wt1/ Wt1/> — K <"Yt, 3;51) |Wt1|2 dt

/ (W, W), —K(% gtl') WP dt

/0 (W W) — (RO 5,7, W) dt
7.2

Vi

t1 ~ .~

S [, - RO W de
0

:SD(J t19

that is, (8.4) holds at t;. Because t; € [0,b] is arbitrary, we have |.J;| > |J;| in the special case.
In general case,

J=JY+(J,4)% and J=J"+ (J 7.
The first part then gives |JL| > [JL|. On the other hand,

(JA)e = (A0 + T, Ao = (1,30 + (T, 7)o = (I, 7).
— =

Hence, |J| > |J]. O

Corollagz 8.5. Let M and M be Riemannian manifg\l/ds with dim M > dim M, and let p € M
and p € M. Assume K7 > Ky and let I : T,M — TzM be a linear injection preserving the inner
product. Let r >0 be so small that exp, |B(0,7) is an embedding and expy|B(0,7) is non-singular.
Then for any piecewise C*°-path c: [0,1] — exp, B(0,7) we have

{(c) > L(expjol o exp;l oc) = £(c).

e

=:C

Above the assumption exp;|B(0,7) being non-singular means that exp; B(0,7) contains no
conjugate points to p.
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Proof. Define ¢: [0,1] — B(0,r) C T,M by

C:= explj1 oc.

G -
TM
T,M R P
. ; 1)
2, Cs —
s

Consider the variation I'(s,t) = exp,,(tc;). For each fixed s, the variation field
V¥ = 0,0 (s,1)
is a Jacobi field along geodesic I's, t +— exp,,(tcs). Then

Ve = AT (s,t) = texpz, (Cs);

d ~ .
Vi = E(expp Cs) = ¢s;  and
——

=cs

(DyV*)o = Di(t expyurz, (€))|i=0 = Cs.

Consider next the variation

[(s.1) = expp(I(t6,)) = expp(tI().
Again, for each fixed s, the variation field
Vi=0,I(s,t)
is a Jacobi field along Ty, t — exp;(t1(cs)), with
Vi=0, Vf=¢, and (D,V®)=I(c).
Since I preserves the inner product,

(DV*)ol = 6] = [1(E] = [(D:V*)ol
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and
<F8y DtV8>0 = <Fs(0)’ (&Y_ﬁ)d = <I(Fs(0))’ I(Es)>
— (I(2), (D:V*)o) = (T5(0), (D V*)o) = (T, D,V )0,
Furthermore,

Vi=0 and Vg=0.
The Rauch comparison theorem now implies
jés] = [V > (V'] =[G
Since s is arbitrary, we have the claim. O
Corollary 8.6. Suppose that the sectional curvatures of M satisfy
0<w<Ky<é

for some constants k and §. Let v be a geodesic in M. Then the distance d between two consecutive
conjugate points along ~y satisfies

s s

i Sds
Proof. Let 7 : [0,¢] — M be a unit speed geodesic with v(0) = p. Let J be a Jacobi field along
7, with Jo = 0 and (J,¥) = 0. Let S"(0) be the sphere with constant sectional curvature ¢. Fix
p € S"(0) and a unit speed geodesic 7 : [0,£] — S"(5) with 7(0) = p. Let J be a Jacobi field along
v with Jy =0, (J,7) =0 and |Jj| = |.Jj|. Since 7 has no conjugate pairs in (0, %), we have

|J¢| > |jt| >0

for any t € (0, Lé) by the Rauch comparison theorem. Therefore, the distance d from p to its first
conjugate point along ~ satisfies
d>

S

Ifd > %, we get by applying the Rauch comparison theorem to M and S™(k) that the distance

between any pairs of conjugate points in S™(k) is strictly greater than %, which is a contradiction.
O

8.7 Hessian and Laplace comparison

Recall that the gradient, Hessian, and Laplacian of f € C°°(M) are defined by
(V,X) = X(f), Hess [(X,Y) = (Vx(V)),Y), and Af:=div(Vf) = tr(v > Vo(V)),
and that Vf € T(M), Hess f € T?(M), and Af € C*°(M). Furthermore, Hess f is symmetric and
Hess f(X,Y) = X(Yf) — (VxY)f.

If (V,(-,-)) is an n-dimensional inner product space and B : V' x V — R is bilinear, then the trace
of B, the determinant of B, and the norm of B with respect to (-,-) are defined by

trB=trL, detB=detL, and |B|=+/tr(LL*),
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where L : V — V is linear such that
B(z,y) = (Lz,y)

for every z,y € V.
Hence,
Af =trHess f

with respect to Riemannian metric (-, -).
Definition 8.8. The injectivity radius at p € M is defined as
inj(p) := sup{r € R : exp, |B(0,7) is diffeomorphism},
which is always positive since exp,, is a local diffeomorphism at 0 € T, M.
Example 8.9. If M is a Cartan-Hadamard manifold, then inj(p) = +oo for each p € M.

Theorem 8.10 (Hessian comparison theorem). Let M™ and M ntk k>0, be Riemannian mani-
folds and let y : [0,b] — M and 5 : [0,b] — M be unit speed geodesics such that

b < min{inj(7(0)), inj(7(0))}-

Suppose that '
K(y,v) < K(3;,0)

for every t € [0,b], v € TyyM, and v € T:/(t)]\f\j. If h : [0,00) — R is smooth and increasing,
M = d()V(O))} and v T d(,:};(O)), then

Hess(h o rpr) (X, X) > Hess(h o rﬂ)()?, X)

for all't € (0,b], X € Ty;yM, and X € Ty M such that |X| = |X| and (3, X) = (7,, X).

Proof. First of all, hory; is smooth in B(v(0),b)\{7(0)}, and hor; is smooth in B(5(0),b)\{7(0)},
respectively. We may assume that | X| = 1 = | X| and that t = b.

1° Case h(t) =t. For every v € T4 M,
Hessryr (v, %) = v(prm) — (VoY)rmw = = (Vo y)r
M (v, ) (Vb_lM) (Vo)rm = =(Vod)ru

= —(Vru, VU’W’y(b) = — (W, vv;}/>'y(b) = _%U (¥, %) = 0.
=1

Similarly,
Hess r37(v,7;) =0

for every v € T:Y(b)M. Write X = X + X+ and X = X + )A(:L, where
XTi= (X %) and X7 :=(X,3)%,.
Then

Hess r37(X, X) = Hessry (X1, X1)  and Hessrﬁ()z,)?) = Hess TM(XL,XL).
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Hence, we may assume X = X Land X = X1, Let o = fy , which is a geodesic such

that 69 = X and & := 4~, which is a geodesic such that & Gy = X respectively. Let T :
[—e,€] x [0,0] — M be the variation of v through geodesics such that I's : ¢ — I'(s,1) is the

geodesic from v(0) to o(s). Similarly, we define I : [—¢,¢] x [0,b] — M.

Then the variation field J of I" and the variation field J of T are Jacobi fields. This implies
that the mappings s — (Js,¥s) and s — (Js,7,) are affine. Furthermore, because Jy = 0,
Jp=X L4 and Jy =0 and J, = X L 7,, respectively, we have

Jo L4, and J, L7,

for every s € [0,b]. By an exercise

b
Hess (X, X) = (rar 0 0)"”(0) = C‘lfgé( s)|s=0 = / |DyJ|? — (R(J,%)4, J) dt.
0
Similarly,
b ~ ~ . . ~
Hessr—(X, X) = / |DyJ)? — (R(J,7)7, J) dt.

