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Preface

These are lecture notes for the course “Introduction to differential geonetry" at the Department of

Mathematics and Statistics at the University of Helsinki.

The material has been compiled from several sources, for example from books [AMR], [Br], [L2],

[MT] and [Wa]. The main source has been the book [L2] by J.M. Lee.

0 Some basic notions in topology

0.1 Topological space

Let X be an arbitrary set and
P(X)={A: AcC X}

its power set. A collection T C P(X) is a topology on X if

1. T contains the union of any family of its members:

UneT= JUs€eT.

acA

where A is an arbitrary set of indices;
2. 7T contains the intersection of any finite family of its members:
k
U,....Us € T= (U €T:
i=1

3.0eT, XeT.

The pair (X,7T), or just X for short, is a topological space. The elements of T are called open sets.

A set F' C X is closed if the complement X \ F' is an open set.

Example 0.2. 1. Let (X,d) be a metric space. That is d: X x X — R satisfies the axioms of

a metric:
d(z,y) >0 Vz,ye X
dz,y) =0 <= z =y
d(z,y) = d(y,x) Vr,ye€ X
d(z,y) < d(z,z)+d(z,y) Vx,y,z € X (triangle inequality, A-ineq.).
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Then the metric d defines a (metric) topology T4 on X:
UeTy < VexeU3Ir>0st Blx,r)={ye X:d(z,y) <r}cU.

2. Special case: The Euclidean space R™ equipped with the metric d(z,y) = |x — y|.
3. A topological space (X,T) is metrizable if 3 a metric d s.t. T = Ty.

A set U is a neighborhood of a point x € X if € U € T (i.e. U is open and contains x). Fact:
Aset AC X isopen < Vz € A Ja neighborhood U of z s.t. U C A.

A topological space (X, T) is Hausdorff if every pair of distinct points has disjoint neighbor-
hoods. (That is, Vz,y € X, x £y, thereexist U €T, VeT st. z €U, yeV,and UNV =(.)

Example 0.3. 1. Every metrizable topological space is Hausdorff. (Exerc.)

2. Example. Identify points (x,0) and (x,1) of the set R™ x {0} UR™ x {1} whenever z # 0. We
obtain a space X that has "two origins". Equip X with a topology by saying that U C X is
open <= the preimage of U under the identification is open. Then the points a = (0,0)
and b = (0, 1) have no disjoint neighborhoods and hence X is not Hausdorff.

We say that a sequence (z;), ¢ € N, of points in X converges to a point z € X (denoted by
x; — x) if for every neighborhood U of z there exists ig € N s.t. z; € U Vi > ip. Fact: if X is
Hausdorff and z; — x and z; — y then z = y.

Let (X, 7T) be a topological space. A family B C P(X) is a basis for the topology T (or a basis
for X) if

1. BCT,
2. every U € T, U # (), can be written as a union of some elements of B.

Example 0.4. Let (X, d) be a metric space. Then
B={B(z,r): x € X, r >0}
is a basis for 7.

The following notion is important for this course: We say that (X, 7)) is N2 ("second countable") if
there exists a countable basis B = {B;: i € N} for T.

Example 0.5. The Euclidean space R" equipped with the usual topology is No. We can choose,
for example, B={B(q,7): ¢ € Q", r € Q4 }.

Let X and Y be topological spaces. We say that a mapping f: X — Y is continuous at a point
x € X if for every neighborhood V' of f(x) there exists a neighborhood U of z s.t. fU C V. A
mapping f is continuous in X if it is continuous at every point of X.
Fact: f: X — Y is continuous in X <= the preimage f~'U = {z € X: f(z) € U} is open for
every open U C Y.

A mapping f: X — Y is a homeomorphism if

1. f has an inverse,
2. f is continuous, and

3. the inverse f~! is continuous.
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Let X be a set, (Y, T’) a topological space, and f: X — Y a mapping. Then the collection
T={f'Uv:UeT’}

is a topology on X (induced by the mapping f). Note: The mapping f is then trivially continuous.
If (X, T) is a topological space and A C X, then the topology induced by the inclusion i: A —
X, i(x) = x, is called the relative topology of (X,T) on A (denoted by 7 |A). Hence

TIA={UNA:UeT).

In other words, the set V'C Aisopenin A (i.e. V € T|A) <= V =UnN A for some open U C X
UeT).

Both being Hausdorff and N» are hereditary:

Let (X,7) be a topological space and A C X. Then

1. (X,7) is Hausdorff = (A, T|A) is Hausdorff,
2. (X,7T)is Na = (A, T]A) is Na.
Let (X1,71),...,(Xk, Tr) be topological spaces. Denote
X=X1 xXgx-xXg={(x1,...,2x): x; € X;}.

The collection
B={U; x Uy x -+ xU: U; C X; open}

is a basis of the product topology on X.

Remark 0.6. 1. Let (X;,7;), i =1,...,k, be Hausdorff. Then X = X7 x X5 X---x X} equipped
with the product topology is Hausdorff.

2. Let (X;,7i), i =1,...,k, be topological spaces with countable bases (i.e. each (X;,7;) is Na).
Then X = X; x Xo x -+- x X} with the product topology is N».

The next result is very useful in many existence results. First we recall:

Definition 0.7. Let (X,d) be a metric space. A sequence (z;), z; € X, is a Cauchy sequence if
Ve > 0 Ji. € Ns.t. d(x;,xj) < € whenever 4, j > i.. The metric space X is complete if every Cauchy
sequence on X converges.

Theorem 0.8 (Banach fixed point theorem). Let X be a complete metric space and f: X — X a
mapping. Suppose that there exists a constant L € [0,1] s.t.

A @), Fw)) < Ld(z,y) ¥ 2,y € X.
Then f has a unique fized point o € X, i.e. f(xg) = wo.
Proof. Let yg € X. Define recursively
Vi1 = f(yi), 1=0,1,2,...

We see by induction that ‘
d(Yi+1,yi) < L'd(yo, y1)-
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By the triangle inequality,
d(yi,y;) < (L' + -+ L7 N d(yo, 1) ifi < j.

Since 0 < L < 1, the series
1+L+L*+--

converges, and therefore the remainder term — 0. Hence
L+ L o 4 D750 ifd,j — oo

It follows that (y;) is a Cauchy sequence. Since X is complete, the sequence (y;) converges, i.e.

Y; — 2o € X.
Now
d(yi, f(y)) = d(f(yi-1), f (%))
<L d(yi-1,y:) < L'd(yo,y1)-
~———
<Li=Yd(yo,y1)
We obtain

d(xo, f(wo)) < d(xo, i) + d(yi, f(i)) + d(f(ys), f(0))
<Ld(yi,vo)

< (1+ L)d(zo,y:) + L'd(yo, y1) 0.
Hence d(zo, f(z0)) = 0, i.e. g = f(xg). If xf is another fixed point,

d(xp, x0) = d(f(x), f(z0)) < Ld(xg, x0),

and since L < 1, we must have z{, = xo. O

0.9 Topological manifold

Definition 0.10. Let M be a topological space. We say that M is a topological n-manifold, n € N,
if

1. M is Hausdorff,

2. M is second countable (M is Nj),

3. every point x € M has a neighborhood that is homeomorphic to an open subset of R".
Remark 0.11. 1. The condition 3 means that M is "locally homeomorphic with R™".

2. Condition 3 <= every x € M has a neighborhood U that is homeomorphic with the open
unit ball B"(0,1) = {y € R": |y| < 1} (or equivalently with the whole R™).

3. Fact: If M is both a topological n-manifold and a topological m-manifold, then necessarily
m = n. (We do not prove this. The proof uses algebraic topology (invariance of domain).)
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4. Properties 1 and 2 do not follow from the condition 3. For instance, an uncountable disjoint
union of R™s satisfies the condition 3 but is not No. On the other hand, the topological
manifold in Example 0.3 satisfies the condition 3 but is not Hausdorff.

Let M be a topological n-manifold. We say that a pair (U, ¢) is a chart on M if
(a) U C M is open
(b) ¢: U — U C R"™ is a homeomorphism and oU C R" is open.
If, in addition, p € U, then (U, ¢) is a chart at p.

In what follows we usually denote (U,z), =z = (z',...,2"), where 2: U — 2U C R" is a
homeomorphism and z!, 22, ..., 2" are the coordinate functions of x (that is, real-valued functions
2': U — R).

The standard example of topological n-manifolds is, of course, M = R" equipped with the
usual topology. Earlier we recalled that R™ is Hausdorff and N.

The rough idea of a topological n-manifold: The conditions guarantee that M has many good
properties of R™.
Hausdorff: for instance, the limit of a convergent sequence is unique.
Ns: an important property that is needed in partition of unity.

Example 0.12. 1. Every open set U C R", U # (), is a topological n-manifold. (Hausdorff and
Ny are hereditary).

2. Graphs of continuous functions: Let U C R” be open and f: U — R* continuous. We say
that the graph of f is the following subset of R” x R¥

L(f) ={(z,y) eR"xR*: z € U, y = f(2)}

equipped with the relative topology. Then I'(f) is Hausdorff and Ny. Let 7 : R® x RF — R”
be the projection (z,y) — = and ¢s: I'(f) — U be the restriction

or =m|T(f),
er(zy) =z, (z,y) € T(f).

Since 71 is continuous, then ¢ is continuous (relative topology). In addition, ¢y is a home-
omophism since it has a continuous inverse mapping

7' (2) = (x, f(x)).
Hence I'(f) is a topological n-manifold (homeomorphic with U).

3. The sphere S” = {x € R"*!: |z| = 1} is a topological n-manifold (relative topology). Reason:
S™ can be covered by open sets that can be represented as graphs of continuous functions
(hence reduces to the previous example). Example Let

Ul ={@...,a"™) e s™: 2™ > o).

N(J)rw U, =T(f) = (z, f(z)), where f: B R, f(z) = /1 —[z[%. Similarly the other sets
U and U,

Ut ={(z!, ..., 2" ) es": 2' >0}
{(=',..., 2" e S": 2' < 0}.
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4. Let M; be topological n;-manifolds, i = 1,2,...,k. Then
M:M1><M2><---><Mk

is a topological n-manifold, where n = ny + no + - - - + ng. Reason: Earlier we noticed that
M is Hausdorff and No. If p = (p1,...,px) € My X My X -+ X My, choose charts (Uj, ;) in
M; st. p; €Uy, Yi=1,...,k. The product mapping

P1 X Xpp: U X+ xUp — R"

is a homeomorphism onto its image that is an open subset of R”. We do the same for all
p e M.
Example: n-torus
T =8"x---xSt.
n kpl
5. Projective space RP™ (n-dimensional real projective space) is the set of all 1-dimensional
linear subspaces of R"™! (or the set of all lines in R"*! passing through the origin). RP" can
be obtained by identifying points x € S and —xz € S™. More precisely: define an equivalence
relation on S™:
T~y < x===y, v,y S

Then RP™ = S"/~= {[z]: = € S"}. Equipping RP" with so-called quotient topology, RP"
becomes a topological n-manifold.

Quotient topology:

Definition 0.13. Let (X,7) be a topological space, ~ an equivalence relation on X and 7: X —
X/~ the canonical projection, x — [x]. Then the collection

{Uc X/~ 77U eT}
is called the quotient topology of X /~.

The set I' = {(z,2") € X x X: x ~ 2’} is the graph of the equivalence relation ~. We say that
~ is open (closed) if the projection 7: X — X/~ is an open (closed) mapping.

[Note: Let X and Y be topological spaces. A mapping f: X — Y is open (closed) if the image
fA is open (closed) for every open (closed) A C X.]

Theorem 0.14. If X/~ is Hausdorff, then the graph T' of an equivalence relation ~ is a closed set
in X x X. If ' C X x X is closed and ~ is open, then X/~ is Hausdorff.

For the proof we need a lemma.

Lemma 0.15. X is Hausdorff <= (the diagonal) Ax = {(z,x) € X x X: x € X} is closed in
X xX.

Proof. X Hausdorff <= V p,q € X, p # ¢, 3 (disjoint) neighborhoods U, > p, U, 3 ¢ s.t.
(UpxUy) NAx =0 < (X x X)\ Ax open. O

Proof of Theorem 0.14. X/~ Hausdorff = Ay, is closed, hence I' = (7 x )~ (Ay/ ) is
closed. Suppose then that I" is closed and ~ is open. If X/~ is not Hausdorff, 3 distinct points
[z], [y] € X/~ such that Uy N Uy # 0 for every neighborhoods Uy, > [z], Uy, > [y]. Let V,,V,
be arbitrary neighborhoods of z and y. Since ~ is open, m(V;), 7(V},) are neighborhoods of [z] and
[y]. Since 7(Vy) Nw(Vy) # 0, 32" € Vo, v € Vyst. [2'] =[], ie. 2 ~ ¢/, s0 (¢/,y) € T. Thus
(z,y) € T (every neighborhood of (x,y) intersects with T'). Since I is closed, (z,%) € T, so [z] = [y].
We obtained a contradiction, and therefore X/~ is Hausdorff. O
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Theorem 0.16. If X is Ny and ~ is an open equivalence relation on X, then X/~ is Na.

Proof Let B = {B;: i € N} be a countable basis of X. Claim: [B] = {[B;]: i € N} is a
countable basis of X /~. (Here [B;] = nB;, m: X — X/~ is the canonical projection.) Countability
is clear. Moreover every [B;] is open because ~ is open. Let A C X/~ be open. Then (by
the definition of quotient topology) 7714 C X is open, and so 77 1A = Ujes Bj, J C N. Thus
A=Ujes w(Bj) = UjeJ[Bj] and X/~ is Nj. O

0.17 Basic properties of a topological manifold

Let us recall the following definitions:
An open cover of a topological space X is a collection

{Vo: € A}

of open subsets V,, of X s.t. X =, Vo. Here A is an arbitrary index set.

A topological space X is compact if every open cover of it has a finite subcover. That is, if
X = U, Va, there exist V,,, ..., Va, such that X = JF_, V,,.

A topological space X is locally compact if every z € X has a neighborhood U whose closure U
is compact. We say that a set A C X is precompact or relatively compact (A € X) if A is compact.
[Recall: U = {z € X: UNV # () V¥ neighborhoods V of z}]

A topological space space X is connected if A subsets A, B s.t.

1. X=AUB
2. A#0+#B
3. ANB=1
4. A C X is open, B C X is open.

In other words, X is connected if it can not be expressed as a union of two disjoint open sets.

A topological space X is path connected if every pair z,y € X can be connected by a path, i.e.
3 a continuous mapping a: [0,1] — X (a path) s.t. «(0) =z and a(1) =y.

Note: path connected = connected, but not conversely.

A topological space X is locally (path) connected at a point z € X if every neighborhood of x
contains a (path) connected neighborhood of z.

Theorem 0.18. A topological n-manifold M is locally compact and locally path connected.

Proof. The claim follows from the conditions 1 and 3 in the definition of a topological n-
manifold and from the corresponding properties of R™: Let x € M be arbitrary and (U,¢) a
chart at z. Since pU C R™ is open and ¢(x) € U, there exists a ball B"(¢(x),r) C ¢U. Since
B"(p(x),r/2) is compact, the set ¢ !B"(p(x),r/2) is compact and hence closed, because M is
Hausdorff. Thus ¢ ~!B"(p(z),7/2) is a neighborhood of & whose closure is compact. On the other
hand, B"(¢(z),r) is path connected, and therefore p~'B"(p(x),r) (C U) is a path connected
neighborhood of z. O

We need the following lemmata for the existence of a partition of unity:

Lemma 0.19 (Lindelof). Let X be a topological space with a countable basis and let A C X. Then
every open cover {Vy: a € A} of A (A C U, Va) contains a countable subcover.
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Proof. Let B = {B;: i € N} be a countable basis of X. For each x € A there exist indices
i1€Nand a € Ast. z € B; CV,. Let

B ={BieB:x€ B; CV,,xec A}

Then B’ is a cover of A. For each B; € B’ choose one V,, for which B; C V,,, and denote it by V).
Since B’ is a cover of A and B; C Vo) VBi € B’, the family {Va@i)} is a countable cover of A. [

Theorem 0.20. Every topological n-manifold M has a countable basis B = {B;: i € N}, where
every B; is precompact and homeomorphic with an open ball in R™. In particular, M is o-compact
(i.e. a countable union of compact sets).

Proof. (i) For every x € M there exists a chart (U, ¢) at =, and therefore ”chart neighborhoods'
U form an open cover of M. By Lemma 0.19 there exists a countable cover {U;: i € N} of M s.t.
(Ui, ¢;) is a chart.
(ii) Denote U; = ¢U; (C R™ open) and

Bi = {B"(x,7): 2 € Q",r € Q,, B"(x,r) C U;}.

Then every such B"(:L",r) c U is compact and B; is a countable basis of U;. Since wi: Uy — U, is
a homeomorphism, the family )
Bi={p;'B: B c B}

is a countable basis of U; and every ¢, 1B is a compact subset of U;. Now B = \U; B; satisfies the
requirements of the theorem. Since M = (Jgcz B and each B is compact, M is o-compact. O

1 Review on differential calculus in R"

1.1 Differentiability
Definition 1.2. Let G C R” be open. A mapping f: G — R™ is differentiable at x € G if there
exists a linear map A(x) € L(R",R™) s.t.

fx+h) = f(x) + A(x)h + |hle(z, h),

where e(z, h) 229 0. The (unique) linear map A(x) is called the differential of f at 2 and denoted

by A(z) = f'(x) = Df(x).
It can be shown that the matrix of f/(x) (w.r.t. standard bases) is
Difi(x) -+ Dpfi(z)

)

Difu(®) - Dufle)

where f = (f1,..., fm)-

Definition 1.3. A mapping f: G — R™ is continuously differentiable at xg € G if there exists a
neighborhood U C G of zg s.t.

1. f is differentiable at every x € U and

2. f': U — L(R™,R™) is continuous at .
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Note: Above the topology of L(R™,R™) is determined by a norm. Since L(R™,R™) is finite
dimensional, all norms determine the same topology.
We use the operator norm |L| = sup{|Lh|: |h| = 1} for linear maps L € L(R",R™).

Fact: A mapping f is continuously differentiable in G <= 3 continuous partial derivatives
DjfiinGforalli=1,....,m, j=1,...,n.

In general: Let &k € NU{0}. We say that f is k times continuously differentiable in G, denoted
by f € C¥(Q), if all partial derivatives

dlolf;
pre 1=1,...,m,
are continuous in G for all multi-indices o = (v, ..., ), with |a| = a; + -+ + a,, < k. Here
ool f; dlol f;

dox  (Ox1)® - (Ozp)on
If f € C*(Q) for all k € N, we denote f € C°(G).

Definition 1.4. Let G C R™ and V C R" be open. A mapping f: G — V is a C*°-diffeomorphism
if f € C®(G) and 3f~1 € C>=(V).

Inverse mapping theorem.

Theorem 1.5 (Inverse mapping theorem). Let G C R"™ be open and f: G — R", f € CQG).
Suppose that at a point a € G

Jt(a) = det f'(a) # 0.

Then there exist neighborhoods U > a, V > f(a), and the inverse mapping g = f~1:V — U.
Moreover, g € CY(V) and ¢'(f(x)) = f'(z)7, 2 € U.

Recall: det f'(a) # 0 <= the linear map f’(a): R® — R" is invertible, i.e. the inverse
mapping f’(a) ! exists.

We need the following two lemmata for the proof.

Let us denote by GL(n,R) the space of all invertible linear maps A € L(R™, R"™) (equivalently,
the space of all (real) n x n-matrices A, det A # 0).

Lemma 1.6. 1. If A€ GL(n,R) and B € L(R",R") s.t.
|B—Al|A7 < 1,
then B € GL(n,R).
2. GL(n,R") is an open subset of L(R™,R™) and the map A +— A~' is continuous in GL(n,R).
Proof. Exerc. [see e.g. Rudin [Ru].] O

Lemma 1.7 (Mean value theorem). Let G C R™ be open and J C G a closed line segment, whose
end points are a and b. Let f: G — R"™ be a mapping that is differentiable at every point of J. Then
for every v € R™ there exists x, € J s.t.

v (f(0) = f(a)) = v (f'(z0)(b - a)).
In particular, if | f'(x)] < M for all x € J, then

[f(b) = fla)| < M[b—al.
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Proof. Exerc. O
Proof of Theorem 1.5. (i) Write L = f’(a) and choose A > 0 s.t. 2\|L~!| = 1. Since f’ is
continuous at a, there exists a ball U = B"(a,¢) s.t.

If'(x) — L <X Voxel.
We will prove that f|U is injective. Define, for every y € R™ a mapping ¢ (= ¢y)
(1.8) o) =+ L y— f(x)) =2+ L '(y) - L7 (f(z)), zeca.

We observe: f(z) =y <— o¢(z)==2.
By the chain rule

hence

By the mean value theorem (Lemma 1.7)

1
lp(x2) — @(x1)| < 5!332 — x|, z1,22€U.

Hence ¢ has at most one fized point in U. [Indeed, if ¢(z1) = 1 € U and ¢(z2) = x2 € U, then

1
|21 — 22| = [p(21) — P(22)] < Flw1 — 2],
2

and therefore 1 = z5.] The same holds for every y € R™, hence f|U is injective.

(ii) Next we will prove that V' = fU is open. [Then we have shown that there are neighborhoods
U>sa, V> f(a) st. flU: U— V is bijective.]
Let yo € V. Then yo = f(z0) for some 2y € U. Let r > 0 be so small that B = B"(z¢,r) C U. We
claim that B™(yg, Ar) C V which then shows that V is open. Fix y € B"(yg, Ar), so |y — yo| < Ar.
Let ¢ = @y,

p(z) =2+ L7y — f(x)).
We have .
lo(x0) — ol = L™ (y — yo)| < |L7M |y —wol < 7

If v € B (C U), then

IN

lp(z) — 20| < Jp(z) — w(20)| + |(70) — 20

<1‘ H_T<
—|lr—=x —<r
2 oy =5

and so ¢(z) € B™(xo,r). Hence
©B"(xg,7) C B"(w0,7),

1 _
lp(x2) — @(21)] < 5\962 — 1|, V1,29 € B"(x0,7).
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The closed ball B"(xo, ) is compact, hence it is complete.
By the Banach fixed point theorem the mapping ¢ has exactly one fixed point = in B"(zq, ). Hence
y = f(x) € fB™"(x,7) C fU =V, and consequently V is open. We have shown: 3 neighborhoods
U>sa, V> f(a)st. flU: U— V is bijective.

(iii) Next we prove that the inverse mapping g = (f|U)~!: V — U is continuously differentiable,
g€ CYV). Let y e Vandy+k € V. Write 2 = f~'(y) and h = f~'(y + k) — 2. Then
zeU, x+h=fYy+k)€U and f(zx +h) =y +k. If o = p, (see (1.8)), then

plx+h)=z+h+ Ly~ flx+h)
pa)=z+ L (y— f(x)),

and hence

p(z + h) — o(z) = h+L‘%f\@—f(sc+h>)
=y y+k

=h— Lk

It follows that ) )
[h = L7 = lp(e + h) = p(@)] < gl +h—a = S|hl,

hence 1
L7k > =|h
L] = S 1h)
and therefore
1 ~1 ||
(1.9) |h| <2|L7 k| <2|L7||k| = B

Since 1
@) - DI < 3,

Lemma 1.6 implies that f’(z) is invertible, i.e. 3 T = f'(x)~!. We want to show that ¢'(y) = T
(recall that g = (f|U)~!: V — U). Now

gy+k)—gly) Tk=h+x—x—-Tk=h—-Tk
—h+ =z

This and the estimate (1.9) imply that

9y + k) —g(y) =Tk _ |T]|f(z+h) — f(a) = f'(x)h]

(1.10) <
K| A |h

If £ — 0, then h — 0 by (1.9), and consequently the right-hand side of (1.10) tends to 0. Hence
also the left-hand side of (1.10) tends to 0. We obtain

lgty +k) —gy) — Tk| k-0
k|

0,
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so g is differentiable at y and

_ -1
(L.11) JW)=T=f(x)"=f(9ly) " yeV.
Since g is differentiable at every y € V, it is continuous in V. Moreover, f € CY(U) by the

assumption and f'(x)~! exists for all x € U, hence f': U — GL(n,R) is continuous. By Lemma
1.6 (b), A+ A1 is continuous in GL(n,R). Combining these and (1.11) we can conclude that

g:V = GL(n,R), y—¢'(y) = f'(9(v) ",

is continuous, that is g € C*(V). O
Remark 1.12. The assumption f € C'(G) was only used at the very end of the proof. If we merely

assume that f is differentiable in G, continuously differentiable at a, and J¢(a) # 0, the correspond-
ing inverse mapping g = (f|U)~!: V — U is differentiable in V' and continuously differentiable at

f(a).

Corollary 1.13. If G C R" is open, f: G = R", f € CYQG) and Js(x) # 0 for all x € G, then f
18 an open mapping.

Implicit function theorem. Let us write R = R™ x R", so

tER™™ = t=(t1, ... tman) = (T1, .o, Ty Y1y -+ > Yn)
= (z,y)

Theorem 1.14 (Implicit function theorem). Let G C R™*™ be open, f: G — R", and (zo,y0) € G.
Suppose that

1. f(x()ay()) = 07

2. fecYa),

3. Ju(yo) # 0, where u(y) = f(xo,y).
Then there are neighborhoods X C R™ of xg and Y C R"™ of yg with the property that for every
z € X the exists the unique p(x) €Y s.t. f(x,¢(x)) =0. The mapping ¢: X =Y is continuously
differentiable in X and ¢(xo) = yo.

Proof. Define a mapping g: G — R™*",

g($7y) = ($7f($7y))

Then g(zo, yo) = (70,0) and

(115) gl($7y) = I, 92(3372/) = T2, gm($7y) = Tm
Im1(7,y) = fi(®,y),  gmr2(®,y) = fa(z,9), -0 Gmin(®,y) = ful2,y).
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We observe that

1 0 0 0
0 0 0 0
Jg(wo, 90) = 0 1 0 0
D1 fi(wo,y0) -+ Dmfi(zo,90) Dms1fi(®0,%0) -+ Dminfi(zo,y0)
len($0yy0) Dmfn(x07y0) Dm—i—lfn(:EOyyO) Dm+nfn($07y0)
D1 fi(zo,90) -+ Dminfi(zo,%0)
Dm-i-lfn(xOyyO) e Dm-i-nfn(xmyo)
= JU(QO) # 0.

By the inverse mapping theorem there are neighborhoods U > (x¢,y0) and V' > (z0,0) s.t.
g|lU: U — V is a homeomorphism that has an inverse mapping ¢* = (g|U)™': V — U. We may
assume that V' = B™"((x,0),r). By (1.15) we have

gi(z,y) =21

Im (T, Y) = .-

Let us denote h = (g}, 115+ 9pyn): V — R" and define p: B™(zg,7) = R", o(x) = h(x,0).
Claim: ¢ is the desired mapping, i.e. f(z,p(x)) = 0.
Now
(z,0(x)) = (z1,...,2m, h1(2,0),..., hy(z,0))
= (91 (2,0),...,95(2,0), gps1(x,0), ..., gpin(x,0) = g*(x,0),

hence g(z,¢(z)) = g(9*(x,0)) = (,0). On the other hand, (z,0) = g(z,p(z)) = (z, f(z,¢(x))),
that implies

f(z,o(x)) = 0.

Moreover, since f is continuously differentiable, also g is continuously differentiable. By the inverse
mapping theorem, g* is continuously differentiable, and hence ¢ is continuously differentiable. Since

(z0,%0) = 9" (20,0) = (0, p(0))

we have
¢(x0) = yo.
Finally choose neighborhoods X 2 zg and Y 3 yq s.t.
1. XxYcCU

2. pX CY.
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Then, for all x € X, there exists y = p(z) € Y s.t. f(x,y) = 0. It remains to prove the uniqueness.
Suppose that z € Y satisfies the equation f(z,z) =0, (x,z) € U. Then

9(x,2) = (2, f(2,2)) = (2,0) = (z, f(2,y)) = g(z,y).
Since g|U is injective, we have (z,z) = (z,y), and therefore z = y O
Remark 1.16. In the above setting we have
¢/ (o) = —(v/ () v/ (x0).

where v(z) = f(z,y0).

