Department of Mathematics and Statistics Metric Geometry Exercise 9 26.4.2006

Return by Wednesday, April 26.

- 1. Let X be a $CAT(\kappa)$ -space. Suppose that $\alpha \colon [0, a] \to X$ and $\beta \colon [0, b] \to X$ are geodesics such that $\alpha(0) = p = \beta(0)$.
 - (a) Show that the κ -comparison angle

$$\angle_p^{(\kappa)}(\alpha(s),\beta(t))$$

is increasing in both s > 0 and t > 0.

(b) Show that the Alexandrov angle satisfies

$$\begin{split} \angle_p(\alpha,\beta) &= \lim_{s,t\to 0} \angle_p^{(\kappa)} \left(\alpha(s),\beta(t) \right) \\ &= \lim_{t\to 0} \angle_p^{(\kappa)} \left(\alpha(t),\beta(t) \right) \\ &= \lim_{t\to 0} 2 \arcsin \frac{1}{2t} d \left(\alpha(t),\beta(t) \right). \end{split}$$

- 2. Let X be a CAT(κ)-space and let $x, y \in X \setminus \{p\}$ with max $\{d(p, x), d(p, y)\} < D_{\kappa}$. Prove that
 - (a) $(p, x, y) \mapsto \angle_p([p, x], [p, y])$ is upper semicontinuous, and
 - (b) for fixed $p, (x, y) \mapsto \angle_p([p, x], [p, y])$ is continuous.
- 3. Prove that the κ -cone $X = C_{\kappa}Y$ over a metric space Y is complete if and only if Y is complete.
- 4. Suppose that the κ -cone $X = C_{\kappa}Y$ over a metric space Y is a CAT (κ) -space. Prove that for each pair of points $y_1, y_2 \in Y$, with $d(y_1, y_2) < \pi$, there exists a unique geodesic segment in Y joining y_1 and y_2 .
- 5. Let (X, d) be a metric space of curvature $\leq \kappa$. For each $n \in \mathbb{N}$, we define a metric d_n by setting

$$d_n(x,y) = n \, d(x,y).$$

Prove that the tangent cone $C_0S_p(X)$ at $p \in X$ (and its completion) is a 4-point limit of the sequence (X, d_n) .