Fix orthonormal bases {e; };; of T M and {ez}"+k of T- (b)M such that e; = X andé&; = X

Let E; be the parallel transport of e; along v and E; be the parallel transport of ¢; along 7.
Then {E;(t)};-; is an orthonormal basis of T’ M for every t € [0,b] and {E;(t)}™ 4} is an
orthonormal basis of T:/(t)ﬂ for every t € [0,b]. Define functions h;, 1 <i < n, by

hi(t) := (Ji, Ei(t))0)-
Then

Define

Since Jy = 0, we have

WgzZ@Ei(O):O:%.

Furthermore, since J, = X = e; = E1(b), we have hi(b) = 1 and h;(b) = 0 for i # 1, which
gives . B L
Wy =Ei(b)=¢1 =X = .

Since b < min{inj((0)),inj(7(0))}, there are no conjugate points of v(0) (resp. 7(0)) along
7][0,0) (resp. 7][0,b)). The Index Lemma gives

(8.11)
~ ~ b ~ ~ . . ~ ~ ~ b —~ —_— . .
Hessr—(X, X) = /0 DI — (R(T.3V5, Ty dt < I(W, ) = /0 D2 — (R(W,35)3), W) dt.

Furthermore, on [0, b] we have

DW= |W*=|DJ, [W|=|J, W17, and JL7.
=1
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Hence, the assumption K (v,%;) < K(¥,7,) implies

~(ROV. A7, W) < ~(R(LAW, )
on [0,b]. Thus we get from (8.11)

Hessr— (X X) < Hessry (X, X).

2° The general case, that is, h is smooth and increasing. As an exercise we have
Hess(ho f) = (W o f)df @ df + (h' o f)Hess f,
if f: M —-Randh:R— R are smooth mappings. Hence,
Hess(h o ra) (X, X) = (W orp)(b)drar @ drp (X, X) + (W o rar)(b) Hess rps (X, X)

= 1 (b)(dra(X))? + (B orar)(b) Hessrp(X, X)
—— —_——
=dr;(X) = (R'org;)(b) 20

> (R" o rgp)dry; @ dryy (X,X) + (W o r37)(b) Hess TM()?,)Z)
= Hess(h o r~)(X X).

Corollary 8.12. Let M™ and M™ be Riemannian n-manifolds, v : [0,b] — M and 7 : [0,b] - M
be unit speed geodesics such that

b < min{inj(y(0)), inj (3(0))}.

Suppose that for every t € [0,b], v € TyyyM and v € T%{) ]\7, we have

K (41,0) < K(7;,7).
If h : ]0,00) — R is smooth and increasing, we have
A(hory)(y(t) = A(horgy)(V(1))
for every t € [0,b], where ryy == d(-,7(0)) and ry; == d(-,7(0)).

Proof. Fix t € [0,b] and orthonormal bases {X;};; of T M and {)A(:Z}?zl of Tg(t)j\\f such that
X1 =" and X 1= %t. The Hessian comparison implies

Hess(h o rar)(Xi, Xi) > Hess(h o ry7)(Xi, Xi)

for every 1 <7 <mn. Thus

A(hory)(y( ZHess hory) (X, X5) >ZHess (hor— )(XZ,X) A(horg)(7(1)).
i=1 =1
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8.13 Bochner-Weitzenbock-Lichnerowitz formula

Theorem 8.14. Let M be a Riemannian manifold. Then for every f € C*°(M)

SA(VSI?) = [Hess fI” + (VF,V(AS)) +
Proof. Fix p € M and let Fy,...,

U > popen, (E;, Ej) =65 in U, and (VE,Ej), = 0. Then

Vh =

for every h € C*°(U). Now at p we have

AV

Moreover,

5(V(VIP)

Hence,

1

First of all,

Secondly,

) = 3 div(V(IVf*) =

ZEi(Ej(|Vf|2))EJ
j=1

En: E;(h)E
=1

Ltr(T,M 3 v V,(V(IVF?)) =

(ZE (IVfP) )]Enjl <|Vf|)vEE+ZE

Ric(Vf, V£).

FE, be a local geodesic frame at p, that is, Fq, ...,

n

N |

i=1

=0atp 7=1

ANV =5 <ZEZ (IV£) E],E> ZE (V1)

=1 \j=1

:%Z E(B(VI.V) =Y BRI Vf) =

=1
n

E;(Hess f(Vf, E

E NV E

=1

n

=1

= Z Ei(VysV [, Ei)

i=1

=0atp

n

=1

n

2
Z(vE VesVILE) + VeV VRE)) = Y (Ve VeV E)
Z

=1

> (Ve (V(IVIP),

(IVf1%)E;

> Ei(Hess f(E;, V)

VY AVoiVEVEE)+Y (VigvVi Ei).

i=1

i=1

N

= A

N

:B

A = Ric(Vf, V).

n

N

=C

n

B=Y_ ((VH(VEVEE) = (Ve VIVvE)) = (VF) Y (V5 Vi E)

=1

) 0.

= (VIIAS) = VI, V(AS)),

=1

=tr(v—>V,Vf)=

Af

E)).

95

E, € T(U),
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where (%) is because

VB = Vs, wypm Bi = 3 Ei(f) Vi, By = 0.
7 F t,r

Lastly,

C =) Hess f((E;, V[, B) = ) Hess f(Vp,Vf ~ VyrEi, Ey)

i=1 i=1 -0

= ZHess f(Vg,Vf E;) = ZHQSS f(Ei,VENVF)
i=1 i=1

=S (Ve VS, VeV [ Hess fI2.

i=1

Here () holds since

n n n

SUVEVEVEVS) =Y (LE;, LE) =Y (LL*E;, E;) = tr(LL"),

i=1 i=1 i=1
where L : T,M — T,M, Lv = V,V f, is linear such that

Hess f(v,w) = (Lv, w)
for every v, w € T,,M. O
Definition 8.15. Let p € M.
(a) Let v € T,M, |v| = 1. The distance to the cut point of p along +" is

d(v) :=sup{t > 0:tv € & and d(p,~"(t)) =t}.

(b) The cut locus of p in T,,M is
Cp :={d(w)v:veT,M, |v] =1, and d(v) < oo}.
(c) The cut locus of p in M is

C(p) = exp,(Cp N Ep).

We write also
Dy :={tv:veT,M, |v]=1, and 0 <t < d(v)}

and
D(p) := exp, Dp.

Example 8.16. The cylinder R x S': C(p) is the line ”opposite to p”.
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8.17 Riemannian volume form

This section is based on the Master’s thesis of Aleksi Vahakangas.
Let M and N be smooth oriented Riemannian n-manifolds and f : M — N smooth. The
Jacobian determinant of f at p € M is

Jr(p) :=det D(y o f o x™")(x(p)),

o)
Oz’

where x and y are orientation-preserving charts at p and f(p), respectively, such that {

{

n
* , and
n

a‘z 7 }ivq form orthonormal bases of T,,M and Tf(p)N .