2 Differentiable manifolds

2.1 Definitions and examples

Let M be a topological n-manifold. Recall that a chart of M is a pair (U, x), where
1. U C M is open,
2. x: U — zU C R" is a homeomorphism, zU C R"” open.
We say that charts (U, z) and (V,y) are C*-compatible if U NV = {) or
z=yox Hx(UNV): z(UNV) = yUNV)

is a C°°-diffeomorphism.

M
\ P R

A C®°-atlas, A, of M is a set of C*°-compatible charts such that

M= |J U
(U,z)eA

A C®-atlas A is mazimal if A = B for all C*>-atlases B D A. That is, (U,z) € A if it is C°°-
compatible with every chart in A.

Lemma 2.2. Let M be a topological manifold. Then
1. every C*®-atlas, A, of M belongs to a unique maximal C>®-atlas (denoted by A).
2. C*-atlases A and B belong to the same maximal C*°-atlas if and only if AUB is a C*-atlas.

Proof. Exercise U
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Definition 2.3. A differentiable n-manifold (or a smooth n-manifold) is a pair (M, .A), where M

is a topological n-manifold and A is a maximal C*°-atlas of M, also called a differentiable structure
of M.

We abbreviate M or M™ and say that M is a C'°°-manifold, a differentiable manifold, or a
smooth manifold.

Definition 2.4. Let (M™, A) and (N™, B) be C*°-manifolds. We say that a mapping f: M — N
is C* (or smooth) if each local representation of f (with respect to A and B) is C*°. More precisely,
if the composition y o f o 2~! is a smooth mapping (U N f~'V) — yV for every charts (U,z) € A
and (V,y) € B. We say that f: M — N is a C*°-diffeomorphism if f is C*° and it has an inverse
f~! that is C*°, too.

— )
\\ \\\ \\ \
@ @)
| ‘ g
‘ \ ‘ | |
| M | |y j

|

z 3

Remark 2.5. Equivalently, f: M — N is C* if, for every p € M, there exist charts (U,z) in M
and (V,y) in N such that p € U, fU C V, and yo fox~!is C°®°(zU).

Examples 2.6. 1. M =R", A= {id}, A= canonical structure.

2. M =R, A= {id}, B={x N 23}. Now A # B since idoh™" is not C'° at the origin. However,
(R, A) and (R, B) are diffeomorphic by the mapping f: (R, A) — (R,B), f(y) = y'/3. Note:
f is diffeomorphic with respect to structures A and B since id is the local representation of

f.

f (R, B)

id =X

R R

3. If M is a differentiable manifold and U C M is open, then U is a differentiable manifold in a
natural way.

4. Finite dimensional vector spaces. Let V be an n-dimensional (real) vector space. Every norm
on V determines a topology on V. This topology is independent of the choice of the norm
since any two norms on V' are equivalent (V finite dimensional). Let E1,..., E, be a basis of
V and E: R" — V the isomorphism
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Then E is a homeomorphism (V' equipped with the norm topology) and the (global) chart
(V,E~1) determines a smooth structure on V. Furthermore, these smooth structures are
independent of the choice of the basis E', ..., E,.

. Matrices. Let M(n x m,R) be the set of all (real) n x m-matrices. It is a nm-dimensional

vector space and thus it is a smooth nm-manifold. A matrix A = (a;;) € M(n x m,R), i =
1,....n, g=1,...,m

air a2 - Gim

a1 azy - a2m
A= .

Gnp1 Aan2 - Aapm

can be identified in a natural way with the point

nm
(an,alg,...,alm,agl,...,agm,...,anl,...,anm) cR

giving a global chart. If n = m, we abbreviate M (n,R).

. GL(n,R) = general linear group

= {L: R" — R" linear isomorphism}
= {A = (a;j): invertible (non-singular) n x n-matrix}

= {A = (a;5): det A # 0}.

[Note: an n x n-matrix A is invertible (or non-singular) if it has an inverse matrix A=1.]

By the identification above, we may interprete GL(n,R) C M(n,R) = R, Equip M(n,R)
with the relative topology (induced by the inclusion GL(n,R) C M(n,R) = R™). Now the
mapping det: M(n,R) — R is continuous (a polynomial of a;; of degree n), and therefore
G(n,R) C R™ is open (as a preimage of an open set R \ {0} under a continuous mapping).

. Sphere S* = {p € R"*!: |p| = 1}. Let e1,...,e,41 be the standard basis of R*™! let

918"\ fens1} - B"
T

be the stereographic projections, and A = {p,1}. Details are left as an exercise.

Rn+1

\ R" = R" x {0}
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8.

10.

Projective space RP™. The real n-dimensional projective space RP"™ is the set of all 1-
dimensional linear subspaces of R"!, i.e. the set of all lines in R**! passing through the
origin. It can also be obtained by identifying points x € S™ and —x € S™. More precisely,
define an equivalence relation

x~y = x==y, xr,y €S

Then RP™ = S"/~= {[z]: © € S"}. Equip RP" with so called quotient topology to obtain
RP"™ as a topological n-manifold. Details are left as an exercise.

. Product manifolds. Let (M, A) and (N, B) be differentiable manifolds and let p;: M xN — M

and pa: M x N — N be the projections. Then
C= {(U X V7 (:E °p1,Y op2)): (U,SE) € Av (Vyy) € B}
is a C'*°-atlas on M x N. Example

(a) Cylinder R! x St
(b) Torus S' x St = T2
Lie groups. A Lie group is a group G which is also a differentiable manifold such that the

group operations are C'°, i.e.
(9,h) = gh™

is a C*°-mapping G x G — G. For example, GL(n,R) is a Lie group with composition as the
group operation.

Remark 2.7. 1. Replacing C™ by, for example, C*, C* (= real analytic), or complex analytic

2.

2.8

(in which case, n = 2m) we may equip M with other structures.

There are topological n-manifolds that do not admit differentiable structures. (Kervaire,
n = 10, in the 60’s; Freedman, Donaldson, n = 4, in the 80’s). The Euclidean space R"
equipped with an arbitrary atlas is diffeomorphic to the canonical structure whenever n # 4
("Exotic* structures of R* were found not until in the 80’s).

Tangent space

Let M be a differentiable manifold, p € M, and v: I — M a C*°-path such that ~(t) = p for some
t € I, where I C R is an open interval.
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Write
C®p)={f:U—=R| feC®U), U some neighborhood of p}.

Note: Here U may depend on f, therefore we write C*°(p) instead of C*°(U).
Now the path 7 defines a mapping ;: C*(p) — R,

Yof = (f o) (t).

Note: The real-valued function f o+ is defined on some neighborhood of t € I and (f o~)’(¢) is its
usual derivative at t.

Interpretation: We may interprete 4;f as ”a derivative of f in the direction of v at the point
“

p.

Example 2.9. M =R"
Ifvy=(y1,...,7): I = R" is a smooth path and +'(t) = (7{(¢),...,7,(t)) € R™ is the derivative
of v at ¢, then

Yf = (foy) () = ')y (#®) =) - V()

t

In general: The mapping 4 satisfies:
Suppose f,g € C*(p) and a,b € R. Then

a) Ji(af +bg) = af + bieg,
b) 4:(fg9) = g®@)3:f + f(p) Vg

We say that 4, is a derivation.
Motivated by the discussion above we define:

Definition 2.10. A tangent vector of M at p € M is a mapping v: C*°(p) — R that satisfies:
(1) v(af +bg) =av(f) +bv(g), f,g€ C®({p), a,beR;

(2) v(fg) = g(P)o(f) + F(p)o(g) (ct. the "Leibniz rule®),

The tangent space at p is the (R—)linear vector space of tangent vector at p, denoted by T,M or
M,,.

Remarks 2.11. 1. If v,w € T,M and ¢,d € R, then cv 4+ dw is (of course) the mapping
(av + bw): C>®(p) — R,
(cv + dw)(f) = cv(f) + dw(f).

It is easy to see that cv + dw is a tangent vector at p.

2. We abbreviate vf = v(f).
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3. Claim: If v € T,M and ¢ € C*°(p) is a constant function, then ve = 0. (Exerc.)

4. Let U be a neighborhood of p interpreted as a differentiable manifold itself. Since we use
functions in C*°(p) in the definition of T}, M, the spaces T, M and T,U can be identified in a
natural way.

Let (U,z), x = (z',22%,...,2"), be a chart at p. We define a tangent vector (so-called coordinate
vector) (aii )p at p by setting

()= Diltosato). e

Here D; is the partial derivative with respect to i*" variable. We also denote

(8)p = Day(p) = (ai)

Remarks 2.12. 1. It is easy to see that (0;), is a tangent vector at p.
2. If (U,z), = (z',...,2"), is a chart at p, then (8;),27 = &;;.
Next theorem shows (among others) that T,,M is n-dimensional.

Lemma 2.13. If f € C*(B), k > 1, is a real-valued function in a ball B = B™(0,7) C R", then
there exist functions g; € C*=Y(B),i = 1,...,n, such that g;(0) = D;f(0) and

i)~ 10 =3 yn(w)
i=1

forally = (y1,...,yn) € B.
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Proof. For y € B we have

+ fy1, - Yn—1,0) — f(y1, ..., Yn—2,0,0)
+f(y17---ayn—27070) _f(ylv"'ayn—37070

nool
:Zé ft, - %i-1,t:,0,...,0)
:Z/ E(f(yb...,yi—1,tyi,0,..,,0))dt
—1 70

n 1
:Z/O -D’if(yla"'7yi—l7tyi707"'70)yidt

1
= Zyz/o D,-f(yl, e ,yi_l,tyi,O, e ,O)dt.

Define )
= /0 Dif(yla ey Yi—1, tyi, 0, N ,O)dt.

Then g; € C*~1(B) (since f € C*¥(B)) and g;(0) = D; f(0). O
Theorem 2.14. If (U,x), x = (z!,...,2"), is a chart at p and v € T,M, then

v = Z )
i=1

Furthermore, the vectors (0;)p, @ =1,...,n, form a basis of T,M and hence dimT,M = n.

Proof. For u € U we write z(u) = y = (y*,...,y") € R", so 2'(u) = y*. We may assume that
z(p) = 0 € R™. Let f € C°(p). Since f oz~ is C*°, there exist (by Lemma 2.13) a ball B =
B"(0,r) C zU and functions g; € C*°(B) such that

(fox™)(y)=(foa™ +Zyzgzy Vy € B

and g;(0) = D;(f oz71)(0) = (8;),f. Thus

where h; = g; o x and

Hence

of =v(f —1—233 ) vh; —i—Zw: (p)
=0
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This holds for every f € C*(p), and therefore
v = qumi(@)p.
i=1

Hence the vectors (0;)p, ¢ =1,...,n, span T,M. To prove the linear independence of these vectors,
suppose that

=1
Then
n .
0=wza) = Zbi (03)pz? = b;
=1 S~
=4y,
forall j =1,...,n,, and so vectors (0;)p, @ = 1,...,n, are linearly independent. O

Remark 2.15. Our definition for tangent vectors is useful only for C'*°-manifolds. Reason: If M
is a C*-manifold, then the functions h; in the proof of Theorem 2.14 are not necessarily C*-smooth
(only C*~1-smoothness is granted).

Another definition that works also for C*-manifolds, k > 1, is the following: Let M be a C*-
manifold and p € M. Let 7;: I; — M be C'-paths, 0 € I; C R open intervals, and v;(0) = p, i = 1,2.
Define an equivalence relation 73 ~ 9 <= for every chart (U, z) at p we have

(z0m)'(0) = (z072)'(0)

Def.: Equivalence classes = tangent vectors at p. In the case of a C'°°-manifold this definition
coincides with the earlier one ([y] = o).

U Y1
72
Vi
0

T

(z ©7:)'(0)

2.16 Tangent map

Definition 2.17. Let M™ and N™ be differentiable manifolds and let f: M — N be a C° map.
The tangent map of f at p is a linear map f.: T, M — Ty,) N defined by

(fsv)g=wv(go f), VYgeC®(f(p)), veT,M.
We also write f., or T),f.

Remarks 2.18. 1. It is easily seen that f,v is a tangent vector at f(p) for all v € T,M and
that f, is linear.

2. f M =R™and N =R", then f,, = f'(p) (see the canonical identification T,R" = R™ below).
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3. 7Chain rule“: Let M, N, and L be differentiable manifolds and let f: M — N and g: N — L
be C*°-maps. Then

(g © f)*p = Gxf(p) ° f*p
for all p € M. (Exerc.)
4. An interpretation of a tangent map using paths:

Let v € T,M and let v: I — M be a C*-path such that v(0) = p and 49 = v. Let f: M — N
be a C*°-map and a« = fo~y: I — N. Then f,v = &y. (Exerc.)

Let = (2',...,2™) be a chart at p € M™ and y = (y',...,9y") a chart at f(p) € N*. What
is the matrix of f.: T)M — Ty, )N with respect to bases (3?& )p,z' =1,...,m, and (%)f(p),j =
1,...,n,?7 By Theorem 2.14,

0 L 0 /0
(B BB ), oo
Oz P ; Ox? P Ay f(p)

Thus we obtain an n x m matrix (a;;),

ON i_ 9
aij:f*<@>py —@(y o f).

This is called the Jacobian matrix of f at p (with respect to given bases). As a matrix it is the
same as the matrix of the linear map ¢'(z(p)), g =yo fo xz~1, with respect to standard bases of
R™ and R™.

Recall that f: M™ — N™ is a diffeomorphism if f and its inverse f~! are C*°. A mapping
f: M — N is a local diffeomorphism at p € M if there are neighborhoods U of p and V of f(p)
such that f: U — V is a diffeomorphism.
Note: Then necessarily m = n. (Exerc.)

Theorem 2.19. Let f: M — N be C*° and p € M. Then f is a local diffeomorphism at p if and
only if fi: TyM — Ty, N is an isomorphism.

Proof. Apply the inverse function theorem (of R™). Details are omitted, O

Tangent space of an n-dimensional vector space. Let V' be an n-dimensional (real) vector
space. Recall that any (linear) isomorphism x: V' — R"™ induces the same C*°-structure on V. We
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may identify V and 7,V in a natural way for any p € V: If p € V, then there exists a canonical
isomorphism 7: V' — T,V. Indeed, let v € V and 7v: R — V the path

y(t) = p+ tv.

We set
i(v) = Fo-

Example: V =R", T,R"=R" canonically.
If f: M — Ris C* and p € M, we define the differential of f, df: T,M — R, by setting

dfv=vf, wveTl,M.
(Also denoted by dfy.)

By the isomorphism i: R — TR as above, we obtain df = i~' o f,. Usually we identify df = f,.
Note: Since df: T,M — R is linear, df € T,M* (= the dual of T,M).

N

Tangent space of a product manifold. Let M and N be differentiable manifolds and let

m: M XN — M,
m: M x N —> N

be the projections. Using these projections we may identify 7, ,(M x N) and T,M & T;N in a
natural way: Define a canonical isomorphism

T: T(p’q)(M X N) — TpMEBTqN,
— * *xU, T M N .
TV T1xV + TV S (p,q)( X )
€TpyM €TpN

Example: M =R, N =S!
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" X A
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*W_— / (p,q)
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R 7
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Let f: M x N — L be a C*-mapping, where L is a differentiable manifold. For every (p,q) €
M x N we define mappings

fpr N—=L, fi":M—L,
fol@) = f4p) = f(p,q)
Thus, for v € T,M and w € T,N, we have

fe(v +w) = (f)v + (fp)sw. (Exerc.)

2.20 Tangent bundle

Let M be a differentiable manifold. We define the tangent bundle TM over M as a disjoint union
of all tangent spaces of M, i.e.
T™ = | | T,M.
peEM

Points in T'M are thus pairs (p,v), where p € M and v € T, M. We usually abbreviate v = (p,v),
because the condition v € T, M determines p € M uniquely.
Let w: T'M — M be the projection

w(v) =p, ifveT,M.
The tangent bundle 7'M has a canonical structure of a differentiable manifold.

Theorem 2.21. Let M be a differentiable n-manifold. The tangent bundle TM over M can
be equipped with a natural topology and a C°-structure of a smooth 2n-manifold such that the
projection w: T M — M is smooth.

Proof. (Idea): Let (U,z), x = (z',...,2"), be a chart on M. Define a one-to-one mapping
z: TU — 2U x R" C R" x R" = R*"
as follows. [Here TU = | |,y T,U = pey TpM.] If p € U and v € T}, we set

z(v) = ('(p),...,2"(p), vz, ... va™)

€R” €R™
TU
/L U x R"
T,M
/-’-’\ x —>
U p xU
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First we transport the topology of R™ x R™ into T'M by using maps & and then we verify that
pairs (TU,z) form an atlas of TM. We obtain a C*°-structure for TM. [Details are left as an
exercise.] O

In the sequel the tangent bundle over M means T M equipped with this C'*°-structure. It is an
example of a vector bundle over M.

Let 7: TM — M be the projection (7(v) = p for v € T,M). Then 7~ %(p) = T,M is a fibre over
p. If A C M, then a map s: A — TM, with mo s = id, is a section of TM in A (or a vector field).

Smooth vector bundles. Let M be a differentiable manifold. A smooth vector bundle of rank
k over M is a pair (E,7), where E is a smooth manifold and 7: E — M is a smooth surjective
mapping (projection) such that:

(a) for every p € M, the set E, = n1(p) C E is a k-dimensional real vector space (= a fiber of
E over p);

(b) for every p € M there exist a neighborhood U > p and a diffeomorphism ¢: 77U — U x R*
(= local trivialization of E over U) such that the following diagram commutes

U x R*

lﬂ' id 1771
U

—
U

[above 71 : UxR¥ — U is the projection] and that | E,: E, — {q}xR¥ is a linear isomorphism
for every g € U.

The manifold E is called the total space and M is called the base of the bundle. If there exists
a local trivialization of E over the whole manifold M, ¢: 7'M — M x R* then E is a trivial
bundle.

A section of E is any map o: M — FE such that roo = id: M — M. A smooth section is a
section that is smooth as a map o: M — E (note that M and E are smooth manifolds). Zero
section is a map (: M — E such that

((p)=0€E, VpelM.

A local frame of E over an open set U C M is a k-tuple (o1,...,0%), where each o; is a smooth
section of E (over U) such that (o1(p),o2(p),...,0k(p)) is a basis of E, for all p € U. If U = M,
(01,...,0k) is called a global frame.

2.22 Submanifolds

Definition 2.23. Let M and N be differentiable manifolds and f: M — N a C'*°-map. We say
that :

L. fis a submersion if fi,: T, M — Ty, N is surjective Vp € M.
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2. fis an immersion if fi,: T, M — Ty, N is injective Vp € M.

3. fis an embedding if f is an immersion and f: M — fM is a homeomorphism (note relative
topology in fM).

If M C N and the inclusion i: M < N, i(p) = p, is an embedding, we say that M is a submanifold
of N.

Remark 2.24. If f: M™ — N™ is an immersion, then m < n and n — m is the codimension of f.

Examples 2.25. (a) If Mj,..., M are smooth manifolds, then all projections 7m;: My X --- X
M. — M; are submersions.

(b) (M =R, N =R?) a: R —R?, aft) = (t,]t|) is not differentiable at ¢ = 0.

A

(c) a: R — R2, a(t) = (t3,?) is C* but not an immersion since o/(0) = 0.

A

(07

s

T —

0

\ 4

(d) a: R = R2, at) = (t3 —4t,t2 — 4) is C*° and an immersion but not an embedding (a(42) =
(0,0)).

A

//'

(e) The map « (in the picture below) has an inverse but it is not an embedding since the inverse
in not continuous (in the relative topology of the image).

«

/’
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(f) The following « is an embedding.

«

/

Remark 2.26. The notion of a submanifold has different meanings in the literature. For instance,
Bishop-Crittenden [BC] allows the case (e) in the definition of a submanifold.

Theorem 2.27. Let f: M™ — N™ be an immersion. Then each point p € M™ has a neighborhood
U such that f|[U: U — N™ is an embedding.

Proof. Fix p € M. We have to find a neighborhood U > p such that f|U: U — fU is a homeomor-
phism when fU is equipped with the relative topology. Let (Uy,z) and (Vi,y) be charts at points
p and f(p), respectlvely, such that fU; C Vi, z(p) =0 (€ R™), and y(f(p)) =0 (€ R™). Write
f=yofox=t f=(fi,..., fn). Since f is an immersion, f'(0): R™ — R™ is injective. We may
assume that f/(0)R™ = Rm C R™ x R¥, k = n — m (otherwise, apply a rotation in R"). Then
det f(0) # 0, when f(0) is interpreted as a linear map R™ — R™. Define a mapping

¢: zUy x RF — R",
@(jvt):(fl(j)7f2(j)7afm( ) fm—‘rl( )+t17 -'afm-‘rk( )+tk))
z € x2Uy, t:(tl,...,tk)ERk.

The matrix of ¢/(0,0): R™TF — RM+F ig

and therefore det ¢/ (0,0) = det f/(0) # 0. By the inverse mapping theorem, there are neighborhoods
0 W, C 2U; x RF and 0 € Wy C R” such that e|Wi: Wy — Wy is a dlﬁeomorphlsm Write
U=W,NzU; and U = z~'U (C Uy). Since p|zU; x {0} = f, we have p|U = f. In particular,
flU: U — fU is a homeomorphism, when fU is equipped with the relative topology. O

f

U; _
}—g——/\
M M

$U1 X Rk
NP
w
2U; C R™
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Example 2.28. Let f: R""! — R be a C*°-function such that Vf(p) = (D1f(p), ..., Dns1f(p)) #
0 for every p € M = {x € R"*': f(z) = 0} # (). Then M is an n dimensional submanifold of R"*!,

Proof of the claim above. (Idea): Let p € M be arbitrary. Applying a transformation and a
rotation if necessary we may assume that p = 0 and

of

Vf(O): (07“"0,%

(0))

Then ~2£—(0) # 0. Define a mapping ¢: R — R+,

O0Tn+1
(10($) = ($17"' >$n7f($))7 Tr = (xlw" axn7$n+1)-
Then
0 1 0 0
of
det ' (0) = = 0 0.
et ¢'(0) : : o ) #
0 -+ --- 0 1 0
0
(T %nfﬂ(o)

By the inverse mapping theorem, there exist neighborhoods @ > p and W 3 ¢(0) = (0,0) € R xR
such that ¢: Q@ — W is a diffeomorphism.

R
MNV=U 7 A w
v M
®
.
M/kn
Q
K

Choose an open set K C R", 0 € K, and an open interval I C R, 0 € I, such that K x I C W.
Let V=p YK xI)NQand U=V NM. Then ¢: V — K x I is a diffeomorphism. Let y = o|U.
Repeat the above for all p € M and conclude that pairs (U,y) form a C*-atlas of M. Since the
inclusion i: M — R"*! satisfies

iU =y oy,

1 is an embedding. O

2.29 Orientation

Definition 2.30. A smooth manifold M is orientable if it admits a smooth atlas {(U,,x4)} such
that for every a and 3, with U, NUg = W # (), the Jacobian determinant of z o x; ! is positive at
each point q € z, W, i.e.

(2.31) det(zgox51) (¢) >0, Vg€ z W.
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In the opposite case M is nonorientable. If M is orientable, then an atlas satisfying (2.31) is called
an orientation of M. Furthermore, M (equipped with such atlas) is said to be oriented. We say
that two atlases satisfying (2.31) determine the same orientation if their union satisfies (2.31), too.

Remarks 2.32. 1. Warning: The notion of a smooth structure has different meanings in the
literature (e.g. do Carmo [Ca2]). What goes wrong if we define orientability by saying: "M
is orientable if it admits a C'*°-structure such that (2.31) holds?“ (Exerc.)

2. An is orientable and connected smooth manifold has exactly two distinct orientations. (Ex-
erc.)

3. If M and N are smooth manifolds and f: M — N is a diffeomorphism, then

M is orientable <= N is orientable.

4. Let M and N be connected oriented smooth manifolds and f: M — N a diffeomorphism.
Then f induces an orientation on . If the induced orientation of IV is the same as the initial
one, we say that f is sense-preserving (or f preserves the orientation). Otherwise, f is called
sense-reversing (or f reverses the orientation).

Examples 2.33. 1. Suppose that there exists an atlas {(U, z), (V,y)} of M such that UNV is
connected. Then M is orientable.
Proof. The mapping y oz~ : 2(UNV) — y(U NV) is diffeomorphic, so

det(yoz ™) (q) #0 Vgez(UNV).

Since ¢ + det(y o x_l)/(q) is continuous and z(U NV') is connected, the determinant can not
change its sign. If the sign is positive, we are done. If the sign is negative, replace the chart

(Vy), ¥y = (Y1, - yn), by a chart (V,§), § = (=y1,92,---,yn). Then the atlas {(U,z), (V,§)}
satisfies (2.31). O

2. In particular, the sphere S™ is orientable.

3 Vector fields and their flows

3.1 Vector fields

Let M be a differentiable manifold and A C M. Recall that a mapping X: A — T'M such that
X(p) € T,M for all p € M is called a vector field in A. We usually write X, = X(p). f A C M
is open and X: A — TM is a C*-vector field, we write X € T(A). Clearly T(A) is a real vector
space, where addition and multiplication by a scalar are defined pointwise: If X, Y € T(A4) and
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a,b € R, then aX +b0Y, p — aX, + bY), is a smooth vector field. Furthermore, a vector field
V € T(A) can be multiplied by a smooth (real-valued) function f € C°°(A) producing a smooth
vector field fV, p— f(p)Vp.

Let M be a differentiable n-manifold and A C M open. We say that vector fields V1,..., V"
in A form a local frame (or a frame in A) if the vectors Vpl, ..., V' form a basis of T,M for every
p € A. In the case A = M we say that vector fields V',..., V" form a global frame. Furthermore,
M is called parallelizable if it admits a smooth global frame. This is equivalent to T'M being a
trivial bundle.!

Definition 3.2. (FEinstein summation convention) If in a term the same index appears twice, both
as upper and a lower index, that term is assumed to be summed over all possible values of that
index (usually from 1 to the dimension).

Example:
1)282- = Zvlﬁi,
=1

n
gijda'da? = Z gijdatda’.
ij—=1

Let (U,z), = = (a',...,2"), be a chart and (9;), = ( a)p, i = 1,...,n, the corresponding
coordinate vectors at p € U. Then the mappings

0;: U—TM, pl—>(ai)p: <%>,
p

are vector fields in U, so-called coordinate vector fields. Since the vector fields 0; form a frame,
so-called coordinate frame, in U, we can write any vector field V' in U as

Vo =0'(0)()p, pEU,
where v': U — R. Functions v’ are called the component functions of V with respect to (U, z).
Lemma 3.3. Let V be a vector field on M.Then the following are equivalent:
(a) Ve T(M);
(b) the component functions of V' with respect to any chart are smooth;

(¢c) If U C M is open and f: U — R is smooth, then the function Vf: U = R, (Vf)(p) = V,f,
is smooth.

Proof. Exercise. U
Remark 3.4. In particular, coordinate vector fields are smooth by (b).

Suppose that A C M is open and V.W € T(A). If f € C*(p), where p € A, then V f € C*(p)
and thus W, (V f) € R (= "the derivative of V f in the direction of W,“). The function A — R, p
W, (V f), is denoted by WV f. Thus (WV f)(p) = W,(V f). We also denote (WV'),f = W,(V f).

