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The material is collected mainly from books [AT], [BBI], and [BH] and from Lecture
notes [La].

1 Metric spaces

We start by recalling the basic definitions related to metric spaces and introducing some examples
and useful results.

1.1 Definitions and examples

Definition 1.2. Let X be a set. A function d : X ×X → [0,+∞) is called a pseudo metric (in X)
if

(1) d(x, x) = 0,

(2) d(x, y) = d(y, x) and

(3) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

for all x, y, z ∈ X. A pseudo metric d is called a metric if, in addition, d(x, y) > 0 for all
x, y ∈ X,x 6= y. In that case the pair (X, d)) is called a metric space. Usually we say, for
short, that X is a metric space, in particular, if the metric d is clear from the context.

Example 1.3. 1. The function d : R2 × R
2 → R,

d
(
(x, y), (x′, y′)

)
= |(x− x′) + (y − y′)|,

is a pseudo metric.

2. For any set X, the function

d(x, y) =

{

0, if x = y,

1, if x 6= y

is a metric.

3. For example, d(x, y) = |x− y| and d′(x, y) = log(1 + |x− y|) are metrics in R.

4. If (X, d) is a metric space, then d0 : X ×X → [0, 1),

d0(x, y) =
d(x, y)

1 + d(x, y)
,

is a metric in X. (Exercise: Verify the triangle inequality.)

5. If (X, d) is a metric space and 0 < α < 1, then (X, dα), dα(x, y) = (d(x, y))α, is a metric
space, too. (So called snowflaked version of (X, d).)

6. If (X1, d1) and (X2, d2) are metric spaces, then

d
(
(x1, x2), (y1, y2)

)
=
√

d1(x1, y1)2 + d2(x2, y2)2

defines a metric in X1 ×X2.
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7. If (V, ‖·‖) is a normed space, then

d(x, y) = ‖x− y‖

is a metric in V .

8. For example, norms ‖·‖1,

‖(x1, . . . , xn)‖1 = |x1|+ · · ·+ |xn|,

and ‖·‖∞,
‖(x1, . . . , xn)‖∞ = max{|x1|, . . . , |xn|},

defines metrics (denoted by d1 and d∞) in R
n.

‖x‖1 ≤ 1 ‖x‖∞ ≤ 1

9. If 〈·, ·〉 is an inner product in V , then ‖x‖ =
√

〈x, x〉 is a norm. In that case we say that ‖·‖
is an inner product norm (or Euclidean norm).

Example 1.4. For any set X we write

`∞(X) = {f : X → R | sup
x∈X

|f(x)| <∞}

and
‖f‖∞ = sup

x∈X
|f(x)|.

Then (`∞(X), ‖·‖∞) is a normed space.

Problem 1.5. Prove that (Rn, ‖·‖∞) = (`∞(X), ‖·‖∞) for a suitable choice of X.

Lemma 1.6 (Parallelogram law). A norm ‖·‖ is an inner product norm in V if and only if

(1.7) ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2)

for all x, y ∈ V . If this is the case, then the inner product is given by the formula

〈x, y〉 = 1

4
(‖x+ y‖2 − ‖x− y‖2).

Proof. If the norm is an inner product norm, a straightforward computation shows that (1.7) holds.
Suppose then that the norm ‖·‖ satisfies (1.7). We show that the formula

(1.8) 〈x, y〉 = 1

4
(‖x+ y‖2 − ‖x− y‖2)

defines an inner product. Clearly 〈x, y〉 = 〈y, x〉 and 〈x, x〉 = ‖x‖2 ≥ 0. Therefore, it suffices to
show that, for each fixed y, the function

x 7→ 〈x, y〉
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is linear. Applying (1.7) to pairs x′ + y, x′′ and x′ − y, x′′ we obtain

‖x′ + x′′ + y‖2 + ‖x′ − x′′ + y‖2 = 2‖x′ + y‖2 + 2‖x′′‖2,
‖x′ + x′′ − y‖2 + ‖x′ − x′′ − y‖2 = 2‖x′ − y‖2 + 2‖x′′‖2.

Subtracting the second equation from the first one and using the definition (1.8) we get

〈x′ + x′′, y〉+ 〈x′ − x′′, y〉 = 2〈x′, y〉.
Since 〈0, y〉 = 0, it follows (by choosing x′ = x′′) that

〈2x′, y〉 = 2〈x′, y〉.
Hence

〈x′ + x′′, y〉+ 〈x′ − x′′, y〉 = 〈2x′, y〉.
Replacing here x′ by 1

2 (x
′ + x′′) and x′′ by 1

2(x
′ − x′′) we obtain

(1.9) 〈x′, y〉+ 〈x′′, y〉 = 〈x′ + x′′, y〉
for all x′, x′′, y ∈ V .

We have to show that 〈λx, y〉 = λ〈x, y〉 for all λ ∈ R. Repeating (1.9) we get

(1.10) 〈nx, y〉 = n〈x, y〉
for all n ∈ N. On the other hand,

〈−x, y〉 = 1

4
(‖−x+ y‖2 − ‖−x− y‖2) = −1

4
(‖x+ y‖2 − ‖x− y‖2) = −〈x, y〉,

and therefore (1.10) holds for all n ∈ Z. It follows that

〈qx, y〉 = q〈x, y〉
holds for all rational numbers q = m/n. Since x 7→ 〈x, y〉 and multiplication by scalars are
continuous functions (in the norm topology),

〈λx, y〉 = λ〈x, y〉
holds for all λ ∈ R.

Remark 1.11. 1. Using Lemma 1.6 it is easy to see that ‖·‖1 and ‖·‖∞ are not inner product
norms in R

n for n > 1.

2. We will use the (Polish distance) notation

(1.12) |x− y| := d(x, y)

in every metric space (even if X were not a vector space).

Example 1.13. If 〈·, ·〉 is the (standard) inner product in R
n+1 and

S
n = {x = (x1, . . . , xn+1) ∈ R

n+1 : |x| = 1}

is the unit sphere, the function d : Sn × S
n → [0, π],

cos d(x, y) = 〈x, y〉, x, y ∈ S
n,

defines so called angular metric in S
n. Then d(x, y) is the angle between vectors x and y (and

equals to the “length of the shortest arc on S
n joining x and y”).
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Definition 1.14. We say that a mapping f : X → Y between metric spacesX and Y is an isometric
embedding if

|f(x)− f(y)| = |x− y|
for all x, y ∈ X. If, in addition, f is onto (surjective), we say that f is an isometry .

Problem 1.15. 1. Prove that every metric space (X, d) can be isometrically embedded into
`∞(X). (Hence the notation (1.12) makes sense.)

2. Study for which values of n the spaces (Rn, d1) and (Rn, d∞) are isometric.

To study the second problem above one may use, for instance, the following theorem of Mazur
and Ulam (1932)1. Recall that a mapping f : V → W is affine if the mapping L : V → W, L(x) =
f(x)− f(0), is linear. Equivalently, f is affine if

(1.16) f
(
(1− t)x+ ty

)
= (1− t)f(x) + tf(y)

for all x, y ∈ V and 0 ≤ t ≤ 1. Since every isometry is continuous, a sufficient condition for an
isometry f : V → W to be affine is

(1.17) f
(
(x+ y)/2

)
=
(
f(x) + f(y)

)
/2

for all x, y ∈ V (iteration of (1.17) gives (1.16) first for all dyadic rationals t ∈ [0, 1] and then (1.16)
follows for all t ∈ [0, 1] by continuity).

Theorem 1.18 (Mazur-Ulam theorem). Suppose that V andW are normed spaces and that f : V →
W is an isometry. Then f is affine.

Proof. For z ∈ V , the reflection of E in z is the mapping ψ : V → V, ψ(x) = 2z − x. Then
ψ ◦ ψ = id, and hence ψ is bijective with ψ−1 = ψ. Moreover, ψ is an isometry, z is the only fixed
point of ψ, and

(1.19) |ψ(x)− z| = |x− z|, |ψ(x) − x| = 2|x− z|

hold for all x ∈ V .
Let x, y ∈ V and write z = (x + y)/2. In order to prove that f is affine, it suffices to show

that f(z) = (f(x) + f(y))/2 =: z′. Let F be the family of all isometries g : V → V keeping
the points x and y fixed. We will show first that also z is a fixed point for all g ∈ F . Let
λ = sup{|g(z) − z| : g ∈ F}. For g ∈ F we have |g(z) − x| = |g(z) − g(x)| = |z − x|. Hence
|g(z) − z| ≤ |g(z) − x|+ |x− z| = 2|x− z|, and so λ <∞. Let ψ be the reflection of E in z. Then
ψ(x) = y and ψ(y) = x. If g ∈ F , then also g∗ = ψ ◦ g−1 ◦ ψ ◦ g ∈ F . Hence |g∗(z)− z| ≤ λ. Since
g−1 is an isometry, this and (1.19) imply that

2|g(z) − z| = |ψ(g(z)) − g(z)| = |g−1 ◦ ψ ◦ g(z)− z| = |g∗(z) − z| ≤ λ

for all g ∈ F . Hence 2λ ≤ λ, and so λ = 0. This implies that g(z) = z for all g ∈ F . Let ψ′ be
the reflection of W in z′. Then h = ψ ◦ f−1 ◦ ψ′ ◦ f ∈ F , and hence h(z) = z. This implies that
ψ′(f(z)) = f(z). Since z is the only fixed point of ψ, we have f(z) = z′ as desired

Remark 1.20. The surjectivity of f is essential in the Mazur-Ulam theorem: For example, g : R →
R
2, g(t) = (t, |t|) is not affine, though it is an isometric embedding (R, |·|) → (R2, ‖·‖∞).

1The proof is taken from Väisälä: A proof of the Mazur-Ulam theorem. Amer. Math. Monthly 110 (2003) no. 7,
633-635.
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Let us fix some notation. For a metric space X,

B(x, r) = {y ∈ X : |x− y| < r} is the open ball of radius r > 0 centered at x ∈ X,

B̄(x, r) = {y ∈ X : |x− y| ≤ r} is the closed ball of radius r centered at x,

S(x, r) = {y ∈ X : |x− y| = r} is the sphere of radius r centered at x,

dist(x,A) = inf{|x− y| : y ∈ A} is the distance of x ∈ X to A ⊂ X,

dist(A,B) = inf{|x− y| : x ∈ A, y ∈ B} is the distance between sets A,B ⊂ X,

diam(A) = sup{|x− y| : x, y ∈ A} is the diameter of A ⊂ X.

Note that S(x, r) may be an empty set.
The metric determines the topology, denoted by Td, of X: A set A ⊂ X is open (i.e. A ∈ Td)

if, for each x ∈ A, there exists an open ball B(x, r) ⊂ A. Recall that a set C ⊂ X is closed if its
complement Cc = X \ C is open. We denote the closure of a set A ⊂ X by A. Thus

A = {x ∈ X : B(x, r) ∩A 6= ∅ ∀r > 0}.

Note that the closure B(x, r) need not be the whole closed ball B̄(x, r).
A topological space (X,T ) is Hausdorff if disjoint points have disjoint neighborhoods. That is,

for every x, y ∈ X,x 6= y, there exist open sets x ∈ U and y ∈ V such that U ∩V = ∅. In particular,
every metric space is Hausdorff. Consequently, a sequence (xi) in a metric space can have at most
one limit.

A sequence (xi) in a metric space X is called a Cauchy sequence if, for every ε > 0, there exists
i0 ∈ N such that

|xi − xj| < ε

for all i, j ≥ i0. A metric space X is complete if every Cauchy sequence in X converges. That is,
if (xi) is a Cauchy sequence in X, there exists x ∈ X such that |xi − x| → 0 as i→ ∞.

For example, Rn is complete for all n ∈ N, but Rn \ {0} is not (any sequence xi converging to
0 (in R

n) is a Cauchy sequence, but the limit 0 does not belong to the metric space R
n \ {0}).

Problem 1.21. Prove that a metric space X is complete if and only if it has the following property:
If (Xn) is a sequence of non-empty, closed subsets of X such that Xn+1 ⊂ Xn for every n and
diam(Xn) → 0, then the sets Xn have a common point (i.e. ∩nXn 6= ∅). Note that the condition
diam(Xn) → 0 is essential as an example Xn = [n,∞) ⊂ R shows.

A mapping f : X → Y between metric spaces X and Y is Lipschitz if there exists a constant L
such that

(1.22) |f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ X. In that case f is called L-Lipschitz. The smallest L for which (1.22) holds is
denoted by LIP(f), i.e.

LIP(f) = inf{L : f L-Lipschitz}.
It is easy to see that f is then LIP(f)-Lipschitz (i.e. “ inf = min”). Every Lipschitz mapping is
clearly continuous. A mapping f : X → Y is called bi-Lipschitz if there exists a constant L ≥ 1
such that

1

L
|x− y| ≤ |f(x)− f(y)| ≤ L|x− y|
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for all x, y ∈ X. In this case we say that f is L-bi-Lipschitz. Every bi-Lipschitz mapping is a
homeomorphism onto its image.

If f : X → Y is a bi-Lipschitz homeomorphism, then X and Y are complete simultaneously.
Note that completeness is not a topological property: there are homeomorphic metric spaces X
and Y such that X is complete while Y is not. (Exercise: construct an example.)

The following two theorems on complete metric spaces are very important in many contexts.
We omit their proofs.

Theorem 1.23 (Banach’s fixed point theorem). Let X be a complete metric space and f : X → X
an L-Lipschitz mapping, with L < 1. Then there exists a unique x0 ∈ X such that f(x0) = x0.

Theorem 1.24 (Baire’s theorem). If X is a complete metric space, the intersection of every
countable collection of dense open subsets of X is dense in X.

Next we present useful extension and approximation results involving Lipschitz functions.

Theorem 1.25 (McShane-Whitney extension theorem). Let X be a metric space, A ⊂ X, and
f : A→ R L-Lipschitz. Then there exists an L-Lipschitz function F : X → R such that F |A = f .

Proof. For every a ∈ A we define an L-Lipschitz function fa : X → R

fa(x) = f(a) + L|a− x|, x ∈ X.

The function F is then defined by setting

F (x) = inf
a∈A

fa(x), x ∈ X.

Clearly F (x) <∞ ∀x ∈ X. By fixing a0 ∈ A we see that

f(a) + L|a− x| ≥ f(a) + L|a− a0| − L|a0 − x|
≥ f(a0)− L|a0 − x|.

Hence F (x) > −∞ for all x ∈ X. Since every fa is L-Lipschitz and F (x) > −∞ for all x ∈ X, F
is L-Lipschitz. Moreover, for every x ∈ A

F (x) ≤ fx(x) = f(x) ≤ f(y) + L|x− y| = f y(x) ∀y ∈ A,

and hence F |A = f .

Corollary 1.26. Let X be a metric space, A ⊂ X, and f : A→ R
n L-Lipschitz. Then there exists

a
√
nL-Lipschitz mapping F : X → R

n such that F |A = f.

Proof. Apply Theorem 1.25 to the coordinate functions of f .

Remark 1.27. 1. Theorem 1.25 holds (as such) in the case X ⊂ R
m, f : X → R

n, but the
proof is much harder. This is so called Kirszbraun’s theorem.

2. It is a topic of quite active current research to study which pairs of metric spaces X,Y have
a Lipschitz extension property (i.e. for every A ⊂ X every Lipschitz mapping f : A has a
Lipschitz extension F : X → Y ).

Theorem 1.28. Let X be a metric space and let X ′ ⊂ X be dense. Suppose that Y is complete
and that f : X ′ → Y is Lipschitz. Then there exists a unique continuous mapping F : X → Y such
that F |X ′ = f . Moreover, F is Lipschitz and LIP(F ) = LIP(f).
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Proof. For every x ∈ X choose a sequence (xi) such that xi ∈ X ′ and xi → x. Then (f(xi)) is a
Cauchy sequence in Y since |f(xi)− f(xj)| ≤ L|xi − xj| → 0 as i, j → ∞. Here L = LIP(f). Since
Y is complete, there exists y ∈ Y such that f(xi) → y. We define

F (x) = y.

Then F is well-defined (y = F (x) does not depend on the choice of the sequence (xi)). To show
that F is L-Lipschitz, let x, y ∈ X and choose sequences xi → x and yi → y. Then

|F (x)− F (y)| = lim
i→∞

|f(xi)− f(yi)| ≤ L lim
i→∞

|xi − yi| = L|x− y|.

The uniqueness of F is clear: if two continuous mappings coincide in a dense set, they must coincide
everywhere.

A function f : X → (−∞,∞] of a metric space (or, more generally, of a topological space) X
is called lower semicontinuous if the set {x ∈ X : f(x) > a} is open for each a ∈ R. For example,
the characteristic function of an open set is lower semicontinuous. A function f is called upper
semicontinuous if −f is lower semicontinuous.

Remark 1.29. A function f : X → (−∞,∞] is lower semicontinuous if and only if

lim inf
y→x

f(y) ≥ f(x) ∀x ∈ X

Theorem 1.30. Let X be a metric space, c ∈ R, and let f : X → [c,∞] be lower semicontinuous.
Then there exists an increasing sequence (fi) of Lipschitz functions fi : X → R such that

c ≤ fi(x) ≤ fi+1(x) ≤ f(x)

and

lim
i→∞

fi(x) = f(x)

for every x ∈ X.

Proof. If f(x) ≡ ∞, we may choose fi(x) ≡ i. Thus we may assume that f(x) < ∞ for some
x ∈ X. For each i ∈ N we define an i-Lipschitz function fi by

fi(x) = inf{f(y) + i |x− y| : y ∈ X}.

Then c ≤ fi(x) ≤ fi+1(x) ≤ f(x) for all x ∈ X. Fix x ∈ X and let M ∈ [c, f(x)). Choose r > 0
such that f > M in B(x, r). Then fi(x) ≥ min{M, c+ ir}. If i ∈ N is so large that c+ ir > M , we
have fi(x) ≥M . Hence limi→∞ fi(x) = f(x).

Every metric space can be isometrically embedded into a complete metric space. More precisely,
we have the following theorem.

Theorem 1.31. Let X be a metric space. Then there exists a complete metric space X̃ and an
isometric embedding f : X → X̃ such that fX ⊂ X̃ is dense. The space X̃ is unique up to an
isometry and it is called the completion of X
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Proof. Let X be the set of all Cauchy sequences in X. If x̄ = (xi) and ȳ = (yi) are Cauchy sequences
in X, we have

∣
∣|xi − yi| − |xj − yj |

∣
∣ ≤ |xi − xj|+ |yi − yj|,

and hence (|xi − yi|) is a Cauchy-sequence in R. This sequence has a limit since R is complete,
hence we may define d : X × X → [0,∞),

d(x̄, ȳ) = lim
i→∞

|xi − yi|.

Clearly d is a pseudo metric in X . Let ∼ be the equivalence relation

x̄ ∼ ȳ ⇐⇒ d(x̄, ȳ) = 0

and let X̃ = X/∼. Then d defines a metric in X̃ since

d([x̄], [ȳ]) = d(x̄, ȳ)

is well-defined (i.e. is independent of the choice of representatives x̄, ȳ). To show that (X̃, d) is
complete, let (x̄i) be a Cauchy sequence in (X̃, d). We have to show that there exists x̄ ∈ X̃ such
that d(x̄i, x̄) → 0. By passing to a subsequence, if necessary, we may assume that, for all i ∈ N,

d(x̄j , x̄k) < 1/i ∀j, k ≥ i.

For each i, x̄i =
[
(xi,j)

∞
j=1

]
, where (xi,j)

∞
j=1 is a Cauchy sequence in X. We may assume (again by

passing to a subsequence) that the representative (xi,j)
∞
j=1 satisfies

|xi,j − xi,k| < 1/n ∀j, k ≥ n.

Let x̄ be the sequence of diagonal points xj,j, j ∈ N. We claim that x̄ is a Cauchy sequence in X
(i.e. [x̄] ∈ X̃) and that d(x̄i, [x̄]) → 0 as i→ ∞ which then shows that (X̃, d) is complete. Suppose
that j ≥ i. Then for sufficiently large k we have

|xi,i − xj,j| ≤ |xi,i − xi,k|
︸ ︷︷ ︸

<1/i

+ |xi,k − xj,k|
︸ ︷︷ ︸

<2/i

+ |xj,k − xj,j|
︸ ︷︷ ︸

<1/j<1/i

< 4/i

which implies that (xj,j) is Cauchy. Furthermore, for all sufficiently large k, we have

|xi,k − xk,k| ≤ |xi,k − xi,i|
︸ ︷︷ ︸

<1/i

+ |xi,i − xk,k|
︸ ︷︷ ︸

<4/i

< 5/i.

Hence
lim
i→∞

d(x̄i, [x̄]) = lim
i→∞

lim
k→∞

|xi,k − xk,k| ≤ lim
i→∞

5/i = 0.

We define a mapping f : X → X̃ by setting f(x) = [(xi)], where (xi) is the Cauchy sequence
xi ≡ x. Then

d(f(x), f(y)) = lim
i→∞

|xi − yi| = |x− y|,

and so f is an isometric embedding.
To show that f(X) is dense in X̃ we assume, on the contrary, that there exist ȳ ∈ X̃ and ε > 0

such that d(ȳ, f(x)) ≥ ε ∀x ∈ X. Now ȳ = [(yi)], where (yi) is a Cauchy sequence in X. Thus
there exists j ∈ N such that |yi − yj | < ε/2 ∀i ≥ j. This leads to a contradiction since

0 < ε ≤ d(ȳ, f(yj)) = lim
i→∞

|yi − yj| ≤ ε/2.

The uniqueness claim follows from Theorem 1.28.
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1.32 Length spaces

Let X be a metric space and I ⊂ R an interval.

Definition 1.33. The (total) variation of a mapping γ : I → X on an interval [a, b] ⊂ I is defined
by

Vγ(a, b) = sup
{ k∑

i=1

|γ(ti)− γ(ti−1)| : a ≤ t0 < t1 < · · · < tk ≤ b
}

.

We say that γ is locally rectifiable if Vγ(a, b) <∞ for each (compact) [a, b] ⊂ I. The length of γ is

`(γ) := sup
[a,b]⊂I

Vγ(a, b).

and γ is called rectifiable if `(γ) < ∞. If γ : [a, b] → X is rectifiable, the function sγ : [a, b] →
[0, `(γ)],

sγ(t) = Vγ(a, t) = `(γ|[0, t]),

is called the length function of γ.

Remark 1.34. Note that γ need not be continuous. If Vγ(a, b) <∞, then

|γ(t+ h)− γ(t)| ≤ sγ(t+ h)− sγ(t)

for all a ≤ t ≤ t+ h ≤ b. Hence γ is continuous if sγ is continuous.

Definition 1.35. The metric derivative |γ̇|(t) of a mapping γ : [a, b] → X at t ∈ (a, b) is defined
as the limit

|γ̇|(t) = lim
h→0

|γ(t+ h)− γ(t)|
|h|

whenever the limit exists.

Example 1.36. Let X be Rn with the standard metric and write γ = (γ1, . . . , γn). If the derivative
γ′(t) = (γ′1(t), . . . , γ

′
n(t)) ∈ R

n exists, then |γ̇|(t) = |γ′(t)|.

Definition 1.37. We say that a mapping γ : [a, b] → X is absolutely continuous if for each ε > 0
there exists δ > 0 such that

k∑

i=1

|γ(bi)− γ(ai)| < ε

whenever ]ai, bi[, i = 1, . . . , k, are disjoint subintervals of [a, b] with

k∑

i=1

|bi − ai| ≤ δ.

Remark 1.38. 1. An absolutely continuous mapping γ : [a, b] → X is clearly continuous.

2. Every Lipschitz mapping γ : [a, b] → X is absolutely continuous.

Definition 1.39. A continuous mapping γ : I → X of an interval I ⊂ R is called a path.
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Theorem 1.40. If γ : [a, b] → X is L-Lipschitz, the metric derivative |γ̇|(t) exists for a.e. t ∈ [a, b]
and

(1.41) `(γ) =

∫ b

a
|γ̇|(t) dt.

Proof. Let {tn : n ∈ N} ⊂ [a, b] be dense. Then {xn = γ(tn)} is dense in γ[a, b] since γ is Lipschitz.
For each n ∈ N, define ϕn : [a, b] → R,

ϕn(t) = |γ(t)− xn|.

Given n ∈ N and t, s ∈ [a, b], we have

|ϕn(t)− ϕn(s)| =
∣
∣|γ(t)− xn| − |γ(s)− xn|

∣
∣ ≤ |γ(t)− γ(s)| ≤ L|t− s|.

Hence each ϕn is L-Lipschitz and the derivative ϕ′
n(t) exists for a.e. t ∈ [a, b]. It follows that, for

a.e. t ∈ [a, b], ϕ′
n(t) exists for all n ∈ N. For these t we define

m(t) = sup
n
|ϕ′

n(t)|.

Note that t 7→ m(t) is measurable and m(t) ≤ L a.e., hence m is integrable on [a, b].

We will show that

(1.42) |γ̇|(t) = m(t) for a.e. t ∈ [a, b].

Since |γ(t+ h)− γ(t)| ≥ |ϕn(t+ h)− ϕn(t)| for all n ∈ N, we have

lim inf
h→0

|γ(t+ h)− γ(t)|
|h| ≥ lim inf

h→0

|ϕn(t+ h)− ϕn(t)|
|h| = |ϕ′

n(t)|.

Taking the supremum over all n ∈ N yields

(1.43) lim inf
h→0

|γ(t+ h)− γ(t)|
|h| ≥ m(t) for a.e. t ∈ [a, b].

By the Lebesgue differentiation theorem

lim
h→0

1

h

∫ t+h

t
m(s) ds = m(t) for a.e. t ∈ [a, b].

Since {xn} ⊂ γ[a, b] is dense, we have |γ(t)− γ(s)| = supn
∣
∣|γ(t)− xn| − |γ(s)− xn|

∣
∣, and so

(1.44) |γ(t)− γ(s)| ≤ sup
n

∣
∣

∫ t

s
|ϕ′

n(τ)| dτ
∣
∣ ≤

∣
∣

∫ t

s
m(τ) dτ

∣
∣.