The Jacobian determinant Jy(p) is well-defined, i.e. it does not depend on charts = and y
(Exercise).
Let then (U, z) and (U,y) be charts on M. For the Jacobians of = and y, we have

Jy = (Jyoz—10x)Js.

Hence,
dyt A A dy”(a%l, ey a%) = det(dyj(a?ci)) = det(D;(y’ oz 1) o x)
=det(D;(yoz 'Y ox) = Jyop1 0z = Jy/Js
So,

1 1
—dy* Ao ANdY = —dx' A Ada™.
7 Y 7 T x

Definition 8.18. The Riemannian volume form of M is the smooth n-form wj; such that
1 1 n
wy|U=—dz" N--- Ndx
Jr

for every chart (U, x).

Lemma 8.19. If M and N are oriented Riemannian n-manifolds and f: M — N is a diffeomor-
phism, then

(8.20) f*wN = JfWM'
Proof. Exercise. O
Let p € M and ¢ an orientation preserving chart at p such that {0;}}' ,, 0; = c’%i’ is an

orthonormal basis of T, M. Then, by definition,

Jo(p) = det D(idog o ™) (p(p)) = 1.

If v € T,M, then
(0,05) = (v(¥?)05, i) = v(¢").
Let vq,...,v, € T,M. Then

1
Jz(p)

dpt A Ndp (v, ... v,) = det(vi(¢?)) = det({v;, 9;)).

W (V1, .y 0p) =
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Because {0;}!" ; is orthonormal

Hence,

B = AAT,
where B = ((v;,v5));; and A = ((vs,0;));5. Therefore,
det({vi,v;)) = (det A)? = (war(v1,. .., vp))%
Let then (U, x) be an orientation preserving chart. Apply the formula above to v; = (%)p to gain

1
J=(p)

2
o) o) ls] o] o] o)
det(axi’W>P:(WM(W"“’%_”))2:< delAAd.In(w,,&c—n)) .

Hence,
1

Vdetg;;(p)’

where g;;(p) = ( 8‘21- , %}I,. Thus the Riemannian volume form can be written in local coordinates

Ju(p) =

(8.21) Vdet gij dzt A - Ada™,

o) 8>.

where gi; = (357, 5.7

Lemma 8.22. Let M be an oriented Riemannian manifold, wy Riemannian volume form, and
V € T(M). Then the divergence of V., divV = tr(X — VxV), satisfies

LVwM = (diV V)wM.

Proof. Exercise. O

Let p € M (M oriented Riemannian n-manifold) and ry = inj(p). Let C = (0,79) x S*~! and
1/1 :C— B(p,’l"()) \ {p}v

P(t,9) := exp, (E(t0)),

where E : R" — T, M is an isometric isomorphism. Then 1 is a diffeomorphism and (¢,?) are
geodesic polar coordinates of ¢(t,9) € B(p,ro) \ {p}.
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{0} x é’“l

@:-/

The Riemannian volume form of C can be written as
we = dt N\ wgn—1 = WR N\ Wgn-1,
where ¢ : (t,9) + t. The form wgn—1 can be interpreted as wgn-1 € A" (C) (= smooth differentiable

(n — 1)-forms on C) that is independent of t-variable of (¢,9) € C. More precisely, write v €
Ti9)C =TiIR® TyS" ! as v = (v, v9). Then

wen—1 (v}, ") = wgno1 (vh, ., on ).
€ An=1(C) € An—1(sn—1)

We define the distance function r : B(p, rog) — [0,79) by r(z) = d(p, ). Thenr € C*°(B(p,r0)\{p})-
Furthermore, let 0, be the radial vector field on B(p,ro) \ {p},

(87“)96 = ;Yr(x)a

where  is the unique unit speed geodesic from p to x. Thus

2 (t) = exp, (t ' ex}:np;)(x))

In fact, 9, = w*% = Vr. Define a smooth function A : B(p,79) \ {p} — R by
Az) = Jy (™ ().

Theorem 8.23. In B(p,ro) \ {p} we have

0 A
(8.24) ;1 = Ar.
Remark 8.25. Since exp,, preserves radial distances, i.e. d(exp,(tv),exp,(sv)) = [t — s|[v], the

value A(x) describes the "size of the area element” of the geodesic sphere S(p,x), t = d(p,z), at x.
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Proof of the Theorem 8.23. Since Jy-1wy = (Y1) *we, we have

R
" Ty

(W) we = (Jp o™ (W) we = AW ™) we.

WM

Hence, in B(p,ro) \ {p} we have
(Ar)wys = (div 9, )war = Lo,war = Lo, (A(Y ™ ) we) = (0, A) (¢ ) *we + AL, (¥ ™) *we.

Here "
Lo, (™) we = L, o (W Y 'we = (WL g we =0,
“ Bt ot

since we = dt A wgn—1 is invariant in translation in ¢ (= the flow of %). Hence,
aTAw 0 A

AT
which implies (8.24). O

AW we = (Ar)wyr,

Another proof of (x). We have
Lo, (v wo = Lo (d(t o™ ) A (v wgn-1) = Lg_(dr) A (™ ) *wgn-1 4+ dr A Ly (™) wgn-1.
Here the first term is zero because

Lo, (dr) = d(0,(r) = 0.
1

Moreover, the second term is also zero because

Lo, (V) wgn-1 = ig, d(( ") wgn—1) + dig, (¥™1) wgn 1
=g, (™) dwgn-1 + d(y ™) i g wn

ot
=0
= (¢™1)"i g dwgn-1 =0,
ot
since dwgn—1 = 0 giving the claim. Note that dwg.—1 = 0 holds since
wen—1 = wddt A - Ad9" L,
where w is independent of ¢, so
duogn 1 = 2 dt/\dﬁl/\---/\dﬁ”_l—I—Yfa—wdﬁi/\dﬁl/\---/\dﬂn_l =0
s ot L Y '
~—~ =1 =0
=0

O

Remark 8.26. Let M be complete. Then (8.24) can be generalized for all points = ¢ C(p),
x # p: Take the unique minimizing unit speed geodesic v from p to z; see Lemma 9.5 (b). Then
the geodesic polar coordinates of x are (t,,9;), where t, := d(z,p) and ¥, := E~'4. The value
Y(t,0) = exp,(tE(V)) is defined for all £ > 0 and ¥ € $"~!, and is a local diffeomorphism at (¢, 7).
Hence, we may also define

Ax) = Jy(ts, Vs).



Fall 2010 101

8.27 Ricci curvature comparisons

Let M be complete, p € M, and = ¢ C(p) U {p}. We denote A(z) also by
A(z) = A(L,9),

where (t,1) are geodesic polar coordinates of z.

Theorem 8.28. Let M™ be complete, p € M, and Ric(v,v) > (n — 1)H for every v € TM with
|v| =1. Then in M\ (C(p) U {p}) we have

A(t, 9
(8.29) ﬁ is decreasing in t along radial geodesic (= 0 is fixed);

and

(n —1)v'H cot(vHr), H > 0;
(8.30) Ar < Afr =< (n—1)/r, H=0;
(n —1)v/—H coth(v/—Hr), H <0.

Here A" and AH refer to the corresponding notions in simply connected My with constant sectional
curvature H.2 If H > 0, then r < /v H by Theorem 7.6.