'Every Lie group is parallelizable; S',S®, and S7 are the only parallelizable spheres; RP!, RP3, and RP” are the
only parallelizable projective spaces; a product S™ x S™ is parallelizable if at least one of the numbers n > 0 or m > 0
is odd.
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Remark 3.5. (WV), is not a derivation, so (WV'), & T,(M), in general. Reason: Leibniz’s rule
(2) does not hold (choose f = g).

Definition 3.6. Suppose that A C M is open and VW € T(A). We define the Lie bracket of V
and W by setting
VWhf=V(Wf)=Wp(Vf), peA, feC?0p).

Theorem 3.7. Let A C M be open and V,W € T(A). Then
(a) [V,W]p, € T,M;
(b) [V,W] e T(A) and it satisfies

(3.8) V.WIf =VIWf)=W(V), feC?(A)

(c) if v* and w' are the component functions of vector fields V. and W, respectively, with respect
to a chart x = (z',...,z"), then
(3.9) [V, W] = (viaiwj - wi&-vj) 0;.

Note: The formula (3.9) can be written as
Vv, w] = (Ve = wo') ;.

Proof. (a) We have to prove that [V, W], satisfies conditions (1) and (2) in the definition of a
tangent vector.

Condition (1) is clear.
Condition (2): Let f,g € C*°(p). Then

V. Wlp V(W (f9) =Wy (V(f9))
p(fWg +gWf) = Wp(fVg+gVy)
F@)Vp(Wg) + Wpg)(Vof) + 9@)Vp(W ) + (Wp f)(Vpg)
- f(o)W, ( ) Vo) (W f) — g()Wp(V f) — (Vo f)(Wpg)
F)(Vo(Wg) =W, (Vg)) + g(p)(Va(Wf) = Wy(V f))
f)[V. W], 9+9(p)[V, Wipf.

(b) Formula (3.8) follows immediately from the definition of a Lie bracket. Let f € C*°(A). Now
functions Wf, Vf, V(Wf), and W(V f) are smooth by Lemma 3.3 (c) since V,WW € T (A).
Hence also [V,W]f = V(W f)—W(Vf) is a smooth function and therefore [V, W] € T (A).

(c) fV =0'0;, W = w’ 0j, and f is smooth, we obtain by a direct computation that
ViWf =V(WF) =W (V) =0 0;(w 9, f) — w d;(v"O; f)
= 0" (0w’ (9, f) + v'w! 8i(0; f) — w (8;0")(Dif) — wv'D;(D; f)
= 0" (9w”) (95 f) — w (90" )(Di f).

In the last step we used the fact that 0;(0;f) = 0;(0;f) for a smooth function f. Changing
the roles of indices ¢ and j in the last sum we obtain (3.9).
O
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Lemma 3.10. The Lie bracket satisfies:
(a) Bilinearity:

[a1 X1 + a2 X2,Y] = a1[X1, Y] + a2[X2,Y] ja
[X, a1Yq + CLQYQ] = al[X, Yl] + ag[X, Yg]

for ai,as € R;
(b) Antisymmetry: [X,Y] = —[Y, X].

(¢) Jacobi identity:
[X,[V,Z]] + [,[2,X]] + [Z,[X,Y]] = 0.

(d)
[fX,9Y] = fglX, Y]+ f(Xg)Y —g(Y ) X.

Proof. (a) Follows directly from the definition.

(b) Follows directly from the definition.

(c)
(X, [Y, Z]]f X([v. z1f) - [V, Z)(X [)
X(Y(2f)-2(Y])) =Y (Z(X)) +Z(Y(X]))
X(Y(2)) - X(Z(Y])-Y(Z(Xf)+ Z(Y (X))
Y. (Z X]|f =Y(Z(X}) -Y(X(Zf)) - Z(X(Yf)) + X(Z(Y [))
(Z,[X.Y)|f=Z(X(Y[) - Z(Y(X[)) - XY (Z[)) +Y(X(Z])).
Adding up both sides yields
X,V Z)f + [V [ 2, X)) f + [Z,[X, Y]] f =0
(d)
[fX,9Y|h = fX(gYh) — gY (fXh)
= fgX(Yh) + f(Xg)(YRh) — gfY(Xh) — g(Y [)(X)
= f9lX.Y]h + f(Xg)Yh — g(Y f)Xh.
O
Lemma 3.11. Let (U,xz), = = (x!,...,2"), be a chart and 0;, i = 1,...,n, the corresponding

coordinate vector fields. Then

[0;,0;] =0 Vi,j.
Proof. Let p € U and f € C*(p). Then
(0)p(D; ) = (@) [(Ds (F o27)) 2]
=D; {(Dj(f oz Ho T) o x_l} (z(p)) = D;iD;(f o x_l)(x(p)).

Since D;D;g = D;D;g for a smooth function g, we obtain the claim. O
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Example 3.12. Let us denote the points of R? by (x,,t) and the standard coordinate vectors of
R3 by

9 0 9

ox’ Oy Ot
Let X,Y,T € T(R?) be the vector fields

Then [X,Y] =T since

(X, Y]f=X({Y[)-Y(X[)
o .0f  of, ,0 0, 0f
= %(8_31 +$§) - (8_y x@)(@)
0% f 0*f  Oxof 0% f 0% f

“ozoy Tozot "oz ot oyor  “otox
_oF _
=1y,

Similarly we can compute that [X,T] =0, [Y,T] = 0.

Let M and N be differentiable manifolds and f: M — N a smooth mapping. If V is a vector
field on M, then f.,V}, is a tangent vector in T, N. This need not define a vector field on N. For
instance, if f is not onto (a surjection), we can not attach such a vector to a point ¢ € N \ fM.
On the other hand, if f is not an injection, there are points p; # pa s.t. f(p1) = f(p2). Then it is
possible that fi,, Vp, # faps Vpo, and consequently f,V is not a vector field on N.

If there exist vector fields V' € T (M) and W € T(N) such that f.,V, = Wy, for all p € M, we
call vector fields V and W f-related and denote W = f, V.

Lemma 3.13. Suppose that f: M — N is a smooth mapping, V € T(M) and W € T(N). Then V
and W are f-related if and only if for every smooth function h that is defined in some open subset
of N we have

(3.14) V(ho f)=(Wh)o f.
Proof. For every p € M,

Vi(ho f)(p) = Vp(hof) = (fepVp)h
and
(Wh)o f)(p) = (Wh)(f(p)) = Wgh-

Thus (3.14) holds if and only if
foVo = W)

for every p € M, in other words, if and only if V' and W re f-related. O
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Remark 3.15. If f: M — N is smooth and V € T (M), there need not exist a vector field
W € T(N) such that V and W would be f-related.

Lemma 3.16. If f: M — N is a diffeomorphism and V € T (M), there exists a unique vector field
W € T(N) such that V and W are f-related.

Proof. If V€ T(M) and f: M — N is a diffeomorphism, define a vector field f,V € T(N) by
setting

(3.17) (f*V)p = f*fol(p), p € N.
Then clearly f.V is the only smooth vector field on N that is f-related with V. O
Vi-1(p)

(fsV)p

PR
- -

p

Lemma 3.18. Let f: M — N be a smooth mapping and V' € T(M), W* € T(N), i = 1,2,
vector fields s.t. V' and W' are f-related. Then [V1,V?] and [W', W?] are f-related. If f is a
diffeomorphism,

[f*vla f*V2] = f*[vla V2]
Proof. Exerc.

Definition 3.19. Let f: M — M be a diffeomorphism and X € 7 (M) a vector field such that
f:X = X, ie. X is f-related with itself. Then we say that X is ‘nvariant with respect to f, or that
X is f-invariant.

Note: The condition f.X = X means that f., X, = Xy, for all p € M.
Left invariants vector fields on a Lie group. Let G be a Lie group. Then every point
g € G defines diffeomorphism Ly: G — G and Ry: G — G (left translation and right translation),

Lg(h) = gh, Ry(h) = hg.

A vector field X is called left invariant if it is invariant under every left translations, in other words,
if LguX = X for every g € G (more precisely, Ly, X, = Xgp, for all g,h € G). A right invariant
vector field is defined similarly.

Theorem 3.20. Let G be a Lie group and T.G its tangent space at the neutral element e € G.
Then every vector X, € T,G defines a unique left invariant vector field X. In particular, G is
parallelizable.

Proof. For every g € GG there is a unique left translation that maps the neutral element e to g,
namely L,. Hence if such a vector field X exists, it is defined uniquely by the formula

Xy = Ly Xe.
On the other hand, this formula defines a left invarian vector field since, for every h € G,

Lg*hXh = Lg*h(Lh*Xe) = Lg* o LpXe = Lgh*Xe = Xgh'
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Let us prove next that the mapping g — X, is smooth. Let f: U — R be a smooth function defined
on some open set U C G. Choose a C*®-path v: | — ¢, e[— G such that 49 = X.. Then we have, for
every g € U

(Xf)(g) = Xof = (LgsXe) f = 50(f 0 Lg)
= (Fo Ly o) (0) = S5 (1(8) .y

The mapping ¢, (g,t) — ¢©(g,t) = f(g7y(t)), is smooth in G| — ¢, ¢[ since it is a composition of
the group operation, the function f, and the path . Therefore

%f (97())1=o

is a smooth function of g, so g — (X f)(g) is smooth. By Lemma 3.3 (¢), X € 7(G). Finally, let
X! ..., X" be a basis of T.G. Then the corresponding left invariant vector fields X!, ..., X™ form
a global frame. Indeed, if there exists g € G s.t. X ;, ..., Xg are not linearly independent, we can
write some vector Xg as a linear combination of the others, i.e.

X; = Zang, where a; € R.

J#i
Then, by the left invariance, ' '
X => a;X]
J#i
yielding a contradiction since X!,..., X" is a basis of T,G. Thus G has a global frame, so it is
parallelizable. O

Submanifolds and the Lie bracket. Let us recall that M is a submanifold of N if the
inclusion 7: M — N is an embedding. For each p € M we identify 7),M and ¢,1T,M, so T,M can
be interpreted as a vector subspace of T,,N. Then a vector T,M > v = i,v € T,N operates on
C>(p) by

vf = (ixv) f = v(f oi) = v(f|M).
[Here C*°(p) = {f € C*°(U): U C N a neighborhood of p} and f|M means f|U N M.]

Theorem 3.21. Let M C N be a submanifold. If X,Y € T(N) are such that X,,,Y, € T,M Vp €
M, then also [ X,Y], € T,M ¥p € M.

We apply the following lemma.
Lemma 3.22. Let M™ C N" be a submanifold and p € M. Then
ToM ={veT,N:vf=0VYfeC>®p), fIM =0}

Proof. Suppose first that v € T,M C T,N (more precisely v = i,w for some w € T,M). Let
feC>U), flUnM =0, for some neighborhood U C N of p. Then foi=0, so

vf = (ivw)f = w(f i) = 0.

Suppose then that v € T,N satisfies the condition vf = 0 for all f € C*>(p), with f|M = 0.
We will prove that v € T,M. From the proof of Theorem 2.27 we see that there exists a chart
(U,z), = (2',...,2"), of N such that ™! = ... =2" =0in UNM and (z',...,2™) is a chart
of UNM at p.
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R’I’L

Write

Now T,,M is a subspace of T, N spanned by coordinate vectors (0i),,i = 1,...,m. Hence v € T,M

if and only if v/ = 0 for all j = m + 1,...,n. Choose, for every j = m + 1,...,n a function
f:U =R, f(z) =27. Then f € C*®(p) and f|M NU = 0. We obtain
" Oxd ,
0= f =3 ) =
so v € T,M. ]

Proof of Theorem 3.21. Let p € M and let f € C>®(U), flUNM = 0, for some neighborhood
U C N of p. Since X, € T;M and Y, € T, M for all ¢ € M, we have

Xyf=0 and Y, f=0VqecUNM

by Lemma 3.22. Hence
(XHUNM =0 and (Y)IUNM =0.

Applying Lemma 3.22 to functions X f and Y f we obtain
Y,(Xf)=0and X,(Yf)=0,

(X, Y]pf = Xp(Yf) =Y, (Xf) = 0.

Thus [X,Y], € T,M (again by Lemma 3.22). O

For the converse direction we so-called Frobenius theorem:

Let M be a smooth n-manifold and k£ € {1,...,n — 1}. Suppose that for every p € M a
k-dimensional subspace A, C T,M is given. Assume furthermore that every p € M has a neigh-
borhood U and smooth vector fields X',..., X*¥ € T(U) such that the vectors X;, . ,Xé“ form a
basis of A, for every ¢ € U. Then we say that

A=|]4A, (cTM)
peEM

is a smooth k-dimensional (tangent) distribution on M (or a smooth field of k-planes or a smooth
subbundle of T'M).

Let A € TM be a smooth tangent distribution. A submanifold N C M is called an integral
manifold of A if T,N = A, for every p € N. Furthermore, we say that A is integrable if, for every
p € M, there exists an integral manifold N of A such that p € N.

We say that a smooth distribution A is involutive if, for every vector fields X,Y € T (M), with
X,, Y, € Ay, Vpe M, also [X,Y], € A, Vpe M.

The existence of an integral manifold is characterized by the Frobenius theorem:
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Theorem 3.23 (Frobenius). Let M be a differentiable n-manifold and A a smooth k-dimensional
tangent distributionon M, 1 <k <n — 1. Then

A is integrable <= A is involutive.
Furthermore, if A is integrable, there exists a chart (U, x) at every point p € M such that every
 Hy e R": y e RF x {¢}}, ce R"7F,
is an integral manifold of A (or ().
Proof. Omitted (see e.g. Lee [L2, §19]).

3.24 Integral curves

Definition 3.25. Let M be a differentiable manifold and X € T(M). We say that a C*°-polku
~v: I — M is an integral curve of X if

Y = X’y(t) Vit e 1.

If, in addition, I C R is an open interval, 0 € I, and v(0) = p, we say that ~ is an integral curve of
X starting at p € M.

Xy =0

Example 3.26. Let us denote the points of R? by (z,y) and let 8%7 8% be the corresponding
coordinate vector fields.

(a) Let X € T(R?), X = 8%. Clearly every path v(t) = (t + a,b), where a,b € R are constants,
is an integral curve of X starting at (a,b). Thus through every point of the plane goes an
integral curve of X.

—_ —> —> —> —> —>

(a,b) —> —> —> —> —> —>
—_ —> —> —> —

\\ —_— —> —> —> —> —>

—_ —> —> —> —> —>
—_ —> —> —> —> —>

]V
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(b) Let V € T(R2),
B,

0

If v: R — R% ~(t) = (z(t),y(t)), is a C°-path, then

%/— Vw(g , 3 9 )
= =) <%>w(t> Ty (8_y)w) =t (%)v@ o) (a_y)w)
— { 2'(t) = z(t)
y'(t) =y(t)

x(t) = ae
= { y(t) = be',

where a,b € R. We observe that the path y(t) = (aet,bet), where a,b, € R, is an integral
curve of V starting that «(0) = (a,b). Thus through every point of the plane goes an integral
curve of V.
As can be seen in (b), we must solve a system of ordinary differential equations (in local coordinates)
in order to find integral curves of a given vector field.

In general:

Lemma 3.27. Let (U,z), © = (z%,...,2"), be a chart on M and let V € T(U),

Vo =v'(0)(0)p, pEU.

Suppose that v : I — U is a C*®-path, where I C R is an open interval and 0 € I. Then v is an
integral curve of V starting at p € U if and only if. for everyi=1,...,n

(3.28) {(fcl °07)(t) =v'((1)) for everyt el
(' 0y)(0) =2'(p).
L
0 xo'y

Proof. (Exerc.)

Remark 3.29. Defining
/8:(/817.”75”):1_}chan ,8:.’1'0"}/7

w'=vlox iU - R, i=1,...,n,



Introduction to differential geometry 41

the system (3.28) can be written in the form
530) {d%iﬁi(t) =W (@), ) el =,
g o) =a'p)

Let V € T(M). It follows from the theory of systems of ordinary differential equations that, for
every p € M, there exists a unique mazimal integral curve «*: I, — M of V starting at p, i.e. if
v: I — M is an integral curve of V staring at p, then I C I, and v = ~P|I. We return to the proof
of this later.

Lemma 3.31. Let V € T(M) and v: I — M be an integral curve of V. Define, for every a € R,
I+a={t+a:tel}

and ¥: I +a— M, 4(t) =~(t — a). Then also 7 is an integral curve of V.
Proof. Let tg € I +a and f € C*®(5(t)). Then

d d
¥ (to)f = E(f 0 ) (t)e=ty = a(f o) (t — @)=
= (f o) (to — a) = Ytg—af = Vyto—a)f

=V s O
3.32 Flows
Let M be a smooth manifold. We say that an open set D C R x M is a flow domain if for all p € M

DN (R x {p}) = I, x {p},

where I, C R is an open interval, 0 € I,. A smooth mapping #: D — M is a (local) flow on M if
it satisfies the following group laws

0(0,p) =p Vpe M,
Tospy =1Ip—s Vs €Iy,
0(t,0(s,p)) =0(t+s,p) Vsel, t+s¢€l,.
We also denote
07 = 0:(p) = 07 (t) = 0(t, p).
The mapping 67: I, — M, t — 67, is a C*°-path. The vector field V,

Vo=,

is called the infinitesimal generator of 6.
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Theorem 3.33 (Properties of a flow). Let 8: D — M be a flow. Then:

(a) YVt € R, the set Dy = {p € M: (t,p) € D} C M is open, 0;: Dy — D_; is a diffeomorphism
and 0,1 = 0_,.

(b) 04005 =05 (whenever the left-hand side is defined).
(c) the infinitesimal generator V' of 0 is a smooth vector field.
(d) Yp e M, 6P: I, = M is an integral curve of V starting at p.
(e) 0uVy = Vo, p), YD E M, Vt e,

Proof.

(a) Let p € Dy, hence (t,p) € D. Since D is open, there exist 6 > 0 and a neighborhood U of p
s.t. [t = d,t + d[xU C D. In particular, {t} x U C D, so U C D; and Dy is open.
If p € Dy, then t € I,, and t + (—t) = 0 € I,,. Hence 6,(p) € D_; and

(610 00)(p) = 6(=t,0(t,p)) = 0(—t +t,p) = p.

Similarly, _+(D_;) C Dy and (f;00_;)(q) = q for all ¢ € D_;. Hence ;' = 0_;. Furthermore,
0; and 6_; are smooth in every open subset of M where they are defined.

(b) Follows directly from the definition of a flow.
(c) Let U C M be open and f € C°°(U). Then for every p € U

d
Ef(e(ta p)) \t:O'

Since f and # are smooth, also p — V f(p) is smooth. Thus V' € T(M).

Vip)=Vpf =605f =

(d) Let p e M and s € I,. We have to prove that
= Vo(s.p)-

Denote g = 0(s,p) and let f € C*°(q). Then

. d d .
‘/Qf = 98f = %f(e(tvqn“:o = Ef(e(t + Svp))|t:0 = Hgf

(e) Let p € M and t € I,. We write ¢ = 67 and prove that
0.V, = V,.

Let f € C*(q). Then

(BuVo) f = V(T 0 00) = (7 0 0008 (5)yuc0

d d
= T O)) g = 7 F (Ot +5,0)) g
=611 =Vaf.
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Lemma 3.34. Let 0: D — M be a flow, V its infinitesimal generator, and p € M. If V,, = 0, then
6P is the constant path 0 = p. If V,, # 0, then 6P: I, — M is an immersion.

Proof. Denote v = 6P. Let ¢t € I, and write ¢ = y(t). Now v : TR — T, M is the zero map
(ie. vv=0VYv € IR) += 6! =~,4(&) = 0. By Theorem 3.33 (a) and (e), we have V, = 61,V
and V, = 0%, V,. Hence 7/(t) =V, =0 <= +/(0) =V, = 0. In other words, if 7/(¢) = 0 for some
t € I,, then 7/(t) = 0 Vt € I,. Hence, if V}, = 0, then ~: I, — M is a smooth mapping such that
7« = 0, and consequently v is a constant path (I, connected). On the other hand, if V}, # 0, then
Y4t 7 0 Vt, s0 7y is an immersion. O

Example 3.35. Let D =R x R? and 0: D — R?,
(t,(z,y)) = (xcost+ysint, —xsint + ycost).
Then 6 is a flow since 0 is clearly smooth and
(a) 6(0,(x,y)) = (zcos0+ysin0, —zsin0 + y cos0) = (x,y),
(b)
0(t,60(s, (,v)))

= ((wcos s + ysins) cost + (—xsin s + y cos s) sint,
— (xcoss+ysins)sint + (—zsin s+ ycos s) cost)
= (2(cos scost —sin ssint) + y(sin s cost + cos ssint),
— z(cos ssint + sin s cost) 4 y(cos s cost — sin ssint))
= (zcos(s +1t) + ysin(s + ), —xsin(s + t) + y cos(s + t))
=0(s+t (x,y)).

Its infinitesimal generator is

d
View) = dt

= (y7 —.Z'),

o1(t, (x,y))‘tzo = (—xsin0+ ycos0, —z cos 0 — ysin 0)

so using coordinate vector fields
Voo, 9 9
(zy) =Y O dy’
[Below are some values of V' (vectors) and some integral curves.]

A

G
2

=-R

A\
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3.36 Flows of vector fields

We say that a flow 6: D — M is mazimal if the flow domain D is the largest possible. In other
words, if 8: D — M is a flow such that D C D and 0 = 6|D, then D = D.

Theorem 3.37. Let M be a smooth manifold and V' € T (M). Then there exists a unique mazximal
flow 0: D — M whose infinitesimal generator is V. Moreover, 0 has the following properties:

(a) For every p € M, the path 6P: I, — M is the unique mazimal integral curve of V' starting at
P.
(b) If s € Iy, then Iy ) is the interval I — s = {t —s: t € I,}.
The proof of Theorem 3.37 is based on the following theorem on the existence, uniqueness, and

smoothness of solutions to systems of ordinary differential equations. Later we will prove part of
it.

Theorem 3.38 (Existence, uniqueness, and smoothness). Let U C R™ be open and
V= (VY...,V"): U — R" smooth. Letty € R and x € U. Consider the following initial value
problem

- .
() =Vt
’7Z(t0) =z,
where v = (YY,...,4"): J —= U, tg € J, is a smooth path.

(a) Existence: For every (to,zo) € R x U there exist an open interval Jy > ty and a neighborhood
Uo C U of xg such that for every x € Uy there exists a C*°-path v: Jy — U that is a solution
to (3.39).

(b) Uniqueness: Ify: Jo — U and 7: Jy — U are solutions to (8.39), then v =4 on the interval
Jo N Jg.

(¢) Smoothness: Let tg,xo, Jo and Uy be as in (a) and define the mapping 0: Jy x Uy — U,

H(tv ‘/E) = V(t%

where v: Jo — U is the unique solution to (3.39) with initial value y(to) = x. Then 6 is
smooth.

We split the proof of Theorem 3.37 into several parts.

Theorem 3.40. Let V € T(M). Then for every p € M there exists a unique mazimal integral
curve of V' starting at p.

Proof. By Theorem 3.38, for every p € M there exists an integral curve of V starting at p (cf.
(3.30)). Let v: I — M and 4: I — M be integral curves of V' s.t. v(t9) = F(to) for some ¢y € I.
Denote

J={tel:q(t)=3(t)}.
We claim that J # () is both open and closed in I, and so J = I (since I is connected).
Clearly J # () since tg € J.
Let t; € J, t; = t € I. Since vy and % are continuous, we have
A(t) = lim 5(t;) = lim (t;) = ~(t),

1—00 i—00
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sot € J. Thus J C I is closed.

Let t; € J. Now v and 4 are solutions to the same system of differential equations with the same
initial value 7(t1) = 4(¢1), therefore ¥ = 4 on an interval |¢; — &,¢; + [ by Theorem 3.38. Hence
|t1 — e,t1 + e[C J, and therefore J C I is open. We have proven that J = I.

Denote

I'={Ya | Ya: Ja — M is an integral curve of V starting at p},

L= Ja

Ya €T

(v € A, A some set of indices) and define

y: I, = M, y(t) = va(t),

for some v, € I' such that ¢t € J,. In other words, v|J, = 7. By the beginning of the proof ~ is
well-defined and thus it is the maximal integral curve of V starting at p. O
In what follows we denote by #P the maximal integral curve of V starting at p.
Let V.€e T(M), p€ M and 6”: I, - M the maximal integral curve of V starting at p. Define

(3.41) D(V)={(t.,p) eRx M: te L},
(3.42) Di(V)={pe M: (t,p) e D(V)},
(3.43) 0: D(V)— M, 6(t,p) = 6P(t).

We also denote
OP(t) = 04(p) = 7.

Lemma 3.44. Let 0: D(V) — M be as above. Then
(a) 0(0,p)=p VpeM,
(b) 0(t,0(s,p)) =0(t+s,p) Vsel,, t+sel,

Proof. (a) is clear.
Fixpe M, sc I, and let ¢ = 0. If v: I, — s — M is the path

V(t) = 0°(t + s),

then 7(0) = ¢ and + is an integral curve of V starting at ¢ (Lemma 3.31). By Theorem 3.38 (b)
("Uniqueness"), v = 69 in the set where both are defined. Since 67 is maximal, it is defined at least
on the interval I, — s (so I, — s C I,). Thus for every t € I, — s

0(t + 5,p) = () = 09(t) = 0(t,q) = 0(t, 6(s,p)). O

Remark 3.45. Above we observed that I, — s C Iy, ) for all s € I,. Since 0 € I, it follows that
—s € Ip(s ), and therefore 6(—s,0(s,p)) = p. The path y: Iy ) +5 — M,

Y(t) = 0(t — 5,0(s,p)),

is an integral curve of V starting at v(0) = 6(—s,6(s,p)) = p. We conclude that v = 67 in To(spy+s
since 07 is maximal. Hence Iy(s )+ s C I, or equivalently Iy ) C I, —s. We obtain I, — s = I,
for every s € I,. (cf. Theorem 3.37 (b).)
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Lemma 3.46. Let 0: D(V) — M be as in (3.41)—(3.43). Then D(V) C R x M is open and 0 is
smooth.

Proof. Let W C D(V) be the set of points (¢,p) € D(V) that have a neighborhood J x U C
D(V') where 0 is defined and smooth and, moreover, that U C M is a neighborhood of p and J C R
is an open interval containing 0 and ¢. Clearly W is open in R x M and 0| is smooth. It remains
to prove that W = D(V'). Assume on the contrary that there exists (t9,po) € D(V) \ W. We may
suppose that tg > 0 (the case ty < 0 is similar). It follows from Theorem 3.38 (by using a chart at
po) that 0 is defined and smooth in some product neighborhood of (0,pg). Let

T =sup{t € R: (t,pg) € W},

so 7 > 0. Since 7 < tg and I, is an open interval containing 0 and to, we have 7 € I,,. Let
qo = 6P°(7). By Theorem 3.38 there exists a product neighborhood | — &, e[x Uy of (0, gy) where 6 is
defined and smooth. We apply Lemma 3.44 to prove that 6 is smooth in some product neighborhood
of (7,po). Let t1 < 7 s.t. t1 +& > 7 and 0P9(¢;) € Up. Since t; < 7, we have (t1,pg) € W, so there
exists a product neighborhood | — §,t1 + d[xU; of (¢1,pp) where 6 is defined and smooth. Since
0(t1,p0) € Uy, we may choose small enough Uy so that 0(t1,p) € Uy Vp € Uy. By Lemma 3.44

0i(p) = 01, © 01, (p)

if t1 € I and t — t1 € Iy, p)- It follows from the choice of ¢; that 6(t1,p) is defined Vp € Uy and
is smooth with respect to p. Furthermore, | —¢,¢[C Iy, ) Vp € Uy since 0(t1,p) € Uy Vp € Uy
and 6 is defined and smooth in | — g,e[xUp. It follows that 6;(p) = 6,—4, o 0, (p) is defined and
smooth with respect to (t,p) if p € Uy and |t — t1] < €. Hence we may extend 6 smoothly to the set
| —d,t1 + ¢[xU; that leads to a contradiction with the definition of 7 since t; +& > 7. This proves
that W = D(V). 0

(qu()) M

777777777777777777777777777777777777777

Iy x {po}

Let us underline the main steps of the proof:
1. Antithesis and the definition of 7.
2. qo = 0(7,po).
3. Theorem 3.38 = 3 a product neighborhood | — €,e[x Uy of (0, go) where 6 is smooth.
4. Choice of t1 €] — e, T].

