Department of Mathematics and Statistics Metric Geometry Exercise 6 22.3.2006

Return by Wednesday, March 22.

- 1. (a) Prove that any closed ball $\overline{B}(p,r) \subset \mathbb{S}^n$ of radius $r < \pi/2$ is convex. That is, if $x, y \in \mathbb{S}^n$ and $[x, y] \subset \mathbb{S}^n$ is the geodesic segment joining x and y, then $[x, y] \subset \overline{B}(p, r)$.
 - (b) Prove that all balls (open or closed) in \mathbb{H}^n are convex.
- 2. Hyperplanes in \mathbb{H}^n . A hyperplane H in \mathbb{H}^n is a non-empty intersection of \mathbb{H}^n with an *n*-dimensional vector subspace V of \mathbb{R}^{n+1} . The reflection through H is the mapping $r_H \colon \mathbb{H}^n \to \mathbb{H}^n$,

$$r_H(x) = x - 2\langle x, u \rangle_{n,1} u,$$

where u is a unit vector orthogonal (w.r.t. $\langle \cdot, \cdot \rangle_{n,1}$) to V (u is unique up to a sign). Given distinct points $x, y \in \mathbb{H}^n$, the set

$$H_{xy} = \{ z \in \mathbb{H}^n \colon d(z, x) = d(z, y) \}$$

is a hyperplane, called the hyperplane bisector of x, y.

(a) Show that

$$H_{xy} = \mathbb{H}^n \cap (x - y)^{\perp}.$$

- (b) Let H be a hyperplane in \mathbb{H}^n . Prove that the reflection r_H through H is an isometry and that $r_H(x) = x \iff x \in H$.
- (c) Let H be a hyperplane in \mathbb{H}^n and $x \in \mathbb{H}^n \setminus H$. Show that H is the hyperplane bisector of x and $r_H(x)$.
- (d) Prove that $r_H(x) = y$ if H is the hyperplane bisector of x and y.
- 3. Prove (by induction): Given $k \in \mathbb{N}$ and points $x_1, \ldots, x_k \in \mathbb{H}^n, y_1, \ldots, y_k \in \mathbb{H}^n$ such that $d(x_i, x_j) = d(y_i, y_j)$ for all $i, j \in \{1, \ldots, k\}$, there exists an isometry $f \colon \mathbb{H}^n \to \mathbb{H}^n$ such that $f(x_i) = y_i$. Moreover, such an isometry can be obtained by composing k or fewer reflections through hyperplanes.
- 4. Prove the following theorem: Let $f: \mathbb{H}^n \to \mathbb{H}^n$ be an isometry.
 - (a) If f is not the identity, there exists a hyperplane in \mathbb{H}^n containing all fixed points of f.
 - (b) If H is a hyperplane in \mathbb{H}^n such that f|H = id, then f is either the identity or the reflection r_H through H.
 - (c) The isometry f can be written as a composition of n + 1 or fewer reflections through hyperplanes.
- 5. Study the notions and results of Exercises 2–4 with \mathbb{H}^n replaced by \mathbb{S}^n , \mathbb{R}^n , and M_{κ}^n , $\kappa \in \mathbb{R}$. Write down your observations and thoughts.