Proof. We apply the Bochner-Weitzenbock-Lichnerowitz formula with f(z) = r(z) in M \ (C(p) U
{p}), where r is smooth and |Vr| = 1. We have

| Hess 7|* + %(Ar) + Ric(%, %) =0.
Let A1,..., A, be the eigenvalues of Hessr, i.e. eigenvalues of (self-adjoint) linear map
v = V,Vr.
Since Vr(z) = (%)m = Yr(z), Where 7 is the unique unit speed geodesic from p to z, we have
Vv,.-Vr=0.
It follows that one of the eigenvalues, say A1, is zero. The Cauchy-Schwarz inequality gives

Ar)? trH 2 Ao+ 4 Ay)?
(Ar) :(r essT) :(2-1- + ) < X244+ A% = |Hessr[%.
n—1 n—1 n—1

Since Ric(Vr,Vr) > (n — 1)H, we get the Riccati inequality:

Ar)?
(8.31) (n f)l + %(Ar) +(n—1)H <0.
Denote
\/% sin(vHt), H > 0;
sng(t) == < t, H = 0;

%H sinh(v—Ht), H <0,

2Ap(-,9) is independent of ¥
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cty(t) := e

and
Yy = (n — 1)CtH.

Then the right-hand side of (8.30) equals to ¥y (r(x)) and vy satisfies the Riccati equation

Vi

n—1

Uy + +(n—1)H =0.
Now 7j}—_‘%’ﬁ—(n—l)H > 0on (0,7/vH) for H> 0andon (0, +00) for H < 0. Let z € M\ (C(p)U{p}),
v be the unit speed geodesic from p to z, and v := jg. Write p(t) = Ar(y(t)). Then ¢ satisfies

902

-1

¢+n +(n—1)H <0.

On the other hand,

—1
(8.32) Ar=" . +O(r), asr—0,

ie. o(t) =2 + O(t) (Exercise). Hence, there exists ro < d(v) such that

:2_(? +(n—1H >0

(8.33)
for every t € (0,79). Now (8.31) implies

>1

2
2=+ (n—-1)H

on (0,rg). Hence,

for every t € (0,7¢], which gives
arccty <M) >

n—1

for every t € (0,rg]. Here arccty is the inverse function of cty. Now
p(t) < (n—1)cty(t) =vu(l)
for every 0 < t < rg. Denote
to :=sup{0 <t <d(v): ¢ <ty on (0,t)}.
If to = d(v), we are done with (8.30). If tg < d(v), then ¢(to) = ¥ u(to), and so

U (to)

n—1

©*(to)
n—1

+(n—1)H =

+(n—1)H > 0.

But then (8.33) holds on (0,tg +¢) for some ¢ > 0, and hence ¢(t) < ¢ (t) for every ¢t € (0,tp+¢).
This is a contradiction with the definition of to. Thus, ¢(t) < ¢ (t) for every ¢t € (0,d(v)). On My,
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the inequality (8.31) holds as an equality. Since Afr satisfies (8.32), we have Afr(x) = ¢y (r(x)).
We have proved (8.30). By (8.33) and (8.30)
FAMLY) _ HAT(L0)

A D) = AR )

Hence,
9 (log A(t,9) —log A(t,9)) <0,
% At 9)
t — log ————~
& AH (1, )
is decreasing when ¢ is fixed. This implies (8.29). O

Lemma 8.34. Let f,g : [a,b) — [0,00), g > 0, be integrable on [a,r] for every a < r < b. Suppose

that f/g is decreasing. Then
r»—)/ f// g

1s decreasing.

Proof. Let a <r < R <b. Then

(O =D+
LA D= D D= D o)
([ =[]

([ )= N[

Let h = f/g. Then h is decreasing and f = gh. Hence,

[N =L ozm([ ([ )
= ([ ([ 1) =([ ([ 1)

and
We want to show

or equivalently

We denote
Vol(Bp.r) = [ wnr= [ Xogaeu
B(p,r) M
that is, the volume (measure) of B(p,r) C M.

Remark 8.35. The volume Vol(C(p)) = 0 for every p € M since for every x € C(p) there exists
v € T,M with |v| = 1, and ¢y € R such that z = 7¥(t,). Each {t,} is of zero one-dimensional
measure, hence Vol(C(p)) = 0 by Fubini’s theorem.
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Theorem 8.36. Let M be complete, p € M, and Ric(v,v) > (n—1)H for everyv € T,M, |v| =1,
g€ M. Then for every 0 <r < R (Rgn/\/_ if H>0)

Vol(B(p, R)) - Vol(Bg(R))
Vol(B(p,r)) — Vol(Bg(r))

Here Vol(By (t)) is the volume of any ball of radius t in My (= independent of the centre).
Proof. We set A(t,9) =0 for every ¢ > d(E(1)). Then

Vol(B / / A(t, ) dt dv.
Sn—1

Jo A(t, ) dt fo (t,0)dt
fAH(tﬁdt S AH (1 9)dt

By (8.29) and Lemma 8.34

Hence,
r AR 9y At (R Vol(B R
/ At 9)dt > AT LD A / A(t,ﬁ)dtzm-/ At 9) dt.
0 JEAH ) dt Jo Vol(Br (R)) Jo
Integrating this over the sphere S*~! we have the claim. ]

Corollary 8.37. Let M be as in Theorem 8.36. Then for every p € M and r > 0
Vol(B(p,r)) < Vol(Bg(r)).
Proof. Let t € (0,7). Then

Vol(B(p, 1))

vl < (Vg

) V(B (1)
On the other hand,
Vol(B(p,1))
Vol(Bp (t))

This gives the claim. O

—1 as t—0. (Exercise)

9 The sphere theorem

In this chapter we will prove (completely in even dimensions) the following so-called sphere theorem.

Theorem 9.1. Let M™ be a compact simply connected Riemannian manifold whose sectional cur-
vatures satisfy
0<hKpax < K < Kpax-

Then, if h =1/4, M™ is homeomorphic to S™.

The sphere theorem was first proved by Rauch for h ~ 0,74 (solution to sin(mvh) = vh/2)
in 1951 by using the Rauch comparison techniques. Klingenberg (1959) used the notion of cut
locus in estimates for injectivity radius. In even dimensions he was able to improve the factor h
to ~ 0,55 (solution to sin(rv/h) = v/h). Using Toponogov’s triangle comparison theorem Berger
(1960) proved the theorem, still in even dimensions, for ~ = 1/4. Finally, Klingenberg (1961)
managed to generalize his estimate on injectivity radius to odd-dimensions also with help from the
Morse theory of path manifolds and proved the theorem in all dimensions. In 2007 Brendle and
Schoen proved that M™ is diffeomorphic to S™.
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9.2 The cut locus

Throughout this section we assume that M is a complete connected Riemannian manifold. Let
p € M and v € T,M, with |v| = 1. Recall that the distance to the cut point of p along 7" is defined
as

d(v) =sup {t > 0: d(p,7"(t)) =t} .

If d(v) < oo, we say that 7" (d(v)) is the cut point of p along v”. The cut locus of p, denoted by
C(p), is the union of cut points of p along all the unit speed geodesics starting at p.