Hence for a.e. t ∈ [a, b]

lim sup
h→0

|γ(t+ h)− γ(t)|
|h| ≤ lim sup

h→0

∣
∣
1

h

∫ t+h

t
m(τ) dτ

∣
∣ = m(t)

which together with (1.43) proves (1.42).
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It remains to prove (1.41). By (1.42) and (1.44) we have

k∑

i=1

|γ(ti)− γ(ti−1)| ≤
k∑

i=1

∫ ti

ti−1

|γ̇|(t) dt ≤
∫ b

a
|γ̇|(t) dt

for all a ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ b. Taking the supremum over all such partitions yields

Vγ(a, b) ≤
∫ b

a
|γ̇|(t) dt.

To prove the converse inequality, fix ε > 0 and then an integer n ≥ 2 such that hn = (b− a)/n ≤ ε.
Writing ti = a+ ihn and performing, for each i, the change of variables s = t− ti we get

1

hn

∫ b−ε

a
|γ(t+ hn)− γ(t)| dt ≤ 1

hn

∫ tn−1

t0

|γ(t+ hn)− γ(t)| dt

=
1

hn

n−2∑

i=0

∫ ti+1

ti

|γ(t+ hn)− γ(t)| dt

=
1

hn

∫ hn

0

n−2∑

i=0

|γ(s+ ti+1)− γ(s+ ti)| ds

≤ 1

hn

∫ hn

0
Vγ(a, b)

= Vγ(a, b).

Hence
∫ b−ε

a
|γ̇|(t) dt =

∫ b−ε

a
lim inf
n→∞

|γ(t+ hn)− γ(t)|
hn

dt

≤ lim inf
n→∞

1

hn

∫ b−ε

a
|γ(t+ hn)− γ(t)| dt

≤ Vγ(a, b)

by Fatou’s lemma. The inequality
∫ b
a |γ̇|(t) dt ≤ Vγ(a, b) follows by letting ε→ 0.

Remark 1.45. It can be shown that Theorem 1.40 holds for absolutely continuous paths γ : [a, b] →
X. Indeed, given an absolutely continuous path γ : [a, b] → X there exists a unique Radon-measure
µγ on [a, b] such that µγ(]c, d[) = Vγ(c, d) for all open intervals ]c, d[⊂ [a, b]. Furthermore, µγ is
absolutely continuous with respect to the Lebesgue measure m (since γ is absolutely continuous)
and

Dmµ(t) = |γ̇|(t) for a.e. t ∈ [a, b],

where Dmµ is the Radon-Nikodym derivative of µ with respect to m. The equation (1.41) follows
then from the Radon-Nikodym theorem. However, we will not prove these statements here.

Problem 1.46. Let f : [0, 1] → [0, 1] be the Cantor 1/3-function (“devil’s staircase”) [see e.g.
Holopainen: Reaalianalyysi I, Esim. 1.21] and let γ : [0, 1] → R

2 be the path

γ(t) =
(
t, f(t)

)
.

Compute Vγ(0, t), t ∈ [0, 1], and study the existence and values of |γ̇|(t). Conclusions?
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Lemma 1.47. The length function sγ of a rectifiable mapping γ : [a, b] → X is increasing.
Furthermore,

(a) γ is continuous if and only if sγ is continuous, and

(b) γ is absolutely continuous if and only if sγ is absolutely continuous.

Proof. It is clear that sγ is increasing. As noticed in Remark 1.34

|γ(t+ h)− γ(t)| ≤ sγ(t+ h)− sγ(t)

for all a ≤ t ≤ t+ h ≤ b. Hence γ is (absolutely) continuous if sγ is (absolutely) continuous.
Suppose then that γ : [a, b] → X is continuous, c ∈ [a, b), and that ε > 0. Since γ is uniformly

continuous, there exists δ > 0 such that |γ(x) − γ(y)| < ε/3 for all x, y ∈ [a, b], |x − y| < δ.
Furthermore, there exists a partition a ≤ x0 < x1 < · · · < xk ≤ b such that xj−1 = c for some j,
xj − xj−1 < δ, and that

k∑

i=1

|γ(xi)− γ(xi−1)| > sγ(b)− ε/3.

Since |γ(xj)− γ(xj−1)| < ε/3, we have

∑

i 6=j

|γ(xi)− γ(xi−1)| > sγ(b)− 2ε/3.

Hence
Vγ(xj−1, xj) + Vγ(a, xj−1) + Vγ(xj , b)

︸ ︷︷ ︸

>sγ(b)−2ε/3

= sγ(b),

and so
Vγ(xj−1, xj) < 2ε/3.

It follows that sγ is right-continuous at c. Similarly, sγ is left-continuous at every point c ∈ (a, b].
Hence sγ is continuous.

Suppose then that γ is absolutely continuous. Fix ε > 0 and let δ > 0 be as in the definition of
the absolute continuity of γ. Let ]c1, d1[, . . . , ]ck, dk[⊂ [a, b] be disjoint intervals such that

k∑

i=1

(di − ci) < δ.

For each i = 1, . . . , k there exists a partition ci = xi0 < xi1 < · · · < xil = di of [ci, di] such that

sγ(di)− sγ(ci) = Vγ(ci, di) <

l∑

j=1

|γ(xij)− γ(xij−1)|+ ε/k.
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Since
∑

i

∑

j

(xij − xij−1) < δ,

we have, by absolute continuity of γ,

∑

i

∑

j

|γ(xij)− γ(xij−1)| < ε,

and so
k∑

i=1

|sγ(di)− sγ(ci)| < ε+ kε/k = 2ε.

Hence sγ is absolutely continuous.

Definition 1.48. The arc length parameterization of a rectifiable path γ : [a, b] → X is the path
γs : [0, `(γ)] → X defined by

γs(t) = γ
(
s−1
γ (t)

)
,

where

s−1
γ (t) = sup{s : sγ(s) = t}.

Thus γ(t) = γs
(
sγ(t)

)
for all t ∈ [a, b]. It follows from the definitions that

(1.49) `(γs|[t, t′]) = t′ − t

for all 0 ≤ t ≤ t′ ≤ `(γ).

Theorem 1.50. The arc length parameterization γs of a rectifiable path γ is 1-Lipschitz and

|γ̇s|(t) = 1 for a.e. t ∈ [0, `(γ)].

Proof. The 1-Lipschitz property follows from (1.49). By Theorem 1.40, |γ̇s|(t) exists and |γ̇s|(t) ≤ 1
for a.e. t ∈ [0, `(γ)]. Suppose, on the contrary, that |γ̇| < 1 on a set of positive measure. Then
there exist ε > 0 and a set E ⊂ [a, b], with m(E) > 0, such that |γ̇s|(t) < 1− ε for all t ∈ E. Then

`(γ) = `(γs) =

∫ `(γs)

0
|γ̇s|(t) dt

=

∫

[0,`(γs)]\E

|γ̇s|(t) dt +
∫

E
|γ̇s|(t) dt

≤ `(γ)−m(E) + (1− ε)m(E)

< `(γ),

which is a contradiction.

Definition 1.51. Let γ : [a, b] → X be a rectifiable path and let ρ : X → [0,∞] be a Borel-function.
The line integral of ρ over γ is

∫

γ
ρ ds :=

∫ `(γ)

0
ρ
(
γs(t)

)
dt.
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The integral exists (∈ [0,∞]) since ρ ◦γs is Borel. If γ : I → X is locally rectifiable, the integral
of ρ over γ is defined as ∫

γ
ρ ds = sup

[a,b]⊂I

∫

γ|[a,b]
ρ ds.

Definition 1.52. Let G ⊂ R
n, G 6= R

n, be a domain (i.e. open and connected). For each z ∈ G
we write

δ(z) = dist(z,Rn \G)
for the distance of z to the complement of G. Let γ : [a, b] → G be a rectifiable path. The
quasihyperbolic length of γ is defined as

`k(γ) =

∫

γ

1

δ(z)
ds(z) =

∫ `(γ)

0

1

δ
(
γs(t)

) dt.

The quasihyperbolic distance between points x, y ∈ G is

kG(x, y) := inf
γ
`k(γ),

where the infimum is taken over all rectifiable paths γ : [a, b] → G, with γ(a) = x and γ(b) = y.

G

γ

z
x

δ(z) y

Problem 1.53. Prove that for a domain G ⊂ R
n, G 6= R

n, the quasihyperbolic distance kG is a
metric.

Definition 1.54. Let (X, d) be a metric space. Define ds : X ×X → [0,∞] by setting

(1.55) ds(x, y) = inf
γ
`(γ),

where the infimum is taken over all paths γ : I → X joining x and y, i.e. x, y ∈ γ(I). If no such
path exists, we set ds(x, y) = ∞.

We assume from now on that each pair of points x, y ∈ X can be joined by a rectifiable path
and we call (X, d) rectifiably connected.

Theorem 1.56. Let (X, d) be a rectifiably connected metric space and let ds be defined by (1.55).
Then

(a) ds defines a metric in X,

(b) ds(x, y) ≥ d(x, y) for all x, y ∈ X,

(c) Td ⊂ Tds ,
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(d) if γ : [a, b] → X is a rectifiable path in (X, d), it is also a rectifiable path in (X, ds),

(e) the length of a path in (X, ds) is the same as its length in (X, d),

(f) (ds)s = ds.

Proof. Claims (a) and (b) are clear and (c) follows from (b). If γ : [a, b] → X is a rectifiable path
in (X, d),

ds
(
γ(t+ h), γ(t)

)
≤ `
(
γ|[t, t+ h]

)
= sγ(t+ h)− sγ(t) → 0

as h→ 0+ by Lemma 1.47 (a). Hence γ is a path (i.e. continuous) in (X, ds). Furthermore,

k∑

i=1

ds
(
γ(ti), γ(ti+1)

)
≤

k∑

i=1

(
sγ(ti)− sγ(ti−1)

)
= sγ(tk)− sγ(t0) ≤ `(γ)

for all a ≤ t0 < t1 · · · < tk ≤ b. Hence the length of γ in (X, ds) satisfies `s(γ) ≤ `(γ) < ∞ and
(d) follows. If γ is a path in (X, ds), it is continuous also in (X, d) by (c). We proved above that
`s(γ) ≤ `(γ). On the other hand, `s(γ) ≥ `(γ) by (b), and hence (e) holds. The claim (f) follows
from (d) and (e) since γ is a rectifiable path in (X, ds) if and only if it is a rectifiable path in (X, d).
Moreover, `s(γ) = `(γ).

Problem 1.57. Construct a rectifiably connected metric space (X, d) such that Tds 6⊂ Td.

The metric ds is called the length metric (or the inner metric) associated to d.

Definition 1.58. A metric space (X, d) is called a length space (or an inner metric space) if d = ds,
that is

d(x, y) = inf
γ
`(γ),

where the infimum is taken over all paths γ : I → X joining x and y.
We say that (X, d) is a local length space if each point of X has a neighborhood U such that

d(x, y) = ds(x, y) for all x, y ∈ U .

Example 1.59. 1. If G ⊂ R
n, G 6= R

n, is a domain , then (G, kG) is a length space.

2. Let Sn(r) = {x ∈ R
n+1 : |x| = r} and let d be the standard metric of Rn+1. Then

d(x, y) = |x− y| and

ds(x, y) = r arccos

(〈x, y〉
r2

)

for x, y ∈ S
n(r). We notice that ds(x, y) > d(x, y) if x 6= y. The angular metric (in Example

1.13) of Sn is an inner metric.

Definition 1.60. Let X be a metric space. A path γ : I → X is called a geodesic if it is an
isometric embedding, i.e.

|γ(t)− γ(s)| = |t− s|
for all t, s ∈ I. A path γ : I → X is a local geodesic if for all t ∈ I there exists ε > 0 such that
γ|(I ∩ [t− ε, t+ ε]) is a geodesic.

Every geodesic is, of course, a local geodesic but the converse need not be true.

Problem 1.61. Construct an example to verify the previous statement.
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Definition 1.62. A metric space X is a (uniquely) geodesic space if each pair of points x, y ∈ X
can be joined by a (unique) geodesic γ : [0, |x − y|] → X, with γ(0) = x and γ(|x− y|) = y.

Every geodesic space if a length space but not converse.

Example 1.63. Every normed space (V, ‖·‖) equipped with the metric d(x, y) = ‖x − y‖ is a
geodesic space. It is uniquely geodesic if and only if it is strictly convex , the latter meaning that if
x, y ∈ V, x 6= y, ‖x‖ = ‖y‖ = 1, then

‖(1− t)x+ ty‖ < 1 ∀t ∈ (0, 1).

Given x, y ∈ V, x 6= y, consider the path σ : [0, 1] → V, σ(t) = (1− t)x+ ty. Then σ has a constant
speed

|σ̇|(t) = lim
h→0

|σ(t+ h)− σ(t)|
|h|

= lim
h→0

‖(1 − t− h)x+ (t+ h)y − (1− t)x− ty‖
|h|

= lim
h→0

|h|‖y − x‖
|h|

= ‖y − x‖,

and so `(σ) = ‖y − x‖ = d(x, y). Hence the path γ : [0, ‖x − y‖] → V ,

γ(t) = σ
(
t/‖y − x‖

)
,

is a geodesic from x to y. The other part of the claim is left as an exercise. For instance, metric
spaces (Rn, d1) and (Rn, d∞) are not uniquely geodesic if n > 1. Here d1 and d∞ are metrics defined
by norms ‖·‖1 and ‖·‖∞, respectively.

Theorem 1.64. Let X be a complete metric space. Then:

(a) X is a geodesic space if and only if, for all x, y ∈ X, there exists z ∈ X (“midpoint”) such
that

(1.65) |x− z| = |y − z| = 1

2
|x− y|;

(b) X is a length space if and only if, for all x, y ∈ X and all ε > 0, there exists z ∈ X
(“ε-midpoint”) such that

(1.66) max{|x− z|, |y − z|} ≤ 1

2
|x− y|+ ε.

Proof. We will prove only (a). The claim (b) can be proved by modifying the argument below.
This is left as an exercise.

If X is a geodesic space and x, y ∈ X, there exists a geodesic γ : [0, |x− y|] → X with x = γ(0)
and y = γ(|x− y|). Then the point z = γ(|x− y|/2) satisfies (1.65). Suppose then that X satisfies
the “midpoint” property (1.65). Fix x, y ∈ X. To construct a geodesic γ : [0, |x − y|] → X from
x = γ(0) to y = γ(|x − y|), we first define a path σ : [0, 1] → X as follows. We set σ(0) = x and
σ(1) = y. For σ(1/2) we choose a midpoint of x and y given by (1.65). For σ(1/4) we choose a
midpoint of x and σ(1/2), for σ(3/4) a midpoint of σ(1/2) and y, and so forth. By this way we
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define σ(t) for all dyadic rational numbers t ∈ [0, 1] (of the form k/2m, for m ∈ N, k = 0, 1, . . . , 2m).
Thus σ is defined in a dense subset of [0, 1] and it is 1-Lipschitz. Since X is assumed to be complete,
we can extend σ to a 1-Lipschitz path σ : [0, 1] → X by Theorem 1.28. It follows (from Theorem
1.40) that `(σ) ≤ |x − y|. On the other hand, `(σ) ≥ |x − y|, and hence `(σ) = |x − y|. Now
γ : [0, |x− y|] → X, γ(t) = σ(t/|x− y|), is a geodesic joining x and y.

Problem 1.67. We may ask whether every complete length space is a geodesic space. Construct
an example to show that this is not the case.

Definition 1.68. Let (fn) be a sequence of mappings of a metric space X into another metric
space Y . We say that (fn) is equicontinuous at x0 ∈ X if for every ε > 0 there exists δ > 0 such
that

|fn(x)− fn(y)| < ε

for all n ∈ N and for all x, y ∈ B(x0, δ). The sequence (fn) is called equicontinuous if it is
equicontinuous at each point x ∈ X with δ > 0 independent of x. More precisely, for every ε > 0
there exists δ > 0 such that

|fn(x)− fn(y)| < ε

for all n ∈ N and all x, y ∈ X, with |x− y| ≤ δ.

Lemma 1.69 (Arzelà-Ascoli). Suppose that X is a separable metric space and that Y is a compact
metric space. If (fn) is equicontinuous at every point x ∈ X, then it has a subsequence that
converges uniformly on compacts subsets of X to a continuous mapping f : X → Y .

Proof. Let Q = {q1, q2, . . .} ⊂ X be a countable dense set. Since Y is compact, we can choose
a subsequence (f1,n) of (fn) such that

(
f1,n(q1)

)
converges. Denote the limit by f(q1). Next we

choose a subsequence (f2,n) of (f1,n) such that
(
f2,n(q2)

)
converges. Denote the limit by f(q2).

Continuing this way we choose, for each k ∈ N, a subsequence (fk+1, n) of (fk,n) such that (fk+1,n)
converges at all points qi, i ≤ k + 1. The diagonal sequence (fn,n) converges pointwise in Q to a
mapping f : Q → Y . Let x ∈ X and ε > 0. Since (fn) is equicontinuous at x, there exists δ > 0
such that |fn,n(q)− fn,n(q

′)| < ε for all n ∈ N and all q, q′ ∈ B(x, δ) ∩Q. Hence

(1.70) |f(q)− f(q′)| ≤ ε

for all q, q′ ∈ B(x, δ)∩Q. Since Q is dense in X and Y is compact (hence complete), f has a unique
continuous extension f : X → Y defined as follows (cf. Theorem 1.28). Let x ∈ X \Q and choose
a sequence xi → x of points xi ∈ Q. We get from (1.70) that

(
f(xi)

)
is a Cauchy-sequence. Hence

it has a limit which we denote by f(x) = limi→∞ f(xi). Moreover, f(x) is well-defined.
To show that the convergence is uniform on compact subsets, we fix a compact set C ⊂ Y and

ε > 0. For each x ∈ C there exists δx > 0 such that |fn(z) − fn(y)| < ε for all n ∈ N and all
z, y ∈ B(x, δx). By compactness, C may be covered by finitely many balls B(x, δx). Let δ > 0 be
the minimum of these finitely many δx’s. Then

|fn(x)− fn(y)| < ε and |f(x)− f(y)| ≤ ε

for all x, y ∈ C, with |x − y| < δ. For each y ∈ C there exists j(y) ∈ N such that |y − qj(y)| <
δ/2. Again, we may cover C by finitely many balls B(y, δ/2). Let N be the maximum of the
corresponding finitely many j(y)’s. Then for each y ∈ C there exists j(y) ≤ N such that |y−qj(y)| <
δ. Finally, we choose M ∈ N so large that

|fn,n(qj)− f(qj)| < ε
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for all n ≥M and all j = 1, . . . , N . Now for all y ∈ C and n ≥M we have

|fn,n(y)− f(y)| ≤ |fn,n(y)− fn,n(qj(y))|+ |fn,n(qj(y))− f(qj(y))|+ |f(qj(y))− f(y)| ≤ 3ε.

Hence fn,n → f uniformly in C.

Lemma 1.71. Let (γj) be a sequence of mappings γj : [a, b] → X converging uniformly to a mapping
γ : [a, b] → X. If γ is rectifiable, then for every ε > 0 there exists nε ∈ N such that

`(γ) ≤ Vγn(a, b) + ε

for all n ≥ nε.

Proof. Choose a partition a ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ b such that

`(γ) ≤
k∑

i=1

|γ(ti)− γ(ti−1)|+ ε/2.

Then we choose nε so large that |γ(t) − γn(t)| < ε/4k for all n ≥ nε and all t ∈ [a, b]. Now for all
n ≥ nε we have

|γ(ti)− γ(ti−1)| ≤ |γ(ti)− γn(ti)|+ |γn(ti)− γn(ti−1)|+ |γn(ti−1)− γ(ti−1)|
≤ ε/2k + |γn(ti)− γn(ti−1)|.

Hence

`(γ) ≤ ε/2 +
k∑

i=1

|γn(ti)− γn(ti−1)|+ ε/2 ≤ ε+ Vγn(a, b)

for all n ≥ nε.

Definition 1.72. We say that a metric space X is proper (or boundedly compact) if every bounded
closed set is compact. Equivalently, X is proper if all closed (bounded) balls are compact. Recall
also that a topological space Y is locally compact if each point of Y has a neighborhood U such
that the closure U (i.e. the intersection of all closed sets containing U) is compact.

Theorem 1.73 (Hopf-Rinow). Every complete locally compact length space X is a proper geodesic
space.

Proof. To prove that X is proper, it suffices to show that, for a fixed z ∈ X, balls B̄(z, r) are
compact for every r ≥ 0. Let

I = {r ≥ 0: B̄(z, r) is compact}.

Then 0 ∈ I and I is an interval. Indeed, if B̄(z, r) is compact for some r > 0, then B̄(z, s) ⊂ B̄(z, r)
is a closed subset of a compact set B̄(z, r) for all 0 ≤ s ≤ r. Hence B̄(z, s) is compact and I is an
interval. We will show that I = [0,∞). Fix r ∈ I. Since X is locally compact, we may cover the
compact set B̄(z, r) by finitely many open balls B(xi, εi) such that B̄(xi, εi) is compact. Then the
finite union ∪iB̄(xi, εi) is compact and contains B̄(z, r + δ) for some δ > 0. This shows that I is
open in [0,∞).

Next we will show that I is also closed in [0,∞). Suppose that [0, ρ) ⊂ I, ρ > 0. To prove
that ρ ∈ I, it suffices to show that any sequence (yj)j∈N in B̄(z, ρ) has a subsequence converging
to a point of B̄(z, ρ). Let (εj)j∈N, 0 < εj < ρ, be a decreasing sequence tending to 0. Since X is



Spring 2006 21

a length space, there exists, for each i, j ∈ N, a point xij ∈ B̄(z, ρ − εi/2) such that |xij − yj| ≤ εi.

Such a point xij exists since otherwise B̄(yj, εi)∩ B̄(z, ρ−εi/2) = ∅ and consequently all paths from
z to yj would be of length at least ρ+ εi/2 which is a contradiction since X is a length space and
|z − yj| ≤ ρ. (To find xij choose a path from z to yj of length < |z − yj| + εi/2 and then choose

an appropriate point xij on this path.) Since B̄(z, ρ − ε1/2) is compact, the sequence (x1j ) has a

convergent subsequence (x1
j1
k

). Similarly, the sequence (x2
j1
k

) has a convergent subsequence (x2
j2
k

)

and the sequence (x3
j2
k

) has a convergent subsequence (x3
j3
k

), and so forth. Continuing this way, we

obtain by a diagonal process an increasing sequence of nk ↗ ∞ such that (xink
) converges for every

i ∈ N. We claim that the associated sequence ynk
∈ X is a Cauchy-sequence. Let ε > 0 and choose

i ∈ N such that εi < ε/3. Since (xink
) converges, it is a Cauchy-sequence and hence there exists

m ∈ N such that

|xink
− xinl

| < ε/3 for all nk, nl ≥ m.

Then

|ynk
− ynl

| ≤ |ynk
− xink

|+ |xink
− xinl

|+ |xinl
− ynl

| < ε

for nk, nl ≥ m. Hence (ynk
) is a Cauchy-sequence. It converges (to a point in B̄(z, ρ)) since X is

complete. We have proved that every sequence in B̄(z, ρ) has a convergent subsequence. Hence
B̄(z, ρ) is compact, and so ρ ∈ I. Thus I is both open and closed in [0,∞), so I = [0,∞).

It remains to prove that X is geodesic. Let x, y ∈ X. Since X is a length space, there exists for
each j ∈ N a point zj ∈ X such that

1

2
|x− y| ≤ max{|x− zj |, |y − zj|} ≤ 1

2
|x− y|+ 1/j.

The points zj belong to a compact set B̄(x, 12 |x − y| + 1) and hence there exists a subsequence
converging to a point z which satisfies

|x− z| = |y − z| = 1

2
|x− y|.

It follows now from Theorem 1.64 that X is geodesic.

Theorem 1.74. A length space is proper if and only if it is complete and locally compact.

Proof. Suppose that X is a proper length space. Since each closed ball B̄(x, r) is compact, X is
locally compact. Let (xj)j∈N be a Cauchy-sequence in X. Then xj ∈ B̄(x, r) for some x ∈ X and
r > 0. Since B̄(x, r) is compact, there exists a convergent subsequence of (xj). But (xj) is Cauchy,
so the whole sequence converges. Thus X is complete. The other direction of the claim follows
from Theorem 1.73.

Let I ⊂ R be an interval. We call a path γ : I → X a linearly reparameterized geodesic or a
constant speed geodesic if there exists a constant λ ≥ 0 such that

|γ(t)− γ(s)| = λ|t− s|

for all t, s ∈ I. Similarly, γ : I → X is called a local linearly reparameterized geodesic (or a local
constant speed geodesic) if for each t ∈ I there exists δ > 0 such that γ|I ∩ [t− δ, t+ δ] is a linearly
reparameterized geodesic.
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Theorem 1.75. Let x and y be points in a proper metric spaces X. Suppose that there exists a
unique geodesic σ : [0, `] → X joining x and y in X. Let γ : [0, 1] → X, γ(t) = σ(t`), be a linearly
reparameterized geodesic. Let γk : [0, 1] → X, k ∈ N, be linearly reparameterized geodesics such that
γk(0) → x and γk(1) → y. Then γk → γ uniformly.

Proof. Let R > 0 be so large that the images γk([0, 1]) are contained in the compact ball B̄(x,R).
For all t, s ∈ [0, 1]

(1.76) |γk(t)− γk(s)| = λk|t− s|,

where

(1.77) λk = |γk(0)− γk(1)| ≤ 2R.

Hence (γk) is equicontinuous. Assume first that the sequence γk does not converge pointwise to γ.
Then there exist t0 ∈ (0, 1), ε > 0, and a subsequence (γkj ) such that

|γkj (t0)− γ(t0)| ≥ ε for all kj .

By the Arzelà-Ascoli theorem (Lemma 1.69) there exists a subsequence of (γkj ) converging uniformly
to a path γ̄ : [0, 1] → X joining x to y with

|γ̄(t0)− γ(t0)| ≥ ε.

From (1.76) and (1.77) we get that

|γ̄(t)− γ̄(s)| = |x− y||t− s|

for all t, s ∈ [0, 1]. Hence γ̄ is a linearly reparameterized geodesic from x to y and γ̄ 6= γ which
contradicts with the uniqueness of γ. (Note that the uniqueness of σ implies the uniqueness of
γ : [0, 1] → X.) Hence γk converges pointwise to γ. The convergence is uniform by equicontinuity
(see the end of the proof of the Arzelà-Ascoli theorem).