5. Behavior of # in a neighborhood of (0, gp) is "transported" to a product neighborhood |t; —
e, t1 +¢[xUy of (t1,po) by using the group laws.
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6. Extended 6 smoothly to a neighborhood of (7,pg) and obtained a contradiction.
Proof of Theorem 3.37. Let 0: D(V) — M be as in (3.41)—(3.43). Then:
1. Lemma 3.44 and 3.46 = 6 is a flow.
2. Theorem 3.40 and general properties of flows (Theorem 3.33) = uniqueness.
3. The claim (a) follows directly from the construction.
4. The claim (b) is proven in Remark 3.45 after Lemma 3.44. O

Definition 3.47. Let V € T(M) and let 6: D(V) — M be the maximal flow whose infinitesimal
generator is V. Then we say that 6 is the flow of V.

We say that a vector field V' € T (M) is complete if it generates a global flow, i.e. D(V) = Rx M.
Then every maximal integral curve is defined on whole R.

Lemma 3.48 (Escape lemma). Let V € T(M). If~y is an integral curve of V' such that its mazimal
interval of definition, I, is not the whole R, then ~(I) can not be contained in any compact subset
of M.

Proof. Let I =|a,b[, —00 < a < 0 < b < 400, and let 0 be the flow of V. Then v = 6P (and
I = I,), where p = (0). Assume on the contrary that b < oo and y(I) C K for some compact
K C M. (The case a > —oo similarly.) Choose a sequence t; — b, t; € I. Since y(t;) € K and K
is compact, there exist ¢ € K and a subsequence, still denoted by (¢;), s.t. v(t;) — ¢. Choose a
product neighborhood | —€,e[xU, | —e,e[C I of (0,q) where 6 is defined. Fix a sufficiently large ¢
such that y(¢;) = 0(t;,p) € U and t; > b—e. Then t — 0(t —t;,0(t;,p)) is defined Vt €]t; —e,t; + €]
and it is an integral curve of V' (starting at 6(¢;,p)). Furthermore, (¢t —t;,0(t;,p)) = 0(t,p) = v(t)
for t; — e <t < b. Define o: |a,t; + e[— M by setting

(1), a<t<b,
0t —t;,0(ti,p)), ti—e<t<t;+e.

o(t) =

Then o is an integral curve of V starting at p, hence « is not maximal. This is contradiction and
the lemma is proven. O
The escape lemma implies the following.

Theorem 3.49. If M is compact, every V € T (M) is complete.

3.50 Proof of the existence and uniqueness theorem

Let U C R™ be open. We say that a mapping V: U — R"™ is Lipschitz if there exists a constant
L > 0s.t.

(3.51) V(z) = V()| < Llz—y| Vz,yel.

Theorem 3.52 (Existence). Let U C R™ be open and V: U — R"™ Lipschitz. Then for every
(to, o) € R x U there exist a neighborhood Uy C U of x¢ and an open interval Jy C R, tg € Jy
such that for every x = (z',...,2") € Uy there exists a C-path v: Jy — U solving the initial value
problem

(3.53) i

{(vi)/(t) =V'(y(t)), ¥t € Jo,
’Yi(t()) =x".
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Proof. Suppose that v: Jy — U is a solution to (3.53). From the left-hand side of the equation
we see that every 7%, i = 1,...,n, is differentiable, hence v is continuous. Since both V* and
are continuous, also the right-hand side is continuous. Hence + is continuously differentiable, so
v € C'. Integrating (3.53) with respect to ¢ we obtain

(3.54) A (t) = at + /t Vi(y(s))ds, i=1,...,n.

to
Conversely, if v: Jy — U is a path that satisfies (3.54), then

(0= 5 [ ViGN =Vian) i) =

We define, for each path v: Jy — U, a mapping S,v: Jo — R™,

t
(3.55) Sey(t) =z + [ V(v(s))ds

to
and we look for fixed points of S; (i.e. paths v s.t. v = .5;7) in some suitable metric space. Clearly
Sy is continuous (hence a path) and S;(t9) = z. For every xg € U choose r > 0 s.t. B(zo,7) C U.
Denote M = max{|V (z)|: © € B(xzg,r)}. Let tg € R, § < r/2 and Jy =]ty — €, to + €[, where

r 1 }
2M° L
and L is a Lipschitz constant of V' in (3.51). For every = € Uy := B(zg, ) denote

£ < min{

Mg ={v|~: Jo = B(xzg,r) path, y(tg) = 2}
and define a metric in M, by setting
d(v,75) = sup{|y(t) = 3(t)|: t € Jo}.

If (v;) is a Cauchy sequence in M,, it is uniformly convergent (by the Cauchy criterion), so the
limit v = lim;~; is a continuous mapping Jy — B(z¢,7), so v is a path. Clearly () = , so
v € M. Hence (M,,d) is complete. Next we prove that the formula (3.55) defines a contraction
Sy My — M. If v € M, and t € Jy, then

t
|Sey(t) — zo| = ]/ V(y(s))ds +x — x| < M|t —to| + |& — xo| < Me +6 <,
to

so Sy is a path Jy — B(mo,r) and therefore S,v € M,. Furthermore, S, is a contraction since,
for all v,% € My,

d(Szv, Sz7) = sup /tt V(y(s))ds — /t V (5(s))ds| < sup /t [V (y(s)) =V (3(s))| ds

tedJo'Jto to tedJo Jto
t
<sup [ Lp(s) =) < Dsuplt — told(r,7) < Led(r,7).
tedo Jto S—~—— tedo
<d(v,%)

Since Le < 1, the Banach fixed point theorem 0.8 implies that S, has a fixed point v € M. Hence

Y(t) = Sey(t) = = + tV(’y(s))ds,

to

so v satisfies (3.54) and therefore also (3.53).  [ONote that the Banach fixed point theorem gives
uniqueness among paths Jy — B(zg, r).
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Theorem 3.56 (Uniqueness). If v: Jo — U and 7: Jy — U are solutions to the initial value
problem (3.53) such that 4(ty) = v(to)), then v = 7.

Proof. Suppose that v and #4 are solutions to (3.53) with initial values v(tg) = x and Y(tg) = y.
Then

We obtain

S (0 —1OF) = S0 2O — 2L a(e) — (1)
< e M (2LIA() — ()P — 2LIF(1) = (1)?) = 0.
Hence
e () — (O < e (to) — (o), V> o,

On the other hand,

which implies that

& (M) ~10P) 20

S0
AHA () =4O < H0A(to) — (k)P VE < to.
Hence, for all ¢t € Jy, we have
(3.57) F(t) =2 (B)] < M0 () — y(to)].
It follows that 4 = v if §(to) = v(to)- O

Lemma 3.58 (Continuity). Let Jy be an open interval, to € Jy, Uy C U open and 6: Jy x Uy — U
any mapping s.t. for every x € Uy, v: Jo — U, ~(t) = 0(t,x), is the solution to (3.58) with initial
value y(tg) = x. Then 0 is continuous.

Fix (t,z) € Jy x Up and prove that 6 is continuous at (¢, x). Since continuity is a local property,
we may assume that Jo = [a,b] C R. It follows from the proof of (3.57) that

le(ta‘i‘) - H(th)‘ < eLT‘j - JZ‘,
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where T = b — a. Hence 6 is Lipschitz with respect to z with a constant e”. Let (t, %) € Jo x Up.
Since every solution to 3.53) satisfies the (integral) equation (3.54), we obtain

0(t,7) =7+ /t: V(0(s,T))ds

and similarly for the point (¢, ). Hence

0(F,7) — 0(t,2)| < |7 — x| + ]/tjv(e(s,gz))ds - /tt V(0(s,2))ds

0
i t
<|7—a|+ ]/t [V (0(s,)) =V (0(s, z))|ds| + \/t [V(0(s,2))ds|
0
Since s +— 6(s,x) is continuous, there exists d, > 0 such that
M, = max{|V(0(s,x))|: s € [t — 0,1 + 5]} < 0.

For t € [t — 0y, t + 0., we get

t t
0(F, %) — 0(¢,2)| < | — 2| + \L/ 6(s,2) — (s, )|ds| + }/ M, ds|
to t
<|Z — x| + LT |z — x| + M|t —t|.
Thus 6 is continuous at (¢, x). O

Theorem 3.59 (Smoothness). Let U C R™ be open and V: U — R™ Lipschitz. Suppose that
Up C U is open, Jy C R is an open interval, tg € Jy, and 0: Jy x Uy — U is any mapping s.t. for
every x € Uy, v: Jo — U, ~(t) = 0(t,x), is a solution to (3.53). If V€ C*(U) for some k > 1,
also 0 € C*(Jo x Uy).

Proof. Omitted. [See e.g. Lee [L2].]

3.60 Lie derivative of a vector field

Let X € T(M), Y € T(M), p € M and let 6 be the flow of X. Then 0_;(6¥) = p for t € I =]—4,],
where 0 > 0 is sufficiently small.

o(t,p)
P
We can define a 4YzC*-path I — T}, M,
t e (0-1)«Yoq,p)-
The tangent (vector) to this path at t = 0,
(3.61) i 0= Youp) = Yp i((e_t)*ye(t,p))‘tzo

t—0 t dt

is called the Lie derivative of Y with respect to X and it is denoted by (L XY)p.



Introduction to differential geometry 51

Another way to write (3.61): For every ¢, with |¢| small enough, let 6. Y be the vector field that is
defined by

(00 )g(t,p) = Oux(Yp)-

et*(Yp)
Then
(O-0)sYop) = Yo _ Yo = (0-0)«Yo(up)
t —t
Y = =Yy
N —t
Y, —(0-nY),
N —t
= 7}/1) = (0 Y)p s = —1.

S

Theorem 3.62. Let X,Y € T(M) and p € M. Then
(LxY)p = [X,Y]p.
For the proof we need the following:

Lemma 3.63. Let h: |—9§,6[xU — R be a C*°-function such that h(0,q) =0 forallq e U, U C M
open. Then there exists a C™-function g: | — 0,0[xU — R s.t. h(t,q) = tg(t,q). In particular,

9(07Q) = Dlh(ov(J)' (Dl = _)

Proof. Define ¢(t,q) = fol Dy h(ts,q)ds. O
Proof of Theorem 3.62. Let 6 be the flow of X and let f € C°°(p). Define

h(t,q) = f(0(t,q)) — f(q) = (fob:)(q) — f(q)

From Lemma 3.63 we get g:(q) = g(t,q) s.t.

(3.64) (fob:)(q) = flq) + h(t,q) = f(q) +tg:(q)
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and
=0
oh h(t, q) — h(0, q) f(0(t,q) — f(q)
g0(a) = (0, ¢) = lim —===———= = lim —
= i 20O = (72090) (f 067 (0)
t—0 t
= qf-
Let us find the limit lim o (Y — (Gt*Y))pf.

R

First we obtain

3.64
(et*Y)pf = (et*Ye(—t,p))f = Y@(—t,p)(f o 0y) ( = : Ye(—t,p)f + tY@(—t,p)gt'

Hence
o1 .1
i 0 = )1 = g (] Yo~ D)
.1 :
= lim = (Yof = Yorap ) — Lt Yo
Now
z!i—lg(l) Yo(-tp)9t = Ypgo = Yp(Xf)
and
1 i
lim " (Y}J - Ye(—t,p)f) = lim — (Ypf - Ye(s,p)f)
1
= lim ~((¥/)(0(5.9)) — (V) (p))
= X,(Y f).
We get

lim £V — (0Y)), f = X,V )~ V(X ) = [X.V],f. O

t—0
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4 Tensors and tensor fields

4.1 Tensors

Let Vi,...,V, and W be (real) vector spaces. A mapping F': Vj x --- x Vj, — W is called multi
linear (more precisely k-linear) is it is linear with respect to every variable, i.e.

F(vy,...;av; +bvl, ... vp) = aF(vi, ..., 05 ..., 0p) + bF(v1, ... 0k o)
foralli=1,...,k and a,b € R.

Example 4.2. 1. If V is an inner product space, the inner product (-,-): V' x V — R is 2-linear
(or bilinear). Example. The usual dot product in R™. Use: We can define the norm of a
vector or the angle between two vectors.

2. Cross product in R? is a bilinear mapping - x -: R? x R? — R3. Use: We can compute the
area of a parallelogram or find a vector that is orthogonal to given vectors.

3. The determinant is an n-linear mapping det: R" x- .- xR"™ — R. Interpretation: If vy,...,v, €

1
R"™, v; = (v;,...,0}), then

3

det(vy,...,v,) = det

oy

(%

Use: We may study linear independence of vectors vq,...,v, and compute the volume of
parallelepiped spanned by the vectors.

Let V be a finite dimensional (real) vector space. A linear map w: V — R is called a covector
on V and the vector space of all covectors is called the dual of V' and it is denoted by V*.
Let us denote
(w,v) = (v,w) =wv) eR, weV* vel.

Lemma 4.3. Let V' be an n-dimensional vector space and (vi,...,v,) a basis of V. Then the
covectors w', ..., w", defined by '
w’ (v;) = 07,

form a basis of V*. In particular, dim V* = dim V.

Proof. (Exerc.) _ '
[Note.: Above &/ is the Kronecker delta, i.e. &/ = 1if i = j, and &/ =0 if i # 7]

Definition 4.4. 1. a k-covariant tensor on V is a k-linear map

VESR, VE=Vx...xV.

k copies

2. an [-contravariant tensor on V is an [-linear map

VISR, V=V x.ox V.
~—_——

[ copies



54 Introduction to differential geometry

3. a k-covariant, l-contravariant tensor on 'V (or a (k,l)-tensor for short) is a (k +1)-linear map
VEx VSR
We denote

TH(V) = the space of k-covariant tensors,

T;(V) = the space of I-contravariant tensors,

le(V) = the space of k-covariant, [-contravariant tensors.

Remark 4.5. 1. T*(V), T;(V) and T}(V) are vector spaces in a natural way.

2. We make a convention that O-covariant tensors and O-contravariant tensors are real numbers,
so TO(V) =Ty(V) = R.

Example 4.6. 1. Every linear mapping w: V — R is a 1-covariant tensor. Hence T(V) = V*.
Similarly, T1(V) = V** = V.

2. If V is an inner product space, then any inner product on V' is a 2-covariant tensor (bilinear
real-valued mapping, i.e. a bilinear form).

3. The determinant is an n-covariant tensor on R™.

Definition 4.7. The tensor product of tensors F € TF(V) and G € TP(V) is the tensor F'® G €

k+p
zﬂl—‘,—q (V)7

FRGWi,. .. Vpgpwhy. .. W) = F(oy, ..o wth, o 0D Gogs - - ,vk+p,wl+1, w9,
Lemma 4.8. If (vy,...,v,) is a basis for V and (w',...,w") the corresponding dual basis for V*

(Wi (v;) = 5;), then tensors
w't ®---wik®vjl ®--Quj, 1< jp,ig<n,
form a basis for TF(V). In particular, dim TF(V') = nk+L.
Proof. (Exerc.)

Remark 4.9. We noticed earlier that 77(V) = V** =V (i.e. every vector v € V is a 1-contravariant
tensor) and T(V) = V* (i.e. every covector is a 1-covariant tensor). Thus

W Wt @u, @ ®uj, € TFHV),
i.e. it is a (k,[)-tensor.
4.10 Cotangent bundle
Earlier we defined the differential of a function f € C*°(p) at p as the linear map df,: T,M — R,
dfpv =vf, veT,M.

Hence df, € T,M* (= the dual of T,M). We call T,M* the cotangent space of M at p. If
(U,x), = (z},...,2"), is a chart at p and ((d1)p, ..., (Jn)p) is the basis for T,M formed by the
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coordinate vectors, then the differentials da:;), i=1,...,n, at p of functions z* form the dual basis
for T, M*. Thus the differential of a function f € C*°(p) at p is

dfp = (0i)pf dx;. (Exerc.) [Note: Einstein summation
We define the cotangent bundle TM* over M as the disjoint union of all cotangent spaces

TM* = | | T,M*.
peEM

It has a natural projection w: TM* — M, T,M* > w + p € M. Sections of T'M* are called covector
fields on M or (differential) 1-forms on M. In other words, they are mappings w: M — TM* such
tha 7o w = id. The differential of a function f € C°°(M) is the covector field

df : M — TM*, df(p) = df,: T,M — R.

The geometric visualization of vector and covector fields. A vector field attach a vector
to each point liittdéd jokaiseen pisteeseen vektorin whereas a covector field w attach to each point
p, where w, # 0, a codimension 1 subspace of T,M (a hyperplane)

Kerw, = {v € T,M: wy(v) =0}

and an affine (codimension 1) hyperplane

w;l(l) ={veT,M: wy(v) =1}

Similarly to the case of the tangent bundle, we may prove that the cotangent bundle has a
canonical smooth structure. The set of all smooth covector fields is denoted by T1(M) (or TgH(M),
T*(M), TOHM)).

If (Uyz), x = (x',...,2"), is a chart and w is a covector field on U, there exist functions
wi:U—=R, i=1,...,n,s.t.

w= widaji.

The functions w; are called the component functions of w with respect to (U, z). As in the case of
vector fields we have:

Lemma 4.11. Let w be a covector field on M. Then the following are equivalent:
(a) we THM).
(b) the component functions of w are smooth with respect all charts.

(¢c) If U C M is open and V € T (U) is a smooth vector field in U, the function p — wy(V}) is
smooth.

Proof. Exerc. [Cf. Lemma 3.3] O
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4.12 Tensor bundles over M

Let M be a smooth manifold.
Definition 4.13. We define tensor bundles over M as disjoint unions:

1. k-covariant tensor bundle
T"M = | | TH(T,M),
peEM

2. l-contravariant tensor bundle
M = |_| T(TyM), ja
peEM

3. (k,l)-tensor bundle
M = || THT,M).
peEM

We identify:

T°M = ToM = M x R,

T'M = TM*,
T\M =TM,
TEM =T*M,
TP M = T, M.

All tensor bundles have natural C'*° structures, so we can consider smooth sections. We say
that a section s: M — TFM is a (k,l)-tensor field (ie. mos = idy, so s(p) € TF(T,M)).
Similarly a smooth (k,1)-tensor field is a smooth section M — T}* M. Similarly, we define (smooth)
k-covariant tensor fields and [l-contravariant tensor fields. By our convention both 0-covariant and
O-contravariant tensors are real numbers, hence (smooth) O-covariant tensor fields and (smooth)
O-contravariant tensor fields are (smooth) real-valued functions. We denote

T*(M) = {smooth sections of T*M}
= {smooth k-covariant tensor fields}
Ti(M) = {smooth sections of T;M}
= {smooth [-contravariant tensor fields}
T* (M) = {smooth sections of T}* M}
= {smooth (k,[)-tensor fields}.

If (U,z), = = (z',...,2"), is a chart and ¢ is a tensor field over U, we may write

o= ail...ikda:il ®---®@da™, if ois a k-covariant tensor field,
o =gl 0j, ®---®0j,, if o isan l-contravariant tensor field, and
o= ajl,',','dewil ®---®@di'™* R0, ®---®0;,, ifoisa (k,l)-tensor field.

J1-i

i . VERRV]
The functions 0y,...;,, o and o3, ;!

chart (U, x). We have again:

are called the component functions of o with respect to the
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Lemma 4.14. Let o be a (k,l)-tensor field over M. Then the following are equivalent.
(a) o € TF(M).
(b) the component functions of o are smooth with respect to every chart.

(c) If U C M is open and X1,...,Xr € T(U) are smooth vector fields on U and w',... ' €
TYM) are smooth covector fields on U, then the function

P U(Xl,...,Xk,wl,...,wl)p eR
18 smooth.

Proof. Exerc. [Cf. Lemma 3.3] O
"Pullback". Let f: M — N be a smooth mapping and k € {0,1,2,...}. For every p € M we
define a mapping (pullback)
f5 T Ty N) = THT,M)
by setting
f*S(Ul, ce ,Uk) = S(f*’Ul, cey f*vk), S e Tk(Tf(p)N), V1,...,V € TpM.

Furthermore, we define the “pullback" operation for (smooth) k-covariant tehsor fields: Let f: M —
N be smooth and let o be a k-covariant tensor field on N. We define a k-covariant tensor field f*o
on M by setting

(ffo)p=f"(ofp) pEM.
In other words, if p € M and vq,...,v; € T, M, then
(f*O')p(?}l, “e ,’Uk) = af(p)(f*vl, v ,f*’l)k).

Theorem 4.15. Let M, N, P be smooth manifolds, f: M — N and g: N — P smooth mappings,
o€ TH(N), 7€ TYN) and h € C®(N). Then

(a) f*dh =d(ho f).

(b) f*(ho) = (ho f)f*o.

(¢) fflo@7)=fo® fr.

(d) fro € TFM).

(e) f*: TH(N) — T*(M) is linear.
(f) (go f)r=frog"

(g9) (idn)*o =o.

Proof. Let us prove some claims.

(b) Let pe M and vy,...,v; € T,M. Then

(f*(hO'))p(?}l, ‘e ,vk) = (hO')f(p)(f*’Ul, ‘e ,f*?}k)
= h(f(p))af(p)(f*vl, ey [eUk)
= (ho f)(P)osp)(fevrs-- ., frvr)

ho
((ho f)f*o) (v, vk).
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(f) Let 8 € T*(P). Then (go f)* € T*(M). Similarly,

(ffog")B=f( g8 )eTHM).
N~~~

eTk(N)

Let p € M and vy,...,v, € T,M. Then

((QOf)*ﬁ)p(Ulw--a’U m (g0 fvr,..s (g0 f)avk)

)(9*(f*v1 - G (fovr))

( )(p (fev1), ..., fevg)

= (f"(g")),(v1,- - ve)
)

= ((ffoyg* )(Ul, ..,Uk).

We leave the others as exercise. O
Note: If f is not a diffeomorphism, we can not, in general, define a pullback operation for
[-contravariant tensor fields or (k,[)-tensor fields.

4.16 Symmetric tensors and tensor fields

Let T be a k-covariant tensor on V. We say that T is symmetric if

. j . j
T(’Ul,...,’LZ)Z',...,Uj,...,Uk):T(’Ul,...,%}j,...,vi,...,’uk)

for all 1 <14 < j < k. [Here the indices i and j over vectors indicate, of course, the positions of the
vectors.] We denote

>¥(V) ={T € T*(V): T symmetric}.

Clearly ¥*(V) is a subspace of T*(V). We define a mapping, symmetrization, Sym: T*(V) —
V),

1
SymT = o Z T,

T oeSy

where Sy, is the permutation group of {1,...,k} and 9T is the k-covariant tensor

TT(v1,. . 0k) = T(V(1)s -+ s Vo(k))-

Hence 1
Sym T(’Ul, ‘e ,vk) = E Z T(Uo(l), v ,vo(k)).
" oeS
The number of elements in Sy is k!, so Sym T is the “mean" of tensors T over all permutations
o € Si. Furthermore, we make a convention that 7(°T) = 7T, where 7o (i) = 7(0(1)).
Lemma 4.17. 1. Sym is a linear map T*(V) — ZF(V).
2. (Sym) o (Sym) = Sym.

3. Te¥k(V) <= T =SymT.



Introduction to differential geometry 59

Proof. Clearly Sym is linear. Let T € T*(V). If 7 € Sy is an arbitrary permutation, then
SymT(vT(l), . ,UT(k)) =7(SymT)(v1,...,v;) and

1 1
)= £ 1)~ T 0D
" oESk " oESk
— i' Z TO’T — i' Z nT
k!t ocESK k! neSk

= SymT,

where n = 70 runs through all the elements in Sj along with o. Since 7 € S} was arbitrary, Sym T’
is symmetric. On the other hand, if T € ¥¥(V), then

T(’Ul, e ,vk) = T(Uo(l), e 7va(k)) Yo € Sk

= k!T(vl,...,vk) = Z T(Ua(l)a"'7va(k))
oESE

1
= T(vy,...,v5) = o Z T (Vo(1), - -+ Vo)) = SymT' (v, ..., vg).
" o€eS

Hence
Tex®V) = T=SymT.

In particular,
Sym(Sym7T) = SymT.
——

exk(Vv)

On the other hand, if T = Sym T, then T € X¥(V) since Sym T is symmetric. O
If S € X¥(V) and T € V), their tensor product need not be symmetric, S ® T ¢ ZF(V)
in general. We define the symmetric product of tensors S € X¥(V) and T € X{(V) as ST =
Sym(S®T) € ZF(V),
1
ST(Ula s avk-‘rl) = m Z S(U0(1)7 s an(k))T(UU(k-i-l)v s avcr(k—l-l))‘

UESkJrl

A symmetric k-covariant tensor field over M is a k-covariant tensor field whose value at every point

p € M is a symmetric tensor. Similarly, we define symmetric [-contravariant tensors and tensor
fields.

Example 4.18. The most important symmetric tensor field on M is so-called Riemannian metric.
It is a smooth symmetric 2-covariant tensor field g € T2(M) that is positive definite at every point
p € M. Then the pair (M, g) is called a Riemannian manifold. Then for each p € M

gp: TpyM x T,M — R

is an inner product. Hence we can define the norm |v| = gp(v,v)l/ 2 of a vector v € T,M and a
length of a C*°-path ~: [a,b] — M

() = [ Filar

The length of a piecewise C'°°-path is the sum of the lengths of the pieces. Suppose that M is
connected and p,q € M. Define

d(p,q) = inf (),
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where the infimum is taken over all piecewise C'°°-paths joining p and q. Then d: M x M — R
satisfies the axioms of a metric and the topology determined by d is the same as the original
topology of M. By using a smooth partition of unity one can prove that there are Riemannian
metrics on every smooth manifold.

5 Differential forms

In this section we consider alternating covariant tensors and tensor fields. The sign of an alternating
tensor changes if two vectors are switched. Differential forms are alternating k-covariant tensor
fields. They are very important since, for example:

1. they can be integrated over manifolds and submanifolds independently of local representa-
tions;

2. they form a link between “analysis" and topology on a manifold (de Rham cohomology).
Furthermore, the classical differential operators like grad (gradient), div (divergence) and curl (curl)
as well as Green’s, Gauss’s and Stokes’s theorems can be presented using differential forms.

5.1 Exterior algebra, alternating tensors

We say that a k-covariant tensor T' € T*(V) is alternating (antisymmetric or skew-symmetric) if

T(Ul,...,ziji,...,%j,...,fuk):—T(Ul,...,zijj,...,v,-,...,vk)
for all 1 <i < j < k. We denote
A*(V)={T € T*(V): T alternating}

and call the elements of A¥(V') k-covectors. Clearly A¥(V) is a vector subspace of T*(V). [Note:
In some books the notation AF(V*) is used.]
We denote (o(1),0(2),...,0(k)) =o(1,...,k) if 0 € Sk. A permuation o € Sy, is called trans-
position if it interchanges two elements and leaves all the others fixed. In other words,
i J i J
0Ly g k) = (Lo gy iy k)
for some 1 < i < j < k. A permutation o is even (odd), denoted by sgn = +1 (sgn = —1), if it can

be expressed as a composition of even (odd) number of transpositions. Define a mapping, called
the alternating projection, Alt: TF(V) — T*(V),

1 ag
AT = o Z (segno)(°T), ts.
oESk
1

AT (vy,...,0) = o Z (sgn o) T (Vo(1ys - - - » Vo(k)) -
oc€Sk
Lemma 5.2. 1. Alt is a linear mapping T*(V) — A*(V).
2. (Alt) o (Alt) = Alt.