Lemma 9.3. Suppose that v(ty) is the cut point of p = ~(0) along a unit speed geodesic . Then
at least one of the following conditions holds

(a) y(to) is the first conjugate point of p along ~y, or
(b) there exists a unit speed geodesic o # 7|[0,to] from p to y(to) such that £(c) = to = £(7][0, t0)).

Proof. Consider a decreasing sequence tg + ¢; — tg, € > 0, and let o; be a minimizing unit
speed geodesic from p to y(tg + €;). Since the unit sphere S(0,1) C T,M is compact, there is a
subsequence, still denoted by (o;), such that ¢;(0) — ¢(0), where o is a geodesic from p to y(to).
Since {(o;) = d(p,~y(to + €)), we have at the limit {(c) = d(p,v(to)) = £(7][0,t0]). If o # ~|[0, to],
the condition (b) holds.

Suppose that o = 7|[0,t]. We want to prove that (a) holds. Since 7|[0, tp] is minimizing, there
are no conjugate points y(t) of p along ~ for any ¢t < to. Hence it suffices to show that exp,, fails
to be a local diffeomorphism at 9o, i.e. €xXp 4, 18 singular. Therefore, suppose that 6o = 7o
and that exp,, s, 13 not singular. (We want a contradiction.) Thus there exists a neighborhood
U C T,M of toio such that exp, |U is a diffeomorphism. Since o; is a minimizing geodesic from p
to v(to + &), we have

oi(to +¢3) = (to + &)
for some €} < ;. Take a sufficiently large i so that
(to + E;)di(O) eU and (tp+¢)eU.

Then
exp,(to + €)Y = Y(to + i) = oi(to + €}) = exp,(to + £;)054(0),
and hence
(to +&i)¥0 = (to +£)5i(0).

On the other hand, |y| = 1 = |6;(0)|, and therefore 49 = ¢;(0). Hence o; = v which leads to a
contradiction with the definition of ¢y (0; hence 7 is minimizing at least up to tg + &;). O

Lemma 9.4. Let v be a unit speed geodesic starting at p = ~(0). If
(a) y(to) is the first conjugate point of p along ~y, or
(b) there exists a unit speed geodesic o # ][0, to] from p to y(to) such that £(c) = to = £(7[0,t0]),

then there exists t' € (0,to] such that y(t') is the cut point of p along .
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Proof. Suppose that (a) holds. Since a geodesic does not minimize after the first conjugate point,
there exists a cut point ’y(f) of p along ~ for some t < to.

Suppose that (b) holds. Fix ¢ > 0 so small that o(tg — €) and ~(ty + €) belong to a uniformly
normal neighborhood U of y(tp). Let 7 be the unique minimizing geodesic from o(tp—¢) to y(to+¢)
(such 7 exists since U is a uniformly normal neighborhood). By uniqueness of radial geodesics
through o(ty —¢) in U, the length of the path ¢|[0, ¢y — €] followed by 7 is strictly less than to + ¢.
Hence d(p, ~(to +€)) < to+¢, and therefore there is a cut point v(#) of p along v for some £ < tg+¢
for all € > 0, hence for some ¢ < t. O

Lemma 9.5. (a) If q is a cut point of p along 7", then p is the cut point of q along the geodesic
—v:[0,d(v)] = M, —~(t) =~"(d(v) —t). In particular, g € C(p) if and only if p € C(q).

(b) If g € M\ C(p), there exists a unique minimizing geodesic from p to q.

Proof. (a): Suppose that ¢ is a cut point of p along 7. If there were a cut point of ¢ along —v
before p, then —v (and hence «) would not be minimizing between ¢ and p, and consequently, ¢
would not be a cut point of p along . Hence the cut point of ¢ along —v does not occur before p.
Next we show that the cut point of ¢ along —v can not occur after p. By Lemma 9.3, ¢ is conjugate
to p along v or there exists a geodesic o # 7 joining p to ¢ such that ¢(o) = £(y) = d(p,q). If ¢
is conjugate to p along +, then p is conjugate to ¢ along —v (Jacobi field characterization). Hence
—~ can not be minimizing after p, and therefore the cut point of ¢ along —v can not occur after
p. If there exists a geodesic o # 7 joining p to ¢ such that (o) = £(y) = d(p, q), then Lemma 9.4
applied to —y and —o implies that there exists a cut point —v(#) of ¢ along —~ for some # < d(v).
But then ~(f) = p since the cut point of ¢ along —~ does not occur before p.

(b): Let ¢ € M \ C(p) and let v be a minimizing unit speed geodesic from p to g such that
0(v) = d(p, q). If there exists another minimizing unit speed geodesic o # v from p to g, there exists
(by Lemma 9.4) ¢’ < d(p, q) such that (¢') is the cut point of p along 7. Now t' < d(p, q) since
q=7(d(p,q)) & C(p). Hence d(p,~(t)) <t for all ' <t < d(p,q). Then there exists a path from p
to q of length < d(p,v(t)) +d(p,q) —t < t+d(p,q) —t = d(p, q) which is a contradiction since = is
minimizing. Thus ~ is unique. ]

Hence exp,, |B(0,7): B(0,7) — B(p,r) is a diffeomorphism if and only if r < dist (p,C(p)).
Definition 9.6. The injectivity radius of M is

inj(M) = piélj\f4 dist (p, C(p))-

Let "M = {v € TM: |v| = 1} be the unit tangent bundle. We equip R U {oo} with the
topology whose base of open sets is the union of open intervals (a,b) C R and the subsets of the
form (a,o0] = (a,+00) U {oo}, a € R. Note that sets [a,00] are compact in this topology and
t; — oo in this topology if and only if {; — oo in the usual sense.

Define a function d: Ty M — R U {oco} by setting

d(v) =sup {t > 0: d(v"(0),7"(t)) =t} .
Lemma 9.7. The function d as defined above is continuous.

Proof. Let v; € T1M, v; — v € T1M, and let v; = vY, v = ~". Furthermore, let té = d(v;) and
to = d(v). We need to show that t} — t as i — oo.
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(a) Claim limsup; t}) < to:
We may assume tp < oo. For every € > 0, there can be only finitely many j € N such that
to + € < t}, since otherwise, for those j we would get

to + & = d(v;(0),7;(to +€)) = d((0),7(to + €)).
This would lead to a contradiction d(v(0),v(to + €)) = to + £ with the definition of ¢;. Hence

limsupté <tog+e Ve>0,
i
and therefore (a) holds.
Let ¢ = liminf; t{. Since 4 '
t= limiinf to < limsupty < to,
1
it is enough to show (b) t > tg. We may assume ¢ < oo. Take a subsequence (still denoted by t{))
such that ¢}, — ¢.
(i) If for any such subsequence v;(t]) are conjugate to v;(0) along v;, then v(f) is conjugate to v(0)
alor_lg v (if €XPpfy 18 non—sir_lgular, then exp,,,, is non-singular for all (¢, w) in a neighborhood of
(p,tv) in TM). Hence ty < t. ' '
(ii) Suppose that there exists a subsequence ), — t such that ~;(#)) is not conjugate to v;(0) along
7; for all j. By Lemma 9.3 there are unit speed geodesics a; # 7;][0,t}] from o;(0) = ~;(0) to
oj(t)) = v;(t)) such that £(o;) = &) = £(~;][0,£)]). By compactness, there is a subsequence (still
denoted by ;) such that o; — ¢ uniformly, where o is a unit speed geodesic from ~(0) to v(¢). If
o # 7, then tg < ¢ by Lemma 9.4. If 0 =+, then (as in the proof of Lemma 9.3), v(¢) is conjugate
to v(0) along . Hence tg < . O

Corollary 9.8. The cut locus C(p) is closed for all p € M. In particular, C(p) is compact if M is
compact.