A path γ : [0, `] → X is called a loop (or closed) if γ(0) = γ(`). It can be extended to a periodic
path γ̃ : R → X by setting γ̃(t+ k`) = γ(t) for t ∈ [0, `] and k ∈ Z. A loop γ : [0, 1] → X is called
a closed (linearly reparameterized) geodesic if γ̃ is a local (linearly reparameterized) geodesic.

We say that a path-connected topological space Y is semi-locally simply connected if each point
y ∈ Y has a neighborhood U such that each closed path in U is homotopic to a constant path
in Y . Recall that paths γ : [0, 1] → Y and σ : [0, 1] → Y , with γ(0) = σ(0), γ(1) = σ(1), are
homotopic in Y , denoted by γ ' σ, if there exists a continuous map h : [0, 1]× [0, 1] → Y such that
h(·, 0) = γ, h(·, 1) = σ, h(0, ·) = γ(0) = σ(0), and h(1, ·) = γ(1) = σ(1).

Theorem 1.78. If X is a compact length space that is semi-locally simply connected, then every
closed path σ : [0, 1] → X is homotopic to a closed linearly reparameterized geodesic or homotopic
to a constant path.

Proof. The assumption that X is compact and semi-locally simply connected implies the existence
of r > 0 such that every loop of length less that r is homotopic to a constant path. Indeed, for
each x ∈ X there is rx > 0 such that every loop in B(x, 2rx) is homotopic to a constant path. By
compactness, X = ∪k

i=1B(xi, rxi
). If r = min{rxi

: i = 1, . . . , k}, then every loop of length < r
belongs to some B(xi, 2rxi

) and thus is homotopic to a constant path.
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Suppose that σ is a loop which is not homotopic to a constant path. Then

` = inf{`(γ) : γ : [0, 1] → X, γ ' σ} ≥ r > 0.

Furthermore, ` <∞ since there exists a rectifiable loop which is homotopic to σ. (This holds since
X is a semi-locally simply connected length space [Exercise: Prove this statement.].) We want
to show that σ is homotopic to a closed linearly reparameterized geodesic. Choose a sequence of
loops σi : [0, 1] → X such that σi ' σ, `(σi) → `, and that each σi has a constant speed (i.e.
|σ̇i|(t) ≡ `(σi)). Then the sequence (σi) is equicontinuous since for all t, s ∈ [0, 1]

|σi(t)− σi(s)| ≤ `(σi)|t− s|

and `(σi) → `. By the Arzelà-Ascoli theorem (σi) has a subsequence, still denoted by (σi), con-
verging uniformly to an `-Lipschitz path σ̄ : [0, 1] → X. It remains to show that σ̄ ' σ and that
σ̄ is a closed linearly reparameterized geodesic. Choose n ∈ N such that |σn(t) − σ̄(t)| < r/4 for
all t ∈ [0, 1]. Then we choose 0 = t0 < t1 < · · · < tm = 1 such that `(σn|[tk−1, tk]) < r/4 and
`(σ̄|[tk−1, tk]) < r/4 for k = 1, . . . ,m. Since X is a length space, we may then choose paths γk from
σn(tk) to σ̄(tk) of length < r/4. We obtain m loops of length < r. Hence they are all homotopic to
constant paths, and consequently σ̄ ' σn ' σ. Furthermore, `(σ̄) ≥ ` by definition. On the other
hand, `(σ̄) ≤ ` since σ̄ is `-Lipschitz. Hence σ̄ has the minimum length among paths homotopic to
σ. It follows that σ̄ is a closed linearly reparameterized geodesic.

1.79 Constructions

Next we describe some basic constructions of new metric (length) spaces from given ones.
We say that d : X×X → [0,∞] is a generalized metric if it satisfies all the axioms of the metric

except that the value d(x, y) = ∞ is allowed. The pair (X, d) is then called a generalized metric
space. In particular, if (X, d) is a metric space, then (X, ds) is (always) a generalized metric space.
Here ds is given by Definition 1.54 and called the generalized length (inner) metric associated to d.

The product of metric spaces (X1, d1) and (X2, d2) is the set X = X1 ×X2 with the metric

d
(
(x1, x2), (y1, y2)

)
=
(
d1(x1, y1)

2 + d2(x2, y2)
2
)1/2

.

Theorem 1.80. Let X1 and X2 be metric spaces and let X be their product (metric space). Then
we have:

(1) X is complete if and only if X1 and X2 are complete,

(2) X is a length space if and only if X1 and X2 are length spaces,

(3) X is a geodesic spaces if and only if X1 and X2 are geodesic spaces,

(4) a path γ : I → X, γ = (γ1, γ2), is a constant speed geodesic if and only if γ1 and γ2 are
constant speed geodesics.

Proof. The claim (1) is obvious.
To prove (2) and (3), suppose first that X is a length space. Fix x, y ∈ X1, ε > 0, and

z2 ∈ X2. Since X is a length space, there is a path γ : [a, b] → X from (x, z2) to (y, z2) of length
≤ d((x, y0), (y, y0)) + ε = d1(x, y) + ε. The projection π : X → X1, π(x1, x2) = x1, is 1-Lipschitz
and therefore π ◦ γ is a path in X1 from x to y of length ≤ d1(x, y) + ε. This shows that X1 is a
length space. Similarly, X2 is a length space. If X is a geodesic space, the argument above with
ε = 0 shows that X1 and X2 are geodesic spaces.
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Suppose then that X1 and X2 are length spaces. Let (x1, x2) ∈ X and (y1, y2) ∈ X. There
are sequences (γi,1) and (γi,2) of unit speed paths γi,j : [0, `i,j ] → Xj , j = 1, 2, such that γi,j(0) =
xj, γi,j(`i,j) = yj and that `i,j → dj(xj , yj), j = 1, 2. Now the mappings

γi : [0, `i,1]× [0, `i,2] → X, γi(t1, t2) =
(
γi,1(t1), γi,2(t2)

)
,

are 1-Lipschitz. For each i ∈ N define

σi : [0, 1] → [0, `i,1]× [0, `i,2], σi(t) = (t`i,1, t`i,2).

Then γi ◦ σi : [0, 1] → X is a path from (x1, x2) to (y1, y2) of length ≤
(
`2i,1 + `2i,2

)1/2
, where

(
`2i,1 + `2i,2

)1/2 → d
(
(x1, x2), (y1, y2)

)

as i→ ∞. Thus X is a length space.
If X1 and X2 are geodesic spaces, we choose geodesics γj : [0, `j ] → Xj , `j = dj(xj , yj), from

xj to yj, j = 1, 2, and apply the method above to find a geodesic in X from (x1, x2) to (y1, y2) of
length

√

`21 + `22 = d
(
(x1, x2), (y1, y2)

)
. This shows that X is a geodesic space.

To prove (4) we first observe that an easy calculation shows that γ = (γ1, γ2) is a constant speed
geodesic if γ1 and γ2 are constant speed geodesics. Suppose then that γ = (γ1, γ2) is a constant
speed geodesic. We use the following characterization (whose proof is left as an exercise): A path
σ : I → X is a constant speed geodesic if and only if

|σ(t)− σ(s)| = 2|σ(t) − σ((t+ s)/2)|

for all t, s ∈ I. Given t, s ∈ I we denote

x = (x1, x2) =
(
γ1(t), γ2(t)

)
,

y = (y1, y2) =
(
γ1(s), γ2(s)

)
,

m = (m1,m2) =
(
γ1((t+ s)/2), γ2((t+ s)/2)

)
,

ai = di(xi,mi),

bi = di(mi, yi),

ci = di(xi, yi).

We have
1

2
d(x, y) = d(x,m) = d(m, y),

and hence
1

2
(c21 + c22) = a21 + b21 + a22 + b22.

On the other hand,

(1.81) a2i + b2i ≥
1

2
(ai + bi)

2 ≥ 1

2
c2i ,

(where the last inequality follows from the triangle inequality) and therefore

1

2
(c21 + c22) ≤ a21 + b21 + a22 + b22 =

1

2
(c21 + c22).

Hence there must be an equality in (1.81) for i = 1, 2 which is possible if and only if ai = bi =
1
2ci.

Thus γ1 and γ2 are constant speed geodesics and (4) follows.
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Let (Xα, dα), α ∈ A, be a family of (generalized) metric spaces. Their disjoint union is the
generalized metric space (X, d), where

X =
⊔

α∈A
Xα =

⋃

α∈A
Xα × {α}

equipped with the generalized metric

d
(
(x, α), (x′, α′)

)
=

{

dα(x, x
′), if α = α′,

∞, otherwise.

Let X be a generalized metric space, ∼ an equivalence relation in X, and let

X̄ = X/∼

be the set of equivalence classes. We define d̄ : X̄ × X̄ → [0,∞] by setting

d̄(x̄, ȳ) = inf

k∑

i=1

|xi − yi|,

where the infimum is taken over all sequences x1, y1, . . . , xk, yk, k ∈ N, with x1 ∈ x̄, yk ∈ ȳ, and
yj ∼ xj+1 for j = 1, . . . , k − 1. (Think of equivalence classes as islands, pairs xj , yj as bridges, and
d̄(x̄, ȳ) as the infimum of total lengths of bridges needed to connect the island x̄ to the island ȳ.)

It is obvious that d̄ is symmetric and satisfies the triangle inequality, but in general d̄ is only a
(generalized) pseudometric rather than a metric. For instance, if there exists an equivalence class
which is dense in X, then d̄ is identically zero. We call d̄ the (generalized) quotient pseudometric
on X̄ associated to ∼. Note that d̄(x̄, ȳ) ≤ |x− y| for all x, y ∈ X and d̄(x̄, ȳ) ≤ dist(x̄, ȳ).

Theorem 1.82. Suppose that (X, d) is a generalized metric space, ∼ is an equivalence relation in
X, and let d̄ be the generalized quotient pseudometric on X̄ = X/∼.

(1) Suppose that for every equivalence class x̄ ⊂ X there exists ε(x̄) > 0 such that

B(x̄, δ) := {y ∈ X : dist(y, x̄) < δ}

is a union of equivalence classes for all 0 < δ ≤ ε(x̄). Then

(1.83) d̄(x̄, ȳ) = dist(x̄, ȳ) whenever x̄, ȳ ∈ X̄ and d̄(x̄, ȳ) < ε(x̄).

If, in addition, every equivalence class x̄ ⊂ X is closed, then d̄ is a generalized metric on X̄.

(2) If (X, d) is a length space and d̄ is a metric, then (X̄, d̄) is a length space.

Proof. (1) Let x̄, ȳ,∈ X̄, x̄ 6= ȳ, d̄(x̄, ȳ) < ε(x̄). First we show that

(1.84) dist(z, x̄) = dist(z′, x̄)

whenever z, z′ ∈ z̄ and dist(x̄, z̄) < ε(x̄). Choose z ∈ z̄ and δ > 0 such that

dist(x̄, z) < δ < ε(x̄).

Since B(x̄, δ) is a union of equivalence classes and z ∈ B(x̄, δ), it follows that z′ ∈ B(x̄, δ), hence
dist(x̄, z′) < δ, for all z′ ∼ z. This holds for all δ > dist(x̄, z), and so

dist(x̄, z′) ≤ dist(x̄, z) for all z′ ∼ z.
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Thus (1.84) holds.
Choose ε > 0 such that d̄(x̄, ȳ) + ε < ε(x̄) and then points x1, y1, . . . , xk, yk in X such that

x1 ∈ x̄, yk ∈ ȳ, yi ∼ xi+1 for i = 1, . . . , k − 1, and

k∑

i=1

|xi − yi| ≤ d̄(x̄, ȳ) + ε < ε(x̄).

Next we show by induction that

(1.85) dist(yj, x̄) ≤
j
∑

i=1

|xi − yi|

for all j = 1, . . . , k. If j = 1, then xj = x1 ∈ x̄ and hence dist(y1, x̄) ≤ |x1 − y1|. Suppose that

dist(yj−1, x̄) ≤
j−1
∑

i=1

|xi − yi|.

Since xj ∼ yj−1 and dist(yj−1, x̄) < ε(x̄), we get from (1.84) that

dist(yj, x̄) ≤ |xj − yj|+ dist(xj, x̄)

= |xj − yj|+ dist(yj−1, x̄)

≤
j
∑

i=1

|xi − yi|.

By (1.85), we now have

d̄(x̄, ȳ) ≤ dist(x̄, ȳ) ≤ dist(x̄, yk) ≤
k∑

i=1

|xi − yi| ≤ d̄(x̄, ȳ) + ε.

This holds for every ε > 0, and hence

d̄(x̄, ȳ) = dist(x̄, ȳ).

If x̄ ⊂ X is closed and y 6∈ x̄, then dist(y, x̄) > 0. If dist(x̄, ȳ) = d̄(x̄, ȳ) < ε(x̄), then

dist(x̄, ȳ) = inf
y′∈ȳ

dist(y′, x̄) = dist(y, x̄) > 0.

Thus d̄ is a generalized metric.
(2) Suppose that 0 < d̄(x̄, ȳ) < ∞. Let ε > 0 and choose x1, y1, . . . , xk, yk ∈ X such that

x1 ∈ x̄, yk ∈ ȳ, yj ∼ xj+1 for j = 1, . . . , k − 1, and

k∑

j=1

|xj − yj| < d̄(x̄, ȳ) + ε.

Since X is a length space, there are paths σj : [j − 1, j] → X from xj to yj , with

`(σj) ≤ |xj − yj|+ ε/k, j = 1, . . . , k.
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Let π : X → X̄ be the canonical projection and let σ̄ : [0, k] be defined by σ̄|[j−1, j] = π ◦σj . Then
σ̄ is a path in X̄ from x̄ to ȳ. Furthermore, π is 1-Lipschitz and hence

`(σ̄) =
k∑

j=1

`(π ◦ σj) ≤
k∑

j=1

`(σj)

≤
k∑

j=1

|xj − yj|+ ε

< d̄(x̄, ȳ) + 2ε.

Hence (X̄, d̄) is a length space.

Example 1.86. 1. Let X̄ = R/∼, where x ∼ y ⇐⇒ y − x ∈ Z (i.e. X̄ = R/Z). Then
d̄(x̄, ȳ) = dist(x̄, ȳ) and (X̄, d̄) is a geodesic space isometric to a circle of length 1 (equipped
with the inner metric).

2. Metric graphs. A combinatorial graph consists of two set V (vertices) and E (edges), where
each edge e ∈ E connects a pair of vertices. More precisely, consider two set E and V and
(endpoint) maps ∂j : E → V, j = 0, 1, such that V = ∂0E ∪ ∂1E. Let ∼ be the equivalence
relation in

⊔

e∈E
[0, 1] =

⋃

e∈E
[0, 1] × {e} = [0, 1] × E

such that

(i, e) ∼ (j, e′) if i, j ∈ {0, 1}, e, e′ ∈ E, and ∂ie = ∂je
′,

and that (t, e) ∼ (t, e) for all (t, e) ∈ [0, 1]×E. Let X = [0, 1]×E/∼ and let π : [0, 1]×E → X
be the canonical projection. We identify V with π({0, 1} × E).

To define a metric in X, fix a mapping ` : E → (0,∞). It assigns to each edge e ∈ E a
length `(e). A piecewise linear path is a map γ : [0, 1] → X such that for some partition
0 = t0 ≤ t1 ≤ · · · ≤ tn = 1,

γ|[ti, ti+1](t) = π(ci(t), ei),

where ei ∈ E and ci : [ti, ti+1] → [0, 1] is affine such that ci(ti) = 0 and ci−1(ti) = 1 for
i = 1, . . . , n− 1. Note that

π(ci(ti+1), ei) = γ(ti+1) = π(ci+1(ti+1), ei+1)

for i = 0, . . . , n− 2. Hence ei and ei+1 have a common endpoint. We say that γ joins x to y
if γ(0) = x and γ(1) = y. We assume that X is connected , that is any two points in X can
be joined by such γ. The length of γ is defined by

`(γ) =
n−1∑

i=0

`(ei)|ci(ti)− ci+1(ti+1)|.

We define a pseudometric d : X ×X → [0,∞) by setting

d(x, y) = inf
γ
`(γ),
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where the infimum is taken over all piecewise linear paths γ joining x to y. The pseudometric
space (X, d) is called a metric graph. If, for all v ∈ V ,

inf{`(e) : e ∈ E, v ∈ {∂0e, ∂1e}} > 0,

then (X, d) is a metric space, in fact, a length space. If the set {`(e) : e ∈ E} is finite, then
(X, d) is a complete geodesic space. A simply connected metric graph, with `(e) ≡ 1, is called
a tree.

Let (Xα, dα)α∈A be a family of metric spaces. Suppose that there exist a metric space Z and
isometries iα : Z → Zα onto closed subsets Zα ⊂ Xα for each α ∈ A. Let ∼ be the equivalence
relation in ⊔

α∈A
Xα

such that iα(z) ∼ iβ(z) for all z ∈ Z and α, β ∈ A. The quotient space

X̄ =
⊔

α∈A
Xα

/
∼

equipped with the quotient pseudometric d̄ is called the isometric gluing of Xα’s along Z.

Theorem 1.87. Let (Xα, dα)α∈A, Z, iα : Z → Zα, and (X̄, d̄) be as above. Then we have:

(1) d̄ is a metric in X̄.

(2) For all x ∈ Xα, y ∈ Xβ

(1.88) d̄(x̄, ȳ) =

{

dα(x, y) if α = β,

inf{dα(x, iα(z)) + dβ(iβ(z), y) : z ∈ Z} if α 6= β.

(3) If each Xα is a length space, then X̄ is a length space.

(4) If each Xα is a geodesic space and Z is proper, then X̄ is a geodesic space.

Proof. Suppose that x̄ ⊂ tαXα. If x̄ = [xα] for some xα ∈ Xα \ Zα, then x̄ is the singleton
{xα}. Furthermore, there exists an open ball B(xα, r) ⊂ Xα \ Zα since Zα is closed. Now the
δ-neighborhood B(x̄, δ) is the ball B(xα, δ) which is a union of equivalence classes (= singletons)
for all 0 < δ ≤ r. On the other hand, if x̄ = [iα(z)] for some z ∈ Z, then

x̄ =
⋃

α∈A
{iα(z)}

and the δ-neighborhood of x̄ can be expressed as

B(x̄, δ) =
⋃

α∈A
B(iα(z), δ) =

⋃

α∈A

(
B(iα(z), δ) \ Zα

)
∪
⋃

α∈A

(
B(iα(z), δ) ∩ Zα

)
.

Here the first union is a union of equivalence classes (= singletons). The second union can be
expressed as

⋃

α∈A
B(iα(z), δ) ∩ Zα =

⋃

x∈B(z,δ)

[iα(x)],
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where B(z, δ) is a ball in Z. Thus B(x̄, δ) is a union of equivalence classes for all δ > 0. Next we
show that all equivalence classes are closed in (tαXα, d). If x̄ = [x] for some x ∈ Xα \ Zα, then
x̄ = {x}, which is closed. If x̄ = [iα(z)] for some z ∈ Z, then x̄ = ∪α{iα(z)} and

⊔

α

Xα \ x̄ =
⊔

α

(
Xα \ iα(z)

)
,

which is open. Hence x̄ is closed. It now follows from Theorem 1.82 (1) that d̄ is a metric.

To verify the equation (1.88) for d̄, it suffices to notice that any sequence x′1, y
′
1, . . . , x

′
k, y

′
k in

the definition of d̄(x̄, ȳ), with
k∑

i=1

|x′i − y′i| <∞,

can be replaced by a sequence x1, y1, x2, y2, with x1 ∈ x̄, y1 ∼ x2, y2 ∈ ȳ, and

|x1 − y1|+ |x2 − y2| ≤
k∑

i=1

|x′i − y′i|.

Thus (1.88) holds.

(3) To show that (X̄, d̄) is a length space, let x̄, ȳ and ε > 0. Then x̄ = [x] and ȳ = [y] for some
x ∈ Xα and y ∈ Xβ. If α = β, we may join x and y in Xα by a path γ of length ≤ dα(x, y) + ε.
Then π ◦ γ is a path of length ≤ d̄(x̄, ȳ) + ε in X̄ joining x̄ and ȳ. If α 6= β, choose z ∈ Z such that
dα(x, iα(z)) + dβ(iβ(z), y) ≤ d̄(x̄, ȳ)+ ε/2 and then paths γα and γβ joining x and iα(z) in Xα and,
respectively, iβ(z) and y in Xβ such that `(γα) ≤ dα(x, iα(z)) + ε/4 and `(γβ) ≤ dβ(iβ(z), y) + ε/4.
Composing these paths with π gives a path in X̄ of length ≤ d̄(x̄, ȳ) + ε joining x̄ and ȳ. Hence X̄
is a length space.

(4) Let x̄ = [x] and ȳ = [y] ∈ X̄, with x ∈ Xα, y ∈ Xβ. If α = β, there exists a geodesic γ in
Xα joining x and y. Then π ◦ γ is a geodesic in X̄ joining x̄ and ȳ. Suppose then that α 6= β. For
each j ∈ N, choose zj ∈ Z such that

d̄(x̄, ȳ) ≤ dα(x, iα(zj)) + dβ(iβ(zj), y) ≤ d̄(x̄, ȳ) + 1/j.

The points zj belong to a closed bounded set

i−1
α

(
B̄(x, 2d̄(x̄, ȳ)) ∩ Zα

)

which is compact since Z is proper. Hence there exists a subsequence of (zj) converging to a point
z ∈ Z which satisfies

d̄(x̄, ȳ) = dα(x, iα(z)) + dβ(iβ(x), y).

Since Xα and Xβ are geodesic spaces, there are geodesics γα and γβ joining xα and iα(z) in Xα and
iβ(z) and y in Xβ , respectively. Composing these geodesics with π gives a geodesic in X̄ joining x̄
and ȳ.

1.89 Group actions and coverings

[Lectures (Feb. 20, 22) were given by Pekka Pankka. Notes are written by him.]

In this section we study quotient spaces, which arise from group actions, and then an inverse
question which leads us to covering mappings and covering spaces.
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Let us begin with some examples on groups defined on a metric space. Let X be a metric space,
and let

Isom(X) = {f : X → X : f is a surjective isometry}
BL(X) = {f : X → X : f is surjective and bilipschitz}

Homeo(X) = {f : X → X : f is homeomorphism}.

These sets have a natural group structure given by the composition of mappings. Furthermore,
Isom(X) ⊂ BL(X) ⊂ Homeo(X) also as groups. In this section we concentrate on subgroups of
Isom(X) and their quotient spaces. Let us begin with some terminology.

Definition 1.90. Let G be a subgroup of Homeo(X). We call the map

G×X → X, (g, x) 7→ g(x),

the action of G on X. In general, if G is a group and Ψ: G→ Homeo(X) is a homomorphism, we
call the map

G×X → X, (g, x) 7→ (Ψ(g))(x),

the action of G (via Ψ) on X. In this case we usually identify group elements with their images
and denote g(x) := (Ψ(g))(x).

Convention: We denote the neutral element of the group always by e.

Definition 1.91. An action of G on X is

(1) free, if g(x) 6= x for every x ∈ X and g ∈ G \ {e}.

(2) proper, if for every x ∈ X there exists a neighborhood U of x in X such that gU ∩ U 6= ∅ for
only finitely many elements in G.

Example 1.92. (1) Let X = R
2 and let G be the group spanned by mappings (x, y) 7→ (x+1, y)

and (x, y) 7→ (x, y+1). Then G is a subgroup of Isom(X) isomorphic to Z
2 and it acts on X

freely and properly. Exercise: Check this statement.

(2) Let X = R
2 = C and let G be the subgroup of Isom(X) spanned by the mapping (in complex

notation) z 7→ ei2π/3z. Since G has three elements, the action of G on X is necessarily proper,
but it is not free. Exercise: Check.

(3) Let X = R
2 = C and let G be the group of mappings z 7→ eitz, where t ∈ R. Then G is

isomorphic to R and the action of G on X is neither free nor proper. Exercise: Check.

Definition 1.93. Let X be a (generalized) metric space and G a group acting on X. For x ∈ X
we say that

Gx = {g(x) : g ∈ G}
is the G-orbit of x. Furthermore, we say that x and y are equivalent under G, written as x ∼G y,
if Gx = Gy.

Lemma 1.94. (1) ∼G is an equivalence relation in X.

(2) Gx = Gy if and only if Gx ∩Gy 6= ∅.
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Proof. Clearly (1) holds. In (2) the “only if” part is trivial. Let us now assume that there exists
z ∈ Gx ∩ Gy. Thus z = g(x) and z = h(y) for some g, h ∈ G. Hence y = (h−1 ◦ g)(x) and
x = (g−1 ◦ h)(y). Therefore, by the definition of G-orbit, Gy ⊂ Gx and Gx ⊂ Gy.

Let X be a (generalized) metric space. We denote by X/G the quotient space X/∼G. Let
d̄ be the quotient (generalized) pseudometric in X/G as in Section 1.79. We denote elements
(equivalence classes) in X/G either by x̄ or by Gx depending on which notation suits better to the
context.

Lemma 1.95. Let X be a generalized metric space and G ⊂ Isom(X) a subgroup. Then

(1) B(x̄, δ) =
⋃

y∈B(x,δ) ȳ for every x̄ ∈ X/G and δ > 0.

(2) If G acts properly on X then every G-orbit is closed in X.

Proof. (1) Let x ∈ X and δ > 0. Let y ∈ B(x, δ). Then d(g(y), g(x)) = d(y, x) < δ for every
g ∈ G, since G ⊂ Isom(X). Thus ȳ ⊂ B(x̄, δ). Therefore

⋃

y∈B(x,δ) ȳ ⊂ B(x̄, δ).

Let us now show the other direction. Let w ∈ B(x̄, δ). Then there exists z ∈ x̄ such that
d(z, w) < δ. Fix g ∈ G such that g(x) = z and let y = g−1(w). Then d(y, x) = d(g(y), g(x)) =
d(w, z) < δ, since g is an isometry. Thus w ∈ ⋃y∈B(x,δ) ȳ.

