Department of Mathematics and Statistics Metric Geometry Exercise 1 1.2.2006

Return by Wednesday, February 1.

- 1. Let (X, d) be a metric space.
 - (a) Prove that (X, d^{α}) , $0 < \alpha < 1$, is a metric space.
 - (b) Prove that (X, d_0) , where

$$d_0(x,y) = \frac{d(x,y)}{1 + d(x,y)},$$

is a metric space.

- (c) Study whether the topologies \mathcal{T}_d , $\mathcal{T}_{d^{\alpha}}$, and \mathcal{T}_{d_0} are the same.
- 2. [Kuratowski] Prove that every metric space X can be isometrically embedded into the Banach-space $\ell^{\infty}(X)$.
- 3. [Fréchet] Prove that every separable metric space can be isometrically embedded into the Banach-space $\ell^{\infty} = \ell^{\infty}(\mathbb{N})$.
- 4. Prove that a metric space X is complete if and only if it has the following property: If (X_n) is a sequence of non-empty, closed subsets of X such that $X_{n+1} \subset X_n$ for every n and $\operatorname{diam}(X_n) \to 0$, then the sets X_n have a common point (i.e. $\cap_n X_n \neq \emptyset$).
- 5. (a) Let $f: X \to Y$ be a bi-Lipschitz homeomorphism. Prove that X is complete if and only if Y is complete.
 - (b) Give an example of homeomorphic metric spaces X and Y such that X is complete while Y is not.
- 6. Let $X = (\mathbb{R}^2, d_{\infty})$, where d_{∞} is the metric given by the norm $\|\cdot\|_{\infty}$, and let $Y = \mathbb{R}^2$ with the standard metric. Let

$$A = \{(-1,1), (1,-1), (1,1)\}$$

and $f: A \to Y$,

$$f(-1,1) = (-1,0), \quad f(1,-1) = (1,0), \quad f(1,1) = (0,\sqrt{3}).$$

Show that f is 1-Lipschitz but it has no 1-Lipschitz extension to $A \cup \{(0,0)\}.$

- 2. Fix $x_0 \in X$ and study functions $f_y \colon X \to \mathbb{R}, \ f_y(x) = |x y| |x x_0|$. 3. Fix a dense set $\{x_0, x_1, \ldots\} \subset X$ and consider the mapping

$$x \mapsto (|x - x_1| - |x_1 - x_0|, |x - x_2| - |x_2 - x_0|, \ldots).$$