Proof. Clearly C(p) = {7"(t) : t = d(v) < o0,v € T,M,|v| = 1}. If ¢ is an accumulation point
of C(p), there exists a sequence v; € T,M, |vj| = 1, such that y%(t;) — ¢, where v%(t;) € C(p)
and t; = d(vj). By compactness, there exists a subsequence v; — v € T,M, |v| = 1. Both the
exponential map and d are continuous, which implies

q = lim~" (t;) = lim " (d(v;))
= limexp,, (d(v;)v;)
= exp,, (lim d(vj)v;) = exp, (d(v)v) € C(p).
Hence g € C(p) and thus C(p) is closed. O

Corollary 9.9. Suppose that M is complete and that there exists a point p € M that has a cut
point along every geodesic starting at p. Then M is compact.

Proof. Since M is complete, every point can be joined to p by a minimizing geodesic. It follows
that

M= J{"(1): 0 <t <d(v)},

where the union is taken over the unit sphere S; = S(0,1) C T,M. The sphere S is compact and
d(v) < oo for all v € S7 by assumption. Since d is continuous, it is bounded on S;. Therefore M
is bounded and complete, hence compact (M is the image of a compact set B(0, R) C T, M under
the continuous map exp,, for sufficiently large R). U
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Theorem 9.10. Let p € M. Suppose that there ezists g € C(p) with d(p,q) = dist(p, C(p)). Then
etther

(a) there exists a minimizing geodesic v from p to q such that q is conjugate to p along vy, or
(b) there exists exactly two minimizing unit speed geodesics vy and o from p to q, and, in addition,
Yo = =60, £ =d(p,q).
Proof. Let g € C(p) and suppose that « is a unit speed minimizing geodesic from p to g such that ¢
is the cut point of p = v(0) along 7. By Lemma 9.3, ¢ is either conjugate to p along v and (a) holds,
or there exists another unit speed minimizing geodesic o # « from p to ¢ with ¢(c) = £(). Suppose

that ¢ is conjugate to p along neither v nor ¢, and that 3, # —d,. We want a contradiction.
Since 4y # —0y, there is v € T, M such that

(v,%¢) < 0 and (v, dy) < 0.

Let 7: (—e,e) — M be a smooth path such that 7(0) = ¢ and 79 = v. Since ¢ is not conjugate to p
along 7, there exists a neighbourhood U C T, M of {4 such that exp,, | is a diffeomorphism. Let
a: (—e,e) = U be a smooth path such that

exp, a(s) = 7(s), s€ (—¢,¢),
and let .
['(s,t) = exp, <Za(s)> , te]0,4],

be a (non-proper) variation of 7. Note that «(0) = ¢4y and each I'y is a geodesic. The (general)
first variation formula then implies that

d
R I‘s s=0 — ) } .
dsg( MNs=0 = (v,%¢) <0

Similarly, since ¢ is not conjugate to p along o, there exists a neighborhood Uc T, M of l5q such
that exp, |U is a diffeomorphism. Let &: (—¢,e) — U be a smooth path such that

exp, &(s) = 7(s), s€(—¢,¢).
Let .
Y(s,t) = exp, <Zd(8)> , te]o,4],

be a variation of o. Then

%E(ZS)‘SZO = <2),O"g> < 0.
s) < () and £(35) < {(0).

Hence, if s > 0 is small enough, ¢(T"




Fall 2010 109

If ¢(I's) = ¢(X) for such s, Lemma 9.4 implies that there exists a cut point I's(¢) of p along I's
for some ¢t € (0,/]. Note that I's(¢) = X4(¢) = 7(s). Since dist(p,C(p)) < d(p,T's(t)) < £(Ts) <
{(~y) = dist(p, C(p)), we obtain a contradiction.

On the other hand, if ((I's) < ¢(X5), then X5 is not minimizing. Hence there exists a cut point
Ys(t), t < £, of p along . Then dist(p, C(p)) < d(p, Xs(f)) < ¢, which is a contradiction. Similarly
in the case /(T's) > ¢(X) we get a contradiction. O

Lemma 9.11. Let M be a complete Riemannian manifold whose sectional curvatures satisfy
0< Kmin < K < Kmax'
Then

(a)

or

(b) there ezists a closed geodesic vy in M such that

()
()

2inj(M) and
1

(o) for any closed geodesic o.

IN

Proof. By the Bonnet-Myers theorem, M is compact, and therefore also T7 M is compact. Since
the function d: Ty M — [0, 00] is continuous, d|T7 M attains its minimum at some v € T3 M. Let
p=m(v), i.e. v € T,M. Hence

d(v) < d(w) Yw € T1 M,

and consequently
dist (p, C(p)) < in{/[ dist (z, C(z)) = inj(M).
Te

Since C'(p) is compact, there exists ¢ € C'(p) such that
d(p, q) = dist (p, C(p)) = inj(M).

If ¢ is conjugate to p,

>
Wa) = e
by Corollary 8.6 to the Rauch comparison theorem.

If ¢ is not conjugate to p, there are exactly two minimizing geodesics a and 8 from p to ¢
such that &y = —f;, ¢ = d(p,q) by Theorem 9.10. Since ¢ € C(p), we have p € C(q) and
d(p,q) = dist (q,O(q)). As above, we conclude that ¢y = —f;. Hence o and 3 form a closed
geodesic v, with £(y) = 2¢(a) = 2d(p,q) = 2inj(M). On the other hand, any closed geodesic has
length > 2inj(M). O
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9.12 Estimates for the injectivity radius

Theorem 9.13. Let M™, n > 3, be simply connected compact Riemannian n-manifold whose

sectional curvatures satisfy

1
- < K <1.
1 <

Then inj(M) > .
We shall prove an easier even dimensional version.

Theorem 9.14. Let M?" be a compact connected and oriented Riemannian 2n-manifold whose
sectional curvatures satisfy
0<K<1.

Then inj(M) > .

Proof. By compactness of M there are p,q € M with d(p,q) = inj(M). Assume on the contrary
that d(p,q) < w. If p is conjugate to ¢, then d(p,q) > 7 by Corollary 8.6. Hence p is not conjugate
to g. As in the proof of Lemma 9.11 there is a closed geodesic v passing through p = v(0) and ¢
such that ¢ = ¢(vy) = 2d(p, q) < 2.

Let P: T,M — T,M be the parallel transport along . Since M is oriented, P is a linear
isometry that preserves the orientation. Hence det P = 1. Since Pjy = 79, we have that

Pl : 46— ¥

is an orthogonal linear map, and hence det (P|45) = 1. Since dim(§5) = 2n — 1 is odd, there
exists v € "yol such that Pv = v. Indeed, since P\f'yoL is orthogonal, its eigenvalues A € C satisfy
|A| = 1 and all possible complex eigenvalues occur in complex conjugate pairs. Hence the product
of complex eigenvalues is 1, and consequently there must be at least one real eigenvalue equal to 1.