(2) Let x ∈ X and let y be a point in the closure of x̄. We show that y ∈ x̄. Since G acts on X
properly, we may fix r > 0 such that

Γ = {g ∈ G : g(B(x, r)) ∩B(x, r) 6= ∅}

is finite. Let xi ∈ x̄ be such that d(xi, y) → 0 as i → ∞. Then there exists gi ∈ G such that
xi = gi(x) for every i. Fix i0 such that d(gi(x), y) < r/2 for i ≥ i0, and let hi = g−1

i ◦ gi0 for
every i ≥ i0. Then

d(hi(x), x) = d(gi(hi(x)), gi(x)) = d(gi0(x), gi(x))

≤ d(gi0(x), y) + d(y, gi(x)) < r

for i ≥ i0, since gi is an isometry. Thus hi ∈ Γ for i ≥ i0. Since Γ is finite, also sets {hi}i≥i0

and {gi}i≥i0 are finite. Thus y = gi(x) for some i, and y ∈ x̄.

Theorem 1.96. Let G ⊂ Isom(X) be a subgroup and X a (generalized) metric space. Then

(1) d̄(x̄, ȳ) = dist(x̄, ȳ) for every x̄, ȳ ∈ X/G.

(2) If the action of G is proper, then (X/G, d̄) is a (generalized) metric space.

(3) If (X/G, d̄) is a metric space and X is a length space, then X/G is a length space.

Proof. Since (2) and (3) follow directly from (1) and (2) in Theorem 1.82, it is sufficient to prove (1).
Let x̄, ȳ ∈ X/G. If d̄(x̄, ȳ) < ∞, let δ = 1 + d̄(x̄, ȳ). Then, by Lemma 1.95, B(x̄, δ) =

⋃

z∈B(x,δ) z̄.

Thus, by (1) in Theorem 1.82, d̄(x̄, ȳ) = dist(x̄, ȳ). If d̄(x̄, ȳ) = ∞, then dist(x̄, ȳ) = ∞ by the
definition of d̄.
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By Theorem 1.96, we know that under some assumptions on G, X/G is a length space whenever
X is. Therefore it is natural to ask whether the same holds for being geodesic, that is, if X is a
geodesic space, is X/G also a geodesic space when G satisfies some (additional) assumptions?
We do not answer this question directly, but we show that X/G is complete and locally compact
whenever X is. Then, by the Hopf-Rinow theorem, we have that if X is a complete and locally
compact length space then also X/G is complete and locally compact length space and that they
both are geodesic. The main tool is to show that under additional assumptions on G the quotient
map π : X → X/G, x 7→ x̄, is a local isometry and a covering map.

Definition 1.97. We say that a continuous map f : X → Y is a covering map if f is surjective
and each y ∈ Y has a neighborhood U such that

f−1U =
⋃

x∈f−1(y)

Vx

where Vx is a neighborhood of x and f |Vx : Vx → U is a homeomorphism for every x ∈ f−1(y). We
also assume that sets Vx are pairwise disjoint, that is, Vx ∩ Vx′ = ∅ for x 6= x′.

We say that X is a covering space of (the base space) Y .

Example 1.98. (1) Let f : R → S1, t 7→ (cos t, sin t), where S1 = {x ∈ R
n : |x| = 1}. Then f is

a covering map. Exercise: Check this.

(2) Let f : R → S1 be as in (1). Then f |[0, 2π) is not a covering map, since for all r < 2
f−1(B((1, 0), r)∩S1) consists of two components, but f−1((1, 0)) = {0}. (Alternatively show
that f is not a local homeomorphism at the origin.)

(3) Let f : C → C, z 7→ z2. Then f is not a covering map, since f is not a local homeomorphism
at the origin, but f |C \ {0} : C \ {0} → C \ {0} is a covering map. Exercise: Check.

Lemma 1.99. Let G ⊂ Isom(X) act on X freely and properly. Then π : X → X/G is a local isom-
etry, i.e. for every x ∈ X there exists a neighborhood U such that π|U is an isometry. Moreover,
π is a covering map.

Proof. π is a local isometry: Let x ∈ X. Since G acts properly, there exists r > 0 such that

Γx = {g : gB(x, r) ∩B(x, r) 6= ∅}

is finite. Since G acts freely, g(x) 6= x for every g ∈ Γ \ {e}. We set

rx =

{

min {min{d(g(x), x) : g ∈ Γ \ {e}}, r} /4, Γx 6= {e},
r/4, Γx = {e}.

We show that π is an isometry on B(x, rx). Let y, z ∈ B(x, rx), y 6= x. Since dist(ȳ, z̄) ≤ d(y, z),
we have, by (1) in Theorem 1.96, that

d̄
(
π(y), π(z)

)
= d̄(ȳ, z̄) = dist(ȳ, z̄) ≤ d(y, z).

Suppose dist(ȳ, z̄) < d(y, z). Then there exists g, h ∈ G such that d(g(y), h(z)) < d(y, z). Thus
d(y, g−1(h(z)) < d(y, z) and

d
(
x, g−1(h(x))

)
≤ d(x, y) + d

(
y, g−1(h(z))

)
+ d
(
g−1(h(z)), g−1(h(x))

)

< rx + 2rx + d(z, x) < 4rx ≤ r.
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Thus g−1(h(x)) ∈ g−1(h(B(x, r))) ∩B(x, r) and g−1 ◦ h ∈ Γx. Since

d(x, g−1(h(x))) < 2rx ≤ d(x, g′(x))

for every g′ ∈ Γx \ {e}, g−1 ◦ h = e. Thus g = h and d(g(x), h(y)) = d(x, y). This is a contradic-
tion with d(g(x), h(y)) < d(x, y). Therefore dist(x̄, ȳ) = d(x, y). Thus d(π(x), π(y)) = d(x, y) in
B(x, rx).

π is a local homeomorphism: Let x ∈ X and rx > 0 be as above. We show that
π|B(x, rx) : B(x, rx) → B(x̄, rx) is a homeomorphism. Since π is a local isometry in B(x, rx),
π|B(x, rx) is an injection. Let ȳ ∈ B(x̄, rx). Then ȳ ∈ B(x̄, rx) and there exists, by Lemma 1.95,
z ∈ B(x, rx) such that z̄ = ȳ. Since π(z) = π(y), by the definition of π, π(B(x, rx)) = B(x̄, rx).
(We use here also the first part of the proof.) Thus π|B(x, rx) : B(x, rx) → B(x̄, rx) is a bijection.
Since π|B(x, rx) is an isometry, (π|B(x, rx)

−1 is also an isometry and hence continuous.
π is a covering map: Let x ∈ X. We show first that for every h ∈ G we may take rh(x) ≥ rx.

Then π|B(h(x), rx) is a local isometry and a local homeomorphism for every h ∈ G.
Let h ∈ G. We show first that

Γ = {g : gB(h(x), 2rx) ∩B(h(x), 2rx) 6= ∅}
is finite. Let g ∈ Γ. Since h is an isometry, we have that

gh−1(B(h(x), 2rx)) ∩B(x, 2rx) = gh−1h(B(x, 2rx)) ∩B(x, 2rx) = gB(x, 2rx) ∩B(x, 2rx).

Since gB(x, 2rx) ∩B(x, 2rx) 6= ∅ and 2rx < r in the definition of Γx, g ∈ Γx. Therefore Γ is finite.
Thus we may take r = 2rx in the definition of Γh(x). Since

d(g(h(x)), h(x)) = d(h−1gh(x), x)

for every g ∈ Γh(x), we have that rh(x) ≥ rx.
To show that h is a covering map, it now suffices to note that

π−1Bd̄(x̄, rx) = B(x̄, rx) =
⋃

y∈B(x,rx)

ȳ =
⋃

y∈B(x,rx)

⋃

g∈G
{g(y)}

=
⋃

g∈G
g(B(x, rx)) =

⋃

g∈G
B(g(x), rx).

Since the sets B(g(x), rx) are disjoint (by the definition of rx) and π|B(g(x), rx) is a local homeo-
morphism onto Bd̄(x̄, rx) for every g ∈ G, π is a covering map.

Theorem 1.100. Let X be a complete and locally compact metric space, let G ⊂ Isom(X) act
freely and properly on X. Then X/G is complete and locally compact.

Proof. X/G is locally compact: Let x̄ ∈ X/G. Since X is locally compact, there exists a neighbor-
hood U of x such that U is compact. Since π is a local homeomorphism, πU is a neighborhood of
x̄. Since πU = πU , πU is compact. Thus X/G is locally compact.

X/G is complete: Let (x̄i) be a Cauchy-sequence in X/G. Fix an increasing sequence of indices
nj ∈ N such that

d̄(x̄i, x̄nj
) <

1

2j

for every i ≥ nj. We fix yj ∈ x̄nj
as follows. For j = 1, let y1 ∈ x̄nj

. Then, by Lemma 1.95(1),

we may inductively fix yj ∈ x̄nj
∩ B(yj−1, 2

−(j−1)) for j ≥ 2. Clearly (yj) is a Cauchy-sequence.
Since X is complete, there exists y ∈ X such that yj → y as j → ∞. Thus ȳj → ȳ. Since (x̄i) is a
Cauchy-sequence, x̄i → ȳ as i→ ∞. Therefore X/G is complete.
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When we combine Theorems 1.96 and 1.100 with the Hopf-Rinow theorem, we have the following
corollary.

Corollary 1.101. If X is complete and locally compact length space, and G acts properly and freely
on X, then X/G is complete and locally compact length space. Moreover, both spaces are geodesic.

Problem 1.102. Can X geodesic ⇒ X/G geodesic be proved directly without assuming that X
is complete and locally compact?

We devote the end of this section to metric properties of covering spaces of length spaces. First
we give a candidate for a metric in the covering space, and then show that with respect to this
metric the covering map is a local isometry.

Definition 1.103. Let Y be a local length space, X a topological space, and f : X → Y a local
homeomorphism. We define d̃ : X ×X → R by

d̃(x, y) = inf
γ
`(f ◦ α),

where the infimum is taken over all paths γ : I → X joining x to y. If there are no paths connecting
points x and y in X, we set d̃(x, y) = ∞.

Lemma 1.104. Let X be a connected topological space, Y a local length space, and f : X → Y a
local homeomorphism. Then X is path-connected.

Proof. It is sufficient to show that X is locally path-connected. Let x ∈ X. Since f is a local
homeomorphism and Y is a local length space, there exists r > 0 and a neighborhood V of x such
that f |V is a homeomorphism from V onto B(f(x), 2r) and that d(z, z′) = ds(z, z

′) for all z, z′ ∈
B(f(x), r). Let y ∈ V ∩ f−1B(f(x), r). Since Y is a local length space and f(y) ∈ B(f(x), r), there
exists a path α : [0, 1] → B(f(x), 2r) such that α(0) = f(x) and α(1) = f(y). Then α̃ = (f |V )−1 ◦α
is a path connecting x to y in V .

Theorem 1.105. Let Y be a local length space and f : X → Y a covering map. Then d̃ is a
generalized metric. Furthermore, if X is connected, then d̃ is a metric.

Proof. d̃ is a generalized metric: We show that d̃(x, y) > 0 for x 6= y. The proof of Theorem 1.56
can be adapted to obtain the other properties of d̃.

Let x ∈ X. Since f is a local homeomorphism, we may fix r > 0 and a neighborhood U of x
such that f |U : U → B(f(x), r) is a homeomorphism. Let y ∈ X, y 6= x, and suppose that there
exists a path α : [0, 1] → X such that α(0) = x and α(1) = y. If such a path does not exists, then
d̃(x, y) = ∞ and we are done.

If f ◦ α is not contained in B(f(x), r), i.e. there exists t ∈ [0, 1] such that f(α(t)) 6∈ B(f(x), r),
then there exists s ∈ [0, 1] such that f(α(s)) ∈ ∂B(f(x), r). Then `(f ◦α) ≥ d(f(α(s)), f(α(0)) = r.
On the other hand, if f ◦α is contained in B(f(x), r), then α is contained in U since f is a covering
map. Since x 6= y and f is a homeomorphism in U , f(x) 6= f(y). Thus `(f ◦α) ≥ d(f(x), f(y)) > 0.

if X is connected then d̃ is a metric: We only need to show that every pair of points in X
can be joined by a path of finite length. Let x, y ∈ X. Since X is path-connected by Lemma
1.104, there exists a path α : [0, 1] → X such that α(0) = x and α(1) = y. By compactness,
we can cover α[0, 1] by open sets V1, . . . , Vk such that f |Vi : Vi → B(yi, ri) is a homeomorphism
for some yi ∈ Y and ri > 0 and that d(z, z′) = ds(z, z

′) for all z, z′ ∈ B(yi, ri), i = 1, . . . , k.
Fix 0 = t0 < . . . < tm = 1 such that for every 1 ≤ i ≤ m there exists 1 ≤ ki ≤ k such that
α[ti−1, ti] ⊂ Vki . Since f(α(ti−1) and f(α(ti)) belong to B(yi, ri) for every i, there exists a path



Spring 2006 35

β′i : [tt−1, ti] → B(yi, ri) such that β′i(ti−1) = f(α(ti−1)), β
′
i(ti) = f(α(ti)), and `(β′i) ≤ 2ri. We

define β : [0, 1] → X by β|[ti−1, ti] = (f |Vki)−1 ◦ β′i. Then β is a path from x to y and

`(f ◦ β) =
m∑

i=1

`(β′i) ≤
m∑

i=1

2ri <∞.

Theorem 1.106. Let X be a connected topological space, Y a local length space, and f : X → Y a
covering map. Then f : (X, d̃) → Y is a local isometry.

Proof. Let x ∈ X. Fix a neighborhood V of x and r > 0 such that f |V : V → B(f(x), r) is a home-
omorphism and that d(z, z′) = ds(z, z

′) for all z, z′ ∈ B(f(x), r). Let W = V ∩ f−1(B(f(x), r/4).
We show that f |W is an isometry.

Let y, z ∈W . Since `(f ◦ α̃) ≥ d(f(y), f(w)) for all paths α̃ : [0, 1] → X connecting y and z, we
have, by the definition of d̃, that d̃(y, z) ≥ d(f(y), f(z)).

Let ε ∈ (0, r/4). Since Y is a local length space, there exists a path α : [0, 1] → Y such
that α(0) = f(y), α(1) = f(z), and `(α) ≤ d(f(y), f(z)) + ε. Since y, z ∈ W , d(f(y), f(z)) + ε <
2r/4+r/4 = 3r/4. Since `(α) < 3r/4 and α(0) = f(y) ∈ B(f(x), r/4), α is contained in B(f(x), r).
Hence we may define α̃ = (f |V )−1 ◦ α. Since α̃ is a path connecting y to z, we have

d̃(y, z) ≤ `(f ◦ α̃) = `(α) ≤ d(f(y), f(z)) + ε.

Thus d̃(y, z) ≤ d(f(y), f(z)).

If we assume that X is Hausdorff and f is a local homeomorphism, we get the following version
of Theorems 1.105 and 1.106.

Theorem 1.107. Let Y be a local length space, X a connected Hausdorff space, f : X → Y a local
homeomorphism, and let d̃ be as above. Then d̃ is a metric and

(a) f is a local isometry,

(b) (X, d̃) is a length space, and

(c) d̃ is the only metric on X with properties (a) and (b).

Proof. We leave the proof as an exercise.

Theorem 1.108. Let X be a connected metric space, X̃ a complete metric space, and π : X̃ → X
a local homeomorphism. Suppose that

(1) `(α̃) ≤ `(π ◦ α̃) for every path α̃ : [0, 1] → X̃ and

(2) for every x ∈ X there exists r > 0 such that every y ∈ B(x, r) can be connected to x by a
unique constant speed geodesic γy : [0, 1] → B(x, r) and that γy varies continuously with y.

Then π is a covering map.

In particular, if π is a local isometry, then it is a local homeomorphism and satisfies (1).
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Proof. First we show that, for every rectifiable path α : [0, 1] → X and for every x̃ ∈ π−1(α(0))
there exists a unique maximal lift of α starting at x̃, i.e. a path α̃ : [0, 1] → X̃ such that α̃(0) = x̃
and π ◦ α̃ = α. Fix such a rectifiable path α : [0, 1] → X and x̃ ∈ π−1(α(0)). Since π is a local
homeomorphism, there exists a unique lift of α|[0, ε] starting at x̃ for some ε > 0. Suppose that
α̃ : [0, a) → X̃ is the unique lift of α|[0, a) starting at x̃, with 0 < a ≤ 1. Choose a sequence
0 < t1 < t2 < · · · converging to a. By the assumption (1)

|α̃(ti)− α̃(tj)| ≤ `
(
α̃|[ti, tj ]

)
≤ `
(
π ◦ α̃|[ti, tj]

)
= `
(
α|[ti, tj ]

)

for i < j. Since α is rectifiable,
(
α̃(ti)

)
is a Cauchy-sequence in X̃ , and hence has a limit. We

define α̃(a) to be the limit. Hence α|[0, a] has the unique lift starting at x̃. This shows that the
maximal interval I ⊂ [0, 1] such that 0 ∈ I and that α|I has the unique lift starting at x̃ is closed.
Since π is a local homeomorphism, I is also open. Hence I = [0, 1].

The assumption (2) and the connectedness of X imply that every pair of points in X can be
joined by a rectifiable path. Combining this with the existence of lifts yields that π|V : V → X is
surjective for all components V of X̃. It remains to prove that every point x ∈ X has a neighborhood
U such that the restriction of π to each component of π−1U is a homeomorphism onto U .

Let x ∈ X and choose r > 0 as in (2). Fix x̃ ∈ π−1(x). For y ∈ B(x, r), let γ̃y : [0, 1] → X̃ be the
unique maximal lift of γy : [0, 1] → B(x, r) starting at x̃. We define a mapping gx̃ : B(x, r) → X̃ by
gx̃(y) = γ̃y(1). Denote B(x̃) = gx̃B(x, r). We claim that gx̃ : B(x, r) → B(x̃) is a homeomorphism.
Since (π|B(x̃)) ◦ gx̃ = idB(x,r), gx̃ ◦ (π|B(x̃)) = idB(x̃), and π is a local homeomorphism, it suffices
to show that gx̃ is continuous.

Since π is a local homeomorphism, we may cover γy[0, 1] by open balls B1, . . . , Bk ⊂ B(x, r)
such that

γy
[ j−1

k , jk
]
⊂ Bj for j = 1, . . . , k

and that there are continuous mappings gj : Bj → X̃ , with π ◦ gj = idBj
and gj

(
γy(t)

)
= gx̃

(
γy(t)

)

for all t ∈ [(j − 1)/k, j/k]. If δ > 0 is small enough and z ∈ B(y, δ) ⊂ B(x, r), we have

γz
[ j−1

k , jk
]
⊂ Bj for j = 1, . . . , k

since γz varies continuously with z. Thus we may define a mapping g : B(y, δ) × [0, 1] by setting

g(z, t) = gj
(
γz(t)

)
whenever (z, t) ∈ B(y, δ) ×

[ j−1
k , jk

]
.

Since the definitions of g using gj and gj+1 agree at (y, j/k) they agree in the connected set
B(y, δ) × {j/k}. Hence g is well-defined and continuous. Now t 7→ g(z, t) is a lift of γz starting at
x̃, and so g(z, t) = γ̃z(t). In particular, g(z, 1) = γ̃z(1) = gx̃(z) for all z ∈ B(y, δ), and hence gx̃ is
continuous.

We have shown that π−1
(
B(x, r)

)
is the union of open sets B(x̃) = gx̃B(x, r), where x̃ ∈ π−1(x),

and that π|B(x̃) is a homeomorphism onto B(x, r). Finally we observe that the sets B(x̃) are
disjoint. Indeed, if ỹ ∈ B(x̃)∩B(x̃′), then the lifts of γπ(ỹ) starting at x̃ and x̃′ both end at ỹ, thus
they must coincide and x̃ = x̃′. Hence π is a covering map.

2 Alexandrov spaces

In this section we will define and study Alexandrov spaces which are metric spaces with curvature
bounded from below (or from above). The definition is based on comparisons with model spaces. It
is worth noting that we will not define a curvature on a metric space.
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2.1 Model spaces

We start with the definition of model spaces and then study the sphere and the hyperbolic space
in detail.

Definition 2.2. Model spaces Mn
κ , where n ∈ N and κ ∈ R, are the following metric spaces:

(1) If κ = 0, then Mn
0 is the Euclidean space R

n equipped with the standard metric.

(2) If κ > 0, then Mn
κ is obtained from the sphere S

n by multiplying the angular metric by the
constant 1√

κ
. See Example 1.13 and (2.3) below.

(3) If κ < 0, then Mn
κ is obtained from the hyperbolic space H

n by multiplying the hyperbolic
metric by the constant 1√

−κ
. See 2.7 below for the definition of the hyperbolic space.

The sphere S
n

The n-dimensional sphere is the set

S
n = {x = (x1, . . . , xn+1) ∈ R

n+1 : 〈x, x〉 = 1},

where 〈·, ·〉 is the standard inner product in R
n+1. We equip S

n with the (angular) metric

d : Sn × S
n → [0, π]

defined by the formula

(2.3) cos d(x, y) = 〈x, y〉

for x, y ∈ S
n. Clearly d(x, y) = d(y, x) ≥ 0 with equality if and only if x = y. The triangle

inequality will be proved later (see Theorem 2.6). Thus (Sn, d) is a metric space.

An intersection of Sn with a 2-dimensional subspace (i.e. a plane passing through 0) is called
a great circle. Given x ∈ S

n the orthogonal complement of x (with respect to 〈·, ·〉) is the n-
dimensional subspace

x⊥ = {y ∈ R
n+1 : 〈x, y〉 = 0}.

Great circles can be parameterized as follows. Given x ∈ S
n and a unit vector u ∈ x⊥, the image

of the path γ : R → S
n,

γ(t) = (cos t)x+ (sin t)u,

is a great circle, more precisely, the intersection of Sn and the 2-dimensional subspace spanned by
x and u. We note that

(2.4) d
(
γ(t), γ(s)

)
= |t− s|

for all t, s ∈ R, with |t− s| ≤ π. This holds since

cos d
(
γ(t), γ(s)

)
=
〈
(cos t)x+ (sin t)u, (cos s)x+ (sin s)u

〉

= cos t cos s+ sin t sin s

= cos(t− s).
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Hence γ is a local geodesic and γ|[a, b] → S
n is a geodesic for all a, b ∈ R, with 0 < b− a ≤ π. The

vector u = γ′(0) is called the initial vector of γ. If y ∈ S
n \ {x} and d(x, y) < π, there is a unique2

geodesic γ|[0, d(x, y)] from x to y. It is determined by the initial vector

u = λ(y − 〈x, y〉x), λ =
1

√

1− 〈x, y〉2
.

If d(x, y) = π, then y = −x and any choice of an initial vector yields a geodesic from x to y.
Suppose that v ∈ x⊥ is another unit vector and let σ : R → S

n be the path

σ(t) = (cos t)x+ (sin t)v.

Then the spherical angle between γ and σ at x is the angle between u and v, i.e. the unique
α ∈ [0, π] such that cosα = 〈u, v〉. The spherical triangle ∆ in S

n consists of three distinct points
x, y, z ∈ S

n (vertices of ∆) and three geodesics (sides of ∆) joining each pair of vertices. We denote
the sides of ∆ by [x, y], [x, z], and [y, z]. The vertex angle of ∆ at x is the spherical angle between
sides [x, y] and [x, z].

Theorem 2.5 (The spherical law of cosines). Let ∆ be a spherical triangle in S
n with vertices

A,B,C. Let a = d(B,C), b = d(A,C), c = d(A,B), and let γ be the vertex angle of ∆ at C. Then

cos c = cos a cos b+ sin a sin b cos γ.

Proof. Suppose that there are no antipodal pairs among A, B, and C. Let u ∈ C⊥ and v ∈ C⊥ be
the initial vectors of [C,A] and [C,B], respectively. Then, by definition, cos γ = 〈u, v〉. Hence

cos c = cos d(A,B) = 〈A,B〉
=
〈
(cos b)C + (sin b)u, (cos a)C + (sin a)v

〉

= cos a cos b 〈C,C〉 + sin a sin b 〈u, v〉
= cos a cos b+ sin a sin b cos γ.

The special case where A and B (or A and C, or B and C) are antipodal is easy and will be
omitted.

Theorem 2.6. For all A,B,C ∈ S
n

d(A,B) ≤ d(A,C) + d(C,B),

with equality if and only if C lies on a geodesic joining A and B. Hence (Sn, d) is a geodesic metric
space.

Proof. First we observe that for fixed a ∈ [0, π] and b ∈ [0, π], the function

γ 7→ cos a cos b+ sin a sin b
︸ ︷︷ ︸

≥0

cos γ

decreases from cos(a− b) to cos(a+ b) as γ increases from 0 to π.
To prove the triangle inequality we may assume that A,B, and C are distinct points. Let

a = d(B,C), b = d(A,C), c = d(A,B), and let ∆ be a spherical triangle with vertices A,B,C.
Let γ be the vertex angle of ∆ at C. Then the spherical law of cosines and the observation above
imply that

cos c ≥ cos(a+ b).

Hence c ≤ a+ b, with the equality if and only if γ = π and a+ b ≤ π, i.e. C belongs to a geodesic
joining A and B.

2See Theorem 2.6 for the uniqueness.
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The hyperbolic space H
n

We approach the hyperbolic geometry from a metric point of view, and therefore we use the following
hyperboloid model for Hn.

Consider Rn+1 equipped with a symmetric bilinear form

〈x, y〉n,1 = −xn+1yn+1 +
n∑

i=1

xiyi, x = (x1, . . . , xn+1), y = (y1, . . . , yn+1).

Given x ∈ Rn+1 the orthogonal complement of x with respect to 〈·, ·〉n,1 is the n-dimensional
subspace

x⊥ = {y ∈ R
n+1 : 〈x, y〉n,1 = 0}.

If 〈x, x〉n,1 < 0, then (by linear algebra) 〈·, ·〉n,1|x⊥ is positive definite, i.e. an inner product. This
can be seen also by a direct computation.

Definition 2.7. The (real) hyperbolic n-space H
n is the set

H
n = {x = (x1, . . . , xn+1) ∈ R

n+1 : 〈x, x〉n,1 = −1, xn+1 > 0}

equipped with the metric d : Hn ×H
n → [0,∞) defined by the formula

(2.8) cosh d(x, y) = −〈x, y〉n,1, x, y ∈ H
n.

Remark 2.9. The hyperbolic space is the upper sheet of the hyperboloid

{x ∈ R
n+1 : 〈x, x〉n,1 = −1}.

For all x, y ∈ H
n,

〈x, y〉n,1 ≤ −1 and

〈x, y〉n,1 = −1 ⇐⇒ x = y.