3. TeA(V) < T=AILT.
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Proof. Linearity is clear. Fix indices 1 <i < j < k. Let 7 € Sy,

¢ J 2 J
T(1, gty gy k)= (100 gyt k),

sosgnt = —1. Let T € T*(V). Then

AltT(vl,...,éj,...,%i,...,vk) :T(AltT)(Ul,...,?i}i,...,?j}j,...,’l)k),

and so

AL T) = T(% 3 (sgno)T)

oc€Sk

= _T(% Z (sgn 7)(sgn U)JT)
" o€Sk

1 A
=4 > (senro)MoT

T oeS

1
== > (senn)'T

" neSy
=—AltT,

where ) = 7o and sgnn = (sgn 7)(sgn o). Hence Alt T € AF(V) VT € TF(V).
If T € A*(V), then

T(vi,...,0x) = (3gn0)T (Vo(1), - -+ Vo(k)) VO € Sk,

SO
1
Al T(v1,- -y ve) = 4 > (sgn )T (Up(1)s - - -+ Vo(k))
€Sy,
=T(v1,...,0%)
- T(Ula ;Uk)
Hence

TeA V) = ALT =T.
In particular, (Alt) o (Alt) = Alt. Finally, if Alt T = T, then T € A*(V).
Example 5.3. 1. TeT%(V) = AT =T.
2. TeTH(V) = ART =T.

3. TeT*(V) =

AT (v,w) = = (T (v,w) — T'(w,v)).

DO | =

4. TeT3V) =

AT (x,y,z) =

=

(T(x,y,2) + T(y,z,2) + T(z,2,y) — T(y,z,2) — T(z,y,2) — T(z, z,y)).

61
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Definition 5.4. If « € T*(V) and B € T'(V), their wedge product (or exterior product) is a A B €
Ak"'l(V),

(kD)
anp =" Al o ).
Thus
1
a B, ok) = 2 > (s8n0)(Vs(1)s - Vo)) BVo(ht1)s - - > Vot
o UESkJrl

A permutation o € Si;, with
ocl)<o(2)<---<oalk) ja ok+1)<ok+2)<---<o(k+1),

is called s (k, 1) shuffle. Denote the set of all (k,[)-shuffles by Sh(k,1).

Lemma 5.5. If a € A¥(V) and 8 € AY(V), then

aABur,...vep) = Y (sgno)a(v,
o€Sh(k,)

—
[
~

Yoo 7va(k))/8(vo(k+1)7 s 7vo(k+l))'

Proof. Exerc. O

Theorem 5.6 (Properties of the wedge product). (a) Bilinearity:

(aa +bB) Anp=alaAn)+bBAn)
Va,B e TH(V), ne TY(V), a,beR.

(b)
aAB=Alta)AB=aA(AltB) YaeTHV), geTYV).

(c) Anticommutativity:
aNB=(D"BAa YaecTHV), BeTYV).
(d) Associativity:

|
an@nn =(angan=""2E P s se

Va e TH(V), B e THV), ne TP(V).
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(e) For all covector w?,

., w* and for all vectors vy, ..., vy
WA AW (o, o) = det[w (v)].

Proof. (a): Bilinearity is clear.
(b): If 7 € Sk, then

1
AT (vy, ..., v,) = P Z (sgn o) T (Vor(1)s - - - » Vor(k))
) UESk
1
= > (sgn7)(sgn(oT)T (Var(1)s - - - » Vor(k))
’ UESk

= (sgn7) Alt T(vy,...,vg).

Hence
Alt("ar) = (sgn 1) Alt a.
We obtain
Alt((Alt o)) ® B) Alt( Z (sgno)(“a ® B))
€Sk
1
=4 Z sgno) Alt(“a @ B)
€Sk
:i' Z sgno’) Alt 7 (o ® ),
€Sk
where o’ GSkH 1sapermutat10nst o(1,... kk+1,... k+1)=(c(1),...,0(k),k+1,...

and thus sgno’ = sgno and 7 (a® ) = %a ® B. Slnce
Alt7 (0 ® B) = (sgno’) Alt(a @ 3),

we get

Alt((Alt o) ® 8) = % Y (sgno’)(sgno’) Alt(a ® §)
" oeS -1

= Alt(a ® 3).

Hence

(kD)
N ==

k4 0)!
! k!“) Alt((Alta) ® 8)

= (Alta) A B.

Alt(a ® B)

Similarly the other equation in (b).
(C): Let 7 € Sk,
T(1,...,k+)=(k+1,....k+1,1,... k),

so sgnT = (—1)*. Now

(Oé & B)(Uh e 7vk+l) - (/8 X a)(vﬂ'(l)7 e 7vT(k+l))7

63
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soa®f ="(®a). Hence
Alt(a ® ) = (sgn ) Alt(8 ® o) = (1) Alt(8 @ )

that implies (c).

(d):

k+1+p)!
7(“(”;;) Alt(a® (B An))

_(k+l+p)!(+p)
=i Ate@AlGen)

_ (k+1+p)!

aN(BAn =

since Alt(a®@ Alt(B®n)) = Alt(a® (8®n)) = Alt(a® 8®n). Computing similarly (a A ) An we
obtain (d).
(e): If a; € T9(V'), we obtain by repeating the property (d) that

di+ -+ dg)!
(57) ar N Nag = ( ld—ll_"";_k'k) Alt(a1®---®ak).
In particular, in case d; = 1 we get
(5.8) WA AW = BAIN W @ - @ W),

SO

1
WA AW (o vg) = Kl ZS: (sgno) (W' ® - @ W) (V1) - -+ V(i)
gEDK

= Z (sgno)w! (Vo)) - - Wt (Vo(k))

€Sk

= det[w!(v;)]. O
Theorem 5.9. Let V be an n-dimensional and let {w!, ..., w"} be a basis of V*. The the set
E={w A AW [1<idy <idg <o <ig <n}

of k-covectors forms a basis of A*(V'). In particular,

n n!
dim AF(V) = <k> = Hn R
If k > n, then dim AF(V) = 0.
Proof. Let w € A*(V). In particular, w € T*(V), so
W= Wiy W @ @ W'k
by Lemma 4.8. Since w € AF(V), we have

w=Altw = w;,..;, Alt(W" @ -+ @ W)
(Eg) (wil,,,ik

o )wil A AWk,
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If above i; = 4; for some j < [, the corresponding term
WIA - AWT A AWE A Awk =0

because it is an alternating tensor. Hence we may assume that in every multi-index all numbers
i1,...,1 are different. Furthermore, for every multi-index i - - - i3 there exists a permutation o € S,
such that o(i1) < o(i2) < --- < o(ix), and so

W AWZ A Aw = (sgno)w” ) A w702 AL o)
Hence € spans A*(V). Suppose then that
wil...ikwil Ao Awk =0,
Let {v1,...,v,} be the basis of V s.t. w’(v;) = (5f Let 1<j1 <---<jpr<m,so0
(5.10) Wiy i@ A Aw (v, 05) = 0.
If iy & {j1,..., 7k}, it follows from (5.8) that
WA AW A AW (v, 5,) =0

since w’ (v;) = 7. Hence there remains only one term in the sum (5.10) and therefore also this term
must vanish, i.e. ' '
Wipeejp (WA Aw* (v, .0 05,)) = 0.

This is possible only if wj,...;, = 0 because
WA - /\wj’“(vjl,...,vjk) = det[éj—ﬂ =detI; = 1.

Hence the covectors in & are linearly independent, and therefore £ forms a basis of A*(V). The
other cases are left as an exercise. O

Corollary 5.11. If dimV = n, then dim A™(V) = 1. If (w',...,w") is a basis of V*, then w' A
<o Aw™ spans A"(V).

5.12 Differential forms on manifolds
Recall that T%M is the bundle of k-covariants tensors over M. We denote by

AM = | | A¥T,M)
peEM

the bundle of alternating k-covariants tensors [A¥ M is a smooth subbundle of T%M].
A differential k-form w is a section of AFM:

M — A*M, p— w, € A¥(T,M).

By our earlier convention a 0-covariant tensor is a real number, so a differential 0-form is a real-
valued function.
The exterior product of a differential k-form « and a differential [-form S is defined pointwise
by
(@A B)p=apABy, pEM,
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so a A (B is a differential (k + [)-form.
If (U,x), x = (z',...,2"), is a chart, then every differential k-form w (in U) can be written (by
Theorem 5.9) in a form
w= Z wil...ikdl‘il Ao Adat.
<<t

Denote by A¥(M) the set of all smooth sections of A¥M. [Other frequently used notations are
e.g. QF(M), EF(M) and A*(M).] The pull-back of a differential form under a smooth mapping is
a special case of a pull-back of a k-covariant tensor field: If f: M — N is smooth w is a differential
k-form on N, then f*w is the differential k-form on M defined by

(f*w)p(vl, ce ,’Uk) = wf(p)(f*vl, ce ,f*vk).
Lemma 5.13. Let f: M — N be smooth. Then:
(a) f*: A¥(N) — A*(M) is linear.
(b) f(anp)=(fra) A (fp).
(c) If (U,y), y = (y*,...,y"), is a chart on N, then
f*( Z Wiy dy™ A -+ A dyik) = Z (Wiyoi 0 F)d(y™ o ) A= Ad(y™ o f).

11 <---<ig 11 <<,

Proof. Exerc. O
In the special case k = n = dim M = dim N we obtain from (c) the following important (change
of variables) formula.

Theorem 5.14. Let M and N be smooth n-manifolds and f: M — N a smooth mapping. Let
(U,z), = = (z',...,2"), be a chart on M and (V,y), v = (y',...,y") a chart on N. If u is a
real-valued function on V', then in U N f~'V we have:

(5.15) Fr(udy A--- ANdy™) = (uo f)(det Df)dz A --- A da”,

where D f(p) is the matriz of fu, with respect to bases {(0/0x"),} and {(0/0y") s} (= the matriz
of (yo fox™1)(x(p)) with respect to the standard basis of R").

Proof. For every p € U, dz' A--- A da™ spans A"(T,M) (by Corollary 5.11), so it is enough
to show that both sides of (5.15) are equal for (9/0z!,...,0/0z™). Write f/ =y’ o f. By Lemma
5.13 (c),

Fr(udy* A Ady™) = (wo f)df* Ao AdfT,

and further by Theorem 5.6,

df' A AN df(0)0a ., 0/0a") = det(df (9/0a")) = det(g—‘ij) = det DF.

Hence

Fr(udy* A~ Ady™)(0/0x,...,0/02™) = (uo f)det Df
=(uo f)(det Df) (dz* A--- Adz")(9/02',...,0/0x™).

=1
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Example 5.16. Let w € A%(R?), w = dx A dy. We write w in polar coordinates

T =rcosf
y =rsinf.
We get

w=dzr Ady
= d(rcosf) A d(rsinf)
= (cos@dr — rsinf df) A (sin 6 dr + rcos 6 db)
=rcos’Odr Adf —rsin®0do A dr
=rdrA\df

because dr A dr = df A df =0 and df A dr = —dr A df by skew-symmetricity.

5.17 Exterior derivative

Next we define a differential operator, the so-called ezterior derivative, that attach to a smooth
differential k-form o € A¥(M) a smooth (k + 1)-form da € A*T1(M). The form da is called the
exterior derivative of a.

Theorem 5.18. Let M be a smooth manifold. For every integer k > 0 there exists a unique
(R-)linear mapping d = df,: A¥(U) — AML(U), U C M open, satisfying the following:

(i) d is A-antiderivation: If o € A¥(U) and g € AY(U), then

da A B)=dan B+ (=1)*andB.

(ii) If k =0, then d is the differential

d: C®(U) = AYU), [~ df.
N——
=A0(U)

(iii) d*> = dod = 0.

(iv) d commutes with the restriction: If V.C U C M are open and a € A¥(U), then d(a|V) =
(da)|V.

The condition (iv) means that d is a local operator.

Proof. Let us first prove the uniqueness:
Suppose that there exists an operator d that satisfies conditions (i)—(iv). Let (U, z), = = (z!,...,2"),
be a chart. It follows from (iii) and (ii) that

d(dx") = 0,
for the differential dz’ of a coordinate function z* since ' € A%(U) = C®(U). Let

a= E Qi T A - N da™
1<i1 < <ip<n



68 Introduction to differential geometry

Since d(dx?) = 0, it follows from (i) that
d(dz™ A -+ Adz') = 0.
Hence by (i) and (ii)

(5.19) do = Z (daviy i) A da™ A - A da'.

1<y <--<ip<n

This means that d is uniquely determined in U by conditions (i)—(iii) and hence in the whole M
by condition (iv).

To prove the existence we define d in every chart (U,z) by the formula (5.19). Clearly such d is
R-linear and satisfies (ii). To verify (i) we may assume, by linearity of d, that

a:fdxil/\"'/\da:ik and /Bzgdle/\"'/\da:jl_
Then
aAB=fgda™ A Ada AdaTt A A da
so by (5.19)

dla A B) =d(fg) Ndx™ A--- Adx™ Adxdt A - A daht

= (gdf + fdg) Adx™ A--- Adz™ AdzT A A datt

=df Adz™ A Ada AgdxTt A - Ada?t 4+ (=1D)F fdatt Ao Ada™ Adg AdaTt A A dat
=da =ds

=da A B+ (—Dkands.

To check the condition (iii) it suffices to show that d(da) = 0 is
a=fdz" Ao Adz®.

For every f € A°(U)

N Of
df:z;axidx,

SO
. f 21 ik
d(za—da: Adz™ A - A da'™)
=> d(a—fd:n" Adz A A da')
— ox
= Zd(a—f) Adz' Ndx™ A - A d'E
=1
n n 2
:ZZ o7 ded Adxt Adxt A A datE.
— = OxI Ozt
i=1j5=1
Hence

d(de) = 0,
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since ) )
o°f  0f j i _ i j
0wt — Dt and dz! ANdz' = —dx' Ada’.
We have proven that in every chart (U, z) the formula (5.19) defines d = dy that satisfies conditions
(1)—(iii). It remains to prove that these “local” ds defines d in every open subset of M and that
(iv) holds. It is enough to verify that the definition is independent of a chart. §uppose that d is
another operator defined by (5.19) in a chart (V,y), where UNV # (). Since also d satisfies (i)-(iii),
then d = d in U NV by the local uniqueness. O

Theorem 5.20. Let f: M — N be smooth. Then for every a € A*(N)

(5.21) [(da) =d(f*a).

Proof. By locality and linearity it is enough to verify (5.21) in an arbitrary chart (V,y), y =
(y',...,y"), of N for a differential k-form

a=udy A--- Ady',
where u € A%(V). Then

fra=(uo f)d(y™ o f)y - Nd(y™ o f),
d(f*a) =d(uo f)Ad(y™ o f) A--- Nd(y™ o f),
do=du ANdy"™ N--- Ndy',
f*(do) = frdu A frdy™ A--- A Frdy'™
=d(uo f) Ad(y" of)/\---/\d(yik of). O

Theorem 5.22. If w € AY(M) and X,Y € T(M), then
(5.23) dw(X,Y) = X(w(Y)) =Y (w(X)) —w([X,Y]).

Proof. Every smooth differential 1-form can be expressed locally as a sum of 1-forms udv,
where v and v are smooth real-valued functions. Thus it suffices to assume that

w=udv.
Let X and Y be smooth vector fields. Then the left-hand side of (5.23) is
dludv)(X,Y) =duNdv(X,Y) = du(X)dv(Y) — dv(X)du(Y) = (Xu)(Yv) — (Xv)(Yu),
and the right-hand side

X(udv(Y)) =Y (udv(X)) — udv([X,Y])
=X(uYv) —Y(uXv) —u[X,Y]v
=((Xu)(Yv) + uX(Yv)) — (Yu)(Xv) + uY (Xv)) —u(X(Yv) — Y(X0))
= (Xu)(Yv) — (Xv)(Yu). O

Theorem 5.22 is a special case of the following that could be used to define the exterior derivative.
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Theorem 5.24. If w € A¥(M) and X1, ..., Xpy1 € T(M), then

k+1

do(X1, - Xir) = S (-1 XX, Ko Xy
i=1

+ Z (_1)i+jw([Xi7Xj]7X17"'aXiv"'anv"'an-i-l)v

1<i<j<k+1
where X indicates an omitted vector.
Proof. Omitted (see e.g. Lee [L2]).
Definition 5.25. We say that a differential form o € A*(M) is
closed if da = 0 and
ezact if a = df for some € A*1(M).

Since d o d = 0, every exact form is closed. The converse is not true in general. The answer to
the question when every closed p-form on M is exact depends, in fact, on topological properties of
M and not at all on the smooth structure of M. Denote

27(M) = Ker [d: AP(M) — A" (M)]
= {closed p-forms on M},
BY(M) = Im[d: A"~} (M) — A”(M)]

= {exact p-forms on M}.

Let us make a convention that AP(M) is a trivial vector space if p < 0 or p > dim M. The vector

space (quotient space)
ZP(M)
HY (M) =

dR( ) Bp( M)
is called the pth de Rham cohomology group of M. Its elements are the equivalence classes [w] of
closed p-forms. Closed forms w and w’ are equivalent (i.e. belong to the same equivalence class) if
w — w' is exact. Now every closed p-form on M is exact if and only if H),(M) = 0. The following
de Rham theorem gives the connection to the topology of M: For every smooth manifold M and
non-negative integer p, the de Rham cohomology group HC’ZR(M ) is isomorphic with the singular
cohomology group HP(M,R) (see e.g. the books by Lee [L2] or Bredon [Br]).

Definition 5.26 (Interior multiplication). Let V' be a finite dimensional vector space and X € V.
We say that the linear mapping ix: AF(V) — AF=1(V),

ixw(Y1,..., Y1) =w(X, 1, ..., Y 1),

is the interior multiplication (or contraction) with X. If k = 0, we make a convention that ixw = 0.
We also denote
Xow=1ixw.

Similarly, if X € 7(M) and w € A*(M), we define ixw € A*~1 (M) pointwise by setting
(ixw)p = ix,wp, pE M.

Theorem 5.27. Let X € T(M). Then:
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(i) ix: AF(M) — AF=Y(M) is C>°(M)-linear:

ix(fa+gB) = fixa+gixB, f g€ C®(M), a,B € A*(M).

(ii) ix oix = 0.
(iii) ix is a N-antiderivation:

ix(aAp)=(ixa) A B+ (=Dfan(ixpf), ae A (M)

(’l"U) iwa = fixwif f € COO(M)
(v) ixdf = X[ if f e C®(M).
Proof. (iii): Let 3 € A{(M). Denote X;,; = X, so
ix(anB) (X1, Xoy oo, Xpqi—1) = (@ A B) (Xt X1y oo, Xigi—1)
s

= (D)l A B(X, . Xig)

(_1)k+l—1 ~
= > (sgn &) Xsys- - Xow) B X h1)s - - Xo(htn))-

GESkt1
On the other hand,

(ZXO[) /\ﬁ(XlaX27 s )Xk‘-i-l—l)

1 .
U o€Skt1-1
k
A > (sgno)a(Xiyi; Xs(1), - Xoem1))B(Xo () - - - X (hti-1))

o€Sk41-1
and

alNixPB(Xy, X, ooy Xkri—1)
1 .
= m Z (sgn O-)a(X&(l)v e aX&(k))ZXﬁ(X&(k-i-l)’ cee »X&(k-i-l—l))

0ESK4i-1
l

= > (sgno)alXs), - Xo ) BXbtts Xoht1)s - - -+ X (hri1))-
T oeSki-a

Denote S}, = {6 € Sp4s: 3(i) = k +1}. Then

’L'X(Oé /\ﬁ)(XhXQv v an-H—l)

(_1)k+l—1 k i
27(2 > (sgnd) X5y, Xits - s Xo ) BXo(et1)s - - - X (k)

171
kNS S
1 .
J
+ Z Z (sgn 5’)04(X5(1), ce 7X&(k))/8(X&(k+l)a ce 7Xk+l7 “e ,X&(k_;’_l))) .
J=15cgk+i

k41

71
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For every ¢ € S,iH define o € Sk1;_1 by setting

, a(7), 1<j<i—1
o(i)=19., R
g(j+1), i<j<j+k-—1

Conversely, for any given o € S, there is a unique & € S}, 4 s-t. the above holds. On the other
hand, o € Sk1;_1 can be interpreted as the element of Sy that keeps (k + [) fixed. The sign sgn o
is the same in both interpretations. If o and & correspond to each other in the way above, then

o(l,....k+1)=G01),....66—1),66G+1),...,6(k+1),k+1)
=0;(6(1),...,6(i — 1),&k(+z‘l),&(z‘ +1),...,6(k+1)),
where o; € Sk,

O-Z(l’?k—'_l) = (1772_17Z+1,,]€+l,1), sgno; = (_1)k+l_i.

So sgn & = (—1)*~isgn o. We obtain

Z (sgn 5’)0[(X5(1), e an—i-ly e >X&(k))ﬁ(X&(k+1)7 N )X&(k-l—l))

GESL,,

Z (_1)k+l_i(8gn O-)a(Xo(l)v s aXo(i—1)7Xk+l7 Xo(i)7 s aXcr(k—l))ﬂ(Xo(k)v s aXo(k+l—1))

0€Sk11-1

= (_1)k+l_i(_1)i_1 Z (Sgn U)a(Xk-i-b Xa(1)7 s 7X0'(k—1))/8(X0'(k))7 s >Xa(k+l—1))‘

0€Skt1-1

=(—1)k+i-1

We do the same for all 1 <4 < k to obtain

k i
SN (send)a(Xsy s Xirts - Xo) B X (e1)s - - » Xo(tt))

=lges;

k(—l)k+l_1 Z (sgna)a(X;H_l,Xo(l),... 7Xo(k—1))/8(Xo(k)7--- 7X0'(k+l—1))'

0€SKt1-1

Similarly we conclude that

l .
J
S (sgnd)al(Xsay, - Xou)B X ter1)s - > Xirts - - X (h1))

i—1 = akti
I=r5es, Y]

= 1= (sgno)a(Xo)s - - Xo(e) BX kst Xo(h1) - - - Xo(hri—1))-

0€Skt1-1

Hence (iii) holds.

The other cases are left as an exercise. O

Lie derivatives of tensor fields. Using the flow of a vector field X we may define Lie
derivatives of smooth tensor fields with respect to X. We consider only k-covariant tensor fields.

Let 7 € T*(M) be a smooth k-covariant tensor field, X € 7(M) and let § be the flow of X. If
p € M and [t| is small enough, 6; is a diffecomorphism between some neighborhoods of p and 6(¢, p).
Hence we can define the Lie derivative of T with respect to X pointwise as the limit

(07 T)p —Tp d

(Lxr)y = lim =22 = 2 (077) 1,
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It turns out that, indeed, the limit above exists at every point p and the mapping p — (Lx7), is
a smooth k-covariant tensor field.

Theorem 5.28. Suppose that X, Y € T(M) are smooth vector fields, f € C>*°(M), o and T are
smooth covariant vector fields, and w and n are smooth differential forms. Then

(a) Lxf=XFf.
(b) d(Lxw) = Lx(dw).
(¢) Lx(fo) = (Lx f)o+ fLxo.
(d) Lx(c ®71)=(Lxo)®7+0® (LxT).
(e) Lx(wAn)=(Lxw)An+wA (Lxn).
(f) Lx(iyw) =i yyw +iy(Lxw).
(9) If o € TF(M) and Y1,...,Yy € T(M), then
Lx(o(Yi,...,Y)) = (Lx0o)(Y1,...,Ye) + o(Lx Y1, Ya, ..., Yi)+
4 o(Y,...,Ye_1, LxYy).
(h) Lyxw = fLyw +df Aixw.

Proof. We will prove some claims.
(b): Since the exterior derivative is linear, we obtain by Theorem 5.20 that

d(Lxw) = d(hné (9 w—w))

= lim % (d(O;w) — dw)

t—0

= lim — (Gt(dw) dw)

t—0

= Lx(dw).

As an example we prove (c):
Let 0 € TF(M), f € C®°(M),p € M, and vy, ... v € T,M. Then

(LX(fa))p(vl,...,v)—hn(l) (( (fa)) (fa)p)(vl,...,fuk)

t

= %g% ((fO') (et*vlv s >91€kvk) - (fO')p('Ula cee ,Uk))
= 11353(1) — ((f ] Hp)(t)dg(m,) (Hf*vl, cee ,Qf*vk) - (f o Qp)(O)O'p(Ul, cee ,’Uk))

Other cases are left as an exercise. O
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Theorem 5.29 (Cartan’s magic formula). Let X € T (M) and let w € A¥(M). Then
(5.30) Lyw = ixdw+ dixw.
Proof. We prove the claim by induction with respect to k. For k = 0 Theorems 5.27 (v) and
5.28 (a) imply that
Lxf=Xf=1ixdf.

[Note: By our convention iy f = 0 for smooth functions f.]
Next we prove (5.30) for smooth 1-forms. By linearity and locality we may assume that

w = udv,
where v and v are smooth functions. Now
Lx(udv) =uLxdv+ (Lxu)dv = ud(Lxv) + (Xu)dv = ud(Xv) + (Xu)dv

and
=0
—~~
iXd(udv) + diX(udv) = ix(du AN dv) + d((zxu) Adv + uide)
= (ixdu) ANdv —du A (ixdv) + d(uXwv)
= (Xu)dv — (Xv)du + ud(Xv) + (Xv)du
= ud(Xv) + (Xu)dv.

Hence (5.30) holds for £ = 1. Suppose that (5.30) holds for all smooth [-forms, where [ < k and
k> 1. Let w € A*(M) and write it locally as
w= Z wil...ikdxil Ao Adat,

1< <ig

Denote '
Qg gy, = wil,,,ikdas“

and ' '

Biyowiy, = dx" A -+ A dx'™.

Now we see that w can be written as a sum of terms a A 3, where « is a smooth 1-form and 3 a
smooth (k — 1)-form. It is enough to verify the formula for such term. By the induction hypothesis
and by Theorem 5.28 (e) the left-hand side of (5.30) is

Lx(aAB)=(Lxa)AB+aA (Lxp)
— (ixda +dixa) A B+ a A (ixdB + dix ).

Furthermore, both d and ix are A-antiderivations, so the right-hand side of (5.30) is

ixd(aAB)+dix(aAB)=ix(daAp—andB)+d((ixa) NS —aNix])
= (ixda) NB+daNixp — (ixa) NdB + a Nixdp
+ (dixa) NB+ixaNdB —daNixf+aNdixf
= (ixda+dixa) A B+ a A (ixdB + dix3)
= Lx(aAB).
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6 Integration of differential forms

Let U C M be open and let w be a differential form on U. Define the support of w as

suppw =UN{p € U: w, # 0}.

Suppose then that U C R” is open and w is a continuous compactly supported differential n-form
in U, i.e. supp C U is compact. Then

w=u(x)dz' A---ANdz", z=(z... 2") €R",

where u: U — R is continuous and compactly supported (u € Cy(U)). Define

/Uw:/nw:/nu(:n)dzr,

where we have Riemann integral on the right-hand side. [In fact, it is enough to assume that u
is Lebesgue integrable over R™ and there is Lebesgue integral on the right-hand side.] Let then
f: W — U be a diffeomorphism, where W C R" is open. Suppose that U and W are connected.
By the “change of variables fromula” (5.15),

ffw=(det Df)(uo f)dz' A--- Adz".

Using change of variables in Riemann (Lebesgue) integral we obtain
(6.1)

- ffw= /W ffw= /W(uOf)(:E) det Df(x)dx = Sgndeth(:E)/Uu(y)dy = Sgndeth(:L")/ w.

n

Note that the sign of det D f can not change in U since f is a diffeomorphism (det D f # 0) and U
is connected.

Suppose then that M is an oriented differentiable n-manifold. Let {(U,,z4)} be an orientation,
that is, a smooth atlas such that for every o and § for which U, NUp # 0, the Jacobian determinant
of zg0 x; ! is positive at every point ¢ € 24(Uy N Ug):

det(zgoz51) (q) >0, Vg€ z2o(Us N Up).