Let then V' € T(v) be parallel along ~ such that Vj = v. Furthermore, let I be a variation of
~ such that each I'y is a closed path and that V is the variation field of I'. For instance,

['(s,t) = expy (sV (1))

will do. Note that Vp = v = Pv = PV =V, and thus I';(0) = I';(¢). By the second variation
formula,

d2 1
——U(T)|s=0 = D,V > — )4, VY )dt < 0.
o= [ (DY P = B4V )it <o
=0 >0
There are three possible cases:
(i) ;
—E Fs S= 9
T )]0 > 0
(ii)
d
— Ly)|s= :07
(T smo
(iii)
iE(FS)|8:0 < 0.

ds
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(i): Since
d

_6 Ps 5=s
Tt sy

is smooth with respect to sg, we have

d

_ers 5=s
(L) ]ssy > 0

for all sp =~ 0. Hence ¢(I's) < £(7y) for sufficiently large s < 0.
(iii): Similarly, ¢(I's) < ¢(v) for sufficiently small s > 0.
(ii): If
iE(I‘ )]s=0 =0 and d—QE(F )s=0 <0
ds s)ls=0 — ds2 s)1s=0 )
¢(T's) has a strict local maximum at s = 0.
In any case, there exists a variation ~s, s € [0,&], of v through closed paths such that

U(s) < £(y) = 2d(p,q)

for s # 0. Let g5 be a point of 75 at maximum distance from v5(0). Then

2d(75(0), gs) < £(vs) < () = 2d(p,q) = 2inj(M),

and so d(v5(0), ¢s) < inj(M). Hence there exists a unique minimizing geodesic o joining ¢ = o(0)
to 7s(0).

Since ¢ is the unique point of v at maximum distance from p, we have ¢ — ¢ as s — 0. The
tangent bundle T'M is locally compact, hence there exists an accumulation point w € T, M of
vectors d5(0). By continuity, o(t) = exp,(tw) is a minimizing geodesic from g to p

Let 044 be a variation of oy through minimizing geodesics from points 7(t) close to gs to vs(0).
Note that oy maximizes the length functional among geodesics o, ;. Hence, by the first variation
formula, 64(0) L 45 at gs for all s € [0,¢]. Tt follows that dy L Yes2 at ¢, and hence there are at
least three minimizing geodesics from p to ¢q. This leads to a contradiction since we supposed that
p is not conjugate to q. ]

7s(0)

\

ds

It might be helpful to notice above that ~, lies inside a normal ball centered at ~,(0) since £(~s) <
2inj(M ) and that all geodesics starting at v5(0) intersect normal spheres orthogonally. In particular
the minimizing geodesic from g5 to v5(0) is orthogonal to the normal sphere through g¢s.
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0B(7s(0), d('Ys (0), QS))

Remark 9.15. The hypothesis of orientability of M in Theorem 9.14 is equivalent to the assump-
tion that M be simply connected; see [Ca, 3.5 Remark, p. 282].

Lemma 9.16. Let M be compact and p,q € M such that d(p,q) = diam(M). Then for every
v € T,M there exists a minimizing geodesic v from p to q such that (jo,v) > 0.

Proof. Fix v € TyM and let o(t) = exp,(tv). Let v: [0,d(co(t),q)] — M be a minimizing 1-speed
geodesic such that v;(0) = o(t) and v (d(o(t),q)) = q.

(i): Suppose that for all n € N there exists ¢,, 0 < t, < 1/n, such that (3,7, (0)) > 0. Then
there exists a subsequence, denoted again by (), such that 7, — v, where v is a minimizing
geodesic from p to ¢ and (Y, v) = (§0,00) > 0.

(ii): Thus we may assume that there exists n € N such that for all 0 <t < 1/n

(%:(0),6¢) < 0.

We want a contradiction.

Let U be a uniformly normal neighborhood of p and ¢y > 0 so small that ¢ty < 1/n and o(t) € U
for all 0 < ¢ < . Let 0 <t <t and let gqo € U N~[0,d(c(t),q)]. Let € > 0 be so small that
o(s) € U for all s € (—&,t+ ¢) and let o be the unique minimizing geodesic from o(s) to qq, all
parametrized on [0, d(qo, o(t))].

q

If V is the variation field of the variation I'(s,-) = as(+), then

V(d(qo,0(t))) =0 and V(0) = 63,
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The first variation formula and the assumption (ii) imply that

L o) = ~(60,34(0)) > 0.

This holds for every 0 < t < tg. Therefore
d(q07 U(S)) < d(q07 J(t))

for s € [0,¢). Hence

for s € [0,¢). In particular,
d(p,q) = d(q,0(0)) < d(g,a(t)).

On the other hand, for all ¢
d(g,o(t)) < diam(M) = d(p, q).

Thus we get a contradiction. ]

Lemma 9.17. Let M™ be a compact simply connected Riemannian manifold with sectional curva-
tures

1
Z<5§K§l'

Let p,q € M be such that d(p,q) = diam(M). Then M = B(p, 0) U B(q, o) for all o € (7/v/45, )
and M = B(p, 7/V/45) U B(q, 7/V/46).

Proof. Fix o € (7/v/45, 7). The estimate inj(M) > 7 for the injectivity radius implies that B(p, 0)N
C(p) = 0 and B(q,0) N C(q) = 0. Hence B(p, o) and B(q, o) are diffeomorphic to open Euclidean
balls (via exp, and exp,). Suppose on the contrary that there exists z € M such that d(p,z) > o
and d(q,z) > 0. We may assume that d(p,x) > d(q,z) > o.

A minimizing geodesic from ¢ to x intersects 9B(q, o) in a point ¢’ &€ B(p, ) since otherwise

d(z,q") > dist (x, B(p, 0)) (2) dist (z, B(q, 0)) = d(z,q).
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To verify the estimate (x), we notice that dist (m,B(p, Q)) = d(z,p’), where p’ is an intersection
point of dB(p, 0) and a minimizing geodesic from x to p. If dist (a:,B(p, Q)) < dist (a:,B(q, Q)),
then

d(p,x) = o+ d(p',z) = o+ dist (:U, B(p, g))
< o+ dist (a:,B(q, Q)) =o0+d(q,x) —o=d(q,x)

which is against the assumption.

By the Bonnet-Myers theorem, diam(M) < 7/ V6 < 20. Let ¢ be an intersection points of
0B(q, ) and a minimizing geodesic from p to q. Then ¢” € B(p, o) since d(p,q") = d(p,q) —
d(q,q") < 20— 0= . Thus 9B(q, ) contains points ¢’ € B(p, 0) and ¢" € B(p, 0). Since dB(p, o)
and 0B(q, o) are path-connected (homeom. to Euclidean spheres), we have dB(p, 0) N0B(q, 0) # 0.
Hence there exists z9p € M with d(zo,p) = d(zo,q) = 0. We shall show that this leads to a
contradiction.