Thus d(x, y) = d(y, x) ≥ 0, with the equality if and only if x = y. The triangle inequality will be
proved later (see Theorem 2.12).

Let x ∈ H
n and let u ∈ x⊥ be a unit vector with respect to 〈·, ·〉n,1, that is

〈u, u〉n,1 = 1 and 〈u, x〉n,1 = 0.

Consider the path γ : R → R
n+1,

(2.10) γ(t) = (cosh t)x+ (sinh t)u.

Since γ is continuous, γ(0) = x ∈ H
n, and

〈
γ(t), γ(t)

〉

n,1
=
〈
(cosh t)x+ (sinh t)u, (cosh t)x+ (sinh t)u

〉

n,1

= cosh2 t 〈x, x〉n,1 + 2cosh t sinh t〈x, u〉n,1 + sinh2 t 〈u, u〉n,1
= sinh2 t− cosh2 t

= −1
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we have γ(t) ∈ H
n for all t ∈ R (i.e. γ(t) belongs to the upper sheet of the hyperboloid). Note that

γR is the intersection of Hn and the 2-dimensional subspace of Rn+1 spanned by x and u. Next we
observe that for all t, s ∈ R,

cosh d
(
γ(t), γ(s)

)
= −

〈
γ(t), γ(s)

〉

n,1

= −
〈
(cosh t)x+ (sinh t)u, (cosh s)x+ (sinh s)u

〉

n,1

= cosh t cosh s− sinh t sinh s

= cosh(t− s).

Hence

d
(
γ(t), γ(s)

)
= |t− s|

for all t, s ∈ R, and therefore γ is a geodesic.

Given x, y ∈ H
n, x 6= y, let u ∈ x⊥ be the unit vector

u = λ(y + 〈x, y〉n,1x), λ =
1

√

〈x, y〉2n,1 − 1

and let γ be defined by (2.10). Then u is the unique unit vector in x⊥ such that

y = γ(t) = (cosh t)x+ (sinh t)u, with

t = d(x, y).

We call u the initial vector (at x) of the hyperbolic segment (or geodesic segment) [x, y] =
γ[0, d(x, y)]. Thus any two points of Hn can be joined by a unique3 geodesic segment. The hyper-
bolic angle between two hyperbolic segments with initial vectors u and v (at x) is the unique angle
α ∈ [0, π] such that

cosα = 〈u, v〉n,1.
A hyperbolic triangle ∆ consists of three distinct points x, y, z ∈ H

n (vertices of ∆) and the geodesic
segments (sides of ∆) joining each pair of vertices. The vertex angle at x is the hyperbolic angle
between [x, y] and [x, z].

Theorem 2.11 (The hyperbolic law of cosines). Let ∆ be a hyperbolic triangle in H
n with vertices

A,B,C. Let a = d(B,C), b = d(A,C), c = d(A,B), and let γ be the vertex angle of ∆ at C. Then

cosh c = cosh a cosh b− sinh a sinh b cos γ.

Proof. Let u ∈ C⊥ and v ∈ C⊥ be the initial vectors of [C,A] and [C,B], respectively. Then, by
definition, cos γ = 〈u, v〉n,1. Hence

cosh c = cosh d(A,B) = −〈A,B〉n,1
= −

〈
(cosh b)C + (sinh b)u, (cosh a)C + (sinh a)v

〉

= − cosh a cosh b 〈C,C〉n,1 − sinh a sinh b 〈u, v〉n,1
= cosh a cosh b− sinh a sinh b cos γ.

3See Theorem 2.12 for the uniqueness.
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Theorem 2.12. For all A,B,C ∈ H
n

d(A,B) ≤ d(A,C) + d(C,B),

with equality if and only if C lies on the geodesic segment joining A and B. Hence (Hn, d) is a
uniquely geodesic metric space.

Proof. Again we first we observe that for fixed a > 0 and b > 0, the function

γ 7→ cosh a cosh b− sinh a sinh b
︸ ︷︷ ︸

≥0

cos γ

increases from cosh(a− b) to cosh(a+ b) as γ increases from 0 to π.
To prove the triangle inequality we may assume that A,B, and C are distinct points. Let

a = d(B,C), b = d(A,C), c = d(A,B), and let ∆ be the hyperbolic triangle with vertices A,B,C.
Let γ be the vertex angle of ∆ at C. Then the hyperbolic law of cosines and the observation above
imply that

cosh c ≤ cosh(a+ b).

Hence c ≤ a+ b, with the equality if and only if γ = π, i.e. C belongs to a geodesic joining A and
B.

Remark 2.13. It might be interesting for those who are familiar with differential geometry (and
Riemannian geometry) to note that Hn is the level set {x ∈ R

n+1 : f(x) = 0} of a smooth function
f : Rn+1 → R,

f(x) = 〈x, x〉n,1 + 1,

with
∇f(x) = 2(x1, . . . , xn,−xn+1) 6= 0

for all x ∈ H
n. Thus Hn is a differentiable n-manifold (see e.g. [Ho, Esim. 2.28]). Furthermore, we

have the equality

〈∇f(x), y〉 = 2
( n∑

i=1

xiyi − xn+1yn+1

)

= 2〈x, y〉n,1,

where 〈∇f(x), y〉 is the standard inner product. Hence x⊥ is tangent to H
n at x for all x ∈ H

n, i.e
it is a tangent space of Hn at x. Finally,

x 7→ 〈·, ·〉n,1|x⊥

is smooth, and hence it is a Riemannian metric on H
n. Thus Hn is a Riemannian n-manifold.

2.14 Angles in metric spaces

We want to define a notion of an angle in a metric space. Therefore, we first recall how to express
an angle in the plane in purely metric terms. Suppose that p, x, y are three distinct points in R

2.
Denote by ∠pxy the angle (∈ [0, π]) at p between the segments [p, x] and [p, y]. Applying the usual
law of cosines (“c2 = a2 + b2 − 2ab cos γ”), we see that

∠pxy = arccos
|p − x|2 + |p − y|2 − |x− y|2

2|p− x||p − y| .
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Let then (X, d) be a metric space and let p, x, y be three distinct points in X. A comparison
triangle of the triple (p, x, y) is a triangle in the Euclidean plane R

2 with vertices p̄, x̄, ȳ such that
|p̄− x̄| = d(p, x), |p̄− ȳ| = d(p, y), and |x̄− ȳ| = d(x, y). It follows from the triangle inequality in X
that a comparison triangle always exists. It is unique up to an isometry of R2 and we denote any
of them by ∆̄(p, x, y). The comparison angle between x and y at p, denoted by ∠̄pxy (or ∠̄p(x, y),
is defined by

∠̄pxy = arccos
d(p, x)2 + d(p, y)2 − d(x, y)2

2d(p, x)d(p, y)
.

Hence ∠̄pxy = ∠p̄x̄ȳ.
Next we define an angle between two geodesic segments emanating from the same point.

Definition 2.15. Let X be a metric space and let α : [0, a] → X and β : [0, b] → X be two
geodesics with α(0) = β(0) = p. Given t ∈ (0, a] and s ∈ (0, b] consider the comparison triangle
∆̄(p, α(t), β(s)) and the comparison angle ∠̄p(α(t), β(s)). The (Alexandrov) angle (or the upper
angle) between α and β (at p) is the number ∠p(α, β) ∈ [0, π] defined by

∠p(α, β) = lim sup
t,s→0

∠̄p(α(t), β(s))

= lim
r→0

sup
0<t,s<r

∠̄p(α(t), β(s)).

If the limit
lim
t,s→0

∠̄p(α(t), β(s))

exists, we say that the angle exists in strong sense.

Remark 2.16. 1. The Alexandrov angle between α and β at p depends only on germs4 of α
and β at 0. That is, if α̃ : [0, ã] → X and β̃ : [0, b̃] are geodesics such that α̃|[0, ε] = α|[0, ε]
and β̃|[0, ε] = β|[0, ε] for some ε > 0, then

∠p(α, β) = ∠p(α̃, β̃).

2. If γ : [a, b] → X is a geodesic, with a < 0 < b, and if α : [0,−a] → X, α(t) = γ(−t), and
β = γ|[0, b], then ∠γ(0)(α, β) = π.

3. Angles do not, in general, exist in strong sense. For example, let (V, ‖·‖) be a normed space.
Then angles exist at 0 in strong sense if and only if the norm is an inner product norm.

4. In (R2, d∞) paths γn : [0, 1/n] → (R2, d∞),

γn(t) =
(
t, tn(1− t)n

)
, n ∈ N, n ≥ 2,

are geodesics emanating from the origin and their germs are pairwise disjoint. However, the
Alexandrov angle between any two of them at 0 is always zero.

Clearly, ∠p(α, β) = ∠p(β, α) ≥ 0 and the next theorem shows that the mapping (α, β) 7→
∠p(α, β) satisfies the triangle inequality. However, as the last remark above shows, this mapping
does not, in general, define a metric in the set of (germs of) geodesics emanating from p.

4Let Y be a set and let X be a topological space. Consider the set of all pairs (f, x), where f : U → Y and U is
a neighborhood of x. We say that pairs (f, x) and (f ′, x′) are equivalent if and only if x = x′ and f = f ′ in some
neighborhood of x. The equivalence class of (f, x) is called the germ of f at x.
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Theorem 2.17. Let X be a metric space, and let γ1, γ2, and γ3 be three geodesics in X emanating
from the same point p ∈ X. Then

(2.18) ∠p(γ1, γ2) ≤ ∠p(γ1, γ3) + ∠p(γ3, γ2).

Proof. We may assume that γ1, γ2, γ3 are defined on [0, a] for some a > 0 and γi(0) = p, i = 1, 2, 3.
Suppose on the contrary that (2.18) does not hold. Then

(2.19) ∠p(γ1, γ2) > ∠p(γ1, γ3) + ∠p(γ3, γ2) + 3δ

for some δ > 0. Furthermore, by definition (of lim sup) there exists ε > 0 such that

(1) ∠̄p(γ1(t), γ3(s)) < ∠p(γ1, γ3) + δ for all s, t ∈ [0, ε],

(2) ∠̄p(γ3(s), γ2(r)) < ∠p(γ3, γ2) + δ for all r, s ∈ [0, ε], and

(3) ∠̄p(γ1(t), γ2(r)) > ∠p(γ1, γ2)− δ for some r, t ∈ [0, ε].

Fix r, t ∈ [0, ε] such that (3) holds and choose a triangle in R
2 with vertices 0, x1, x2 such that

|x1 − 0| = t = d(γ1(t), p),

|x2 − 0| = r = d(γ2(r), p),

and that the angle α at 0 satisfies

(2.20) ∠̄p(γ1(t), γ2(r)) > α > ∠p(γ1, γ2)− δ.

In particular, 0 < α < π, and hence the triangle is non-degenerate. The left-hand inequality in
(2.20) implies that

(2.21) |x1 − x2| < d
(
γ1(t), γ2(r)

)
.

The right-hand inequality in (2.20) and (2.19) imply that

α > ∠p(γ1, γ3) + ∠p(γ3, γ2) + 2δ.

Hence there exists a point x ∈ [x1, x2] such that

α1 := ∠0([0, x1], [0, x]) > ∠p(γ1, γ3) + δ,

α2 := ∠0([0, x], [0, x2 ]) > ∠p(γ3, γ2) + δ.

Let s = |x− 0|. Since s ≤ max{r, t}, we may apply (1) to obtain

∠̄p(γ1(t), γ3(s)) < ∠p(γ1, γ3) + δ < α1.

Hence
d
(
γ1(t), γ3(s)

)
< |x− x1|.

Similarly,
d
(
γ2(r), γ3(s)

)
< |x− x2|.

By (2.21), we have

d
(
γ1(t), γ2(r)

)
> |x1 − x2| = |x1 − x|+ |x− x2| > d

(
γ1(t), γ3(s)

)
+ d
(
γ3(s), γ2(r)

)

which is a contradiction with the triangle inequality in X.
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Theorem 2.22. The spherical (resp. hyperbolic) angle between geodesic segments [p, x] and [p, y]
in S

n (resp. H
n) is equal to the Alexandrov angle between them.

Proof. We present the proof in the hyperbolic case; the spherical case is similar. Let a = d(p, x), b =
d(p, y), and let γ be the hyperbolic angle between [p, x] and [p, y]. For 0 < t ≤ a and 0 < s ≤ b,
let xs ∈ [p, x] and yt ∈ [p, y] be the unique points such that d(p, xs) = s and d(p, yt) = t. Let
cs,t = d(xs, yt) and let γs,t be the vertex angle at p̄ in the comparison triangle ∆̄(p, xs, yt) ⊂ R

2.
We will show that γs,t → γ as s, t → 0. By the usual cosine rule and the hyperbolic law of cosines
we have

cos γs,t =
s2 + t2 − c2s,t

2st

and

(2.23) cosh cs,t = cosh s cosh t− sinh s sinh t cos γ.

We define a smooth function h : R → R by

h(r) =

∞∑

i=1

ri

(2i)!
.

Since h(0) = 0 and h′(0) = 1/2 6= 0, the restriction h|(−ε, ε) has an inverse (for some ε > 0) which
can be written as

(2.24) h−1(r) = 2r +
∞∑

i=2

air
i.

Since

h(r2) = cosh r − 1,

we obtain from (2.23) that

h(c2s,t) = cosh s cosh t− sinh s sinh t cos γ − 1

= (cosh s− 1) cosh t+ cosh t− 1− sinh s sinh t cos γ

= h(s2) cosh t+ h(t2)− sinh s sinh t cos γ.

We define a smooth function g : R2 → R,

g(s, t) = h(s2) cosh t+ h(t2)− sinh s sinh t cos γ
(
= h(c2s,t)

)
.

Then

g(0, 0) = 0,

g(s, 0) = h(s2),

g(0, t) = h(t2).

The function g can be expressed as the power series

g(s, t) =

( ∞∑

i=1

s2i

(2i)!

)( ∞∑

i=0

t2i

(2i)!

)

+

( ∞∑

i=1

t2i

(2i)!

)

−
( ∞∑

i=0

s2i+1

(2i+ 1)!

)( ∞∑

i=0

t2i+1

(2i+ 1)!

)

cos γ,
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where the coefficient of st is equal to − cos γ. Since g(0, 0) = 0, the function f = h−1 ◦ g is defined
in a neighborhood of (0, 0) ∈ R

2. Furthermore, f(0, 0) = 0 and

f(s, t) = h−1
(
h(c2s,t)

)
= c2s,t

for small s, t > 0. We can write f as an absolutely convergent power series

f(s, t) =

∞∑

i=1

fi,0s
i +

∞∑

j=1

f0,jt
j + st





∞∑

i,j=1

fi,js
i−1tj−1



 .

Here the coefficient of st is equal to f1,1. Since g(s, 0) = h(s2) and g(0, t) = h(t2), we have

s2 = h−1
(
g(s, 0)
︸ ︷︷ ︸

=h(s2)

)
= f(s, 0) =

∞∑

i=1

fi,0s
i,

and similarly

t2 =

∞∑

j=1

f0,jt
j.

Hence for small s, t > 0

c2s,t = f(s, t) = s2 + t2 + st





∞∑

i,j=1

fi,js
i−1tj−1



 ,

and so
∞∑

i,j=1

fi,js
i−1tj−1 = −

s2 + t2 − c2s,t
st

.

On the other hand,

f(s, t) = h−1
(
g(s, t)

)
= 2g(s, t) +

∞∑

i=2

ai
(
g(s, t)

)i

by (2.24). Since the coefficient of st is equal to − cos γ in the power series expression of g, we obtain

f1,1 = −2 cos γ.

Hence

cos γs,t =
s2 + t2 − c2s,t

2st

=
−st

(
∑∞

i,j=1 fi,js
i−1tj−1

)

2st

= cos γ − 1
2

∑

i+j≥3

fi,js
i−1tj−1

→ cos γ

as s, t→ 0.
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2.25 Definitions of Alexandrov spaces

For κ ∈ R we denote by Dκ the diameter of the model space Mn
κ . Thus Dκ = π/

√
κ for κ > 0 and

Dκ = ∞ for κ ≤ 0.
Let X be a metric space. We say that ∆ ⊂ X is a geodesic triangle with vertices p, q, r ∈ X if

∆ = γ1[0, d(p, q)] ∪ γ2[0, d(p, r)] ∪ γ3[0, d(q, r)],

where γ1, γ2, and γ3 are geodesics joining pairs p, q, p, r, and q, r, respectively. We denote by
∆(p, q, r) any geodesic triangle with vertices p, q, r. The number d(p, q) + d(q, r) + d(r, p) is called
the perimeter of ∆. We denote [p, q] = γ1[0, d(p, q)], [p, r] = γ2[0, d(p, r)], and [q, r] = γ3[0, d(q, r)]
and call them the sides of ∆.

Theorem 2.26 (The law of cosines in Mn
κ ). Let ∆ be a geodesic triangle in Mn

κ with vertices
A,B,C. Let a = d(B,C), b = d(A,C), c = d(A,B), and let γ be the vertex angle of ∆ at C. Then

(a)
c2 = a2 + b2 − 2ab cos γ

if κ = 0,

(b)
cosh(

√
−κc) = cosh(

√
−κa) cosh(

√
−κb)− sinh(

√
−κa) sinh(

√
−κb) cos γ

if κ < 0, and

(c)
cos(

√
κc) = cos(

√
κa) cos(

√
κb) + sin(

√
κa) sin(

√
κb) cos γ

if κ > 0.

Proof. The claims (for κ 6= 0) follow from Theorems 2.5 and 2.11 by rescaling the metric. Note
that the vertex angle in Mn

κ for κ > 0 (resp. κ < 0) is defined exactly as in S
n (resp. Hn).

Observe that, for a fixed a, b, and κ, c increases (strictly) from |a − b| to a + b as γ increases
from 0 to π.

Definition 2.27. Let κ ∈ R and let p, q, r be distinct points in a metric space X such that
d(p, q) + d(q, r) + d(r, p) < 2Dκ.

1. A (κ-)comparison triangle for the triple (p, q, r) is a geodesic triangle ∆̄κ(p, q, r) ⊂ M2
κ

consisting of vertices p̄, q̄, r̄ ∈ M2
κ and geodesic segments [p̄, q̄], [p̄, r̄], [q̄, r̄] ⊂ M2

κ such that
d(p̄, q̄) = d(p, q), d(q̄, r̄) = d(q, r), and d(r̄, p̄) = d(r, p).

2. If ∆ ⊂ X is a geodesic triangle in X with vertices p, q, r, then ∆̄κ(p, q, r) is also called a
(κ-)comparison triangle for ∆.

3. The κ-comparison angle between q and r at p, denoted by

∠
(κ)
p (q, r),

is the vertex angle at p̄ in a comparison triangle ∆̄κ(p, q, r) ⊂M2
κ .

4. We say that x̄ ∈ [q̄, r̄] is a comparison point of x ∈ [q, r] if d(x̄, q̄) = d(x, q). Comparison
points on [p̄, q̄] and [p̄, r̄] are defined similarly.
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Lemma 2.28 (Existence of comparison triangles). Given κ ∈ R and three distinct points p, q, r in
a metric space X such that d(p, q) + d(q, r) + d(r, p) < 2Dκ, there exists a κ-comparison triangle
∆̄(p, q, r) ⊂M2

κ . It is unique up to an isometry of M2
κ .

Proof. Denote a = d(p, q), b = d(p, r), and c = d(q, r). We may assume that a ≤ b ≤ c. By the
triangle inequality, c ≤ a+ b. Thus c ≤ π/

√
κ if κ > 0. Hence we can solve γ ∈ [0, π] uniquely from

the law of cosines. Fix points p̄, q̄ ∈M2
κ with d(p̄, q̄) = a. Let α be a geodesic starting from p̄, with

∠p̄(α, [p̄, q̄]) = π. Let r̄ be the (unique) point on α such that d(p̄, r̄) = b. Then d(q̄, r̄) = c by the
law of cosines. We omit the proof of the claim on uniqueness (cf. Exercises 6).

Definition 2.29. 1. A metric space X is called k-geodesic, with k > 0, if all points x, y ∈ X
within distance d(x, y) < k can be joined by a geodesic.

2. A set C ⊂ X is called convex if all points x, y ∈ C can be joined by a geodesic and all such
geodesics lie in C.

Example 2.30. If κ ≤ 0, then all balls in Mn
κ are convex. If κ > 0, then all closed (open) balls of

radius < π/(2
√
κ) (resp. ≤ π/(2

√
κ)) are convex. To give an idea how to prove these statements,

let us consider open balls in H
n. Closed balls can be treated similarly and the case κ < 0 follows

from these by scaling the metric. The proof for κ > 0 is similar and is left as an exercise.
Fix a ball B(p, r) ⊂ H

n and points x, y ∈ B(p, r). We know that there exists a unique geodesic
segment [x, y] ⊂ H

n joining x and y. It is obtained as the intersection of Hn and the 2-dimensional
cone

{s
(
tx+ (1− t)y

)
∈ R

n+1 : 0 ≤ t ≤ 1, s ≥ 0}
spanned by 0, x, y. In the intersection (i.e. on [x, y]) we always have s ≤ 1. Thus all points of [x, y]
are of the form z = λx+ µy, with λ+ µ ≤ 1, λ, µ ≥ 0. It follows that z ∈ B(p, r) since

cosh d(p, z) = −〈p, z〉n,1 = −λ〈p, x〉n,1 − µ〈p, y〉n,1
= λ cosh d(p, x)

︸ ︷︷ ︸

< cosh r

+µ cosh d(p, y)
︸ ︷︷ ︸

< cosh r

< (λ+ µ) cosh r ≤ cosh r.

Hence [x, y] ⊂ B(p, r).

Given two points p, q ∈ M2
κ , with d(p, q) < Dκ, there exists a unique (up to a reparameteriza-

tion) local geodesic, called the line pq, R → M2
κ passing through p and q. It divides M2

κ into two
components. We say that points x, y ∈ M2

κ lie on opposite sides of a line if they are in different
components of the complement of the line.

Lemma 2.31 (Alexandrov’s lemma). Let κ ∈ R and consider distinct points A,B,B′, C ∈ M2
κ (if

κ > 0, we assume that d(C,B) + d(C,B′) + d(A,B) + d(A,B′) < 2Dκ). Suppose that B and B′

lie on opposite sides of the line AC. (Note that the triangle inequality and the assumption above
imply that d(B,B′) < Dκ.)

Consider geodesic triangles ∆ = ∆(A,B,C) and ∆′ = ∆(A,B′, C). Let α, β, γ (resp. α′, β′, γ′)
be the vertex angles of ∆ (resp. ∆′) at A,B,C (resp. A,B′, C). Suppose that γ + γ′ ≥ π. Then

(2.32) d(B,C) + d(B′, C) ≤ d(B,A) + d(B′, A).

Let ∆ ⊂ M2
κ be a geodesic triangle with vertices Ā, B̄, B̄′ such that d(Ā, B̄) = d(A,B), d(Ā, B̄′) =

d(A,B′), and d(B̄, B̄′) = d(B,C) + d(C,B′) < Dκ. Let C̄ be the point in [B̄, B̄′] with d(B̄, C̄) =
d(B,C). Let ᾱ, β̄, β̄′ be the vertex angles of ∆ at vertices Ā, B̄, B̄′. Then

(2.33) ᾱ ≥ α+ α′, β̄ ≥ β, β̄′ ≥ β′, and d(Ā, C̄) ≥ d(A,C).
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Moreover, an equality in any of these implies the equality in the others, and occurs if and only if
γ + γ′ = π.

A = Ā

B = B̄

C

C̄

B′

B̄′

Proof. (The inequalities in (2.32) and in (2.33) are quite obvious in the special case κ = 0 as can
be seen from a picture like above.)

Let B̃ ∈M2
κ be the unique point such that d(C, B̃) = d(C,B′) and C ∈ [B, B̃]. Then

∠C

(
[C,A], [C, B̃ ]

)
≤ γ′ = ∠C

(
[C,A], [C,B′]

)

since γ + γ′ ≥ π. Hence

(2.34) d(A, B̃) ≤ d(A,B′)

by the law of cosines, with an equality, if and only if γ + γ′ = π. Consequently,

d(B,A) + d(B′, A) ≥ d(B,A) + d(A, B̃) ≥ d(B, B̃)

= d(B,C) + d(C, B̃)
︸ ︷︷ ︸

=d(C,B′)

.

Thus (2.32) holds.
Since d(Ā, B̄′) = d(A,B′), we have

(2.35) d(Ā, B̄′) ≥ d(A, B̃)

by (2.34). Furthermore,

(2.36) d(B̄, B̄′) = d(B,C) + d(C,B′) ≥ d(B,B′).

Applying the law of cosines to triangles ∆ and ∆(A,B,B′) with the inequality (2.36) yields

ᾱ ≥ α+ α′.

This holds as an equality if and only if there is an equality in (2.36), i.e. γ + γ′ = π. Similarly, the
law of cosines, with (2.35) and the equality d(B̄, B̄′) = d(B, B̃), implies that

β̄ ≥ β.

Exchanging the roles of B and B′ above yields

β̄′ ≥ β′,
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Again these last two estimates hold as equalities if and only if γ + γ′ = π. Since d(Ā, B̄′) =
d(A,B′), d(C̄, B̄′) = d(C,B′), and β̄′ ≥ β′, we have

d(Ā, C̄) ≥ d(A,C)

again by the law of cosines. Here, too, the equality holds if and only if γ + γ′ = π.

Definition 2.37. (1) Let X be a metric space, κ ∈ R, and let ∆ = [p, q]∪ [p, r]∪ [q, r] ⊂ X be a
geodesic triangle with perimeter < 2Dκ. Let ∆̄κ ⊂ M2

κ be a comparison triangle for ∆. We
say that ∆ satisfies the CAT(κ) inequality if, for all x ∈ [q, r],

d(p, x) ≤ d(p̄, x̄),

where x̄ ∈ [q̄, r̄] is the comparison point of x.

(2) If κ ≤ 0, a metric space X is called a CAT(κ)-space if X is geodesic and all geodesic triangles
of X satisfies the CAT(κ)-inequality.

(3) If κ > 0, a metric space X is called a CAT(κ)-space if X is Dκ-geodesic and all geodesic
triangles of X with perimeter < 2Dκ satisfies the CAT(κ)-inequality.

A complete CAT(0)-space is called a Hadamard-space.