Let (U,p), ¢: U — W C R"™, be a chart in the orientation of M. Suppose that w is a continuous
differential n-form whose support suppw C U is compact. Then (¢~!)*w is a continuous compactly
supported differential n-form in W. We define

(6.2) /Mw = /n(go_l)*w.

Let (V,4), ¥: V — W, be another chart in the orientation of M s.t. suppw C V. Then suppw C
U NV, so we may assume (to simplify notation) that U = V. Now f = oo ': W — W is
a diffeomorphism whose Jacobian determinant is positive in W. Since ¢! = 9~! o f, we have
(™H* = f*o (v~ 1)*, and therefore

[ w=[ roww=[ r@he = [ @ e
by (6.1). We conclude that the definition (6.2) is independent of the choice of the chart (within
the orientation).

Next we want to define the integral over M of an arbitrary compactly supported continuous
differential n-form.
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6.3 Smooth partition of unity

Let X be a topological space. We say that a collection U C P(X) is locally finite if every point of
X has a neighborhood that intersects at most finitely many members of U.

Definition 6.4 (Partition of unity). Let X be a topological space and F = {U,: a € A} an open
cover of X. A collection {¢;: i € I} of continuous functions ¢;: X — R is a partition of unity
subordinate to F if

(a) 0 <i(zr) <lforallielandze X,
(

)
b) Vi € I da € A s.t. suppy; C U,
(¢) {supp®;}icr is locally finite,

(d) Yierti(x) =1 for every z € X.

The index set I can be arbitrary, in particular, it may be uncountable. By the condition (c)
every y € X has a neighborhood where the sum in (d) has only finitely many non vanishing terms.
Hence there is no problem with the sum.

If M is a smooth manifold and each ; is smooth, we call {¢;} a smooth partition of unity.

Let U be an open cover of X. We say that an open cover V is a refinement of U if for every
V €V there exists U € U such that V C U. A topological space X is paracompact if X is Hausdorff
and every open cover of X has a locally finite refinement.

Lemma 6.5. Every topological manifold has a countable, locally finite open cover {V;}jen by
precompact sets V;. Furthermore, the sets V; can be chosen such that i € {j — 1,j,j + 1} if
VinV; #0.

Proof. Let M be a topological manifold and let {B;};cn be a countable cover where every B;
is precompact (see Theorem 0.20). Next we prove that M has a countable cover {U;} en s.t. for
every j € N

(a) Uj is open and precompact,
(b) Uj C Uy,
(C) Bj C Uj.

Denote Uy = Bj. Suppose that there exist sets U;, j = 1,...,k, satisfying (a)—(c). Since Uy is
compact and {B;} is an open cover of M, there exists mj, € N s.t.

UkCBlLJBQU---UBmk.

We set Upy1 = BiUBy U---U By, . Then (a) and (b) hold for the index j = k + 1, too. By
increasing my, if needed we may assume that my > k + 1, so Bry1 C Ugsq and (c) holds for the
index j = k+1. We have proven by induction that there exists a countable family {U;} jen satisfying
(a)—(c). Furthermore, it follows from (c) that {U;};en is an open cover of M since {B;}en is a
cover of M. Finally we form a countable, locally finite open cover {V;};cn by precompact sets by
setting Vi = Uz and Vj = Uj42\ Uj when j > 2. Then every T_/J is compact since it is a closed subset
of a compact set Uj+2. If p € M, let k be the smallest positive integer such that p € Upyo. Then
p € Vi, and Vj, intersects only with Vj_;, Vi, and Vi4q. Hence {V;};en is locally finite. O
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Theorem 6.6. Let M be a smooth n-manifold. Every open cover of M has a countable, locally
finite refinement {W,;};en such that

(i) there exist diffeomorphisms ¢;: W; — B™(0,3) C R" and
(i) the sets U; = p; "B™(0,1) cover M.
In particular, M is paracompact.

Proof. Let X be an arbitrary open cover of M and let {V}};en be a countable, locally finite
open cover of M by precompact sets given by Lemma 6.5. For every p € M let

W=V
Visp

Since X is an open cover of M, p € X, for some X, € X. Denote W)/ = W, N X, so each
W) C X for some X € X. Let (U, ) be a chart at p such that ¢(p) = 0. We may assume that
B™(0,3) C ¢(U NW)/). Denote W, = ¢~ *B"(0,3) and U, = ¢~ 'B"(0,1). The family {U,: p €
Vi} is an open cover of Vj, for every k. Since V}, is compact, it can be covered by finitely many
such UL,....U™. Let (W}, oh), ..., (W™ /") be the corresponding charts. Then the family
{Wil:keN,ie{l,...,mg}}is a countable open cover of M that is a refinement of X and satisfies
the conditions (i) and (ii). Next we prove that {W}}x; is locally finite. It is enough to show that
each Wé intersects at most finitely many W,iﬁ Assume on the contary that there are indices kg
and 7 such that Wég N W,; # () for infinitely many W,g For every k there exist only my sets W,ﬁ, SO
there must be infinitely many k& such that W,ig N W,; # (). By the construction Wég C Vj, for some
jo and each W} C V; for some j, so there exists V; that contain W} for infinitely many k. On the
other hand, W} NV} # 0, so V; intersects infinitely many V},. This leads to a contradiction since
each Vj intersects only V;_1, V;, and V. O

Theorem 6.7. Let M be a smooth manifold and U = {Uy: o € A} an arbitrary open cover of M.
Then there exists a smooth partition of unity {1;: i € N} subordinate to U.

Proof. Let U = {U,: a € A} be an open cover of M and {W,}ien a locally finite refinement
of U such that conditions (i) and (ii) in Theorem 6.6 hold. Let f;: M — R be a smooth function
such that 0 < f; <1, f; =1 in U;, and supp f; C W; (see below). Define functions ¢;: M — R,

ok
vi= s

Since {W;} is locally finite, each point of M has a neighborhood where the sum 3, f; (in the
denominator) has only finitely many non-vanishing term. Furthermore, >, fj(z) > 1 for every z
since {U;} covers M. Hence ¢; € C*°(M), 0 < ¢p; <1, suppy; C W;, and Y, ¢;(z) = 1 for every
x € M. Let us prove next the existence of such f;. First we notice that functions f: R — R,

eVt >0,
f(t) =
0, t <0,

and h: R - R,
f2-1)
f2=1)+ f(t-1),

h(t) =
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are smooth (exerc.). Furthermore, h(t) = 1Vt <1, h(t) =0Vt > 2 and 0 < h(t) < 1Vt eR.
Hence the function H: R" — R, H(x) = h(|z|), is smooth, 0 < H(z) < 1Vx € R", H(z) =1Vzx €
B™(0,1) and supp H C B™(0,2). Finally, we define functions f;: M — R by setting

H(pi(p)), peW,

fz(p):{o’ pGM\Wi.

6.8 Integration of a differential n-form

Let M be oriented and let w be an arbitrary continuous, compactly supported differential n-form on
M. Let U = {U,} be an orientation of M and {f;: i € I'} a smooth partition of unity subordinate

to U.
=),

Define
In the sum there are only finitely many (non-vanishing) terms since supp w is compact and {supp f;}
is locally finite. Let us prove that the definition above is independent of the choices of an atlas
and a partition of unity if the chosen atlases define the same orientation. Let V = {V3} be another
atlas that determines the same orientation as {U,} and let {g;: j € J} be a smooth partition of

unity subordinate to V. Then
fi=1Y_95=>_ fig

Jjed J

/M fiw = ;/M figjw

SO

and, furthermore,

fye= S f =X [ g
=S¥ fare =5 f o

as it should be. It is worth noticing that

/M figjw

is related to the atlas {U,} when appearing on the first line above and to the atlas {Vz} when
appearing on the second line. These integrals are the same since both atlases determine the same
orientation.

The change of variables formula generalizes as follows: Let M"™ and N™ be smooth oriented
n-manifolds and f: M — N a sense preserving diffeomorphism. If w is a continuous compactly
supported differential n-form on N, then

[l

All the above hold for arbitrary Lebesgue integrable (compactly supported) differential n-forms.
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7 Stokes’s theorem

In his section we will state and prove Stokes’s theorem. For that purpose we need the notion of a
manifold with boundary and some more information on orientation.

7.1 Orientation

The following characterization is often used as a definition of orientability.

Theorem 7.2. A smooth n-manifold M is orientable if and only if there exists a smooth differential
n-form (an orientation form) w € A™(M) that does not vanish at any point (i.e. for every p € M
there exist vectors vy, ..., vy, € T,M s.t. wy(vi,...,v,) #0).

Proof. Assume first that M is orientable ans let {(U,,2,)} bean orientation. For every «
define in U, a smooth n-form
=del ANdz2 A A da.

In other words, w® = z},(dz' A --- A da™). If (Ug,x5) is another chart in the orientation s.t.
Uy NUg # 0, then by Theorem 5.14

(7.3) w? = det D(z5 0z, )w.

Furthermore, the function p — det D(xgoz,')(p) is positive in U, NUpg since (U, 24 and (Ug, z5)
belong to the same orientation. Let {1;};en be a smooth partition of unity subordinate to {U,}.
For every i € N choose «; s.t. suppv; C U,,. Next we define

W= Zwiw“

1€EN

Clearly w is a smooth n-form. To show that w does not vanish at any point, ix an arbitrary p € M,
so p € Uy, for some j. By (7.3)
o

ol
wp’ = awp’,

where the coeflicients a; are non-negative and a; > 0 if p € U,,. Let 04,...,0, be the coordinate
vector fields associated to a chart (Us;, Tq,), SO

wo‘j(8l,...,6n)51

in Uy,. Since 3, ¢;(p) = 1, there exists k € N s.t. ¢p(p) > 0. Then p € supptyp C Uy, 50 aj > 0
and

wp(al,..., sz 81,...,8)
_sz (IZ(Up alv"'aa)
= Zwi p)a; > Yi(p)ag > 0.

Suppose then that there exists w € A"(M) s.t. wy, # 0 Vp € M. Let {(Uq, o)} be an atlas. We
may assume that every Ua is connected (replace U, by its components and re-index if necessary).
Then

WUy = wodxl A+ Ada?,
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where w, is a smooth function that does not vanish at any point of U, and does not change its
sign. By changing the sign of a coordinate function (e.g. ') if necessary, we may assume that
wq > 01in U, for all a. Let then (Uy, z4) and (Ug, z3) be charts such that U, NUg = W # (). Then
(z51)*w = (w0 zgV)dzt A A da™
in z, W and
(:Egl)*w = (wgo $El)d$1 A Adx"
in zgW. On the other hand,

(@a)w= (25" o (zpough) w=(zpoz") ((x5") w)

in z, W, so
(Waoxgt)dz! A ANda" = (zgo *( )
= (vgozyt)* wBOxﬁ ydat A A da™)
(wgoxﬁ )o(azgox Ydet(zg o xy") daxt Ao Ada™
by Theorem 5.14. It follows that
det(zg oz (q) >0

for every q € x,W since both w, 0z, and (wg oy Yo (zgoxyt) are positive functions in z,W. O

Let M be a smooth manifold and S C M a smooth submanifold. We say that a mapping
V: S — TM is a vector field along S if V}, € T,M for all p € S. If S is a submanifold of codimension
1 (i.e. a hypersurface), then a vector v € T,M, p € S, is called transversal to S if v and T),S span
T,M. Furthermore, a vector field V' along S is transversal to S if V), is transversal to S for all
peES.

Theorem 7.4. If M is orientable, S C M a hypersurface, and V' a smooth transversal vector field
along S. Then S is orientable. If w is an orientation form on M, then (iyw)|S is an orientation
form on S.

Proof. (Exerc.)

7.5 Smooth manifolds with boundary
Denote
"= {(z',...,2") € R": 2" >0} and H"={(z',...,2") € R": 2" > 0}.

A topological space M is a topological n-manifold with boundary if M is Hausdorff, N, and every
point of M has a neighborhood that is homeomorphic with some open subset of H" (w.r.t. relative

topology).
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A point p € M is called a boundary point of M if there exists a chart (U, z), z = (z!,...,2"): U —
H", s.t. 2™(p) = 0. The set of boundary points is denoted by OM (this is not a boundary in
topological sense).

To define the notion of a smooth manifold with boundary, recall that a mapping f: A — R™,
where A C R" is arbitrary, is called smooth if every point x € A has a neighborhood V and a
smooth mapping F': V — R™ s.t. FIVNA= f|[VNA.

Let U C H" be open and f: U — R™ smooth. Suppose that U N OH" # (). We define partial
derivatives of f at p € UNOH" as follows. Let V' be a neighborhood of p (in R") and F': V — R™
a smooth mapping s.t. F|V NU = f|V NU. Then F has continuous partial derivatives of every
order in V'

ol
oox Lo,
and
olelE,  glalf,
0%x 0%

in V Nint U. By continuity, we may define partial derivatives of f at p independently of the choice
of F' by setting

alel £, ol E,

goz VT Tgag
A smooth n-manifold with boundary can now be defined as in the usual (without boundary)
case. A pair (U, ) is called a chart on an n-manifold M wih boundary if U C M is open and
@0: U — U C H" is a homeomorphism (w.r.t. relative topology). Charts (U, ¢) and (V,1)) are
C>-compatible if the mappings oo™ 1: (UNV) = »(UNV) and pop=t: p(UNV) = o(UNV)
are smooth. A smooth n-manifold with boundary is a pair (M, A), where M is a topological n-
manifold with boundary and A is a maximal C*-atlas on M. A chart (U, ) is an interior chart if
©U C H", otherwise it is a boundary chart (so U NOH™ # () in that case). The smoothness of a
mapping between two (smooth) manifolds with boundary is defined by using local representations.
Tangent vectors and the tangent space T),M at a boundary point p € OM as well as the tangent
map fyp, are defined as in the usual case of a manifold without boundary. In particular, T, M is an
n-dimensional vector space also for points p € 9M.

It can be shown that OM is a topological (n—1)-manifold that has a canonical smooth structure

so that the inclusion i: OM — M is a smooth embedding.

7.6 Stokes’s theorem

For the Stokes’s theorem we need a way to attach a suitable orientation to OM for an oriented M.

Let M be a smooth n-manifold with boundary 0M. We consider M as a smooth (n — 1)-
dimensional submanifol. We say that a vector v € T,M, where p € OM, is inward-pointing if
v & T,0M and there exists a smooth path ~: [0,e[— M s.t. 7(0) = p and j9 = v. Similarly,
a vector v € T,M is outward-pointing if —v is inward-pointing. A vector field V' along OM is
inward-pointing (outward-pointing) if V,, is inward-pointing (outward-pointing) for every p € 9M.

Lemma 7.7. Let M be a smooth manifold with boundary, p € OM, (U,z), z = (z',...,2"): U —
H", a chart at p and let Oy, ..., 0, be the corresponding coordinate vector fields in U. Then a vector
v =v"(8;), € TyM is inward-pointing if and only if v™ > 0.

Proof. (Exerc.)
We can obtain the following existence result by applying partition of unity.



82 Introduction to differential geometry

Lemma 7.8. Let M be a smooth manifold with boundary. Then there exists a smooth outward-
pointing vector field along OM .

Proof. Let {(Uy,zq)} be a family of boundary charts of M such that OM C U,U,. Then
0
ve=—2 oM NnU,
oxn

is a smooth outward-pointing vector field along OM N U, for all «. Let {1;} be a smooth partition
of unity subordinate to {U, N OM} on OM. For every i choose «; such that supp; C Uy, N OM.
Then

V=Y v

is a smooth vector field along OM. It remains to prove that V is ouward-pointing. Let p € M.
Since Y, ¥i(p) = 1, there exists k s.t. r(p) > 0, so p € Uy,,. Let 01,...,0, be the coordinate
vector fields associated to the chart (Ua,, %q,,) in Uy, . Denote by (y;V*)7 the nth component of
a vector (¢;V*), with respect to the basis {(01)p, ..., (9n)p}. Then each (1);V*)} is non-positive
and, moreover, (V)7 = =g (p) < 0. Then V', the nth component of V,, is negative:

Vo= (0iV), < —¢r(p) < 0.

7

O
Suppose that M is an oriented smooth n-manifold with boundary and let w be an orientation

n-form associated to the orientation of M (see Theorem 7.2). More precisely: Let {(Uy,z4)} be
an orientation of M and w an orientation n-form s.t. in every U,

w|Uy = wadzrtlx A Adx?

(e

where w, is a smooth positive function. Suppose, moreover, that V is a smooth otward-pointing
vector field along OM. Then (iyw)|0M is an orientation (n — 1)-form on M. Finally, we equip
OM with the orientation determined by (iyw)|0M. Such orientation on OM is called the induced
(or the Stokes) orientation. An arbitrary orientation n-form associated to the original orientation
of M and any outward-pointing vector field along OM yield the same orientation on OM (Exerc.).

Example 7.9. Let M = H" and let
w=dz Ndz? A Ada"

be the standard orientation n-form on R™ (and also on H"). We identify OH" and R*~! by identi-
fying points (z!,...,2"1,0) € OH" and (x!,...,2" 1) € R"~!. The vector field

0

| —
ox™

restricted to OH" is a smooth outward-pointing vector field along 9H". Let us compute iy w by
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using the A-antiderivation property (Theorem 5.27 (iii)):
ivw =iy (det Adz® A - A dz™)
= (iydz®) A (dz? A - Adz™) — dat Ny (dz? A - A dz™)
=dzt(V)dz® A - Nda™ — dat A (iydz®) A (da® A - Ada™) + dat Adz® Ay (dad A - A da™)

n
Z Y dr (V)dat Ada® Ao Adat A - A dz”
_ ~——
- e
= —(=D)" Yzt AdaP Ao Ada™E
= (=D)"dzt Adx® Ao Ada™h
We observe thati(ivw)|8]ﬁ1" is the standard orientation (n—1)-form on R"~! (and hence the induced
orientation of JH" is the same as the standard orientation of R"~!) if and only if n is even.

Theorem 7.10 (Stokes’s theorem). Let M be a smooth oriented n-manifold with boundary and let
w be a smooth compactly supported (n — 1)-form on M. Then

(7.11) /M dw = /8ij

where OM has the induced orientation.

Proof. (a) Let us prove the claim first in the case M = H". Since suppw is compact, there
exists R > 0 s.t. suppw C Q@ =[—R,R] x -+ X [-R, R] x [0, R]. We may write w in the form

n
w:Zwidxl/\---/\dxi/\---/\dx”,

SO
dw—Zde/\da: Ao Adzt A - A da"
i=1
" Ow; ~
=> 5 Cdad Ndat A Adxi A A da™
= )
wi=l :55deAdwlA---Ad&iAmAdmn
=Y da’ Adzt A Ndxt A A da
i1 9T
n
. Ow
=Y (- ' =da' A A da”
prt ozt
Then

—n 7‘1 8&)2 o™
=3 // /m "



84 Introduction to differential geometry

Next we change, in each term, the order of integration so that we integrate first with respect to z'.
If i # n, we get

R ow; 4 i ny 3. 1 n 1 n
/ a$i($,...,lL‘,...,ZI) Ydx' = wi(z ..., R,...,2") —wi(x, ..., —R,...,2") =0
-R
for all (x!,... 2% ..., 2") since suppw; C Q. Hence
n—1
. Auw;
S0 [ gt A pda™ =0
= Q Ox*
and so

ow
/ dw = (—1) o dz* N Ndx

”E?w
_ n 1 n " 1. .. n—1
= / / / n dr dx .

R Qw,,
o Oz

R R
/ dw = (_1)n/ / wn(zh, ... 2" 0)dat - - - da™ L
M -R -R

Next we integrate w over JH" by using the standard orientation of R"~! on OH" (i.e. we integrate
w over R"~! x {0}). We obtain

/ w:Z/ widz A Adxt A A da™.
R»—1x {0} i—1 Y QNR"—1x{0}

Now dz"|R"™1 x {0} = 0, so only one non-zero term (when i = n) remains:

On the other hand

(2, ..., 2" 2N da™ = —wu(at, . 2" 0),

SO

/ w= wpdxt A - A dx™ L.
Rn»—1x{0} QNR"»—1x{0}

By Example 7.9 the induced orientation of JH™ (= dM) is the same as the standard orientation of
R"™~! if and only if n is even. Hence integrating w with respect to the induced orientation yields

/ w= (—1)"/ wpdr! A~ Ada" Tt = / dw
oM QNOM M
as desired.

(b) Let then M be an arbitrary smooth oriented n-manifold with boundary. Suppose first that
w is a smooth compactly supported (n — 1)-form s.t. suppw C U for some chart (U, ) belonging
to the orientation of M. Then

o= [ @ rde= [ dew).

Lodte™w) = [ e,
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when OH" has the induced orientation. Since ¢ is a sense preserving diffeomorphism, (U, ¢) belongs
to the orientation of M) and . maps outward-pointing vectors of M N U to outward-pointing
vectors of OH", p|0M NU is a sense preserving diffeomorphism onto its image U N OH". Hence

Jn0=

(¢) Suppose finally that w is an arbitrary smooth compactly supported (n — 1)-form on M. Let
{(Uq,24)} be an orientation of M and let {t;} be a smooth partition of unity subordinate to {Us,}.
Applying what we proved above for forms ¥;w we get

/aMw = zi:/aMﬂ)iw Zzi:/Md(q/)iw)
= Z/M(d%‘ Aw + Pidw)

:/Md(zi:w,-) /\w+/M(zi:w,-)dw
J

since Y, 1; = 1, and therefore d(3°; ;) = 0. O

Corollary 7.12. Let M be a smooth, compact, oriented n-manifold without boundary (i.e. OM =
(). Then the integral of every exact n-form over M wvanishes:

/ do=0 Ywe A" (M),
M

Corollary 7.13. Let M be a smooth, compact, oriented n-manifold with boundary. Ifw € A"~ (M)
is closed, then the integral of w over OM wvanishes:

/ w=0 ifdw=0.
oM

The divergence of a smooth vector field X with respect to an orientation n-form w is the function
Div, X: M — R s.t. (Div, X)w = Lxw.

Corollary 7.14 (The divergence formula, the Gauss formula). Let M be a smooth, oriented n-

manifold with boundary and let w be an orientation n-form on M (so-called volume form). Then
for every compactly supported vector field X € T (M)

/(DinX)w:/ ixw.
M oM

Corollary 7.15 (Integration by parts). Let M be a smooth, compact, oriented n-manifold with
boundary, X € T(M), a € A¥(M), and B € A" *(M), 0 <k <n. Then

/M(Lon)/\ﬁ:/aMz'X(oz/\ﬂ)—/Ma/\(LXﬁ).
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8 Whitney embedding and approximation

First recall: If M is a smooth manifold and {U,} an open cover of M, there exists a smooth
partitioen of unity {1 }ien subordinate to {U,}.

Proposition 8.1. Let {U,} and {¢;} be as above. Let go: Uy — R be arbitrary smooth functions.
Fo each i € N choose «a; such that suppv; C Uy,. Then the function g: M — R,

9= Z¢igai
i€EN
18 smooth.

Proof. The claim follows from the local finiteness of {supp;}. O

Lemma 8.2. Let M be a smooth manifold and K C M a compact set. Let g: K — R be smooth.
[Recall that this means that g extends locally at each point p € K to a smooth function in a
neighborhood of p.] Then g extends to a smooth function g: M — R.

Proof. Cover K by open sets U, (open in M) such that there exist g,: Uy — R with ¢go|Us N
K = g. Add M\ K and the zero function to get an open covering of M. Passing to a refinement we
may assume that this covering is locally finite (see Theorem 6.6). Let {t;} be a smooth partition
of unity subordinate to this covering. Then g: M — R, g = >, ¥:g,, Will do. O

Theorem 8.3 (Whitney embedding theorem, compact case). If M™ is a compact n-dimensional
smooth manifold, there exists a smooth embedding g: M™ — R?*+1,

Proof. Since M" is compact, there exists a finite atlas {(U1, 1), - ., (Uk, ¢x)}. We may assume
that there are open sets Vi € U; such that V; C U;. Now there are smooth functions A\;: M — R
such that X\;|V; = 1 and supp A\; C U; (this follows e.g. from Lemma 8.2). Define v; by setting

Ni(p)ei(p), pe U,

Then 1); is smooth. Next define 8: M — (R™)* x R¥ by

Q(p) = (wl(p)v <. 71/}16(27)7 )\1(]?), <. 7)‘k(p))'

Yi(p) = {

Then
Or = P1s X o+ X e X AL X o+ X Mgy,

Claim 1. # is an immersion.
Fix p € M. Then p € U; for some j. Since A; = 1 in a neighborhood of p, v; coincides with ¢; in
a neighborhood of p. Thus 9;. = ¢;.« near p. Since ; is a chart, ¢;, is injective, and therefore 0,
is injective.

Claim 2. 6 is injective.

If 0(p) = 6(q), then ¥i(p) =
Aj(p) = 1. Hence ¥;(p) = \j(p)e

©i(p) = Aj(p) ¥;(p) = Ai(@) wi(q) = »j(q)-
N N2

=1 =1

¥i(q) and Ai(p) = Ai(q) for every i. Now p € V; for some j, so
©;i(p) = ¢j(p), and therefore

This implies p = ¢ since ¢; is a chart.
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Since M™ is compact, 6 is a homeomorphism onto its image, so 6 is an embedding of M™ into
RY for some (large) N. We regard this embedding as an inclusion i: M" < R,
Claim 3. We can cut N down to 2n + 1.
Suppose that we can find a vector w € R™ such that w is not tangent to M" at any point and that
there are no points z,y € M™ with x — y parallel to w. Then the orthogonal projection of M™
onto the (N — 1)-dimensional subspace w is still injective and maps no nonzero tangent vector
of M™ to zero. Hence we may embedd M™ into RV~!. Thus it suffices to show that such vector
w exists if N > 2n + 1. The argument is of "general position'-type. Suppose N > 2n + 1 and
consider the map o: TM" \ {zero section} — RPN~! taking a tangent vector v # 0 to a vector in
RY via the inclusion and then to the equivalence class of v/[v| in RPN™1 g(v = [i,v/|ic|]. Also
consider the map 7: M"™ x M™ \ Ay — RPN~ taking a pair (z,y),z # v, to the equivalence
class of (z —y)/|z —y|, 7(2,y) = [(z — y)/|z — y||. Both o and 7 are smooth. The dimensions of
the domains of ¢ and 7 are 2n which is less than the dimension N — 1 of the target manifold. By
Sard’s theorem, the images of both maps are of first category and hence the union of the images is
also of first category which implies that there must be such a vector w. O

Remark 8.4. Sard’s theorem: If ¢: M™ — RY is smooth, then the set of critical values has zero
N-dimensional measure.

Critical value: If ¢: M™ — N™ is smooth, then p € M™ is called a critical point of ¢ if ¢ : T, M™ —
TtpyN™ has rank < n, i.e. dim¢.T,M™ < n. The image ¢(p) € N" of a critical point is called a
critical value. All other points in N™ are called regular values (even if they do not belong to pM™).
First category: A subset of a topological space is of first category if it is a countable union of
nowhere dense subsets.