Lo

Let a be a minimizing geodesic from p to xg. By Lemma 9.16 there exists a minimizing geodesic
v from p to ¢ such that (§p,d&o) > 0. Let s be the point on 7 such that d(p,s) = 0. We compare
M with the sphere S™(1/4/3) of constant sectional curvature §. Since (o,c) > 0, the angle
<zops = <(&o,50) < 7/2. On the other hand,

d(ﬂj‘o, S) < E(é)v
where ¢ is any path in M joining xo and s. By Corollary 8.5 (to the Rauch comparison theorem),

d(zg,s) < l(¢) <

T
28 e
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Note that 7//46 is one-fourth of the length of a circle of radius 1/v/8. Since d(xo,p) = d(xo,q) = 0
and d(zg, s) < o, the distance from z( to |y| (= the image of ) is realized by an interior point sg
of v (i.e. not an endpoint). The minimizing geodesic from x to s¢ is orthogonal to v (by the first
variation formula) and

T
dist(xg, = d(xo, < —.
ist(zo, [7]) (x0, s0) WE

Lo

IA
[ V)
e

-~
S . <
= =2

S

Since d(p,q) < 7/ V8 by the Bonnet-Myers theorem, we obtain

E

d(p, s0) < = o d(q,s0) <

20 2

Consider the case d(p, sg) < 7/v/46 (the other case is similar). Corollary 8.5 implies that

S

d(p,xo) <

<o

[(\&)
<)

which leads to a contradiction.

hsT

Above p, 50, and Z( are points on the sphere S™(1/4/8) such that d(p, 50) = d(p, o) and d(Z, 50) =
d(zg, s9), and ¢ is the minimizing geodesic from p to Zg of length < 7/v/45. Thus its comparison
path on M joins p and xy and has length < £(¢) < 7/v/49. O

Remark 9.18. A compact topological n-manifold covered by two balls as in Lemma 9.17 is home-
omorphic to S”. Below we construct a homeomorphism explicitly.
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Lemma 9.19. Let M, points p,q € M, and o be as in Lemma 9.17. Then on each geodesic of length
o0 starting at p there exists a unique point my such that d(p,m1) = d(q,m1) < o. Similarly on each
geodesic of length o starting at q there exists a unique point mgy such that d(q,mg) = d(p, m2) < p.

Proof. Let v: [0, 0] — M be a unit speed geodesic with v(0) = p. Consider a continuous function
g9: (0,0l = R,

9(t) = d(g.7(t)) — d(p.1(1)).
By the injectivity radius estimates, inj(M) > m > p. Hence 7 is minimizing, and therefore

d(p.v(0)) = o0 and y(0) & B(p,0). Since M = B(p,0) U B(q, ), we have d(q,7(0)) < o. It
follows that

9(0) = d(q,7(0)) — d(p,~(0)) <0 —0=0.

On the other hand, g(0) = d(p,q) > 0, and therefore there exists ¢y € (0, o) such that g(tp) = 0,
and consequently

d(g,7(to)) = d(p,~(to))-

To prove the uniqueness, suppose that there exist points m; # m on v such that d(p, m) = d(q,m)
and d(p,m1) = d(q,m1). We may assume that mq is between p and m. Then

d(q,m) = d(p,m) = d(p,m1) + d(mqy,m)
=d(q,m1) + d(mi,m).

Let 01 be a minimizing geodesic from m; to q. Then the segment of —v from m to m; followed
by o1 from m to ¢ is minimizing and hence form a smooth geodesic from m to ¢. Then o1 must
coincide with —~ from mj to p. Hence ¢ = p which is a contradiction. The other case is proven
similarly. ]

Lemma 9.20. Let M, points p,q € M, and ¢ be as in Lemma 9.17. Define a function f: T,M \
{0} — T, M by setting f(v) = tyv such that exp, f(v) = my is the unique point on the geodesic
t = exp, tv, t >0, equidistant from p and q. Then [ is well-defined and continuous.

Proof. By Lemma 9.19, the point m,, is unique for each v € T,,M \ {0}, so f is well-defined. We
note that

f(v)] < 2% <7 < inj(M).

For every v € T,M \ {0}, we have
flv) =ty eﬁ))p My,
F/ll) = to/lo] = m,
Hence

F) = F(w/lel) and () = |F(e/ol) |

Therefore, to prove the continuity of f, it suffices to show that |f| is continuous on the unit
sphere S = S(0,1) C T,M. Suppose v; € Si and v; — v, and denote f(v;) = t;v;. Now there is a
convergent subsequence t;, — to for some ¢y € [0, 7] because of compactness. Thus by the continuity
of the exponential map we have exp,, t;, v;, — exp, tov. Furthermore, since d is continuous, we have

d(exp, tov, p) = limd(exp,, t;, v;,, p) = lim d(exp, t;, vi,, q) = d(exp, tov,q).
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The point m, along t — exp,, tv is unique by Lemma 9.19, so f(v) = tov = limt;, v;, = lim f(v;,). In
fact, the whole sequence ¢; converges to g which can be seen by repeating the above for subsequence
converging to liminf¢; and limsupt;, respectively, and noticing that both of these limits must be
equal to tg. Hence lim f(v;) = f(v), and therefore f is continuous. O

Proof of the sphere theorem. By normalization, we may assume that

i<5§K§1.

Let p,q € M be such that d(p,q) = diam(M). Consider the unit n-sphere S", and let p,g € S™ be
the north and south pole, respectively. Let

[: T,S" — T,M

be an isometry. For each v € T,M \ {0} define f(v) = t,v as in the previous lemma. Define a
mapping h: S" — M",

b, T =p;
ha) exp,, d%s) (folo explg1 a:)) , 0 <d(x,p) <m/2;
) = y
exp, —dgrx/’g) (equ_l oexp,ofolo explg1 aj)) , 0<d(z,q) < 7/2;
q, Xr = q

We claim that h is a homeomorphism. Since S™ and M are compact, it suffices to show that
(i) h is continuous,
(ii) h is injective, and
(iii) h is surjective.

(i): The continuity of h is obvious since the exponential map, the isometry I and f are continuous
and h is continuous at poles p, g. Moreover, h is well-defined since the two definitions agree on the
set {z € S": d(z,p) = d(z,q)}- )

For (ii), we notice that h|B(p,7/2) and h|B(g, 7/2) are injective since |f(-)| < inj(M). Further-
more, h|B(p,7/2) N B(g,7/2) is injective because of the uniqueness of the points m halving the
geodesics from p to ¢g. Therefore, it remains to show that hB(p,7/2) N hB(q,m/2) is empty.
Suppose for example that x € hB(p,n/2). Then x = ~(t) for some (minimizing) geodesic 7,
with v(0) = p and d(z,p) < |f(j0)]- By the uniqueness statement of Lemma 9.19, we have
d(z,p) < d(z,q). By the same argument, if z € hB(q,7/2), then d(z,q) < d(z,p). Therefore
x € hB(p,7/2) implies © € hB(q,7/2).

(iii): Let x € M, and assume d(z,p) < d(zx,q); the case d(z,p) > d(x,q) is symmetrical.
Let v be a minimizing geodesic joining p to z = (t). By Lemma 9.19 there exists ty > ¢ such

that t0% = f(%0). Then clearly 4, € I(explgjL B(p,7/2)). Therefore x € hB(p,n/2), and h is
surjective. O
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