The name CAT comes from initials of Cartan, Alexandrov, and Toponogov.

p

q

r

x

q̄

r̄

x̄

p̄

Definition 2.38. 1. A length space X is said to be of curvature ≤ κ if it is locally a CAT(κ)-
space. That is, every point x ∈ X has a neighborhood U which is a CAT(κ)-space when
equipped with the induced metric.

2. We say that X is non-positively curved if it is of curvature ≤ 0.

3. A metric space X is said to be of curvature ≥ κ if each point of X has a neighborhood U
which is geodesic (with respect to the induced metric) and an inequality

d(p, x) ≥ d(p̄, x̄)

holds for all geodesic triangles ∆ = [p, q]∪ [p, r]∪ [q, r] ⊂ U of perimeter < 2Dκ and for every
x ∈ [q, r] and its comparison point x̄ ∈ [q̄, r̄].

4. We say that X is non-negatively curved if it is of curvature ≥ 0.

In general, metric spaces with curvature bounded from below or from above are called Alexan-
drov spaces.
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3 CAT(κ)-spaces and spaces of curvature bounded from above

3.1 Characterizations and basic properties of CAT(κ)-spaces

First we present some characterizations of CAT(κ)-spaces.

Theorem 3.2. Let κ ∈ R and suppose that X is Dκ-geodesic. Then the following are equivalent
(if κ > 0, all geodesic triangles below are assumed to have perimeter < 2Dκ):

(1) X is a CAT(κ)-space.

(2) For every geodesic triangle ∆ ⊂ X and for all x, y ∈ ∆,

d(x, y) ≤ d(x̄, ȳ),

where x̄, ȳ ∈ ∆̄κ ⊂M2
κ are the comparison points of x and y.

(3) For every geodesic triangle ∆ ⊂ X with vertices p, q, r, and for all x ∈ [p, q], y ∈ [p, r], with
x 6= p 6= y, we have

∠
(κ)
p (x, y) ≤ ∠

(κ)
p (q, r).

(4) For every geodesic triangle ∆ ⊂ X, with distinct vertices p, q, r, the Alexandrov angle between
[p, q] and [p, r] at p is at most the κ-comparison angle between q and r at p, i.e.

∠p

(
[p, q], [p, r]

)
≤ ∠

(κ)
p (q, r).

(5) For every geodesic triangle ∆ ⊂ X, with distinct vertices p, q, r and with the Alexandrov angle
γ = ∠p([p, q], [p, r]) between [p, q] and [p, r] at p, if ∆(p̂, q̂, r̂) ⊂M2

κ is a geodesic triangle such
that d(p̂, q̂) = d(p, q), d(p̂, r̂) = d(p, q), and γ = ∠p̂(q̂, r̂) (= the vertex angle between [p̂, q̂]
and [p̂, r̂]), then

d(q, r) ≥ d(q̂, r̂).

Proof. First we note that (2) implies (1) trivially. Also it is easily seen, by using the law of cosines,
that (4) and (5) are equivalent. Furthermore, it follows from Theorem 2.22 that one could use
κ-comparison angles instead of Euclidean comparison angles in the definition of an Alexandrov
angle. Hence (3) implies (4).

Let p, q, r, x, and y be as in (3). Let ∆̄ = ∆̄κ(p, q, r) and ∆̄′ = ∆̄κ(p, x, y) be κ-comparison
triangles of ∆(p, q, r) and ∆(p, x, y) with vertices p̄, q̄, r̄ and p̄′, x̄′, ȳ′, respectively. Denote by x̄ ∈ ∆̄
and ȳ ∈ ∆̄ the comparison points of x and y. Let

ᾱ = ∠
(κ)
p (q, r) and ᾱ′ = ∠

(κ)
p (x, y).

p

q

r

x

y

p̄

q̄

r̄

x̄

ȳ

p̄′

ȳ′

x̄′

ᾱ ᾱ′
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By the law of cosines,
d(x̄, ȳ) ≥ d(x̄′, ȳ′)

︸ ︷︷ ︸

=d(x,y)

⇐⇒ ᾱ ≥ ᾱ′.

Hence (2) and (3) are equivalent.
Next we prove that (1) implies (3). Let p, q, r, x, and y be as in (3) and let ∆̄, ∆̄′, ᾱ, and ᾱ′ be

as above. Furthermore, let ∆̄′′ = ∆̄κ(p, x, r) be a κ-comparison triangle of ∆(p, x, r) with vertices
p̄′′, x̄′′, r̄′′ and denote

ᾱ′′ = ∠
(κ)
p (x, r).

By the assumption (1),
d(x, y) ≤ d(x̄′′, ȳ′′),

where ȳ′′ ∈ [p̄′′, r̄′′] is the comparison point of y ∈ [p, r]. Since d(x̄′, ȳ′) = d(x, y), we get

ᾱ′ ≤ ᾱ′′

from the law of cosines. Similarly, by (1),

d(x̄, r̄) ≥ d(x, r) = d(x̄′′, r̄′′),

and so
ᾱ ≥ ᾱ′′

again by the law of cosines. Hence
ᾱ′ ≤ ᾱ

and (3) follows.
Finally, we prove that (4) implies (1).

p

q

r

x
γ

γ′

p̃

q̃

r̃

x̃
γ̃

γ̃′

r̄

x̄
p̄

q̄

Let ∆ ⊂ X be a geodesic triangle with vertices p, q, r and let x ∈ [q, r], p 6= x 6= q. Let
∆̄ = ∆̄κ(p, q, r) be a comparison triangle with vertices p̄, q̄, r̄. Choose comparison triangles
∆̄′ = ∆̄κ(p, x, q) and ∆̄′′ = ∆̄κ(p, x, r) with vertices p̃, x̃, q̃ and p̃, x̃, r̃, respectively, such that
they have a common side [p̃, x̃] and that q̃ and r̃ lie on opposite sides of the line p̃x̃. Let

γ = ∠x([x, p], [x, q]) and γ′ = ∠x([x, p], [x, r])

be Alexandrov angles and let

γ̃ = ∠x̃(p̃, q̃) = ∠
(κ)
x (p, q) and γ̃′ = ∠x̃(p̃, r̃) = ∠

(κ)
x (p, r)

be vertex angles at x̃ in M2
κ . The triangle inequality for Alexandrov angles (Theorem 2.17) and

Remark 2.16.2 imply that γ + γ′ ≥ π. By the assumption (4),

γ̃ ≥ γ and γ̃′ ≥ γ′.
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Hence γ̃ + γ̃′ ≥ π. By Alexandrov’s lemma 2.31,

d(p̄, x̄) ≥ d(p̃, x̃) = d(p, x).

Hence X is a CAT(κ) space, i.e. (1) holds.

Theorem 3.3. For any κ ∈ R, M2
κ is a CAT(κ̃)-space if and only if κ̃ ≥ κ.

Proof. We will give two proofs for the result. The first one uses the criterion 3.2(4) and the law of
cosines. The second one that appears in Remark 3.6 involves features from Riemannian geometry.

Fix κ ∈ R and κ̃ > κ. Clearly M2
κ is a CAT(κ)-space. We will use the criterion 3.2(4) to show

that M2
κ is a CAT(κ̃)-space, but not a CAT(κ′)-space for any κ′ < κ. Fix p ∈ M2

κ and p̃ ∈ M2
κ̃ .

Consider geodesic triangles ∆t ⊂ M2
κ and ∆̃t ⊂ M2

κ̃ with vertices p, q, rt ∈ M2
κ and p̃, q̃, r̃t ∈ M2

κ̃

such that

d(p, q) = d(p, rt) = d(p̃, q̃) = d(p̃, r̃t) = a ∈ (0,Dκ̃/2)

and that

d(q, rt) = d(q̃, r̃t) = t ∈ (0, 2a).

It suffices to show that

(3.4) γt(κ) := ∠p(q, rt) < ∠p̃(q̃, r̃t) =: γt(κ̃).

p

q = r0

rt

t
tγt(κ)

γt(κ̃)

p̃

q̃ = r̃0

r̃t
a

a

a

r2a

r̃2a

By the law of cosines,

cos γt(κ) =







cosh2(
√−κa)− cosh(

√−κt)
sinh2(

√−κa) , κ < 0;

1− t2

2a2
, κ = 0;

cos(
√
κt)− cos2(

√
κa)

sin2(
√
κa)

, κ > 0.

Hence (3.4) follows once we show that, for fixed a and t, the function κ 7→ cos γt(κ) is strictly
decreasing on the interval (−∞, π2/a2). We omit the verification of this.

Theorem 3.5. (1) If X is a CAT(κ′)-space for all κ′ > κ, then it is also a CAT(κ)-space.

(2) A CAT(κ)-space X is a CAT(κ′)-space for all κ′ > κ.
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0,92

0,88

0,84

0,8

0,76

210-1-2

κ

Figure 1: Graph of the function κ 7→ cos γt(κ) with a = 1 and t = 1/2.

Proof. Suppose that X is a CAT(κ′)-space for all κ′ > κ. If x, y ∈ X with d(x, y) < Dκ, then
d(x, y) < Dκ′ for all κ′ > κ sufficiently close to κ. Since X is a CAT(κ′)-space, it is, in particular,
Dκ′-geodesic. Hence there exists a geodesic joining x and y. It follows that X is Dκ-geodesic. Let
∆ = ∆(p, q, r) ⊂ X be a geodesic triangle of perimeter < 2Dκ. Consider sufficiently small κ′ > κ
so that the perimeter of ∆ is less that 2Dκ′ . Write a = d(p, q), b = d(p, r), c = d(q, r) and let
γ = ∠p

(
[p, q], [p, r]

)
be the Alexandrov angle at p.

We will use the characterization 3.2(5) of the CAT(κ′)-property of X. For κ ≥ 0, we have

cos(
√
κ′a) cos(

√
κ′b) + sin(

√
κ′a) sin(

√
κ′b) cos γ = cos

(√
κ′ d(q̂, r̂)
︸ ︷︷ ︸

≤c

)
≥ cos(

√
κ′c),

where q̂, r̂ are as in 3.2(5). By letting κ′ → κ, we obtain, in the case κ > 0, the same inequality
with κ′ replaced by κ. If κ = 0, we get the inequality

c2 ≥ a2 + b2 − 2ab cos γ.

Thus in both cases, 3.2(5) implies that X is a CAT(κ)-space. If κ < 0, applying 3.2(5) with
κ′ ∈ (κ, 0) yields

cosh(
√
−κ′c) ≥ cosh(

√
−κ′a) cosh(

√
−κ′b)− sinh(

√
−κ′a) sinh(

√
−κ′b) cos γ.

Letting κ′ → κ, we obtain the same inequality with κ′ replaced by κ. Hence X is a CAT(κ)-space
by 3.2(5). We have proved (1).

We may use Theorem 3.3 to prove (2). Suppose that X is a CAT(κ)-space and κ′ > κ. Let
∆ ⊂ X be a geodesic triangle with vertices p, q, r and let x ∈ [q, r]. Let ∆̄ = ∆̄κ(p, q, r) ⊂ M2

κ and
∆̄′ = ∆̄κ′(p, q, r) ⊂M2

κ′ be comparison triangles of ∆ with vertices p̄, q̄, r̄ and p̄′, q̄′, r̄′, respectively.
Let x̄ ∈ ∆̄ and x̄′ ∈ ∆̄′ be the comparison points of x. Observe that ∆̄′ is a κ′-comparison triangle
of ∆̄. Since X is a CAT(κ)-space and M2

κ is a CAT(κ′)-space, we have

d(p, x) ≤ d(p̄, x̄) ≤ d(p̄′, x̄′).
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Hence X is a CAT(κ′)-space.

Remark 3.6. Here we present another proof of Theorem 3.3. For that purpose we introduce polar
coordinates in M2

κ . Suppose first that κ = −1. Let p = (0, 0, 1) ∈M2
−1 ⊂ R

3 and consider geodesic
rays starting at p. They are intersections of M2

−1 and 2-planes containing the x3-axis and they are
parameterized by α : [0,∞) →M2

−1 ⊂ R
3,

(3.7) α(r) = (cosh r) (0, 0, 1)
︸ ︷︷ ︸

=p

+(sinh r) (cos ϑ, sinϑ, 0)
︸ ︷︷ ︸

=u

,

where u ∈ p⊥ = {(x, y, 0): (x, y) ∈ R
2} and 〈u, u〉2,1 = 1. Note that 〈·, ·〉2,1|p⊥ coincides with

the usual inner product of R2. Since every point x ∈ M2
−1 \ {p} can be joined to p by a unique

geodesic, the formula (3.7) defines polar coordinates (r, ϑ) ∈ (0,∞) × S
1 for points in M2

−1 \ {p}.
It is convenient to identify the angle ϑ with the point (cos ϑ, sinϑ) ∈ S

1.

Since M2
κ , for κ < 0, is obtained from M2

−1 by scaling the metric, we have polar coordinates
(r, ϑ) also for points in M2

κ \ {p}. (Here r is the distance to the fixed point p with respect to the
metric in M2

κ .) Similarly, we obtain polar coordinates for points x ∈M2
κ , 0 < d(p, x) < Dκ if κ > 0

and p ∈M2
κ is fixed.

What is the length of the circle Sκ(p, r) = {x ∈ M2
κ : d(x, p) = r}? Let us again consider the

case κ = −1, p = (0, 0, 1) and denote S(r) = S−1(p, r). Then

S(r) = {x ∈ R
3 : 〈x, x〉2,1 = −1, cosh r = −〈x, (0, 0, 1)〉2,1}

= {(x1, x2, x3) ∈ R
3 : x3 = cosh r, x21 + x22 = sinh2 r}.

Thus S(r) is a circle of Euclidean radius sinh r on the affine plane

{(x1, x2, x3) ∈ R
3 : x3 = cosh r}.

It can be parameterized by γ : [0, 2π] → S(r),

γ(ϑ) = (cos ϑ sinh r, sin ϑ sinh r, cosh r).

This can be obtained also directly from (3.7).

By the law of cosines,

cosh d
(
γ(ϑ + t), γ(ϑ)

)
= cosh2 r − sinh2 r cos t,

and hence we obtain the equality

|γ̇|(ϑ) = lim
t→0

d
(
γ(ϑ + t), γ(ϑ)

)

|t| = sinh r

for the metric derivative of γ. Thus

`(γ) =

∫ 2π

0
|γ̇|(ϑ) dϑ = 2π sinh r.

It is worth noting that the derivative of γ at ϑ is the vector

γ′(ϑ) = (− sinϑ sinh r, cos ϑ sinh r, 0) ∈ R
3
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and hence

〈γ′(ϑ), γ′(ϑ)〉1/22,1 = sinh r.

The other values of κ can be treated similarly and we have

(3.8) |γ̇|(ϑ) =







1√
−κ

sinh(
√−κr), κ < 0;

r, κ = 0;
1√
κ
sin(

√
κr), κ > 0.

We denote by f(κ, r) the function defined by the right-hand side of (3.8). It is easy to see that, for
a fixed r, the function κ 7→ f(κ, r) is strictly decreasing

Since any point of M2
κ can be mapped to p = (0, 0, 1) by an isometry of M2

κ (cf. Exercises
6), we may place the “origin” of polar coordinates to any point of M2

κ . Suppose that κ̃ > κ. Fix
p ∈ M2

κ and a geodesic ray M2
κ starting at p. Similarly, we fix p̃ ∈ M2

κ̃ and a geodesic ray starting
at p̃. Then we have polar coordinates (r, ϑ)κ in M2

κ and (r, ϑ)κ̃ in M2
κ̃ , where r is the distance to p

(resp. p̃) and the angle ϑ is measured from the fixed geodesic rays. Using these polar coordinates
we define a mapping

h : B(p̃,Dκ̃)
︸ ︷︷ ︸

⊂M2
κ̃

→ B(p,Dκ̃)
︸ ︷︷ ︸

⊂M2
κ

,

h
(
(r, ϑ)κ̃

)
= (r, ϑ)κ, h(p̃) = p.

Then h preserves the distance from p̃, that is,

d
(
h(x), h(p̃)

)
= d(x, p̃) ∀x ∈ B(p̃,Dκ̃).

We claim that

(3.9) d
(
h(x), h(y)

)
≥ d(x, y),

with an equality if and only if p̃, x and y lie on a same geodesic. If p̃, x, and y lie on a same
geodesic, there are three possible cases:

d(x, y) = d(x, p̃) + d(p̃, y) or

d(p̃, x) = d(p̃, y) + d(y, x) or

d(p̃, y) = d(p̃, x) + d(x, y).

There is an equality in (3.9) in all these cases. In order to prove the rest of the claim above, let us
study how the length of a (smooth) path changes under h. Let I ⊂ R be an open interval and let
α : I → M2

−1 be a smooth path, i.e. α is a smooth mapping into R
3 and α(t) ∈ M2

−1 for all t. We
write α = (α1, α2, α3), where αi : I → R, i = 1, 2, 3. For all t ∈ I, we have

α′(t) = (α′
1(t), α

′
2(t), α

′
3(t))

︸ ︷︷ ︸

∈R3

∈ α(t)⊥

since

〈α′(t), α(t)〉2,1 = 1
2

d
dt 〈α(t), α(t)〉2,1
︸ ︷︷ ︸

≡−1

≡ 0.
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Next we express α in the polar coordinates as

α(t) =
(
αr(t), αϑ(t)

)
∈ [0,∞) × S

1.

Then

α1(t) = sinhαr(t) cosαϑ(t),

α2(t) = sinhαr(t) sinαϑ(t),

α3(t) = coshαr(t),

and

α′
1(t) = coshαr(t) cosαϑ(t)α

′
r(t)− sinhαr(t) sinαϑ(t)α

′
ϑ(t),

α′
2(t) = coshαr(t) sinαϑ(t)α

′
r(t) + sinhαr(t) cosαϑ(t)α

′
ϑ(t),

α′
3(t) = sinhαr(t)α

′
r(t).

We claim that

(3.10) |α̇|(t) =
√

〈α′(t), α′(t)〉2,1 =
√

α′
r(t)

2 + sinh2 αr(t)α′
ϑ(t)

2

for all t. The equation on the right-hand side of (3.10) follows from the equations above since, by
definition,

〈α′(t), α′(t)〉2,1 = −α′
3(t)

2 + α′
1(t)

2 + α′
2(t)

2.

To prove the equation on the left-hand side of (3.10), we first observe that

−2
〈
α(t), α(t + s)

〉

2,1
− 2

s2
=

−
(
α3(t+ s)− α3(t)

)2
+
(
α1(t+ s)− α1(t)

)2
+
(
α2(t+ s)− α2(t)

)2

s2

→ −α′
3(t)

2 + α′
1(t)

2 + α′
2(t)

2 = 〈α′(t), α′(t)〉2,1
as s→ 0. Hence there exists, for every t ∈ I, a constant Lt > 0 such that

cosh d
(
α(t+ s), α(t)

)
= −

〈
α(t+ s), α(t)

〉

2,1
≤ 1 +

L2
t

2
s2

whenever |s| is small enough. Since

1 +
L2
t

2
s2 ≤ cosh(Lt|s|),

we obtain
d
(
α(t), α(t + s)

)
≤ Lt|s|

for small |s|. Therefore

−〈α(t), α(t + s)〉2,1 = cosh d
(
α(t), α(t + s)

)

= 1 + 1
2d

2
(
α(t), α(t + s)

)
+O(s4),

and so

d2
(
α(t), α(t + s)

)

s2
=

−2〈α(t), α(t + s)〉2,1 − 2

s2
+O(s2)

→ 〈α′(t), α′(t)〉2,1
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as s→ 0. Hence (3.10) holds. Similarly, for a smooth path α : I →M2
κ , κ ∈ R, we have

(3.11) |α̇|(t) =
√

α′
r(t)

2 + f2
(
κ, αr(t)

)
α′
ϑ(t)

2.

We can now easily prove the claim (3.9) for the mapping h : B(p̃,Dκ̃) → B(p,Dκ̃) between the
balls B(p̃,Dκ̃) ⊂M2

κ̃ and B(p,Dκ̃) ⊂M2
κ . Suppose that x and y are points in B(p̃,Dκ̃) ⊂M2

κ̃ such
that p̃, x, y do not lie on a same geodesic. Denote d = d

(
h(x), h(y)

)
and let α : [0, d] → M2

κ be a
geodesic from h(x) to h(y). Suppose that d

(
p, α(t)

)
< Dκ̃ for all t ∈ [0, d] (the other case is left as

an exercise). Then β = h−1 ◦ α is a path from x to y, and hence

d(x, y) ≤ `(β) =

∫ d

0
|β̇|(t) dt.

By (3.11),

|β̇|(t) =
√

β′r(t)2 + f2
(
κ̃, βr(t)

)
β′ϑ(t)

2.

Here α′
r(t) ≡ β′r(t) and α′

ϑ(t) ≡ β′ϑ(t) 6≡ 0 since βr = αr and βϑ = αϑ and p̃, x, y do not lie on a
same geodesic. Then

0 < f
(
κ̃, βr(t)

)
< f

(
κ, αr(t)

)
,

and we obtain

d(x, y) < `(α) = d
(
h(x), h(y)

)
.

Finally, (3.9) and the criterion 3.2(5) imply that M2
κ is a CAT(κ̃)-space if and only if κ̃ ≥ κ.

Theorem 3.12. A CAT(κ)-space X has the following properties:

(1) For each x, y ∈ X, with d(x, y) < Dκ, there exists a unique geodesic segment from x to y.
This geodesic segment varies continuously with its endpoints. That is, if xn → x, yn → y,
with d(xn, yn) < Dκ, and if αn : [0, 1] → X and α : [0, 1] → X are constant speed geodesics
such that αn(0) = xn, α(0) = x, αn(1) = yn, and α(1) = y, then αn → α uniformly.

(2) Local geodesics in X of length ≤ Dκ are geodesics.

(3) Balls in X of radius < Dκ/2 are convex. That is, any two points in a ball of radius < Dκ/2
can be joined by a unique geodesic segment and this geodesic segment is contained in the ball.

(4) Balls in X of radius < Dκ are contractible.5

(5) For every λ < Dκ and ε > 0 there exists δ = δ(κ, λ, ε) such that if m is the midpoint of a
geodesic segment [x, y] ⊂ X, with d(x, y) ≤ λ, and if

max{d(x,m′), d(y,m′)} ≤ 1
2d(x, y) + δ,

then d(m,m′) < ε.

5Recall that a topological space Y is contractible if there exists a point x0 ∈ X and a homotopy h : X× [0, 1] → X

such that

h(x, 0) = x and h(x, 1) = x0 ∀x ∈ X.
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Proof. (1) Let p, q ∈ X with d(p, q) < Dκ. Since X is Dκ-geodesic by definition, there exists a
geodesic from x to y. Suppose that [p, q] and [p, q]′ are geodesic segments. Let r ∈ [p, q], p 6= r 6= q,
and r′ ∈ [p, q]′, p 6= r′ 6= q, be such that d(p, r) = d(p, r′). Consider the geodesic triangle

∆ = [p, r] ∪ [r, q] ∪ [p, q]′,

where [p, r], [r, q] ⊂ [p, q]. Then any κ-comparison triangle of ∆ is degenerate, and therefore the
comparison points r̄ and r̄′ (of r and r′) are the same. By the criterion 3.2(2),

d(r, r′) ≤ d(r̄, r̄′) = 0.

Since r ∈ [p, q] is arbitrary, we have [p, q] = [p, q]′.
To prove the second statement in (1), let xn, yx, αn, and α be as in the claim. We may assume

that

(3.13) d(x, y), d(xn, yn), d(x, yn) ≤ L < Dκ.

Let α′
n : [0, 1] → X be the (unique) constant speed geodesic from x to yn. If κ ≤ 0, we obtain (cf.

Exercise 7/1)

d
(
αn(t), α

′
n(t)

)
≤ (1− t)d(xn, x) ≤ d(xn, x)

and

d
(
α′
n(t), α(t)

)
≤ t d(yn, y) ≤ d(yn, y),

and hence d
(
αn(t), α(t)

)
→ 0 uniformly in t. Suppose then that κ > 0. Since yn → y, the perimeter

of ∆(x, yn, y) is less that 2Dκ for large n, and we have by the criterion 3.2(3) that

∠
(κ)
x

(
α′
n(t), α(t)

)
≤ ∠

(κ)
x (yn, y)

for every t ∈ [0, 1]. Furthermore, ∠
(κ)
x (yn, y) → 0 by the law of cosines and (3.13). Let x̄, ᾱ(t), and

ᾱ′
n(t) be the vertices of a κ-comparison triangle of ∆(x, α(t), α′

n(t)). Furthermore, let x̃, ỹ, ỹn, α̃
′
n(t),

and α̃(t) be points in R
2 such that

α̃′
n(t) ∈ [x̃, ỹn], α̃(t) ∈ [x̃, ỹ],

|x̃− α̃′
n(t)| = d

(
x, α′

n(t)
)
= d
(
x̄, ᾱ′

n(t)
)
,

|x̃− ỹn| = d(x, yn),

|x̃− α̃(t)| = d
(
x, α(t)

)
= d
(
x̄, ᾱ(t)

)
,

|x̃− ỹ| = d(x, y), and

∠
(0)
x (yn, y) = ∠

(κ)
x (yn, y).

Since R
2 is a CAT(κ)-space for κ ≥ 0, we obtain by the criterion 3.2(5) that

d
(
α(t), α′

n(t)
)
= d
(
ᾱ(t), ᾱ′

n(t)
)
≤ |α̃(t)− α̃′

n(t)| ≤ |ỹ − ỹn|.

By the (usual) law of cosines, |ỹ − ỹn| → 0 as n→ ∞. Hence

d
(
α(t), α′

n(t)
)
→ 0

uniformly in t. Similarly,

d
(
αn(t), α

′
n(t)

)
→ 0
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uniformly in t, and therefore αn → α uniformly.
(2) Let γ : [0, L] → X be a local geodesic of length L ≤ Dκ. Let

T = {t ∈ [0, L] : γ|[0, t] is a geodesic}.

Then clearly T is closed and non-empty. Thus we obtain T = [0, L] if we show that T is also open.
To prove this, let t0 ∈ T, 0 < t0 < L. Since γ is a local geodesic, there exists 0 < ε < min{L−t0, t0}
such that γ|[t0 − ε, t0 + ε] is a geodesic. Consider a geodesic triangle

∆ = γ[0, t0] ∪ γ[t0, t0 + ε] ∪ [γ(0), γ(t0 + ε)].