Theorem 8.5 (Whitney embedding theorem, general case). A smooth manifold M™ can be em-
bedded as a submanifold and a closed subset of R*"*1,

Proof. Cover M™ by open subsets with compact closures and take a smooth partition of
unity {\;};en subordinate to a locally finite and countable refinement of that cover. Let h(x) =
> kMg (7). This is a smooth proper map M™ — [1,00) C R. Let U; = h=(i — 1/4,i +5/4), C; =
h=Y[i — 1(3,i + 4/3]. Then U; is open, C; is compact, and U; C int C;. Furthermore, all Coqq
are disjoint and, similarly, all Cuyen are disjoint. Now, for all i, the proof of Theorem 8.3 shows
that there exists a smooth map g;: M™ — R?"*! that is an embedding on U; and is 0 outside C;.
Composing this with a diffeomorphism R?**! — an open ball in R?"*! we may assume that g;M™
is bounded. Let fo = 3 godd, fe = 3. Joven and f = (fo, fo, h): M™ — R?F1 x R2"H1 x R, Now
FfM™ C K xR for some compact K C R?"*! x R?"*+1 gince f,M™ and f.M" are bounded. Then f
is proper since h is proper. If f(x) = f(y), then h(x) = h(y), and therefore x and y are in the same
U;. If this ¢ is odd, then f, is an embedding on U;, and so x = y. Similarly, if ¢ is even, we have
x =y. Hence f is an embedding to a closed subset (by properness). Repeating a similar dimension
reduction argument as in the proof of Theorem 8.3 we find a projection P of R?"+1 x R?"*1 xR to a
(2n+ 1)-dimensional subspace H such that P is an immersion on fM™. Moreover, P can be chosen
such that the original h-axis is not in Ker P. That is, if m: R?"t1 x R?Z"+1 x R — R2n+1 x R27+1
is the projection, then Ker 7 N Ker P = {0}. This implies that = x P is an inclusion, hence proper.
Thus for a compact C C H, K x RNP~1C = (7 x P)7}(K x C) is compact, hence P is proper on
fM™ C K x R. Therefore, P o f is an embedding of M" as a closed subset of R?"+1. O
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8.6 Tubular neighborhoods

Definition 8.7 (Normal bundle). Let M™ be a smooth submanifold of R¥, k > n. The normal
bundle of M™ in R is
NM = {(z,v) € M" x R*: v L T, M},

where the orthogonality L is with respect to the standard inner product of R”.

Then NM is a vector bundle of rank (k — n) over M. Define : NM — RF, 0(z,v) = = + v,
and N(M,e) = {(x,v) € NM: |v| < e}.

Theorem 8.8 (Tubular neighborhood theorem). Let M™ be a comapct smooth submanifold of RF.
Then there exists ¢ > 0 such that 0: N(M,e) — RF is a diffeomorphism onto the neighborhood
{y € RF: dist(M,y) < e} of M™ in R*.

Proof. We have canonical splitting
T,RF =T,M & N, M,

where N,M is the normal space to T, M at z inRF. For fixed z, v — O(xz,v) = x + v, is just a
translation, so 6, is the standard inclusion (identity) on N,M — RF. Also 0,: T,M — T,RF is
just the differential of the inclusion M < R¥, so this part of @, is the standard inclusion of T, M
in 7,R¥ = R*. Thus

f,: R* = T,R* = T, M ® N,M — R*

is the identity. Therefore, 6, is an isomorphism at (z,0) for every x € M, so 6 is a diffeomorphism
on some neighborhood of (z,0). Consequently, , is an isomorphism at (x,v) for any = and for |v|
small. By compactness, there exists § > 0 such that 6, is an isomorphism at all points of N (M, J).
Thus 6: N(M,5) — RF ia a local diffeomorphism onto its image.
Claim: 6 is injective on N(M,¢) for some 0 < € < 4.
Suppose that € is not injective on N (M, ¢) for any € > 0. Then there are sequences (x;, v;) # (yi, w;)
in NM such that |v;| — 0, |w;| = 0 and 0(x;,v;) = 0(y;, w;). Since M is compact and metrizable,
there exist subsequences (after reindexing) such that z; — x and y; — y. Then 0(x;,v;) — 0(x,0) =
x and 6(y;, w;) — 0(y,0) = y, so that x = y. But then, for ¢ large, both (x;,v;) and (y;, w;) are
close to (z,0). Since 0 is injective locally near (x,0), this gives a contradiction. Hence 6 is injective
on N(M,e) for some ¢ > 0. To finish, we claim that 6N (M,e) = {y € R*: dist(y, M) < ¢}. The
inclusion C is clear. Suppose dist(y, M) < e and choose z € M such that |z — y| = dist(y, M).
Then y — z is a normal to M at z of length |y — x| < e, so y € ON (M, ¢). O
Note that the map r = 7o §71: §N(M,e) — M is a smooth retraction of the tubular neigh-
borhood onto M (r|M =id). Also r is homotopic to idy; via smooth homotopy, so 7 is a smooth
"deformation retraction".

Theorem 8.9. Let M™ be a smooth manifold and A C M" closed. Let f: M™ — R be continuous
on M™ and smooth on A (w.r.t. induced structure). Given ¢ > 0, there exists a smooth map
g: M™ — RF such that g(a) = f(a) for all z € A and |f(z) —g(x)| < & for every x € M. Moreover,
f =~ g rel A via an e-small homotopy.

Proof. For every x € M", let V, C M™ be an open neighborhood of z and h,: V, — RF such
that

(i) if z € A, hy is a smooth local extension of f|ANV,,

(ii) ifx ¢ A,V NA=0and hy(y) = hy(z) for all y € V,,,
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(iii) if y € Vg, then |[f(y) — f(x)] < /2, |hs(y) — f(x)] < €/2 and d(z,y) < /2, where d is a

metric on M.

Let {U;} be a locally finite countable refinement of {V,} and {\;} a smooth partition of unity
subordinate to {U;}. For each i € N choose z; such that U; C V,,. Note that \;, =0 on A if z; ¢ A.
Define g(y) = >; Xi(y)ha, (y)-

Claim: g has the desired properties. We note that g is smooth by Propostion 8.1. Suppose y € A.
Then g(y) = >, \i(y)ha, (y) = X Ni(y) f(y) = f(y). If z € M\ A, taking the sums over those ¢ for
which y € U; gives:

lg(y) — f(y)] =

Z Ai(W)ha, (y) — f(y)

>N (o (9) = £(@)) + 3 Nilw) (@) — £ ()
< M) (IR, () — )] + 1 (i) = S )
<Nl (E/2+¢/2) <

Finally, the standard homotopy H(z,t) = tf(z) + (1 — t)g(x) gives the desired e-small homotopy

rel A. O

Theorem 8.10 (Smooth approximation theorem). Suppose that M™ and N™ are smooth manifolds,
where N™ is compact with a metric d. Let A C M™ be closed. Let f: M™ — N" be a continuous
map such that f|A is smooth. Then or every e > 0 there exists a map h: M™ — N™ such that

(i) h is smooth,

(ii) dist (h(z), f(x)) < e for every y € M™,
(iit) h|A = f|A,
(iv) h~ f rel A by an e-small homotopy.

Proof. Embed N” into some RF. By continuity of the inverse map of the embedding and
compactness of N™, hence by uniform continuity of the inverse, there exists § > 0 such that
Ip — ¢| < ¢ implies dist(p,q) < . Hence we may use on N™ the induced metric from RF. Take
a §/2-tubular neighborhood U of N™ in R¥ (taking smaller § if necessary) and let r: U — N™ be
the associated normal retraction. Approximate f by a smooth map g: M™ — R within §/2 (by
Theorem 8.9). Then gM™ C U. Now for the map h = r o g we have

(a) h is smooth,
(b) |h(z) = f(2)] < [r(g(x)) — g(2)] + |g(z) — f(2))] <6/2+ /2 =4,
(c) hl[A=roglA=roflA=[f|A,

(d) h~ frelAby H(z,t) =r(tg(z) + (1 —t)f(z)).
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Corollary 8.11. Suppose that M"™ and N™ are smooth manifolds with N™ compact. Then every
continuous f: M™ — N™ is homotopic to a smooth map. If f and g are smooth and f >~ g, then
f =~ g by a smooth homotopy H: I x M™ — N™.

Proof. The first part follows directly from Theorem 8.10. Suppose then that F': I x M — N
is a homotopy between smooth maps f and g. Extend F to R x M by making it constant with
respect to ¢ € R on both ends (—o0,0] and [1,00). Then F is smooth on the subspace {0,1} x M,
and therefore Theorem 8.10 implies the existence of a smooth map G: R x M — N which coincides
with F on {0,1} x M. Finally, take H = G|I x M. O

We can get rid of the assumption N” being compact in Theorem 8.10 and Corollary 8.11 by
considering an "e(z)-tubular" neighborhood of N™ in R¥ instead of a fixed e-tubular neighborhood.
Thus we obtain the following results.

Theorem 8.12. Let M and N be smooth manifolds and let f: M — N be continuous. Then f is
homotopic to a smooth mapping f: M — M. If f is smooth on a closed set A C M, then there
exists smooth f: M — N such that f ~ f rel A.

Theorem 8.13. If f,g: M — N are smooth homotopic maps, then they are smoothly homotopic.
If f ~ g rel A for some closed A C M, then f and g are smoothly homotopic rel A.

8.14 Some consequences

Theorem 8.15. Let M™ be a smooth m-manifold and n > m. Then every continuous map
f: M™ — S™ is homotopic to a constant map.

Proof. Let g: M™ — S™ be smooth and g ~ f. By Sard’s theorem, there exists p € S™\ gM™.
Then S™\ {p} is homotopic to R™, so it is contractible, i.e. idgn\ {0} = ¢, a constant map. Composing
g with such a contraction implies f ~ c. O

Theorem 8.16. The sphere S™ is not a retract of the ball closed unit ball B™+1.

Proof. Supppose that f: B! — S" is a retraction. Then fi := f(2-): B""1(0,1/2) —
S™(1/2) is a retraction. Let fo: R*T1\ B"*+1(0,1/2) — S™ be the radial projection. Then h: R"! —
S™,

(f2of1)($)v l’EB(O, 1/2)7

is a retraction B"T! — S™ that is smooth in a neighborhood of S*. Thus we can smooth out h
without changing it near S”. Thus we may assume that (the original) f is smooth and that it is the
radial projection near S”. Let x € S" be a regular value of f. Then f~1(z) is a compact 1-manifold
with boundary and its boundary is the single point f~!(2)NS™ = {z}. But any compact 1-manifold
with boundary is homeomorphic to a disjoint union of circles and closed unit intervals, and hence
has an even number of boundary points, which is a contradiction. O

hz) — {fg(a:), x € R\ B"+1(0,1/2),

Corollary 8.17 (Brower’s fixed point theorem). Every continuous map f: B™ — B™ has a fized
point.

Proof. Suppose there is a continuous map f: B® — B™ without fixed points. Define r: B —
S™~! by letting r(x) € S"~* be the intersection point of S"~! and the ray from f(x) to z. This is
a continuous map, hence a retraction of B™ onto S"~!, which is a contradiction. Continuity of r is
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intuitively clear but unpleasant to prove. - B
Another proof: Define a continuous map g: B™(0,2) — B"(0,2),

o(z) = {(2 — e f@/la]), 1< |2 <2,
f(@), lz| < 1.

Clearly g has no fixed points since, for |x| < 1, g(x) = f(x) and thus such x cannot be a fixed
point. Furthermore, if |z| > 1, then [g(z)| < 1, hence such z cannot be a fixed point either. Then
define r: B"(0,2) — S"71(0,2),

r(x) =2(z —g(x))/|lx — g(x)|.

Now r is continuous and if |z| = 2, then g(z) = 0 and therefore r(z) = 2z/|z| = . So r is a
retraction B"(0,2) — S*~%(0,2) which is a contradiction. O

9 A brief introduction to the de Rham cohomology

In this section we consider the de Rham cohomology briefly by introducing some central notions
and results.
Let us recall the following definitions:

Z7(M) = Ker [d: AP(M) — A (M)]
= {closed p-forms on M},
BP(M) = Tm [d: AP\ (M) — AP(M)]

= {exact p-forms on M }.

The vector space (quotient space)
ZP(M)
HY (M) ="——2
dR( ) Bp( M)
is called the pth de Rham cohomology group of M. Its elements are the equivalence classes [w] of
closed p-forms w. (A closed p-form W’ € [w] if W’ — w is exact.)
By our convention AP(M) = 0 (= trivial vector space) if p < 0 or p > dim M, hence HY (M) =0
for these values of p.

Theorem 9.1. Let M be a connected smooth manifold. Then HYp(M) = Z°(M)={f: M - R |
f constant}. In particular, dim Hp(M) = 1.

Proof. Since B°(M) = 0, we have Hp(M) = Z°(M) = {f: M — R | df = 0}. Furthermore,
since M is connected, {f: M — R |df =0} ={f: M — R | f constant}. O

Let f*: AP(N) — AP(M) be the pull-back of a smooth mapping f: M — N . Since f* and d
commute (Thm. 5.20), we get

ffZP(N) C ZP(M) and [f*BP(N)C BP(M).
Hence we may define the linear map (the induced cohomology map)
f* Hjp(N) — Hjp(M)

by setting
flwl=1fw], [w]€Hjp(N).
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The definition is independent of the choice of the representative (Exerc.). If, furthermore, g: N — P
is smooth, then (gof)* = f*og*: HY,(P) — HY,(M). In particular, the induced cohomology map of
the identity map id: M — M is the identity map (id)*: H}p(M) — HYp(M). Hence diffeomorphic
manifolds have isomorphic de Rham cohomology groups.

It turns out that, in fact, the de Rham cohomology groups are topological invariants: If M and
N are homeomorphic smooth manifolds, their de Rham cohomology groups are isomorphic. We
will (partly) prove this next.

Homotopy invariance. Let X and Y be topological spaces and fy, f1: X — Y continuous.
We say that fy and f1 are homotopic (denoted by fy ~ f1) if there exists a continuous mapping (a
homotopy from foto f1) H: X xI =Y, I =10,1], s.t. Ve € X

H{(z,0) = fo(x),
H(z,1) = fi(z).

If, in addition, H(z,t) = fo(zr) = fi(z) Vt € I and Vx € A C X, we say that fp and f; are
homotopic with respect to A, denoted by fy ~ f1 rel A.

A continuous mapping f: X — Y is called a homotopy equivalence (and X and Y homotopy
equivalent) if there exists a continuous mapping ¢g: ¥ — X s.t. fog ~idy and go f ~idx.

If f,g: M — N are smooth mappings, then a collection of linear maps h (= hP): AP(N) —
AP~H(M) s.t.

(9.2) d(hw) + h(dw) = g*w — ffw VYw € AP(N)
—_———

—d(hPw)+hP+1 (dw)
is called a homotopy operator between f* and g*.

Lemma 9.3. Let M be a smooth manifold, I =[0,1] and i;: M — M x I, t € [0,1], an embedding
it(x) = (x,1).
Then there exists a homotopy operator between i, and i].

Proof. We define, for w € AP(M x I),

1
hw = /0 (z’a/atw) dt € APY(M),

where t is the (standard) coordinate in I and 9/0t the corresponding coordinate tangent vector.
In other words,

1

(hw)q(vl, e ,’Up_l) = /(; (i@/@tw)(q’t) (Ul, e ,’Up_l) dt
1

:/0 w(q,t)(c‘)/c‘)t,vl,...,vp_l)dt.

Let z = (2',...,2") be a chart at ¢. It is enough to prove that (9.2) holds for forms
(i) w= f(z,t)dt Adzit A--- Ada?»—1 and

(i) w= f(z,t)dz™ A--- Adz'».
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Suppose first that
w= f(z,t)dt Ndx" N--- Ndx'Pt.

Then
1 . .
d(hw) = d <(/ £, 1) dt> Azt A A d:z:“’l)
0

9 1 ; . .
= — 21 - Ip—1
= 927 (/0 f(a;,t)dt) dz? Ndx™ A--- Ndx

1 , , ,
= (/ a—f.(a;,t) dt) dx? Ndx™ N - ANdx'rr.
o OxJ

On the other hand,

dw = a—f.aixj/\ait/\aixi1 A Adxrt
oxJ
since dt A dt = 0. Hence
of ; ;
h(dw) =h | == dz? Ndt Ndz"™ A --- A dx'»?
oxJ

Lof ) ; i i
:/0 @(az,t)za/at (dx]/\dt/\dxl/\---/\dxp 1) dt

Loy o ;
=— ——(x,t)dt | dx? Ndx" N Ndx'r?
o OxJ

= —d(hw),
and so
d(hw) + h(dw) = 0.

Since toig = 0 and t o4y = 1, we have ijdt = i]dt = 0, and therefore ijw = ijw = 0, so the formula
(9.2) holds. Suppose then that
w= f(x,t)dz™ A--- ANdz'.

Now ig/g;w = 0, so d(hw) = 0. Furthermore,

h(dw) = h (g—{dt Adzt A - Adatr + a)

_ ! af i1 ip
= (/0 E(x,t)dt) dz'* N+ Ndz

= (f(ﬂf,l) - f(ﬂf,O)) dl‘il AREE /\dxip

= jw — iyw,
where « is the sum of terms that do not contain dt. O

Theorem 9.4. Let f,g: M — N be homotopic smooth mappings. Then the induced cohomology
mappings f*,g*: Hjp(N) — HYo(M) are equal for all p.

Proof. For the proof, we need smooth homotopy H: M xI — N from f to g (see Theorem 8.13).
Then H oiy = f and H o4y = g, where i; is as in Lemma 9.3. Let

h=hoH*: AP(N) — AP71(M),
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where h is the homotopy operator constructed in Lemma 9.3. If w € AP(N), then

h(dw) + d(hw) = h(H*dw) + d(hH*w)
= hd(H*w) + d(hH*w)
= i{H*w — ijH*w
=(Hoi1)'w—(Hoip)w
=g'w— fw.

Thus we have for the equivalence class [w] € HY,(N) of a closed form w € AP(N)

7w = el = lg'w — fw] = [A(dw) + d(hw)] = [d(hw)] = 0
since dw = 0 and [a] = 0 for exact forms a. O

Theorem 9.5. If M and N are homotopy equivalent smooth manifolds, then HY (M) and Hp(N)
are isomorphic for all p. The isomorphism is induced by any smooth homotopy equivalence f: M —
N.

Proof. Let f: M — N and g: N — M be continuous s.t. fog ~idy and go f ~ idy;. Then
there exist smooth maps f M—N, f~fiand G: N - M, G~ g (see Theorem 8.12 and 8.13).
Then fo §~idy and §o f ~ idy. By Theorem 9.4

Frogt = o ) = idn)" = idn_an
Similarly, §* o /* is the identity mapping on HY,(N), so f*: HYo(N) — HY,(M) is an isomorphism.
U

Since every homeomorphism is, in particular, a homotopy equivalence, we obtain as a corollary
the invariance of de Rham cohomology groups under homeomorphisms.

Corollary 9.6. If smooth manifolds M and N are homeomorphic, then their de Rham cohomology
groups are isomorphic.

Theorem 9.7 (Poincaré lemma). Let U C R™ be a star-shaped open set. Then HY,(U) =0 for all
p=L

Proof. Let U be star-shaped with respect to y € U. Then ¢dy is homotopic with the constant
mapping ¢,: U — {y} (H(z,t) = y + t(z — y)). Hence HY,(U) is isomorphic with HY,({y}).
Furthermore, HY,({y}) = 0 for p > 1. O

10 Cochain complexes and their cohomology

In this section we introduce and develop basic notions and theory on (general) cochain complexes
and their cohomology.
A sequence of vector spaces and linear maps

AliB ¢

is exact if Im f = Kerg. So, A Iy B =5 0is exact if and only if f is surjective. On the other hand,
0 — B % C is exact if and only if ¢ is injective. A sequence A* = {A’, d'},

i—1 d7 g d g ditt i+2 _,
AT —— A AT —— A
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of vector spaces A’ and linear maps d’ is called a cochain complex if dt' o d" = 0. It is exact if
Kerd' = Imd'~! for all i. An exact sequence

(10.1) 0ALB% 50

is called short exact. So, f is injective, g is surjective and Im f = Ker g.
The cokernel of a linear map f: A — B is Cok(f) = B/Im f. For a short exact sequence (10.1),
g induces an isomorphism

g: Cok(f) = C.
Every long exact sequence induces short exact sequences
0—Imd™!— A" - Imd — 0
that can be used to determine A’. Furthermore, the isomorphisms
A I d ™2 2 A7 Kerd™ £ Imd !

are used in concrete calculations.
Recall that a direct sum of vector spaces A and B is the vector space

A® B={(a,b): a € Abe B},
Aa,b) = (Aa, Ab), X € R,
((11, b1) + ((12, b2) = (a1 + ag, b1 + bg).
If {a;} and {b;} are bases of A and B, respectively, then {(a;,0),(0,b;)} is a basis of A® B.
Lemma 10.2. Let A 5 B ﬁ> C be an exact sequence. Suppose that A and C are finite-dimensional.

Then also B is finite-dimensional and dim B < dim A 4+ dim C.

Proof. Since C is finite-dimensional, also Im (5 is finite-dimensional. Hence there exist vy,...,v; €
B such that Tm 8 = span{3(v;)}. Let v € B be arbitrary. Then 8(v) = 3%, ¢;3(v;), and therefore
v :=v—YF ¢ € Ker B =Ima. Since A is finite-dimensional, also Im « is finite-dimensional.
Let {vg+1,...,Um} be a basis of Im . Then

k k m m
/
v = E Civ; + v = E c;v; + E Civ; = E CiVj,
i=1 i=1 i=k+1 i=1

and therefore dim B < dim A + dim C is finite. O
By modifying slightly the proof above we obtain:

Lemma 10.3. Suppose 0 — A i> B2y C = 0 is a short ezact sequence of vector spaces. If A and
C are finite-dimensional, then B is also finite-dimensional and B= A& C.

Definition 10.4. For a cochain complex A*,
N Ny NS RN SN
we define the pth cohomology vector space
HP(A*) = Kerd?/Im dP~ L.

Elements of Ker dP are called p-cocycles (and are said to be closed) and elements of Im dP~! are
called p-coboundaries (or exact). Elements of HP(A*) are called cohomology classes.
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A cochain map f: A* — B* between cochain complexes consists of a family fP: AP — BP of
linear maps such that df, o f? = fPl o dh:

p—1 P
i S AP A AP A Pl

fpll/ fpl lprrl
et i

e pr-1 B _pp_ B pptl___ _ ..
Lemma 10.5. A cochain map f: A* — B* induces a linear map f*: HP(A*) — HP(B*) for all p.

Proof. Let a € AP be a p-cocycle (da = 0) and [a] = a+Im di_l the corresponding cohomology
class in HP(A*). Define f*[a] = [f?(a)]. Then

(i)
dpfP(a) = fr* &) (a) =0,
=0

so fP(a) is a p-cocycle and [fP(a)] is defined;

(ii) [fP(a)] is independent of the choice of a representative of [a]: If [a1] = [az], then a; —as €
Imd? " and
fPla —ag) = frdy (z) = diy ' f7 (),

so fP(a1) — fP(az) € Im d%_l and thus fP(a;) and fP(ag) define the same cohomology class;

(iii) clearly f* is linear.

A short exact sequence of cochain complexes
04" L B % 0" 50
consists of cochain maps f and ¢ such that
f? g°
0— AP — B 5 C? - 0
is exact for every p.

Lemma 10.6. For a short exact sequence of cochain complexes, the sequence
Hr(A%) L gr(Br) £ gr(c)
is exact, i.e. Im f* = Ker g*.

Proof. Since ¢gP o fP =0, we have

g o f*([a]) = ¢"([/7(a)]) = [¢"(f*(a)) ] = O
=0
for every cohomology class [a] € HP(A*). Hence Im f* C Ker g*.
Conversely, let [b] € Kerg* € HP(B*). Then [¢?(b)] = g*[b] = 0, so gP(b) — 0 € Im d’é_l. Hence
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g’ (b) = dlé_l(c). Since gP~! is surjective, there exists by € BP~! such that ¢?=1(b1) = c. It follows
that g (d% '(b1)) = d&% ("~ (b)) = d% '(c) = gP(b), and therefore g?(b — db (b)) = 0, i.e.
b— d%_l(bl) € Ker ¢? = Im fP. Hence there exists a € AP such that fP(a) =b— d‘%_l(bl). We claim
that a is a p-cocycle (dya = 0). Since fPT! is injective it suffices to show that fP(d}a) = 0. But

fr(dha) = dy(£7(@)) = dy (b — diy (b)) = dp(b) =0

since b is a p-cocycle (note that [b] € HP(B*)). So we have found a cohomology class [a] € HP(A*)
such that

f*lal = [fP(a)] = [b—d5 ' (b1)] = [b] = 0.
N——
€lmdy

O

Remark 10.7. Th exact sequence in Lemma 10.6 need not be extendible to a short exact sequence.
Even though gP: BP — CP is surjective, the preimage (¢?)~'(c) of a p-cocycle ¢ € CP need not
contain a p-cocycle.

However, on cohomology level this works:

Definition 10.8. For a short exact sequence of cochain complexes
0 A* Lg% o o,
we define the linear map 9*: HP(C*) — HPTL(A*) by
0" ([e)) = [(f7*H) " dp ((9") 7 (0)))]-
The map 9* is called the connecting homomorphism.

To prove that 0* is well-defined we have to note several things. The definition requires that
for every b € (gP)71(c) we have d/(b) € Im fP*! and then the uniquely determined a € AP*! with
fP(a) = d(b) is a (p + 1)-cocycle. Finally, [a] € HPT!(A*) should be independent of the choice
of b€ (g°)(e).

-1 —
0=t g1 o1 g

—1 —1 —1

ay d dz;
Iz o
0 AP B cr 0
dP

di B 778* “ dg

0— AP+t — BIH —op O —0
g

We claim:
(i) If g?(b) = c and d7.(c) = 0, then d;(b) € Im fP+1.

(i) If fP1(a) = dby(b), then d(a) = 0.
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(iil) If g?(b1) = gP(b2) = c and fPT1(a;) = diy(b;), then [a;] = [as] € HPTL(A®).

Proof. (i) follows since gP™1d% (b) = df,(c) = 0 and Ker g™ = Im fPT1.

(ii): Since fP*2 is injective and fP+2d% ! (a) = db P (a) = dB dBy (b) = 0, we have d5 (a) = 0.
(iii) follows since by —by € Ker g? = Im fP, s0 by —by = fP(a) and hence di(b1) —dY; (b2) = dif; fP(a) =
fPdh (a) and furthermore

(7 () — () (be) = (o) € Il

=ai =as

Now a; is a (p + 1)-cocycle (d’:rl(ai) = 0) since
PR @) = d P (@) = di d(ag) = 0
and fP*2 is injective. Thus [a1] = [ag] € HPH(A*). O

Lemma 10.9. The sequence
HP(B*) L5 HP(07) 2 g (A7)
18 exact.

Proof. Since

0" (1b)) = 0" [¢"(®)] = [(/71) 7 ( dh(®))] = 0] =0,
=0

Im g* C Ker 0*.
Conversely, let 9*[c] = 0. Choose b € BP such that gP(b) = c. Since dfs(c) = 0, d'3(b) € Im fPT! by
(i). So, d5(b) = fP™(a) and dﬁ“(d) = 0 by (ii). Since a € Ker d’fl =Imd", a = d%(a) for some
a € AP. Now

By (b — 17(@)) = dy(6) — iy fP(a) = i) — 71 (@) = 0

—
and
g’ (b= fP(a)) = g"(b) — g"f’(a) = g"(b) = c.
=0
Hence g*[b — fP(a)] = [c], so Ker 9* C Im g*. O

Lemma 10.10. The sequence
ar(c) L gretar) L grti(pry
18 exact.

Proof. Since
Forld = ;o[ ®)] = £ T d0)] = [d0)] =0,
—
Im 9* C Ker f*.
Conversely, suppose that [a] € Ker f* (C HP*1(A*)), that is " (a) = 0 and [f?*'(a)] = f*[a] = 0
Then fP*1(a) is exact, so fP1(a) = di;(b). Then df.gP(b) = g"Tdp(b) = g?™! fPT1(a) = 0, and so

9*[g"(b)] = [(f7) T (dy ()] = ()7 (77 (a))] = [al.

Hence Ker f* C Im 9*. O
We collect these to:
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Theorem 10.11 (Long exact cohomology sequence, "Zig-zag lemma‘). Let
0 AL B % 0" -0
be a short exact sequence of cochain complexes. Then the sequence
Ay I gy L mrery & grriany L gy -
s exact.

