Department of Mathematics and Statistics Metric Geometry Exercise 8 5.4.2006

Return by Wednesday, April 5.

A uniquely geodesic space X is said to be *metrically convex* if, for all constant speed geodesics $\alpha, \beta \colon [0, 1] \to X$, we have

$$d(\alpha(t),\beta(t)) \le (1-t)d(\alpha(0),\beta(0)) + td(\alpha(1),\beta(1))$$

for all $t \in [0, 1]$.

- 1. Prove that every CAT(0)-space is metrically convex.
- 2. Prove that a metrically convex (uniquely geodesic) space is contractible.
- 3. Let X be a CAT(0)-space, $p, q, r \in X$, and let $\alpha \colon [0, a] \to X$ and $\beta \colon [0, b] \to X$ be the unique geodesics from q to p and from r to p, respectively. Show that

$$d(\alpha(t), \beta(t)) \le d(q, r)$$

for all $t \leq \min\{a, b\}$.

- 4. Prove that the product $X_1 \times X_2$ of CAT(0)-spaces X_1 and X_2 is a CAT(0)-space (cf. Exercise 7/6).
- 5. Let $X = \mathbb{R}^3 \setminus \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0\}$ be equipped with the length metric associated to the induced metric. Prove that X is not a CAT(0)-space.