Then the Alexandrov angle between segments γ[t0−ε, t0] and γ[t0, t0+ε] at γ(t0) is equal to π, and
therefore, by 3.2(4), the same is true for the κ-comparison angle. It follows that any κ-comparison
triangle of ∆ is degenerate, and consequently

`(γ|[0, t0 + ε]) = d
(
γ(0), γ(t0 + ε)

)
.

Hence [0, t0 + ε] ⊂ T , and so T = [0, L].
(3) Let x, y ∈ B(p, r), where r < Dκ/2. Then d(x, y) < Dκ, and hence there exists a unique

geodesic segment [x, y]. Since X is a CAT(κ)-space and B(p̄, r) ⊂M2
κ is convex, we have

d(p, z) ≤ d(p̄, z̄) < r

for all z ∈ [x, y]. Hence [x, y] ⊂ B(p, r), and so B(p, r) is convex.
(4) Let B = B̄(x, r), r < Dκ, and let h : B × [0, 1] → X be the mapping such that h(y, t) is the

unique point z on the unique geodesic segment [x, y], with d(z, y) = t d(x, y). By (1), the segment
[x, y] varies continuously with y and hence h is continuous. Clearly, h(y, 0) = y and h(y, 1) = x for
every y ∈ B. Thus B is contractible.

(5) Let x, y,m′, and m be as in the claim. Consider a κ-comparison triangle ∆̄κ(x, y,m
′). Then

d(m,m′) ≤ d(m̄, m̄′)

and the claim follows from Exercise 7/4.

Corollary 3.14. A CAT(κ)-space X, with κ ≤ 0, is contractible. In particular, X is simply
connected.

3.15 CAT(κ) 4-point condition and 4-point limits of CAT(κ)-spaces

In this section we formulate a condition for a CAT(κ)-space by using quadrilaterals.

Definition 3.16. Let X be a metric space, x1, y1, x2, y2 ∈ X, and κ ∈ R. We say that a 4-tuple
(x̄1, ȳ1, x̄2, ȳ2) of points in M

2
κ is a subembedding in M2

κ of (x1, y1, x2, y2) if

d(x̄i, ȳj) = d(xi, yj) for i, j ∈ {1, 2},
d(x1, x2) ≤ d(x̄1, x̄2), and

d(y1, y2) ≤ d(ȳ1, ȳ2).

Definition 3.17. A metric space X satisfies the CAT(κ) 4-point condition if every 4-tuple
(x1, y1, x2, y2) with (perimeter) d(x1, y1) + d(y1, x2) + d(x2, y2) + d(y2, x1) < 2Dκ has a subem-
bedding in M2

κ .
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We say that a pair of points x, y ∈ X has approximate midpoints (cf. Theorem 1.64) if, for
every ε > 0 there exists m′ ∈ X such that

max{d(x,m′), d(y,m′)} ≤ 1
2d(x, y) + ε.

Theorem 3.18. For a complete metric space X the following two conditions are equivalent:

(1) X is a CAT(κ)-space.

(2) X satisfies the CAT(κ) 4-point condition and each pair of points x, y ∈ X, with d(x, y) < Dκ,
has approximate midpoints.

Proof. (1) ⇒ (2): Since X is Dκ-geodesic, there are approximate midpoints for all x, y, with
d(x, y) < Dκ. Let (x1, y1, x2, y2) be a 4-tuple with d(x1, y1)+d(y1, x2)+d(x2, y2)+d(y2, x1) < 2Dκ.
Choose κ-comparison triangles

∆(x̄1, x̄2, ȳ1) = ∆̄κ(x1, x2, y1) and ∆(x̄1, x̄2, ȳ2) = ∆̄κ(x1, x2, y2)

such that they have a common side [x̄1, x̄2] and that ȳ1 and ȳ2 lie on opposite sides of the line x̄1x̄2.
There are two cases: either the segments (diagonals) [x̄1, x̄2], [ȳ1, ȳ2] intersect at some point z̄ or
they do not intersect. In the first case, let z ∈ [x1, x2] be such that d(x1, z) = d(x̄1, z̄). Then

d(y1, y2) ≤ d(y1, z) + d(z, y2)

≤ d(ȳ1, z̄) + d(z̄, ȳ2)

= d(ȳ1, ȳ2)

by the triangle and CAT(κ) inequalities. Note that d(x1, x2) = d(x̄1, x̄2). Hence (2) holds. In the
second case (i.e. [x̄1, x̄2]∩ [ȳ1, ȳ2] = ∅), there exists a geodesic triangle inM2

κ with vertices x̃k, ỹ1, ỹ2,
where k = 1 or k = 2, and x̃n ∈ [ỹ1, ỹ2], n ∈ {1, 2} \ {k}, such that

d(x̃i, ỹj) = d(xi, yj), i, j ∈ {1, 2} and

d(ỹ1, ỹ2) = d(ỹ1, x̃n) + d(x̃n, ỹ2)

= d(y1, xn) + d(xn, y2)

≥ d(y1, y2).

By Alexandrov’s lemma,

d(x̃k, x̃n) ≥ d(x1, x2).

Hence (x̃k, ỹ1, x̃n, ỹ2) is a subembedding of (x1, y1, x2, y2).

(2) ⇒ (1): Let ∆ = ∆(p, q, r) ⊂ X be a geodesic triangle of perimeter < Dκ and let x ∈ [q, r].
Let (p̄, q̄, x̄, r̄) be a subembedding in M2

κ of (p, q, x, r). Since

d(q, r) ≤ d(q̄, r̄) ≤ d(q̄, x̄) + d(x̄, r̄) = d(q, x) + d(x, r) = d(q, r),

the triangle ∆(p̄, q̄, r̄) ⊂ M2
κ is a κ-comparison triangle of ∆ and x̄ is the comparison point of x.

By the definition of a subembedding,

d(p, x) ≤ d(p̄, x̄),

and hence ∆ satisfies the CAT(κ)-inequality.
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It remains to prove that X is Dκ-geodesic. Since X is assumed to be complete, it suffices to
show that each pair of points x, y ∈ X, with d(x, y) < Dκ has the midpoint. Let (mi) be a sequence
of approximate midpoints of x and y such that

max{d(x,mi), d(y,mi)} ≤ 1
2d(x, y) + 1/i.

We claim that (mi) is a Cauchy-sequence. If this is the case, its limit m0 will be the midpoint of
x, y. Fix ε > 0 and d(x, y) < ` < Dκ. Recall from Exercise 7/4 that there exists δ = δ(κ, `, ε) such
that, if p, q ∈M2

κ , with d(p, q) ≤ ` and if

max{d(p,m′), d(q,m′)} < 1
2d(p, q) + δ,

then d(m,m′) < ε, where m is the midpoint of [p, q]. For each i, j, let (x̄, m̄i, ȳ, m̄j) be a subem-
bedding in M2

κ of (x,mi, y,mj). Then, by definition,

d(mi,mj) ≤ d(m̄i, m̄j)

and

d(x̄, ȳ) ≤ d(x̄, m̄i) + d(m̄i, ȳ)

= d(x,mi) + d(mi, y)

≤ d(x, y) + 2/i.

Thus d(x̄, ȳ) ≤ ` and max{1/i, 1/j} < δ for all sufficiently large i, j. For such i, j,

d(m̄i, m̄) < ε and d(m̄j , m̄) < ε,

where m̄ is the midpoint of [x̄, ȳ]. It follows that

d(mi,mj) ≤ d(m̄i, m̄j) < 2ε

for all sufficiently large i, j. Thus (mi) is a Cauchy-sequence.

Remark 3.19. The assumption that X be complete was not used in the proof of (1) ⇒ (2). Thus
every CAT(κ)-space satisfies the CAT(κ) 4-point condition.

Definition 3.20. A metric space (X, d) is called a 4-point limit of a sequence of metric spaces
(Xn, dn) if, for all 4-tuple (x1, x2, x3, x4) of points in X and all ε > 0, there exist infinitely many n ∈
N such that there are 4-tuples

(
x1(n), x2(n), x3(n), x4(n)

)
inXn with |d(xi, xj)−dk

(
xi(n), xj(n)

)
| <

ε for 1 ≤ i, j ≤ 4.

Theorem 3.21. Let (Xn, dn) be a sequence of CAT(κn)-spaces, with κ = limn→∞ κn. Let (X, d) be
a complete metric space such that each pair of points x, y ∈ X, with d(x, y) < Dκ, has approximate
midpoints. If (X, d) is a 4-point limit of the sequence (Xn, dn), then X is a CAT(κ)-space.

Proof. We will show that X is a CAT(κ′)-space for all κ′ > κ. By 3.5(1), this implies that X is
a CAT(κ)-space. By 3.18, it suffices to show that X satisfies the CAT(κ′) 4-point condition for
all κ′ > κ. Fix κ′ > κ. Then, for all sufficiently large n, κn < κ′ and hence Xn is a CAT(κ′)-
space. Since X is a 4-point limit of Xn’s, there exist a sequence of integers ni → ∞ and 4-tuples
(
x1(ni), y1(ni), x2(ni), y2(ni)

)
of points of Xni

such that

dni

(
xj(ni), xk(ni)

)
→ d(xj , xk), dni

(
yj(ni), yk(ni)

)
→ d(yj, yk), and

dni

(
xj(ni), yk(ni)

)
→ d(xj , yk)
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for j, k ∈ {1, 2} as ni → ∞. Since Xni
is a CAT(κ′)-space, the 4-tuple

(
x1(ni), y1(ni), x2(ni), y2(ni)

)

has a subembedding
(
x̄1(ni), ȳ1(ni), x̄2(ni), ȳ2(ni)

)
in M2

κ′ . We may assume that x̄1(ni) = x̄1 for
all ni. Then all the points x̄2(ni), ȳ1(ni), ȳ2(ni) belong to a compacts set. By passing to a
subsequence, we may assume that

x̄2(ni) → x̄2, ȳ1(ni) → ȳ1, and ȳ2(ni) → ȳ2.

Clearly (x̄1, ȳ1, x̄2, ȳ2) is a subembedding of (x1, y1, x2, y2) in M
2
κ′ . Hence X satisfies the CAT(κ′)

4-point condition.

Corollary 3.22. If (X, d) is a CAT(κ)-space, then its completion (X̃, d̃) is a CAT(κ)-space.

Proof. Clearly (X̃, d̃) is a 4-point limit of the constant sequence (Xn, dn) = (X, d) and it has
approximate midpoints. Thus X̃ is a CAT(κ)-space.

3.23 Cones

Let (Y, d) be a metric space and κ ∈ R. The κ-cone over Y , denoted by

X = CκY,

is the following metric space. For κ ≤ 0, X (as a set) is the quotient space

X = [0,∞) × Y/∼,

where ∼ is the equivalence relation

(t, y) ∼ (t′, y′) ⇐⇒ t = t′ = 0 or (t, y) = (t′y′).

If κ > 0, then
X = [0,Dκ/2] × Y/∼,

with the same equivalence relation as above. We denote points of X (i.e. equivalence classes) by
ty = [(t, y)] and 0 = [(0, y)] and call 0 the vertex of CκY .

Next we define the metric on CκY . Let dπ(y, y
′) = min{π, d(y, y′)} and x = ty, x′ = t′y′. If

x′ = 0, we set d(x, x′) = t. If t, t′ > 0, we define d(x, x′) so that

∠
(κ)
0 (x, x′) = dπ(y, y

′).

Thus
d(x, x′)2 = t2 + t′2 − 2tt′ cos(dπ(y, y

′))

if κ = 0,

cosh
(√

−κd(x, x′)
)
= cosh(

√
−κt) cosh(

√
−κt′)− sinh(

√
−κt) sinh(

√
−κt′) cos(dπ(y, y′))

if κ < 0, and

cos
(√
κd(x, x′)

)
= cos(

√
κt) cos(

√
κt′) + sin(

√
κt) sin(

√
κt′) cos(dπ(y, y

′)) and d(x, x′) ≤ Dκ

if κ > 0.

Remark 3.24. If Y = S
n−1, then CκY is isometric to Mn

κ if κ ≤ 0, or to a closed ball in Mn
κ of

radius Dκ/2 if κ > 0. [This can be seen by using polar coordinates (t, ϑ) ∈ [0,Dκ]× S
n−1 in Mn

κ .]
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Theorem 3.25. (1) d(x, x′) defines a metric in X = CκY .

(2) Y is complete ⇐⇒ CκY is complete.

Proof. We will prove only (1), the proof of (2) is left as an exercise. It suffices to verify the triangle
inequality. Let xi = tiyi ∈ X, i = 1, 2, 3. We want to show that

(3.26) d(x1, x3) ≤ d(x1, x2) + d(x2, x3).

If ti = 0 for some i = 1, 2, 3, then (3.26) follows easily from the triangle inequality in M2
κ . Suppose

that ti > 0 for i = 1, 2, 3. There are two cases:
(i) d(y1, y2) + d(y2, y3) < π. The triangle inequality in Y implies that d(y1, y3) < π. Choose

ȳ1, ȳ2, ȳ3 ∈ S
2 such that d(ȳi, ȳj) = d(y1, yj) for i, j ∈ {1, 2, 3}. It follows from the definition of

d that the subcone Cκ{y1, y2, y3} ⊂ X is isometric to a subcone Cκ{ȳ1, ȳ2, ȳ3} ⊂ M3
κ [use polar

coordinates in M3
κ ]. The inequality (3.26) follows then from the triangle inequality in M3

κ .
(ii) d(y1, y2) + d(y2, y3) ≥ π. Fix three points ȳ1, ȳ2, ȳ3 ∈ S

1 (occurring in that order) such that

d(ȳ1, ȳ2) = dπ(y1, y2) and d(ȳ2, ȳ3) = dπ(y2, y3).

Identify CκS
1 withM2

κ if κ ≤ 0 or with a closed hemisphere inM2
κ if κ > 0. Let x̄i = tȳi, i = 1, 2, 3.

Then
d(x1, x2) = d(x̄1, x̄2), d(x2, x3) = d(x̄2, x̄3),

and
d(x1, x3) ≤ d(x1, 0) + d(0, x3) = t1 + t3.

Since d(ȳ1, ȳ2) + d(ȳ2, ȳ3) ≥ π, we have

t1 + t3 ≤ d(x̄1, x̄2) + d(x̄2, x̄3)

by Alexandrov’s lemma. Hence

d(x1, x3) ≤ t1 + t3 ≤ d(x1, x2) + d(x2, x3).

Theorem 3.27. The κ-cone X = CκY over a metric space Y is a CAT(κ)-space if and only if Y
is a CAT(1)-space.

Proof. Suppose that Y is a CAT(1)-space. First we claim that every pair of points x1 = t1y1, x2 =
t2y2 ∈ X can be joined by a geodesic. This is clear if ti = 0 for some i = 1, 2. Therefore, suppose
that t1, t2 > 0. If d(y1, y2) ≥ π, then d(x1, x2) = t1 + t2 and the claim follows. If d(y1, y2) < π (and
t1, t2 > 0), then the subcone Cκ[y1, y2] ⊂ X is isometric to a sector (subcone) Cκ[ȳ1, ȳ2] ⊂ M2

κ ,
which is convex. (Here ȳ1, ȳ2 ∈ S

1, with d(ȳ1, ȳ2) = d(y1, y2).) Hence there is a geodesic segment
joining x1 and x2.

Next we verify the CAT(κ)-inequality for a geodesic triangle ∆ ⊂ X with vertices x1 = tiyi, i =
1, 2, 3, and perimeter < 2Dκ. If ti = 0 for some i = 1, 2, 3, then the triangle ∆ is isometric to its
comparison triangle in M2

κ and hence satisfies the CAT(κ)-inequality.
Thus we may assume that ti > 0, i = 1, 2, 3. Then there are three cases:

(i) d(y1, y2) + d(y2, y3) + d(y3, y1) < 2π;

(ii) d(y1, y2) + d(y2, y3) + d(y3, y1) ≥ 2π but d(yi, yj) < π for all i, j = 1, 2, 3;
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(iii) d(yi, yj) ≥ π for some i, j = 1, 2, 3.

(i): Denote ∆Y = [y1, y2] ∪ [y2, y3] ∪ [y3, y1] ⊂ Y . Fix a comparison triangle ∆̄Y ⊂ M2
1 = S

2

with vertices ȳ1, ȳ2, ȳ3. The (comparison) map ∆̄Y → ∆Y , ȳ 7→ y, extends to a bijection

Cκ∆̄Y
︸ ︷︷ ︸

⊂M3
κ

→ Cκ∆Y ⊂ X, tȳ 7→ ty,

where ȳ ∈ ∆̄Y is the comparison point of y ∈ ∆Y . Fix an arbitrary point x = ty ∈ [x2, x3] and
let ȳ ∈ [ȳ2, ȳ3] be the comparison point of y ∈ [y2, y3]. The triangle ∆(x̄1, x̄2, x̄3) ⊂ M3

κ , with
x̄i = tiȳi, can be interpreted as a κ-comparison triangle of ∆ = ∆(x1, x2, x3), with x̄ = tȳ as the
comparison point of x ∈ [x2, x3]. Since Y is a CAT(1)-space, d(y, y1) ≤ d(ȳ, ȳ1), and it follows from
the definition of the metric d on X, that

d(x, x1) ≤ d(x̄, x̄1).

Hence ∆ satisfies the CAT(κ)-inequality.
(ii): Choose κ-comparison triangles ∆(0̃, x̃1, x̃2) ⊂ M2

κ and ∆(0̃, x̃1, x̃3) ⊂ M2
κ of ∆(0, x1, x2) ⊂

X and ∆(0, x1, x3) ⊂ X, respectively, such that x̃2 and x̃3 lie on opposite sides of the line 0̃x̃1. By
the definition of the metric d on X, we have

∠0̃(x̃1, x̃2) = d(y1, y2),

∠0̃(x̃1, x̃3) = d(y1, y3),

∠x̃1
(0̃, x̃2) = ∠x1

(
[x1, 0], [x1, x2]

)
, and

∠x̃1
(0̃, x̃3) = ∠x1

(
[x1, 0], [x1, x3]

)
.

The last two equalities hold since ∆(0, x1, x2) is isometric to ∆(0̃, x̃1, x̃2) and ∆(0, x1, x3) is isometric
to ∆(0̃, x̃1, x̃3). By the assumption (ii),

d(y1, y2) + d(y1, y3) > π,

and therefore

∠0̃(x̃2, x̃3) = 2π − ∠0̃(x̃2, x̃1)
︸ ︷︷ ︸

=d(y1,y2)

−∠0̃(x̃3, x̃1)
︸ ︷︷ ︸

=d(y1,y3)

≤ d(y2, y3) = ∠
(κ)
0 (x2, x3),

and thus
d(x̃2, x̃3) ≤ d(x2, x3).

Hence we have, for the comparison triangle ∆̄ = ∆(x̄1, x̄2, x̄3) of ∆ = ∆(x1, x2, x3),

∠x̄1
(x̄2, x̄3) ≥ ∠x̃1

(x̃2, x̃3)

= ∠x̃1
(x̃2, 0̃) + ∠x̃1

(x̃3, 0̃)

= ∠x1

(
[x1, 0], [x1, x2]

)
+ ∠x1

(
[x1, 0], [x1, x3]

)

≥ ∠x1

(
[x1, x2], [x1, x3]

)
,

that is, the condition 3.2(4) holds.
(iii): Suppose that d(y1, y3) ≥ π. Then

[x1, x3] = [x1, 0] ∪ [0, x3].
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Choose κ-comparison triangles ∆̄1 = ∆(0̄, x̄1, x̄2) and ∆̄3 = ∆(0̄, x̄3, x̄2) of ∆1 = ∆(0, x1, x2) and
∆3 = ∆(0, x3, x2), respectively, such that x̄1 and x̄3 lie on opposite sides of the line 0̄x̄2. Note
that ∆̄1 is isometric to ∆(0, x1, x2) and ∆̄3 is isometric to ∆(0, x3, x2). Hence we can estimate the
Alexandrov’s angles of ∆(x1, x2, x3)

∠x1

(
[x1, x2], [x1, x3]

)
= ∠x1

(
[x1, x2], [x1, 0]

)
= ∠x̄1

(x̄2, 0̄),

∠x3

(
[x3, x2], [x3, x1]

)
= ∠x3

(
[x3, x2], [x3, 0]

)
= ∠x̄3

(x̄2, 0̄), and

∠x2

(
[x2, x1], [x2, x3]

)
≤ ∠x2

(
[x2, x1], [x2, 0]

)
+ ∠x2

(
[x2, 0], [x2, x3]

)

= ∠x̄2
(x̄1, 0̄) + ∠x̄2

(0̄, x̄3).

Since

π ≤ d(y1, y3) ≤ d(y1, y2) + d(y2, y3),

we have

dπ(y1, y2) + dπ(y2, y3) ≥ π.

Hence

∠0̄(x̄1, x̄2) + ∠0̄(x̄2, x̄3) = dπ(y1, y2) + dπ(y2, y3) ≥ π.

By Alexandrov’s lemma, the vertex angles of a κ-comparison triangle ∆̄(x1, x2, x3) are greater than
or equal to the corresponding Alexandrov’s angles of ∆(x1, x2, x3), i.e. the condition 3.2(4) holds.

Suppose then that X is a CAT(κ)-space. We leave it as an exercise to show that Y is π-
geodesic. Let ∆ ⊂ Y be a geodesic triangle with vertices y1, y2, y3 and perimeter < 2π. Let
∆̄ = ∆(ȳ1, ȳ2, ȳ3) ⊂ M2

1 = S
2 be its comparison triangle. For y ∈ [y2, y3], let ȳ ∈ [ȳ2, ȳ3] denote its

comparison point. Let xi = εyi, i = 1, 2, 3, be points of the subcone Cκ∆ ⊂ X, where ε > 0 is so
small that the perimeter of ∆′ = ∆(x1, x2, x3) is < 2Dκ. Now Cκ∆̄ ⊂ CκS

2 ⊂ M3
κ , and the points

x̄i = εȳ1, i = 1, 2, 3, are the vertices of a κ-comparison triangle ∆̄′ of ∆′. If x = ty ∈ [x2, x3] ⊂ ∆′,
then x̄ = tȳ is its comparison point. Since X is a CAT(κ)-space, we have

d(x, x1) ≤ d(x̄, x̄1).

Hence

d(y, y1) ≤ d(ȳ, ȳ1)

by the definition of the metric on X = CκY .

Corollary 3.28. The following conditions are equivalent for a metric space Y :

(1) CκY is a CAT(κ)-space.

(2) CκY is of curvature ≤ κ.

(3) A neighborhood of the vertex 0 ∈ CκY is a CAT(κ)-space.

Proof. Implications (1) ⇒ (2) ⇒ (3) hold trivially and (3) ⇒ (1) follows from the last part of the
proof above.
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3.29 Space of directions and tangent cone

Definition 3.30. Let X be a metric space and p ∈ X. We say that two geodesics α : [0, a] → X
and β : [0, b] → X, with α(0) = p = β(0), define the same direction at p if the Alexandrov angle
∠p(α, β) = 0. The triangle inequality for Alexandrov angles (Theorem 2.17) implies that

α ∼ β ⇐⇒ ∠p(α, β) = 0

is an equivalence relation in the set of geodesics emanating from p. Furthermore, ∠p(·, ·) defines
a metric in the set of equivalence classes. The resulting metric space is denoted by Sp(X) and
called the space of directions at p. The 0-cone (Euclidean cone) over Sp(X), C0Sp(X), is called the
tangent cone at p.

Theorem 3.31. Let X be a metric space of curvature ≤ κ for some κ ∈ R. Then the completion
of Sp(X) is a CAT(1)-space and the completion of C0Sp(X) is a CAT(0)-space for every p ∈ X.

Proof. By Theorems 3.25 and 3.27, it suffices to prove that the completion of C0Sp(X) is a CAT(0)-
space. Furthermore, by Theorem 3.18 and Corollary 3.28, it is enough to show that a neighborhood
of the vertex 0 ∈ Cκ(Sp(X)) satisfies the CAT(0) 4-point condition and has approximate midpoints.
Since Sp(X) depends only on a neighborhood of p, we may assume that X is a CAT(κ)-space of
diameter < Dκ/2. Then there exists a unique geodesic segment [p, x] for every x ∈ X \ {p}. We
denote by ~x ∈ Sp(X) the equivalence class of [p, x]. Let j : X → C0Sp(X) be the mapping

j(x) =

{

0, x = p;

d(x, p)~x, x 6= p.

For each t ∈ [0, 1], we denote by tx the unique point in [p, x] such that d(p, tx) = td(p, x). If
ε ∈ (0, 1], we define a pseudometric dε by setting

dε(x, y) =
1
εd(εx, εy).

Then

dε(p, x) =
1
εd(εp, εx) =

1
εd(p, εx) = d(p, x).

Note that (X, dε) satisfies the CAT(ε2κ) 4-point. Fix x, y ∈ X \ {p}, and let

γε = ∠̄p(εx, εy)
(
= ∠

(0)
p (εx, εy)

)
.

Then

d(εx, εy)2 = d(p, εx)2 + d(p, εy)2 − 2d(p, εx)d(p, εy) cos γε

= ε2d(p, x)2 + ε2d(p, y)2 − ε22d(p, x)d(p, y) cos γε,

and so

(3.32) dε(x, y)
2 = d(p, x)2 + d(p, y)2 − 2d(p, x)d(p, y) cos γε.

Since X is a CAT(κ)-space, the limit

∠p

(
[p, x], [p, y]

)
= lim

ε→0
γε
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exists (in strong sense). Hence by (3.32) the limit

d0(x, y) := lim
ε→0

dε(x, y)

exists for all x, y ∈ X. Note that

∠p

(
[p, x], [p, y]

)
= ∠p(~x, ~y) = d(~x, ~y),

the distance between points ~x, ~y ∈ Sp(X). By the definition of the metric in C0Sp(X), we have

d
(
j(x), j(y)

)2
= d(p, x)2 + d(p, y)2 − 2d(p, x)d(p, y) cos d(~x, ~y),

and hence the mapping

j : (X, d0) → C0Sp(X)

satisfies

d
(
j(x), j(y)

)
= d0(x, y).