Definition 10.12. Cochain maps f,g: A* — B* are ssaid to be cochain homotopic if there are
linear maps s: A? — BP~! such that

A% ts + sdh = f —g: AP — BP
for every p.
Lemma 10.13. For two cochain homotopic maps f,g: A* — B*, we have
ff=g": HP(A*) — HP(B").

Proof. (cf. Theorem 9.4)
If [a] € HP(A*), then

(f* = g")lal = [f7(a) — g"(a)] = [d 's(a) — sdy(a)] = [d} 's(a)] =0 € HP(BY).

~—— ———
=0 €Im dﬁ’;l
O
Lemma 10.14. If A* and B* are cochain ncomplexes, then
HP(A* @ B*) = HP(A*) @ HP(B™).
Proof. Clearly
Ker (d, 5 5) = Ker d, @ Ker df
and
Im () = Imd’} " @ Imdy .
O

Theorem 10.15 (The 5-Lemma). Consider the following diagram of vector spaces and linear maps
(or Abelian groups and homomorphisms):

a1 a2 a3 Qy

Al A2 Ag A4 AS
lfl lfz lfs lf4 lfz&
By B1 By B2 By B3 Ba Ba Bs,

where horizontal sequences are exact and f1, fao, fia and f5 are isomorphisms. Then also f4 is an
isomorphism.

Proof. (Exercise) 0

Remark 10.16. The assumptions can be weakened as:

fo, fa surjective and f5 injective = f3 surjective,

fo, fa injective and f; surjective = f3 injective.
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11 De Rham Theorem

In this section we focus on de Rham cohomology and its connection to Cech and singular coho-
mologies.

We start with the fundamental Meyer-Vietoris theorem. Suppose that U and V are open subsets
of M such that U UV = M. We have the following inclusions

/\
\/

PUNV),

and induced cohomology maps

\
\/
<

Hp(U
/
Hjyp(M) Hyp(UNV).
X /
Hap(V)
Let us consider the following sequence
(11.1) 0 — AP(M) 225 a0y @ AP(V) ZL AU A V) -0,
where

(k* @ 0w = (F'w,l*w), we AP(M),
(" =) e, B) = i"a = j*B, a€ AP(U), B € AP(V).

Since pullbacks commute with the exterior derivative d, we have
k*EBZ* PR
Hijp(M) === Hjp(U) ® Hijp(V) —= Hjp(UNV).
Suppose that
(11.2) 0 — A*(M) 228 AUy @ A7 (V) S5 AM (U N V) = 0

is a short exact sequence (of cochain complexes), i.e. the sequence (11.1) is exact for every p. Then
the "Zig-zag lemma*“, Theorem 10.11, implies



Introduction to differential geometry 101

Theorem 11.3 (The Meyer-Vietoris sequence). If M =U UV for some open sets U and V', then
the sequence

FOO, mr () e HE,(V) S5 mE (0 nv) s BEEY (M)

KOO, gl vy e HIEN (V) — -

e HEp(M)

1s exact.

This is a fundamental calculation technique that can be used to determine Hj,(M) as a "func-
tion“ of Hj,(U),Hjp(V) and Hjp(U NV). To prove Theorem 11.3 we need the following:

Lemma 11.4. Suppose that U and V are open subsets of M such that M = U UV . Then the
sequence

0 — A*(M) 225 AUy e A(V) 5 A1 UnV) =0
is exact, where k,£,i and j are inclusions as above.
Proof. Claim 1. k* & ¢* is injective:
Suppose o € AP(M) satisfies (k* @ ¢*)o = (o|U,o|V) = (0,0). Since M = U UV, we have o = 0.
Claim 2. Im(k* & ¢*) = Ker(i* — j*):
For every o € AP(M),
(" =) e (k& f)o = (i — j")(o|U,a|V) =i"(o|U) — j*(a|V) = o|(UNV) —o|(UNV) =0,

so Im(k* & 0*) C Ker(i* — 5%).
Conversely, suppose
(o, B) € Ker(i* —j%).
——"
EAP(U)BAP (V)
Thus

(" =), B) =i"a—j"B=al(UNV) = BI(UNV) =0,
so al(UNV)=p|(UNV). Hence we can define o € AP(M) by
{a, in U,
g =
B, inV.

Then (k* @ (*)o = (k*o,l*0) = (o, 5), hence Ker(:* — 5%) C Im(k* & £*).

The only "nontrivial“ part is the following.

Claim 3. ¢* — j* is surjective:

IfUNV =0, M is disconnected and the claim is trivial. Let w € AP(U NV be arbitrary. We need
to find o € AP(U) and 8 € AP(V) such that

w=("—j ) f) =i"a—=jB=a|/(UnNV)=plUNV).
Let {¢,1} be a smooth partition of unity subordinate to {U, V'}. Define
oo Yw, inUNV,
o, in U \ supp .
Since Yw =0 on (UNV) \ suppy, so a € AP(U). Similarly,
5= —pw, inUNYV,
o, in V' \ supp .
Then o|(UNV)=Bl(UNV) =9Yw+ ow = (Y + p)w = w. O
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11.5 Some calculations and applications

Proposition 11.6 (Disjoint union). Let M;, j € N, be disjoint smooth n-manifolds and M =
Ujen M;. Then, for every p, the inclusion maps i;: M; — Minduce an isomorphism

Hijp(M) — [ Hip(M;).
JjeN
Proof. Pullbacks ij: AP(M) — AP(Mj) induce an isomorphism AP(M) — [[;en AP(M;),
w — (w|Mj,w|Ms,...). This map is injective since (w|Mj,w|Mas,...) = (0,0,...) if and only if
w = 0. It is surjective since arbitrary p-forms on M; define a p-form on M. O

Theorem 11.7. If M is simply connected, then H}p(M) = 0.

Remark 11.8. A smooth 1-form w € A'(M) s exact if and only if J,w = 0 for every closed
(piecewise) smooth v: [0,1] — M:
Indeed, if w € AY(M) is exact, w = df for some f € C*°(M). So,

[o= [ @1 =160) - 160) <o

For the converse direction, let w € A'(M) and fix g € M. For every x € M, let a: [0,1] — M be
an arbitrary smooth path form «(0) = 2o to a(1) = z and define f(z) = [, w. We claim that f is
well-defined and df = w. Let a: [0,1] — M be another smooth path from &(0) = xg to &(1) = x.
Then « followed by —&, —a(s) = @&(1 — s) is closed and piecewise smooth, hence

O:/ w:/w+/ w:/w—/w,
a(—a @ —a) @ —&

so f is well-defined. Finally, df = w follows from ”real analysis®

Proof of Theorem 11.7. (Idea)
Let w € AY(M) be closed. We need to show that w is exact. Let v: [0,1] — M be closed and
piecewise smooth. Since M is simply connected, v bounds a surface ¥ = H([0,1] x [0,1]) with
piecewise smooth boundary 9% = . Above H is a smooth homotopy between v and the constant
(path) v(0). (We have also slightly abused the notation.) By Stokes’s theorem,

/w:/dw:0
0 %

since w is closed. By Remark 11.8, w is exact. O

Theorem 11.9. Forn > 1

HgR(S") _ {]R, p=0 orp=n,
0, 0<p<n.
Proof. Since S" is connected, H),(S™) = 0 by Theorem 9.1.

Let p > 1. We prove the claim by induction on the dimension n. If w € A'(S') is an orientation
(volume) form, ¢y = Jq w # 0. Hence w is not exact and [w] € Hj,(S') (note that every w € A'(S!)
is closed). Let n € A'(S') be arbitrary and ¢ := % Js1n. Then [q(n — cw) =0, and so n — cw is
exact and [] = clw]. Hence dim H},(S?).

Let n > 2 and assume that the claim holds for S"~1. Since S is simply connected, H},(S") = 0.
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For p > 1, we apply Meyer-Vietoris theorem. Let zq,y9 € S™ be the north and the south pole, U =
S"\{yo} and V = S"\ {yo}. Then U and V are diffeomorphic with R", so Hip(U) = Hyp(V) =0
for ¢ > 1. By the Meyer-Vietoris theorem

HY ' (U) @ HY, (V) — HESH(U N V) — HEL(S™) — HY(U) @ HE (V)

=0 =0

is exact, hence HE- (U NV) 22 HY,(S™). On the other hand, U NV is diffeomorphic with R\ {0},
hence homotopic with S"~!, so H},(S") = Hglgl(S”_l) and the claim holds for S™. O

Corollary 11.10. Letn > 2, x € R" and M =R"\ {z}. Then

R, p=0orp=n-—1
Hp M — ) )
arlM) {0, otherwise.

Furthermore, a closed (n — 1)-form n is exact if and only if [¢n = 0 for all (n — 1)-spheres
surrounding x, i.e. S = 0B for some open ball B > x.

Proof. Let S = 0B for some open ball B 5 z. Then R™\ {z} is homotopic with S hence with
S"~1. Thus the first claim follows from Theorem 11.9 and 9.5.
Let 1 be a closed (n — 1)-form on M. Then 7 is exact on M if and only if i*7 is exact on S, where
i: S < M is he inclusion (note that i is a homotopy equivalence i o idy; = idps, idpsoi = idgn).
If n (hence (i*n) is exact, then [¢n = [¢i*n = 0 by Corollary 7.12. The converse direction follows
from the following lemma. O

Lemma 11.11. An n-form w € A™(S") is exact if and only if [ w = 0.

Proof. The implication follows from Corollary 7.12.

Let w € A™(S™). We prove the claim by induction on n. The case n = 1 follows basicly from
Remark 11.8.

Suppose the claim holds for S*~!. Let S® = N U S, where N = {z € S": x,,41 > 0} and S = {z €
S™: xpe1 <0} Let Oy ={z € S": 241 > —c¢} and Og = {z € S": 41 < e} for 0 < e < 1/2.
The common boundary S*! = 9N = 95 has oppposite Stokes orientations with respect to N and
S. By Poincaré’s lemma 9.7 (applied with diffeomorphisms ¢: Og — B™(0,1), ¥: Oy — B"(0,1)),
there exist ay € A" 1(Oy) and ag € A" 1(Og) such that day = w on Oy and dag = w on Og
(note that dp* = ¢*d, dy* =1p*d). By the assumption and Stokes’s theorem,

O:/w:/w+/w:/daN+/da5
n N S N S
= z'*aN+/ i*asz/ z'*aN—/ " ag
ON oS Sn—1 Sn—1

= - i*(ay — ag),
where i: S"~! < S" is the inclusion. By induction, i*(ax — ag) is exact. Let O = Oy N Og and
r: O — S ! be the retraction along meridians. Now i o r 2 idp. Since d(ay — ag) =w —w =0,
ay —as —r*i*(ay — ag) is exact (Theorem 9.4). But i*(an — ag) € A"~ 1(S"!) is exact (by the
induction hypothesis), so r*i*(ay — ag) € A" H(O) is exact. Hence ay — ag € A" 1(0) is exact.
So, there exists 8 € A"71(0) such that d3 = ay — ag on O. Finally, extend 8 by using a bump
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function to v € A"~1(S") such that v = 8 on O and v = 0 on S" \ V, where V is open such that
O C V. Then

5= apn, on IV,
B as+dy, onS

is smooth and d\ = w on S™ O
Corollary 11.12. If n # m, then R™ and R™ are not heomeomorphic.

Proof. Suppose that R™ and R™ are homeomorphic. Then R™\ {0} and R™ \ {0} are homeo-

morphic. Hence Hjp(R™\ {0}) = Hjp(R™ \ {0}) for all p, but this implies n = m. O
Recall Theorem 8.16. There is no continuous map f: B" — S”_l_with fIS* ! = idgn-1.
We give another proof for this. We may assume that n # 2 since B! = [~1,1] is connected but

SY = {~1,1} is disconnected. The map r: R™ \ {0} — R"\ {0}, r(z) = =/|z|, is homotopic
to idgm\ (o3 by H(t,x) = tidgm (o () + (1 — t)r(z). If f: B — S"7! were a continuous map
with f|S"~! = idgn-1, then f(tr(z)), 0 < t < 1, would be a homotopy between a constant map
and r. This would imply that R™\ {0} is contractible, hence Hz*(R" \ {0}) = 0 which is a
contradiction. O

Theorem 11.13 (Hairy ball theorem). There exists a continuous nowhere vanishing vector field
V oon S™ (V, € T,S™ Yx € S™) if and only if n is odd.

Proof. Suppose n is odd, n = 2m — 1, m > 1. Define V: R — R**+! by

V(21,...,Tom) = (—%2,T1, —T4, T3, ..., —T2m, T2m—1)-

Clearly, V is continuous, |V (z)] =1 Vz € S" and V(z) - = 0. Hence V is a continuous nowhere
vanishing vector field on S™
Conversely, suppose that such V exists on S". Extend it to a map Y : R**1\ {0} — R"*1\ {0} by
setting

Y(z) = V(z/|z]), = € R"\ {0}.

Then Y (z) # 0 and Y (z) - = 0 on R**1\ {0}. The map
F(z,t) = cos(tm)z + sin(tm)Y (x)

defines a homotopy from fy = idgn+1\{g) to the antipodal map f; = —idgn+1\fo). Hence fi is the
identity on H7n(R™™\ {0}) which is 1-dimensional. On the other hand, fi: Hj,(R" 1\ {0}) —
H7o (R {0}) operates by multiplication by (—1)"*! [Exerc.]. Hence n is odd. O

11.14 Cech cohomology (sketch)

Definition 11.15. Let M be a smooth manifold and {U,}oca an open cover of M. We say that
U = {Uq}aca is a good cover if for every finite set {aq,...,ar} C A of indices the intersection
Ua, N -+ N Uy, is either empty or diffeomorphic to R™ (hence contractible).

Lemma 11.16. Every smooth manifold M has good covers.

Proof. Equip M with a Riemannian metric. Then for every x € M there exists r, > 0 such
that (metric, geodesic) open balls B(z,r) are convex for all 0 < r < r,. Then {B(z,73)}zer is a
good cover. O
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Definition 11.17. A smooth manifold M has finite topology if there exists a finite good cover
{U17"'>UN}‘

Examples 11.18. 1. A compact manifold M has finite topology.

2. If C' € M is compact and Uy is an open neighborhood of C, there exists an open neighborhood
U of C such that U C Uy and U has finite topology.

Theorem 11.19. If M™ has finite topology, then all HY (M) are finite dimensional.

Proof. The claim follows from the Meyer-Vietoris theorem and Lemma 10.2 by induction on
the number of sets in a good cover.
Let U = {Uy,...,Un} be a good cover of M™. If N =1, then M = Uj is doffeomorphic to R", so

R, p=0,

Hl (M) = {0 re

Suppose the claim holds for N — 1. Let U = Uy U --- U Uy. Then {Us,...,Un} is a good cover
of U, hence HY r(U) are finite dimensional by the induction hypothesis. The manifold U N U; has
a good cover {U; NUs,...,U; NUn}, so the cohomology groups of U N Uj are finite dimensional.
Now M = U UU; and we have the exact Meyer-Vietoris sequence

H U nUy) L HEL(M) — HEL(U) @ HE,(U7)

and the claim follows from Lemma 10.2. O
In fact, the dimensions of HY (M) are determined by intersection properties of sets Uy, i.e. by

the list of multi-indices for which the intersections are non-empty. The collection of such multi-

indices is called the nerve of Y. This suggests that any cohomology theory whose input is the nerve

of U and cohomology groups (vector spaces) as output will be isomorphic to de Rham cohomology.
Let U = {Uy,...,Uy} be a good cover of M. Denote by N*¥(U) the set of all multi-indices

I=(igy...,ix), 1<ig,...,ix <d,

such that
Ur .= Uioﬂ“‘mUik 750

Hence such Uy is diffeomorphic to R™. For example, I = (i,4,...,1) € N*U) since Uy = U;. The
disjoint union
NU)= || N*u)
k>0

is called the nerve of U and N*(U) is the k-skeleton of N(U). If I = (i,i,...,i) € N*(U{), then
L= (igy -y 0j, - i) € NF7IU).
We associate a cochain complex C*/U) to N(U) by defining the vector space
C*U,R) = {u: N*(U) = R.

The differential (or coboundary operator) is the linear map d: C*(U,R) — C**1 (U, R) defined by
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that is,
k+1

du(io, ... ikp1) = Y (=1)ulio, ... 55, . ikt
=0

Then dod (: C*U,R) — C**2(U,R)) = 0. Indeed, if u € CF(U,R), then

k+2 ] k+2 ) ) )
d(du)(I) = Y (~1)'du(L;) = Y (1)’ (Z(_l)]u(lz‘,j) + Z(—l)’_lu(h,j)) =0

i=0 i=0 j<i j>i

since each u(I; ;),i # j, occurs twice, but with opposite signs. Note that the sign (—1)7=! for j >4
occurs since the (original) ith index 4; is missing and therefore 4; is the (j — 1)st index.
The cochain complex

0—C'UR) S CTUR) S - L P UR) S -

is called the Cech cochain complex of the cover U and the Cech cohomology vector spaces of the
cover U are
Ker (d: C*U,R) — CK1(U,R))

Im (d: Ck=1(U,R) — C*U,R))

H*U,R) =

Theorem 11.20. Suppose that M has a finite good cover U. Then for all k > 0
H*U;R) = HEL(M).

Very rough idea of the proof: Both de Rham and Cech cohomology theories have Meyer-Vietoris
sequences and satisfy the Poincaré lemma. Then the proof goes via induction on the number of
sets in the good cover together with the 5-Lemma.

We can reduce the proof to the following general:

Proposition 11.21. Let M™ be a smooth manifold. Suppose P(U) is a statement about open
subsets U C M satisfying;

(1) P(U) is true if U is diffeomorphic to a convex subset of R";
(2) P(U), P(V), PUNV)= PUUV);
(3) {Uys} disjoint and P(Uy) Voo = P(Uqy Uy).

Then P(M) holds.

Proof of Propositio 11.21. Assume first that M™ is diffeomorphic to an open subset of R".
So, we may think of M™ being an open subset of R™. By (1), (2) and induction it follows that
P(U) holds if U is a union of finite number of convex open subsets of R" because

(U1UU2U"'UUn)ﬂUn+1Z(UlﬂUn+1)U-”(UnﬁUn+1)

and a nonempty intersection of two convex sets is convex.

Let then {V;} be a collection of open sets such that V; is compact. Take a (smooth) partition of
unity {f;} subordinate to {V;} and define f = >, jf;. Let A; = f7'j,j +1]. Then A; is compact
since f is proper. Cover A; by finite union U; of convex open subsets contained in f~1(j — %, i+ %)
Then A; CU; C f71(j — %,j + %) S0 Uegven are disjoint and similarly Uyqq are disjoint. Since U;
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is a finite union of convex open sets, P(U;) holds. By (3), P(U) and P(V') hold, where U = U;Us;
and V = UjUgj_H. Now
UNV =| | (U NUsjs1)
J

is a disjoint union of sets Us; N Uaj41 that are either empty or finite unions of convex open sets.
Hence P(UNV) holds. Now it follows from (2) that P(M) = P(U UV) holds. Hence P(U) is true
for all open U that are diffeomorphic to an open subset of R™. Replacing above "convex open* by
“open® and repeating the argument completes the proof. O

The crucial step in the proof of Theorem 11.20 is to verify the property (2) in Proposition 11.21
[P(U), P(V), P(UNV)= P(UUYV)]. Here we apply Meyer-Vietoris sequences and the 5-Lemma
to exact sequences

HYNU) @ Hi, (V) Hy N (UNV) HY(UUV) —

| | |

HP7L({U},R) ® HP~Y({V},R) HPL{U NV}, R) HP{UUV}R) —

— Hijp(U) & Hyp(V) Hyp(UNV)

| y

— HP({U},R) ® H?({V'},R) HP({UNV},R).

1%

The 5-Lemma implies that also HY,(U UV) — HP({U UV}, R) is an isomorphism.

11.22 Singular (co-)homology

Let eg, e1,... be the standard basis of R®. The standard p-simplex, p > 0, is

i.e. the convex hull of {eq,...,e,}. A\;’s are called barycentric coordinates.

Let X be a topological space. A singular p-simplex in X is a continuous map ¢: A, — X.
"Singular® refers to the lack of regularity. The singular p-chain group of X, C,(X), is the free
Abelian group generated by all singular p-simplices in X. An element of C,(X), called a singular
p-chain, is a finite formal linear combination of singular p-simplices with integer coefficients

> nsd,
%

with ng € Z equal to zero for all but a finite number of ¢.

Remark 11.23. Let us recall the notion of a free Abelian group generated by a set.

Let A be an arbitrary set and F(A) = {f: A — Z| f(a) # 0 for only finitely many a € A}. Define
in F(A), the sum f+g by (f+g)(a) = f(a) + g(a). Then (F(A),+) is an Abelian group. For any
a € A, define f, = x{qy € F(A). Then {f,: a € A} is a basis for F(A) as a free Abelian group. By
identifying a with f,, we may interpret A as the basis of F'(A).
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For p+1 points vy, ...,v, € RN (not necessarily in general position) we define an affine singular
p-simplex [vo, ..., vp): Ay — RY as the map

p p
Z )\iei — Z )\Z'UZ
=0 =0

For eachi € {0,...,p}, let F': A,_1 — A, be the affine singular (p—1)-simplex F' = [eq, ..., &, ..., €p).

More precisely, F? is the restriction to Ap_l of the affine map such that

ep — €

€i—1 > €i—1

€; > €i4+1

€p—1 = €p.

F? is called the ith face map. Note that F¥ maps A, 1 homeomorphically onto the boundary face
of A, opposite the vertex e;. Note also that, for i > j,

(11.24) FPoFP ' =FPoFl ' Ay s — A,

Let then ¢: A, — X be a singular p-simplex. We define a singular (p — 1)-chain 0¢, called the
boundary of ¢ by

0¢ = Z 1)Aé¢p o F?.

This definition extends uniquely to a homomorphlsm 0: Cp(X) — Cp_1(X), called the boundary

operator
8( Z n¢¢) = Z n¢8¢
¢ ¢

Proposition 11.25. The composition 0o 0: Cp(X) — Cp_2(X) is zero.
Proof. We have

—Lp
; 1
9(0¢) :ZZ 2+]¢0FipoFJZ”
7=01=0
— Z (_ )2+j¢o}7’zpoFf_l+ Z (—1)i+j¢oFZpoF]p_1.
0<j<i<p 0<i<j<p—1

Writing j' =4, i — 1 = j in the second sum and using (11.24) it bocomes

> ()Mo Fto R = 3 (-)™ e Fpo R
0<j'<#'<p 0<j'<i'<p
so the sums cancel term by term. O
A singular p-chain o is called a p-cycle if 9o = 0. The set of all p-cycles, denoted by Z,(X), is
a subgroup of Cp,(X) as the kernel of the homomorphism 0. Similarly, the image 0Cp;1(X) is the
subgroup B,(X) of all p-boundaries. The quotient group

Hp(X) = Z,(X)/Bp(X)
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is the pth (singular) homology group of X. This is zero if every p-cycle is the boundary of a
(p + 1)-chain. Intuitively, this means that there are no p-dimensional ”holes* in X.
If f: X =Y is continuous, let f;: Cp(X) — Cp(Y') be the homomorphism defined by

fro=foo

for all p-simplex o. Since f; commutes with 0, fj(do) = 0fso, fy maps Z,(X) into Z,(Y) and
B,(X) into B,(Y'). Hence it passes to quotients and defines a homomorphism

fir Hp(X) — Hp(Y).

We have the Meyer-Vietoris sequence: Let X be a topological space and U,V C X open sets such
that X = U U V. For each p there exists a homomorphism 0, : Hp(X) — Hp_1(U NV such that
the sequence

O H(UNV) EE B (U) @ Hy(V) 2 Hy(X) S Hy ((UNV) = -

is exact.
We define the singular pth cohomology group HP(X;R) with coefficients in R as a real vector

space that is isomorphic to the space Hom (H,(X),R) of group homomorphisms H,(X) — R. Any
continuous map f: X — Y induces a linear map f*: HP(Y;R) — HP(X;R),

(f* Vel =~ (fle])

for every v € HP(Y;R) = Hom (H,(Y),R) and [¢] € Hp(X). Singular cohomology groups satisfy
the Meyer-Vietoris theorem.

11.26 Smooth singular homology

The connection between singular and de Rham cohomologies is established by integrationg differ-
ential p-forms over singular p-chains. Given a singular p-simplex o: A, — M and a differential
p-form w, we would like to integrate the pullback o* over A,,.

However, we face a problem. Pullback is defined for smooth maps (at least C') only. [Regularity
could be weakened further but not for arbitrary continuous maps.]

To circumvent this problem we need to define a smoothing operator s: Cp,(M) — C;°(M) (smooth
p-chain group) such that it commutes with the boundary operator sod = dos and soi = idc’go( M)
[i: C°(M) — Cp(M)] and we need a homotopy operator that shows that i o s induces the identity
map on H,(M).

Definition 11.27. The pth smooth singular homology group of M is the quotient

_ Ker [0: Ce(M) — C;?il(M)}

1, (M) = Im [9: C3% (M) = Cgo(M)]

Theorem 11.28. For a smooth manifold M, the map i,: Hy(M) — Hy(M) induced by the inclu-
sion i: C)°(M) < Cp(M) is an isomorphism.

The proof is technical (based on Whitney type approximation) construction of homotopy from
each continuous simplex to a smooth one that respects the restriction to each boundary face of A,,.
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11.29 de Rham homomorphism, the de Rham’s theorem

Let o: A, — M be a smooth p-simplex and w a closed p-form on M. Define

/w ::/ o*w.
o Ap

This definition makes sense since A, has the induced orientation from RPHL If ¢ = 3, ¢io is a

smooth p-chain, then
/ W= Zci / w.
c i led)

Stokes’s theorem (we can neglect ”corners“):
If ¢ is a smooth p-chain and w a smooth (p — 1)-form, then

/w:/dw.
dc c

We define the de Rham homomorphism U*: HY (M) — HP(M;R) = Hom (H,(M),R) by
Vil = [w, V] € Hip(M), [d € Hy(M) = HF (),

where ¢ is any smooth p-cycle in [c] € Hy(M). It is well-defined. Indeed, if ¢;, ¢z € [c] are smooth,
then ¢; — co = 9b for some smooth (p + 1)-chain, so

/W—/w:/w:/dw:o
c1 co ob b

since w € [w] is closed. If w = dn is exact, then

Jeo= L= [ =0
c 4 oc

since ¢ = 0. So, U* is a well-defined homomorphism.

Theorem 11.30 (The de Rham’s theorem). The homomorphism
U*: HO (M) — HP(M;R)

s an isomorphism for all p and for every smooth manifold M.

Proof. The idea of the proof is, of course, the same as in the proof of Theorem 11.20. We have
Meyer-Vietoris sequences, Poincaré lemma and the 5-Lemma for both cohomologies.
Thus, let P(U) be the property:

U*: HY,(U) — HP(U;R)
is an isomorphism for an open set U C M.

Then we have:
(1): P(U) holds if U is diffeomorphic to an open convex subset of R™ (Poincaré lemma).
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(3): {Uy} disjoint and P(U,) holds V a = P(U,U,,) holds.
(2): Suppose P(U), P(V) and P(UN) hold. Then

HY N (U) @ HYLH(V) HENUNV) HY(UUV) —
%\L\IJ*@\IJ* %\L\IJ* \Il*lhomom.
HP~Y(U;R) @ HP~Y(V;R) HP-YUNV;R) HP(UUV;R) —

— Hjp(U) @ Hyjp(V)

HI(UNV)
gl\l}*@\l}* gl\p*

— HP(U;R) ® HP(V;R) HP(UNV;R).

The 5-Lemma implies that also H,,(UUV) — HP(UUV;R) is an isomorphism, so P(UUV) holds.
Proposition 11.21 implies that U*: HY, — HP(M;R) is an isomorphism. O
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