Department of Mathematics and Statistics Metric Geometry Exercise 4 22.2.2006

Return by Wednesday, February 22.

In exercises 1, 2, and 3, let $(X_{\alpha}, d_{\alpha})_{\alpha \in \mathcal{A}}, Z, i_{\alpha} \colon Z \to Z_{\alpha}, \text{ and } (\overline{X}, \overline{d})$ be as in the isometric gluing along Z (cf. Theorem 1.87).

- 1. Show that \overline{X} is complete if each X_{α} is complete.
- 2. Suppose that each X_{α} is locally compact and that the index set \mathcal{A} is finite. Prove that \bar{X} is locally compact.
- 3. Construct an example, where X_i is a complete geodesic space, $i \in \mathcal{A} = \{1, 2\}$ but \overline{X} is not a geodesic space.
- 4. Let (X, d) be a metric graph (cf. Example 1.86 (2)). Suppose that for each $v \in V$

 $\inf\{\ell(e) \colon e \in E, v \in \{\partial_0 e, \partial_1 e\}\} > 0.$

Prove that (X, d) is a length space. Is it complete?

5. Let (X, d) be a metric space, \mathcal{T}_d the topology determined by d, and let ~ be an equivalence relation in X. Suppose that the quotient pseudometric \overline{d} associated to ~ is a metric in \overline{X} . Then it determines a topology $\mathcal{T}_{\overline{d}}$. On the other hand, \overline{X} has the so-called quotient topology \mathcal{T}_{\sim} , where $U \in \mathcal{T}_{\sim} \iff \pi^{-1}U \in \mathcal{T}_d$. Prove that $\mathcal{T}_{\overline{d}} \subset \mathcal{T}_{\sim}$.