Moreover, the pseudometric space (X, d0) satisfies the CAT(0) 4-point condition since it satisfies the
CAT(ε2κ) 4-point condition for every ε ∈ (0, 1]. The image jX ⊂ C0Sp(X) contains a neighborhood
of the vertex 0, and hence a neighborhood of 0 satisfies the CAT(0) 4-point condition. It remains
to prove that each pair j(x), j(y) ∈ C0Sp(X) has approximate midpoints.

Suppose first that κ ≤ 0. Let mε be the midpoint of [εx, εy]. We claim that the points 1
ε j(mε)

are approximate midpoints of j(x) and j(y) for small ε. By Exercise 7/1, the metric of X is convex,
and thus

d0(x, y) = lim
ε→0

dε(x, y) = lim
ε→0

1
ε d(εx, εy)︸ ︷︷ ︸

≤εd(x,y)

≤ d(x, y)

for all x, y ∈ X. Hence

d
(
j(x), 1ε j(mε)

)
= 1

εd
(
εj(x), j(mε)

)
= 1

εd0(εx,mε) ≤ 1
εd(εx,mε)

= 1
2εd(εx, εy) =

1
2dε(x, y).

Similarly,

d
(
j(y), 1ε j(mε)

)
≤ 1

2dε(x, y).

Since for every δ > 0 there exists ε ∈ (0, 1] such that

1
2dε(x, y) ≤ 1

2d0(x, y) + δ = 1
2d
(
j(x), j(y)

)
+ δ,

we see that the points 1
ε j(mε) are approximate midpoints of j(x) and j(y) for small ε.

Suppose then that κ > 0. The proof is similar to the case of κ ≤ 0 except that we replace
inequalities d0(εx,mε) ≤ d(x,mε) and d0(εy,mε) ≤ d(y,mε) above (which hold for κ ≤ 0) by
estimates

d0(εx,mε) = lim
ε̄→0

dε̄(εx,mε) = lim
ε̄→0

1
ε̄ d(ε̄εx, ε̄mε)
︸ ︷︷ ︸

≤ε̄C(ε)d(εx,mε)

≤ C(ε)d(εx,mε)

and

d0(εy,mε) ≤ C(ε)d(εy,mε),

where C(ε) → 1 as ε → 0. These estimates follow from the CAT(κ) criterion 3.2(2) and from
Lemma 3.33 below.
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Lemma 3.33. For all κ ∈ R there exists a function C : [0,Dκ/2) → R such that limR→0C(R) = 1
and for all p ∈M2

κ and all x, y ∈ B(p,R), we have

d(εx, εy) ≤ εC(R)d(x, y).

Proof. The claim for κ ≤ 0 holds with C(r) ≡ 1 by the convexity of the metric in CAT(0)-spaces.
Thus we may assume that κ > 0. Let x, y ∈ B(p,R) and let α : [0, d(x, y)] → [x, y] ⊂ B(p,R) be
the geodesic joining x and y. We write α in polar coordinates (origin at p) as

α(t) =
(
αr(t), αϑ(t)

)

κ
.

Then the path β : [0, d(x, y)] → B(p,R),

β(t) =
(
εαr(t), αϑ(t)

)

κ
,

joins εx and εy, and hence by (3.11)

d(εx, εy) ≤ `(β) =

∫ d(x,y)

0
|β̇|(t) dt

=

∫ d(x,y)

0

√

ε2α′
r(t)

2 + 1
κ sin

2
(√
κεαr(t)

)
α′
ϑ(t)

2

= ε

∫ d(x,y)

0

√

α′
r(t)

2 + 1
κε2

sin2
(√
κεαr(t)

)
α′
ϑ(t)

2.

The claim follows since
sin(tγ)

t sin γ
→ 1

as γ → 0.

4 The Cartan-Hadamard theorem

We start with some definitions. Let (X, d) be a metric space. We say that the metric d on X is
convex if

(a) X is a geodesic space and

(b) all geodesics α : [0, a] → X and β : [0, b] → X, with α(0) = β(0), satisfy the inequality

d
(
α(ta), β(tb)

)
≤ t d

(
α(a), β(b)

)

for all t ∈ [0, 1].

The metric d is said to be locally convex if every point has a neighborhood where the induced
metric is convex. It follows immediately from the definition that X is (locally) uniquely geodesic if
d is (locally) convex.

If Y is a topological space and Ỹ is a simply connected covering space of Y , then Ỹ (or the
pair (Ỹ , π), where π : Ỹ → Y is a covering map) is called a universal covering space of Y . It is a
covering space of any other covering space of Y , and hence unique up to a homeomorphism. It is
known that a connected, locally path-connected, and semi-locally simply connected space Y has a
universal covering space. In particular, if the metric d on X is locally convex, then X is (locally)
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contractible by Exercise 8/2, and hence X has the universal covering space X̃ . It follows from
Theorem 1.107 that there exists a unique length metric d̃ in X̃ such that π : X̃ → X is a local
isometry. It is defined by

d̃(x̃, ỹ) = inf
γ̃
`(π ◦ γ),

where the infimum is taken over all paths γ : I → X̃ joining x̃ and ỹ, and it is called the induced
length metric.

Theorem 4.1. Let X be a connected complete metric space.

(1) If the metric of X is locally convex, then the induced length metric on the universal covering
space X̃ is convex. In particular, X̃ is uniquely geodesic and geodesics in X̃ vary continuously
with their endpoints.

(2) If X is of curvature ≤ κ ≤ 0, then X̃ is a CAT(κ)-space.

For the proof of the Cartan-Hadamard theorem we need some lemmas and definitions. We say
that a metric space (X, d) is locally complete if, for each point x ∈ X, there is rx > 0 such that
(
B̄(x, rx), d

)
is a complete metric space.

Lemma 4.2. Let X be a locally complete metric space whose metric d is locally convex. Let
γ : [0, 1] → X be a local constant speed geodesic from x to y. Let ε > 0 be so small that the induced
metric in B̄

(
γ(t), 2ε

)
is complete and convex for all t ∈ [0, 1]. Then

(1) for all x̄, ȳ ∈ X, with d(x, x̄) < ε and d(y, ȳ) < ε, there exists a unique local constant speed
geodesic γ̄ : [0, 1] → X from x̄ to ȳ such that

t 7→ d
(
γ(t), γ̄(t)

)

is a convex function, and

(2)

`(γ̄) ≤ `(γ) + d(x, x̄) + d(y, ȳ).

Proof. First we note that such an ε > 0 exists by the compactness of γ[0, 1].

We prove first the uniqueness of γ̄ and that (1) implies (2). Observe that if γ̄ exists, then the
convexity of

t 7→ d
(
γ(t), γ̄(t)

)

implies that d
(
γ(t), γ̄(t)

)
< ε for all t ∈ [0, 1].

Suppose that α, β : [0, 1] → X are local constant speed geodesics such that

d
(
γ(t), α(t)

)
< ε and d

(
γ(t), β(t)

)
< ε

for all t ∈ [0, 1]. Since the metric is convex in each ball B
(
γ(t), 2ε

)
, the function

t 7→ d
(
α(t), β(t)

)

is locally convex, hence convex. In particular, if α(0) = β(0), then

(4.3) d
(
α(t), β(t)

)
≤ t d

(
α(1), β(1)

)
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for all t ∈ [0, 1]. Furthermore,

d
(
α(0), α(t)

)
= `(α|[0, t]) = t `(α) and

d
(
β(0), β(t)

)
= `(β|[0, t]) = t `(β)

for small t > 0 since α and β are local constant speed geodesics. Hence

t `(β) = d
(
β(0), β(t)

)

= d
(
α(0), β(t)

)

≤ d
(
α(0), α(t)

)
+ d
(
α(t), β(t)

)

≤ t `(α) + t d
(
α(1), β(1)

)
,

and so

(4.4) `(β) ≤ `(α) + d
(
α(1), β(1)

)
.

Suppose then that (1) holds. Let γ̃ be the unique local constant speed geodesic from x̄ to y given
by (1) for the pair x̄, y. We apply (4.4) with α = γ̃ and β = γ̄ to obtain

`(γ̄) ≤ `(γ̃) + d(y, ȳ).

Similarly, applying (1) with α(t) = γ(1− t) and β(t) = γ̃(1− t) yields

`(γ̃) ≤ `(γ) + d(x, x̄).

Thus
`(γ̄) ≤ `(γ) + d(y, ȳ) + d(x, x̄)

and hence (1) implies (2). On the other hand, if also α(1) = β(1), then α = β by (4.3). This shows
the uniqueness of γ̄ (provided γ̄ exists).

It remains to prove the existence of γ̄. For L > 0 consider the following property:

P (L) For all a, b ∈ [0, 1], with 0 < b − a ≤ L, and for all p̄ ∈ B(γ(a), ε) and q̄ ∈ B(γ(b), ε)
there exists a local constant speed geodesic γ̄ : [a, b] → X such that γ̄(a) = p̄, γ̄(b) = q̄, and
d
(
γ(t), γ̄(t)

)
< ε for all t ∈ [a, b].

If L < ε/`(γ), the property P (L) holds. Hence it is sufficient to prove that

P (L) ⇒ P (32L).

Suppose that P (L) holds for L > 0 and fix a, b ∈ [0, 1] such that 0 < b− a ≤ 3
2L. Divide [a, b] into

three intervals [a, a1], [a1, b1], and [b1, b] of equal length. Let p̄ ∈ B(γ(a), ε) and q̄ ∈ B(γ(b), ε).
First we construct Cauchy-sequences (pn) and (qn) in B̄(γ(a1), ε) and B̄(γ(b1), ε), respectively, as
follows. Let p0 = γ(a1) and q0 = γ(b1) and assume that pn−1 and qn−1 are already defined. By
the property P (L) there exist local constant speed geodesics γn : [a, b1] → X joining p̄ to qn−1 and
γ′n : [a1, b] → X joining pn−1 to q̄, respectively, such that

d
(
γ(t), γn(t)

)
< ε for all t ∈ [a, b1] and

d
(
γ(t), γ′n(t)

)
< ε for all t ∈ [a1, b].

Define pn = γn(a1) and qn = γ′n(b1).
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p̄

q̄

γ(b)

p0 = γ(a1)

q0 = γ(b1)
p1

q1

γ(a)

p̄

q̄

γ(b)

pn qn

pn−1

qn−1

γ(a)

By convexity of d in balls B(γ(t), ε), we have that

d(p0, p1) ≤ 1
2d(γ(a), p̄) < ε/2

and that functions

t 7→ d
(
γn(t), γn+1(t)

)

are locally convex on [a, b1], hence convex. Thus

d(pn, pn+1) ≤ d(qn−1, qn)/2.

Similarly,
d(q0, q1) < ε/2 and d(qn, qn+1) ≤ d(pn−1, pn).

Hence

d(pn, pn+1) < ε/2n+1 and d(qn, qn+1) < ε/2n+1

for all n ∈ N, and therefore (pn) and (qn) are Cauchy-sequences in B̄(p0, ε) and B̄(q0, ε), respectively.
Since the function

t 7→ d
(
γn(t), γn+1(t)

)

is convex and bounded by d(qn−1, qn) < ε/2n, the sequence
(
γn(t)

)
is Cauchy in B̄(γ(t), ε) for

every t ∈ [a, b1]. Similarly,
(
γ′n(t)

)
is a Cauchy-sequence in B̄(γ(t), ε) for every t ∈ [a1, b]. Thus

the local constant speed geodesics γn and γ′n converge uniformly to local constant speed geodesics
whose restrictions to [a1, b1] coincide. The union of these local constant speed geodesics gives a
local constant speed geodesic γ̄[a, b] → X satisfying P (32L).

Definition 4.5. Let X be a metric space and p ∈ X. Denote by X̃p the set consisting of the
constant path p̃ : [0, 1] → X, p̃(t) ≡ p, and of all local constant speed geodesics γ : [0, 1] → X with
γ(0) = p. The exponential map at p is the mapping expp : X̃p → X,

expp(γ) = γ(1).

We equip X̃p with the metric

d(α, β) = max{|α(t) − β(t)| : t ∈ [0, 1]}, α, β ∈ X̃p.

Lemma 4.6. Let X be a locally complete metric space whose metric is locally convex. Then

(a) X̃p is contractible (in particular, simply connected) for every p ∈ X,

(b) expp : X̃p → X is a local isometry, and
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(c) for each γ ∈ X̃p there exists a unique local constant speed geodesic in X̃p from p̃ to γ.

Proof. (a) For each γ ∈ X̃p and s ∈ [0, 1], let hs(γ) : [0, 1] → X be a local constant speed geodesic
defined by

hs(γ)(t) = γ(st).

Then we define a mapping H : X̃p × [0, 1] → X̃p by

H(γ, s) = hs(γ).

Fix γ ∈ X̃p and s ∈ [0, 1]. It follows from (4.3) that

d
(
H(γ, s),H(α, s′)

)
= max{|γ(st)− α(s′t)| : t ∈ [0, 1]} = |γ(s)− α(s′)|

if d(γ, α) and |s− s′| are small enough. Hence

d
(
H(γ, s),H(α, s′)

)
≤ |γ(s)− α(s)|+ |α(s)− α(s′)| ≤ d(γ, α) + |α(s)− α(s′)|

for small d(γ, α) and |s − s′|, and therefore H is continuous. Thus H is a homotopy from p̃
to the identity map of X̃p.

(b) By the proof of Lemma 4.2(1) (more precisely, (4.3)), for every γ ∈ X̃p there exists ε > 0
such that expp |B(γ, ε) is an isometry onto B(γ(1), ε). Indeed, given γ ∈ X̃p

|expp(α)− expp(β)| = |α(1) − β(1)| (4.3)= max{|α(t) − β(t)| : t ∈ [0, 1]} = d(α, β)

for all α, β ∈ B(γ, ε), where ε > 0 is given by Lemma4.2(1).

(c) For each γ ∈ X̃p, the path s 7→ H(γ, s) is a local constant speed geodesic from p̃ to γ since

d
(
H(γ, s),H(γ, s′)

)
= |γ(s)− γ(s′)| = `(γ)|s − s′|

whenever |s − s′| is sufficiently small. On the other hand, since expp is a local isometry, a

path γ̃ in X̃p is a local constant speed geodesic if and only if expp ◦γ̃ is a local constant speed
geodesic in X. In particular, the mapping γ̃ 7→ expp ◦γ̃ is a bijection from the set of all local

constant speed geodesics γ̃ in X̃p starting at p̃ to the set of all local constant speed geodesics
in X starting at p. Thus for each γ ∈ X̃p, the path H(γ, ·) is the unique local constant speed
geodesic from p̃ to γ. (Note that expp ◦H(γ, ·) = γ.) Indeed, if γ̃′ 6= H(γ, ·) is another local

constant speed geodesic in X̃p starting at p̃, then

γ′ := expp ◦γ̃′

is a local constant speed geodesic in X starting at p and γ′ 6= γ since expp is a local isometry.
Hence H(γ, ·) is the only local constant speed geodesic from p̃ to γ because γ̃′ ends at γ′ 6= γ.

Lemma 4.7. Suppose that X is a complete metric space, p ∈ X, and that the metric is locally
convex. Then X̃p is complete.
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Proof. Let (γn) be a Cauchy-sequence in X̃p. Since X is complete, the Cauchy-sequence
(
γn(t)

)

converges for every t ∈ [0, 1]. Denote the pointwise limit by γ(t). We may assume that γ(t) 6= p
for some t ∈ [0, 1] and that γn 6= p̃ for any n. Fix t0 ∈ [0, 1] and choose ε > 0 such that the metric
in B(γ(t0), 4ε) is convex. (In particular, B(γ(t0), 4ε) is geodesic.) Let nε be an integer such that
d(γn, γm) < ε for all n,m ≥ nε. Let [t1, t2] ⊂ [0, 1] be the maximal interval such that

γnε [t1, t2] ⊂ B̄(γ(t0), ε).

Since

|γnε(t0)− γ(t0)| = lim
n→∞

|γnε(t0)− γn(t0)| ≤ ε

and γnε ∈ X̃p \ {p̃}, we have t0 ∈ [t1, t2] and t1 < t2. Furthermore, for all n ≥ nε and t ∈ [t1, t2]

|γn(t)− γ(t0)| ≤ |γn(t)− γnε(t)|+ |γnε(t)− γ(t0)| < 2ε.

Hence γn(t1) and γn(t2) can be joined by a constant speed geodesic αn : [t1, t2] → B(γ(t0), 4ε). By
(4.3), γn|[t1, t2] = αn, and hence γn|[t1, t2] is a constant speed geodesic for all n ≥ nε. It follows
that for all t, s ∈ [t1, t2]

|γ(t)− γ(s)| = lim
n→∞

|γn(t)− γn(s)| = lim
n→∞

|γn(t2)− γn(t1)|
t2 − t1

|t− s|

=
|γ(t2)− γ(t1)|

t2 − t1
|t− s|.

Hence γ is a local constant speed geodesic, and X̃p is complete.

Theorem 4.8. Suppose that X is a connected complete metric space, p ∈ X, and that the metric
is locally convex. Then

(1) (X̃p, expp) is a universal covering space of X (i.e. X̃p is simply connected and expp : X̃p → X
is a covering map) and

(2) there exists a unique local constant speed geodesic between each pair of points in X̃p.

Proof. By 4.6 and 4.7, X̃p is a complete simply connected metric space and expp is a local isometry.
Furthermore, since the metric is locally convex, each point in X has a neighborhood which is
uniquely geodesic and these geodesics vary continuously with their endpoints. Thus we can apply
Theorem 1.108 to obtain the claim (1).

To prove the claim (2), we first show that every path α : [0, 1] → X is homotopic to a unique
local constant speed geodesic. Let x = α(0) and let α̃ : [0, 1] → X̃x be the maximal lift of α (under
expx) starting at x̃. Denote by A the set of all paths in X̃x from x̃ to α̃(1). Since (X̃x, expx) is
a universal covering, the set A is bijective to the set of paths in X that are homotopic to α. By
Lemma 4.6(3), the set A contains a unique local constant speed geodesic γ̃. Then expx ◦γ̃ is the
unique local constant speed geodesic that is homotopic to α.

Let then α̃, β̃ ∈ X̃p. Since X̃p is simply connected, there exists exactly one homotopy class of
paths in X̃p joining α̃ and β̃. Since (X̃p, expp) is a universal covering, the exponential map expp
maps this class bijectively onto a single homotopy class of paths in X. By the argument above, the
latter class contains a unique local constant speed geodesic. The lift (under expp) of this path is

then the unique constant speed geodesic in X̃p joining α̃ and β̃.
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The proof of the Cartan-Hadamard theorem 4.1(1)

Suppose that X is as in Theorem 4.1(1), that is, a connected complete metric space whose metric is
locally convex. Fix p ∈ X and let d be the metric in X̃p defined in 4.5. By Theorem 4.8, (X̃p, expp)

is a universal covering space ofX for every p ∈ X. Let d̃ be the induced length metric (cf. Definition
1.103). By Theorem 1.107 and Lemma 4.6(b), the identity map id: (X̃p, d̃) → (X̃p, d) is a local
isometry. In particular, a path in X̃p is a local constant speed geodesic simultaneously with respect
to d̃ and d. By Lemma 4.7, (X̃p, d̃) is locally complete, and the metric d̃ is locally convex since
expp is a local isometry. By Theorem 4.8(2), there exists a unique local constant speed geodesic

between any pair of points in X̃p and these local constant speed geodesics vary continuously with
their endpoints by Lemma 4.2(1). Theorem 4.1(1) follows by applying the following lemma with
Y = X̃p.

Lemma 4.9. Let Y be a simply connected locally complete length space whose metric is lo-
cally convex. Suppose that for each x, y ∈ Y there exists a unique local constant speed geodesic
γx,y : [0, 1] → Y from x to y and that these local constant speed geodesics vary continuously with
their endpoints. Then

(1) each γx,y is a constant speed geodesic and

(2) the metric in Y is convex.

Proof. To prove (1) it suffices to show that

(4.10) `
(
γα(0),α(t)

)
≤ `
(
α|[0, t]

)

for every rectifiable path α : [0, 1] → Y and for every t ∈ [0, 1]. Fix a rectifiable path α : [0, 1] → Y
and let T ⊂ [0, 1] be the set of all t′ ∈ [0, 1] such that (4.10) holds for all t ≤ t′. For sufficiently
small t > 0, (the unique local constant speed geodesic) γα(0),α(t) is a constant speed geodesic since
the metric is locally convex. Hence T is non-empty. Obviously, T is closed. We claim that T is
also open, and hence T = [0, 1]. If t0 ∈ T , then Lemma 4.2(2) implies that

`
(
γα(0),α(t0+δ)

)
≤ `
(
γα(0),α(t0)

)
+ `
(
α|[t0, t0 + δ]

)

≤ `
(
α|[0, t0]

)
+ `
(
α|[t0, t0 + δ]

)

≤ `
(
α|[0, t0 + δ]

)

for sufficiently small δ > 0 as desired.
By assumptions and (1), Y is a locally complete uniquely geodesic space whose geodesics vary

continuously with their endpoints. In order to prove (2), it is enough to show that

(4.11) d
(
γp,q0(1/2), γp,q1(1/2)

)
≤ 1

2 d(q0, q1)

for each pair of constant speed geodesics γp,q0, γp,q1 : [0, 1] → Y . Indeed, the convexity of the metric
follows from (4.11) by iteration. Let α : [0, 1] → Y be the constant speed geodesic from q0 to q1
and denote qs = α(s). By Lemma 4.2(1),

(4.12) d
(
γp,qs(1/2), γp,qt(1/2)

)
≤ 1

2d(qs, qt)

whenever |t − s| is sufficiently small. Choose 0 = s0 < s1 < · · · < sk = 1 such that (4.12) holds
with s = si, t = si+1, i = 0, . . . , k − 1. We obtain (4.11) from inequalities (4.12) by the triangle
inequality.
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The proof of the Cartan-Hadamard theorem 4.1(2)

The second claim in Theorem 4.1 follows from the first by the following theorem.

Theorem 4.13 (Alexandrov’s Patchwork). Let Y be a metric space of curvature ≤ κ. Suppose
that there exists a unique geodesic joining each pair of points x, y ∈ Y , with d(x, y) < Dκ. If these
geodesics vary continuously with their endpoints, then Y is a CAT(κ)-space.

Indeed, if X is of curvature ≤ κ ≤ 0, the metric of X is locally convex. By the first part of the
Cartan-Hadamard theorem 4.1(1), the universal covering space (X̃p, d̃) is uniquely geodesics and
the geodesics in X̃p vary continuously with their endpoints. Furthermore, X̃p is of curvature ≤ κ
since the exponential map expp is a local isometry. By Theorem 4.13, X̃p is a CAT(κ)-space.

Theorem 4.13 is a consequence of the characterization 3.2(4) of CAT(κ)-spaces and the following
two lemmas.

Lemma 4.14. Suppose that κ ∈ R and that Y is a Dκ-geodesic metric space. Let

∆ = ∆
(
[p, q1], [p, q2], [q1, q2]

)

be a geodesic triangle with distinct vertices and perimeter < 2Dκ. Let r ∈ [q1, q2] \ {q1, q2} and let
[p, r] be a geodesic segment from p to r. Let ∆̄i be a κ-comparison triangle of

∆i = ∆
(
[p, qi], [p, r], [qi, r]

)
, i = 1, 2.

If the Alexandrov angles of ∆i are at most the corresponding vertex angles of ∆̄i, i = 1, 2, then the
Alexandrov angles of ∆ are at most the corresponding vertex angles of any κ-comparison triangle
of ∆.

Proof. Choose κ-comparison triangles ∆̄i = ∆̄κ(p, qi, r) with vertices p̄, q̄i, r̄, i = 1, 2, such that
they have a common side [p̄, r̄] and that q̄1 and q̄2 lie on opposite sides of the line p̄r̄. By the
triangle inequality (for Alexandrov angles),

∠r([r, p], [r, q1]) + ∠r([r, p], [r, q2]) ≥ ∠r([r, q1], [r, q2]) = π.

Hence
∠
(κ)
r (p, q1) + ∠

(κ)
r (p, q2) ≥ π

by the assumption. The claim then follows from Alexandrov’s lemma 2.31.

Lemma 4.15. Let Y be a metric space of curvature ≤ κ. Let γ : [0, 1] → Y be a constant speed
geodesic from q0 = γ(0) to q1 = γ(1), q0 6= q1 and let p ∈ Y \γ[0, 1]. Suppose that for each s ∈ [0, 1]
there exists a constant speed geodesic αs : [0, 1] → Y from p to qs = γ(s) and that the mapping
s 7→ αs is continuous (with respect to the metric defined in 4.5). Let ∆ be the geodesic triangle with
sides γ[0, 1], α0[0, 1], and α1[0, 1]. Then the Alexandrov angles at p, q0, and q1 between the sides of
∆ are at most the corresponding vertex angles in any κ-comparison triangle ∆̄ ⊂ M2

κ . (If κ > 0,
we assume that the perimeter of ∆ is less than 2Dκ.)

Proof. By the assumption, the mapping α : [0, 1] × [0, 1] → Y ,

α(s, t) = αs(t),

is continuous and each point in Y has a neighborhood which is a CAT(κ)-space. Hence there are
partitions

0 = s0 < s1 < · · · < sk = 1 and 0 = t0 < t1 < · · · < tk = 1
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such that there exists an open set Ui,j of diameter < Dκ/2 which is a CAT(κ)-space and which
contains

α
(
[si−1, si]× [tj−1, tj ]

)
.

By repeated use of Lemma 4.14, it suffices to prove the claim for geodesic triangles

∆i = γ[si−1, si] ∪ αsi−1
∪ αsi

and their κ-comparison triangles ∆̄i. For each i, let

∆1
i ,∆

2
i , ∆̃

2
i , . . . ,∆

k
i , ∆̃

k
i

be adjoining geodesic triangles, where

∆1
i ⊂ Ui,1 and ∆j

i , ∆̃
j
i ⊂ Ui,j

are as in Figure 2. In each of these triangles the Alexandrov angles at the vertices are at most the

p

γ(si−1)

∆1
i

γ(si)

∆j
i

∆k
i

∆̃j
i

∆̃k
i

Figure 2: Adjoining geodesic triangles.

corresponding vertex angles in their κ-comparison triangles since the sets Ui,j are CAT(κ)-spaces.
By repeated use of Lemma 4.14 (starting with triangles ∆1

i and ∆2
i ) we obtain the claim for ∆i as

desired.
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